Table of contents

1 Introduction... 6
 1.1 Manufacturer... 6
 1.2 Supporting documents.. 6
 1.3 Safekeeping... 6
 1.4 Notation conventions... 6
 1.4.1 Symbols... 7
 1.4.2 Hazard communication system... 8
 1.4.3 Information system... 9

2 Safety.. 10
 2.1 General safety information.. 10
 2.2 Appropriate use... 10
 2.3 Inappropriate use.. 11
 2.4 Standards and regulations.. 11
 2.4.1 Application range of the motor-drive unit.. 12
 2.4.2 Measures for ensuring compliance with explosion protection requirements..................................... 14
 2.5 Personnel qualification... 16
 2.6 Operator’s duty of care... 16
 2.7 Personal protective equipment.. 17
 2.8 Protective devices in the motor-drive unit.. 18
 2.9 Drying transformer.. 18
 2.9.1 Drying transformer in autoclave... 18
 2.9.2 Drying transformer in its own tank... 18

3 Product description... 19
 3.1 Scope of delivery.. 19
 3.2 Function description.. 19
 3.3 Type designation.. 19
 3.4 Design.. 20
 3.4.1 Indication field.. 22
 3.4.2 Anti-condensation heater... 22
 3.4.3 Swing frame/terminal rail... 22
 3.4.4 Position transmitter equipment... 24
 3.4.5 Transmission gear cover plate... 24
Table of contents

4 Packaging, transport and storage

4.1 Packaging

4.1.1 Suitability

4.1.2 Markings

4.2 Transportation, receipt and handling of shipments

4.3 Storage of shipments

4.4 Unpacking shipments and checking for transportation damages

5 Mounting

5.1 Fitting motor-drive unit on transformer

5.2 Mounting drive shafts and bevel gear

5.3 Centering on-load tap-changer and motor-drive unit

5.4 Cable recommendation

5.5 Installing electrics for motor-drive unit

6 Commissioning

6.1 Pre-flushing the motor-drive unit

6.2 Starting up motor-drive unit

6.3 Tests on the motor-drive unit

6.3.1 Checking correct electric switch-off

6.3.2 Checking mechanical and electric end stop of on-load tap-changer/off-circuit tap-changer and motor-drive unit

6.3.3 Checking the leakage loss rate

6.3.4 Checking tripping of motor protective switch

6.4 Tests on the transformer

6.4.1 High-voltage tests on the transformer

6.4.2 Dielectric tests on transformer wiring

6.5 Transporting transformer to the operating site

6.6 Commissioning the transformer at the operating site

7 Operation

7.1 Operating the motor-drive unit remotely

7.2 Operating motor-drive unit locally

7.3 Actuating motor-drive unit with hand crank

7.4 Checking motor-drive unit

8 Fault elimination

8.1 Safety instructions
Table of contents

8.2 General information ... 53
8.3 Fault in the environment of the motor-drive unit .. 54
8.4 Fault in the motor-drive unit when the switching operation has not ended .. 54
8.5 Fault in the motor-drive unit after the switching operation is ended correctly .. 56
8.6 Hand crank operation in the event of faults .. 56

9 Inspection and maintenance .. 58
9.1 Care ... 58
9.2 Inspection .. 58
9.3 Maintenance ... 58

10 Disassembly .. 60

11 Special motor-drive unit designs .. 62

12 Technical data .. 63
12.1 Technical data for motor-drive unit .. 63
12.2 Technical data for pressurized enclosure "p" 63
12.3 Technical data for position transmitter equipment 64

13 Appendix ... 65
13.1 TAPMOTION® ED-S-Ex, protective housing 66
13.2 TAPMOTION® ED-S-Ex, vibration-damped protective housing 67
1 Introduction

This technical file contains detailed descriptions on the safe and proper installation, connection, commissioning and monitoring of the product.

It also includes safety instructions and general information about the product.

This technical file is intended solely for specially trained and authorized personnel.

1.1 Manufacturer

The product is manufactured by:

Maschinenfabrik Reinhausen GmbH

Falkensteinstraße 8
93059 Regensburg, Germany
Tel.: (+49) 9 41/40 90-0
Fax: (+49) 9 41/40 90-7001
E-mail: sales@reinhausen.com

Further information on the product and copies of this technical file are available from this address if required.

1.2 Supporting documents

The following documents also apply in addition to this technical file:

- Connection diagrams
- Routine test report
- Declaration of Conformity
- Supplement

Also observe generally valid legislation, standards, and guidelines as well as specifications on accident prevention and environmental protection in the respective country of use.

1.3 Safekeeping

Keep this technical file and all supporting documents ready at hand and accessible for future use at all times.

1.4 Notation conventions

This section contains an overview of the symbols and textual emphasis used.
1.4.1 Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wrench size</td>
</tr>
<tr>
<td></td>
<td>Tightening torque</td>
</tr>
<tr>
<td></td>
<td>Number and type of fastening material used</td>
</tr>
<tr>
<td></td>
<td>Fill with oil</td>
</tr>
<tr>
<td></td>
<td>Cut open, cut through</td>
</tr>
<tr>
<td></td>
<td>Clean</td>
</tr>
<tr>
<td></td>
<td>Visual inspection</td>
</tr>
<tr>
<td></td>
<td>Use your hand</td>
</tr>
<tr>
<td></td>
<td>Adapter ring</td>
</tr>
<tr>
<td></td>
<td>Apply a coat of paint</td>
</tr>
<tr>
<td></td>
<td>Use a file</td>
</tr>
<tr>
<td></td>
<td>Grease</td>
</tr>
<tr>
<td></td>
<td>Coupling bolt</td>
</tr>
<tr>
<td></td>
<td>Use a ruler</td>
</tr>
<tr>
<td></td>
<td>Use a saw</td>
</tr>
<tr>
<td></td>
<td>Hose clip</td>
</tr>
</tbody>
</table>
1.4.2 Hazard communication system

Warnings in this technical file are displayed as follows.

1.4.2.1 Warning relating to section

Warnings relating to sections refer to entire chapters or sections, sub-sections or several paragraphs within this technical file. Warnings relating to sections use the following format:

WARNING

Type and source of danger

Consequences

► Action

► Action

1.4.2.2 Embedded warning information

Embedded warnings refer to a particular part within a section. These warnings apply to smaller units of information than the warnings relating to sections. Embedded warnings use the following format:

DANGER! Instruction for avoiding a dangerous situation.

1.4.2.3 Signal words and pictograms

The following signal words are used:

<table>
<thead>
<tr>
<th>Signal word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Indicates a hazardous situation which, if not avoided, will result in death or serious injury.</td>
</tr>
</tbody>
</table>
1.4.3 Information system

Information is designed to simplify and improve understanding of particular procedures. In this technical file it is laid out as follows:

Important information.
2 Safety

2.1 General safety information

The technical file contains detailed descriptions on the safe and proper installation, connection, commissioning and monitoring of the product.

- Read this technical file through carefully to familiarize yourself with the product.
- Particular attention should be paid to the information given in this chapter.

2.2 Appropriate use

If used as intended and in compliance with the requirements and conditions specified in this technical document as well as with the warnings in this technical document and attached to the product, then the product does not present any danger to people, property or the environment. This applies throughout the product's entire life, from delivery through installation and operation to disassembly and disposal.

The operational quality-assurance system ensures a consistently high quality standard, particularly in regard to the observance of health and safety requirements.

The following is considered appropriate use:

- The TAPMOTION® ED-Ex is to be used exclusively for operating on-load tap-changers or selector switches, which have the certified protection level necessary for use in a zone at risk of explosion.
- Only operate the product in accordance with this technical file and the agreed delivery conditions and technical data.
- Use the equipment and special tools supplied solely for the intended purpose and in accordance with the specifications of this technical file.
- Use the product only with the transformer specified in the order.
- You will find the standard valid for the product and the year of issue on the nameplate.
- The serial numbers of on-load tap-changers and on-load tap-changer accessories (drive, drive shaft, bevel gear, protective relay, etc.) must match if the on-load tap-changers and on-load tap-changer accessories are supplied as a set for one order.
- Electrically operate the motor-drive unit remotely during normal operation.
- In special operating cases (such as during maintenance tasks), the motor-drive unit can also be operated electrically on site via control switch S3.
2 Safety

- Never operate the motor-drive unit electrically or with the hand crank before the transformer has been disconnected if you think there may be a fault in the transformer or on-load tap-changer/de-energized tap-changer. For more information, refer to the "Troubleshooting" [► 53] chapter.

- Only ever open the motor-drive unit when it is de-energized and wait at least 30 minutes after the voltage supply has failed or the motor-drive unit has been switched off before you open it. Failure to do so will result in the risk of explosion.

- Pre-flush the motor-drive unit after completing any work that requires you to open it. Once pre-flushing has been performed, check the leakage loss rate of the motor-drive unit.

- When manually operating the motor-drive unit, only use the built-in hand crank. Failure to do so will result in the risk of serious injury and damage to property.

- The provided hand crank is for activating the motor-drive unit during installation and tests in the transformer plant or during maintenance tasks if the transformer has been disconnected.

- For details about using the hand crank in emergency operation when the transformer is energized, refer to the "Operation" [► 50] chapter.

- Before opening the swing frame, the relevant safety instructions must be observed. Failure to do so will result in the risk of electric shock.

- Do not touch the panel heater. Otherwise, there is a risk of burns.

- Ensure that the belts in the transmission gear never come into contact with lubricants. Otherwise, there is a risk the motor-drive unit will not work properly.

- Lock the motor-drive unit with a padlock to prevent unauthorized persons from operating it. Failure to do so will result in the risk of explosion.

- Never change the factory-configured temperature in the temperature monitoring relay. Otherwise, there is a risk of explosion.

- Take appropriate steps to ensure that the heat radiated by the transformer does not cause the maximum ambient temperature of 40 °C (T4) or 50 °C (T3) permitted at the motor-drive unit to be exceeded.

2.3 Inappropriate use

Use is considered to be inappropriate if the product is used other than as described in the Appropriate use section. Please also note the following:

Unauthorized or inappropriate changes to the product may lead to personal injury, material damage, and operational faults. Only modify product following discussion with Maschinenfabrik Reinhausen GmbH.

2.4 Standards and regulations

The standards and regulations which apply to the explosion-protected product are described in the following chapters.
2.4.1 Application range of the motor-drive unit

The motor-drive unit is certified for Ex II 2G Ex px IIC T3/T4 Gb.

The motor-drive unit can be categorized into temperature classes T3 and T4, depending on the prevailing ambient conditions at the installation site.

- You can operate a motor-drive unit of temperature class T3 in an ambient temperature range of -25 °C…+50 °C without any restrictions.
- You can operate a motor-drive unit of temperature class T4 in an ambient temperature range of -25 °C…+40 °C. You can only perform a maximum of 216 tap-change operations in succession with this motor-drive unit. After that, it is mandatory to observe a stoppage period of at least 10 hours.

<table>
<thead>
<tr>
<th>Number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sign for explosion protection</td>
</tr>
<tr>
<td>2</td>
<td>Equipment group</td>
</tr>
<tr>
<td>3</td>
<td>Equipment category</td>
</tr>
<tr>
<td>4</td>
<td>Ex: Symbol for explosion-protected equipment</td>
</tr>
<tr>
<td>5</td>
<td>Ignition protection type</td>
</tr>
<tr>
<td>6</td>
<td>Explosion group</td>
</tr>
<tr>
<td>7</td>
<td>Temperature class</td>
</tr>
<tr>
<td>8</td>
<td>EPL (Equipment Protection Level)</td>
</tr>
</tbody>
</table>

Table 4: Example of the application range

<table>
<thead>
<tr>
<th>Motor-drive unit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>II</td>
<td>2G</td>
<td>Ex</td>
<td>px</td>
<td>IIC</td>
<td>T3/T4</td>
<td>Gb</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Equipment groups (number 2)

<table>
<thead>
<tr>
<th>Equipment groups (number 2)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Equipment in this category is intended for use in underground parts of mines as well as those parts of surface installations of such mines endangered by firedamp and/or combustible dust.</td>
</tr>
<tr>
<td>II</td>
<td>Equipment in this category is intended for use in other areas in which explosive atmospheres may be present.</td>
</tr>
</tbody>
</table>
Equipment category / zone classification (number 3)

<table>
<thead>
<tr>
<th>Designation for gases</th>
<th>Designation for dusts</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G (0)</td>
<td>1D (20)</td>
<td>Equipment in this category is intended for use in areas in which explosive atmospheres caused by mixtures of air and gases, vapors or mists or by air/dust mixtures are present continuously, for long periods or frequently.</td>
</tr>
<tr>
<td>2G (1)</td>
<td>2D (21)</td>
<td>Equipment in this category is intended for use in areas in which explosive atmospheres caused by gases, vapors, mists or air/dust mixtures occur occasionally.</td>
</tr>
<tr>
<td>3G (2)</td>
<td>3D (22)</td>
<td>Equipment in this category is intended for use in areas in which explosive atmospheres caused by gases, vapors, mists, or air/dust mixtures are unlikely to occur or, if they do occur, are likely to do so only infrequently and for a short period only.</td>
</tr>
</tbody>
</table>

Table 6: Equipment category / zone classification

Ignition protection types (number 5)

- d: Pressure-proof enclosure
- e: Increased safety
- i: Intrinsıc safety (ia, ib)
- m: Encapsulation
- o: Oil immersion
- p: Pressurized apparatus
- q: Powder filling
- n: Ignition protection type "n" (only zone 2)
 - n A: non-sparking equipment
 - n C: sparking equipment with special protection for contacts
 - n R: vapor-protected housing

Table 7: Ignition protection types

Explosion group (number 6)

<table>
<thead>
<tr>
<th>EN/IEC</th>
<th>Gases, vapors (examples)</th>
<th>Min. ignition energy (mJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>Ammonia</td>
<td>-</td>
</tr>
<tr>
<td>IIA</td>
<td>Acetic acid, acetone, benzene, diesel, ethane, ether, fuel oil, hexane, methane, petrol, petroleum, propane</td>
<td>0.18</td>
</tr>
</tbody>
</table>
2 Safety

<table>
<thead>
<tr>
<th>EN/IEC</th>
<th>Gases, vapors (examples)</th>
<th>Min. ignition energy (mJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIB</td>
<td>Ethylene, isoprene, town gas</td>
<td>0.06</td>
</tr>
<tr>
<td>IIC</td>
<td>Acetylene, carbon disulfide, hydrogen</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 8: Explosion groups

Temperature classes (number 7)

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Maximum equipment surface temperature</th>
<th>Ignition temperature of the flammable substances</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>450 °C</td>
<td>> 450 °C</td>
</tr>
<tr>
<td>T2</td>
<td>300 °C</td>
<td>> 300 °C < 450 °C</td>
</tr>
<tr>
<td>T3</td>
<td>200 °C</td>
<td>> 200 °C < 300 °C</td>
</tr>
<tr>
<td>T4</td>
<td>135 °C</td>
<td>> 135 °C < 200 °C</td>
</tr>
<tr>
<td>T5</td>
<td>100 °C</td>
<td>> 100 °C < 135 °C</td>
</tr>
<tr>
<td>T6</td>
<td>85 °C</td>
<td>> 85 °C < 100 °C</td>
</tr>
</tbody>
</table>

Table 9: Temperature classes

Equipment protection level (EPL) (number 8)

The EPL indicates the level of protection defined for a device based on the level of probability of ignition and taking account of the differences between potentially explosive gas atmospheres, potentially explosive dust atmospheres, and potentially explosive atmospheres in mine workings affected by firedamp.

2.4.2 Measures for ensuring compliance with explosion protection requirements

The measures for ensuring compliance with explosion protection requirements are based on the following standards:

<table>
<thead>
<tr>
<th>EN 60079-0</th>
<th>General requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 60079-2</td>
<td>Equipment protection by pressurized enclosure "p"</td>
</tr>
</tbody>
</table>

Table 10: Basic standards

2.4.2.1 Measures taken by the manufacturer

Maschinenfabrik Reinhausen has taken the following measures for ensuring compliance with explosion protection requirements. You do not need to take any special measures in this regard.
2 Safety

2.4.2.1 Measures for compliance with EN 60079-0 "General Requirements"

The requirements of EN 60079-0, such as choice of basic material, IP degree of protection, seal integrity and compressive strength of equipment, grounding, etc., were taken into consideration in the motor-drive unit design. You do not need to take any special measures in this regard.

2.4.2.2 Monitoring the oil temperature in the diverter switch oil compartment

A temperature sensor is provided in the on-load tap-changer head cover for monitoring the oil temperature in the diverter switch oil compartment. The corresponding temperature monitoring relay is in the TAPMOTION® ED-Ex.

Temperature monitoring prevents further switching of the on-load tap-changer when the maximum permitted temperature is reached. This maximum permitted temperature is factory-configured for each specific order for all on-load tap-changer types (maximum 130 °C) and secured against accidental incorrect adjustment.

2.4.2.2.1 Measures to be taken by the transformer manufacturer/operator

The following measures for ensuring compliance with explosion protection requirements must be taken by the transformer manufacturer/operator.

2.4.2.2.1.1 Measures for compliance with EN 60079-2 "Equipment Protection by Pressurized Enclosure 'p'"

Cable entries

Only use Ex-certified cable entries that do not impair the leakage loss rate of the motor-drive unit.

Maximum operating pressure

Make sure that the motor-drive unit maximum operating pressure of 2 kPa is not exceeded at any time.

Safety devices

Only use safety devices that have been certified for explosion protection in the same way as the motor-drive unit, i.e., on the basis of the Directive 2014/34/EU.

Protective gas supply unit

Only use a protective gas supply unit that has been certified for explosion protection in the same way as the motor-drive unit, i.e., on the basis of the Directive 2014/34/EU.
Also observe the requirements below when selecting and operating the protective gas supply unit. Failure to do so will result in the risk of explosion. These values are valid for both nitrogen (N₂) and air due to the low differences in density.

- Suitable protective gases: nitrogen (N₂) and air of a quality usually used for measurement equipment
- Minimum pre-flush volume: 1,700 dm³ (free housing volume 170 dm³ x 10)
- Minimum flush length: dependent on the line cross-section and flush pressure selected
- Minimum overpressure at gas inlet valve: 100 Pa
- Maximum overpressure at gas inlet valve: 2,000 Pa
- Leakage loss rate of the protective gas at \(P_{\text{max}} \): 0.3 dm³/h
- Limit temperature of the protective gas: 50 °C for temperature class T3, 40 °C for temperature class T4

2.5 Personnel qualification

The product is designed solely for use in electrical energy systems and facilities operated by appropriately trained staff. This staff comprises people who are familiar with the installation, assembly, commissioning and operation of such products.

2.6 Operator's duty of care

To prevent accidents, disruptions and damage as well as unacceptable adverse effects on the environment, those responsible for transport, installation, operation, maintenance and disposal of the product or parts of the product must ensure the following:

- All warning and hazard notices are complied with.
- Personnel are instructed regularly in all relevant aspects of operational safety, the operating instructions and particularly the safety instructions contained therein.
- Regulations and operating instructions for safe working as well as the relevant instructions for staff procedures in the case of accidents and fires are kept on hand at all times and are displayed in the workplace where applicable.
- The product is only used when in a sound operational condition and safety equipment in particular is checked regularly for operational reliability.
- Only replacement parts, lubricants and auxiliary materials which are authorized by the manufacturer are used.
- The specified operating conditions and requirements of the installation location are complied with.
- All necessary devices and personal protective equipment for the specific activity are made available.
2 Safety

- The prescribed maintenance intervals and the relevant regulations are complied with.
- Installation, electrical connection and commissioning of the product may only be carried out by qualified and trained personnel in accordance with this technical file.
- The operator must ensure appropriate use of the product.

2.7 Personal protective equipment

Personal protective equipment must be worn during work to minimize risks to health.
- Always wear the personal protective equipment required for the job at hand.
- Follow information about personal protective equipment provided in the work area.

<table>
<thead>
<tr>
<th>Always wear</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protective clothing</td>
<td>Close-fitting work clothing with a low breaking strength, with tight sleeves and with no protruding parts. It mainly serves to protect the wearer against being caught by moving machine parts.</td>
</tr>
<tr>
<td>Safety shoes</td>
<td>To protect against falling heavy objects and slipping on slippery surfaces.</td>
</tr>
</tbody>
</table>

Table 11: Personal protective equipment to be worn at all times

<table>
<thead>
<tr>
<th>Wear the following in special environments</th>
<th>Special personal protective equipment is needed in special environments. The choice of equipment depends on the circumstances.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety glasses</td>
<td>To protect the eyes from flying parts and splashing liquids.</td>
</tr>
<tr>
<td>Hard hat</td>
<td>To protect from falling and flying parts and materials.</td>
</tr>
</tbody>
</table>
2 Safety

Wear the following in special environments

<table>
<thead>
<tr>
<th>Special personal protective equipment is needed in special environments. The choice of equipment depends on the circumstances.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing protection</td>
</tr>
<tr>
<td>Protective gloves</td>
</tr>
</tbody>
</table>

Table 12: Personal protective equipment to be worn in special environments

2.8 Protective devices in the motor-drive unit

The following protective devices are fitted in the motor-drive unit:
- End stop device (mechanical and electric)
- Device protecting against unintentional passage
- Motor protection device
- Protection against accidental contact

2.9 Drying transformer

2.9.1 Drying transformer in autoclave

Observe the following information when drying the transformer in an autoclave.

NOTICE

Damage to drive and on-load tap-changer/off-circuit tap-changer!

If the drive is dried in an autoclave, the drive and on-load tap-changer/off-circuit tap-changer may be damaged.
- Do not dry drive in an autoclave.

2.9.2 Drying transformer in its own tank

If you dry the transformer in its own tank, the drive can remain attached to the transformer during drying.
3 Product description

This chapter contains an overview of the design and function of the product.

3.1 Scope of delivery

The motor-drive unit is packaged with protection against moisture and is delivered as follows:

- Motor-drive unit
- Product documentation

Please note the following:

1. Check the shipment for completeness on the basis of the shipping documents.
2. Store the parts in a dry place until installation.
3. The product must remain in its airtight, protective wrapping and may only be removed immediately before installation.

3.2 Function description

The motor-drive unit adjusts the operating position of on-load tap-changers in regulating transformers to the individual operating requirements.

The tap-change operation is activated by starting the motor-drive unit (a single control impulse triggered, for example, by a voltage regulator of the TAPCON®-series). This operation is always completed regardless of any other control pulses emitted during the tap-change operation. In the standard design, the next tap-change operation can only proceed once all control devices have reached their resting positions.

Behavior in the event of a voltage interruption

Should the voltage be interrupted during an on-load tap-change operation, once the voltage supply returns, the motor-drive unit completes the started on-load tap-change operation.

3.3 Type designation

The various basic designs of the TAPMOTION® ED-Ex are clearly identified by unique product designations.

<table>
<thead>
<tr>
<th>Type designation</th>
<th>Description</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 100-S-Ex</td>
<td>Product designation</td>
<td>Electric Drive</td>
</tr>
<tr>
<td>ED 100-S-Ex</td>
<td>Transmission gear design</td>
<td>100 or 200 (depending on the torque required)</td>
</tr>
<tr>
<td>ED 100-S-Ex</td>
<td>Protective housing design</td>
<td>S = small protective housing</td>
</tr>
</tbody>
</table>
3 Product description

<table>
<thead>
<tr>
<th>Type designation</th>
<th>Description</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 100-S-Ex</td>
<td>Special applications</td>
<td>… = none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex = pressurized enclosure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"p"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C = plunger coil design</td>
</tr>
</tbody>
</table>

Table 13: Type designation

3.4 Design

This chapter contains an overview of the design of the motor-drive unit.

Components not described here in detail are described in the motor-drive unit's technical data.

![Motor-drive unit, closed](image)

Figure 1: Motor-drive unit, closed

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gas outlet valve</td>
</tr>
<tr>
<td>2</td>
<td>Strut</td>
</tr>
<tr>
<td>3</td>
<td>Window with protective grate</td>
</tr>
<tr>
<td>4</td>
<td>Local/Remote control switch</td>
</tr>
<tr>
<td>5</td>
<td>On/Off control switch</td>
</tr>
<tr>
<td>6</td>
<td>Raise/Lower control switch (S3)</td>
</tr>
<tr>
<td>7</td>
<td>Nameplate</td>
</tr>
<tr>
<td>8</td>
<td>Warning</td>
</tr>
<tr>
<td>9</td>
<td>Gas inlet valve</td>
</tr>
</tbody>
</table>
3 Product description

Figure 2: Motor-drive unit, open

<table>
<thead>
<tr>
<th>1</th>
<th>Protective housing cover</th>
<th>2</th>
<th>Viewing window for indication field</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Fixing lug</td>
<td>4</td>
<td>Output shaft</td>
</tr>
<tr>
<td>5</td>
<td>Hand crank aperture with hand crank interlock switch</td>
<td>6</td>
<td>Hand crank</td>
</tr>
<tr>
<td>7</td>
<td>Ground connection</td>
<td>8</td>
<td>Swing frame/anti-condensation heater</td>
</tr>
<tr>
<td>9</td>
<td>Indication field</td>
<td>10</td>
<td>Door contact</td>
</tr>
<tr>
<td>11</td>
<td>Motor protective switch Q1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The numbers correspond to the labels in the diagram.
3.4.1 Indication field

A clear indication field is fitted in the motor-drive unit. The pointer and operations counter are mechanically driven and indicate the tap-change operation sequence and operating position of the motor-drive unit. The reset wheel on the operations counter is lead-sealed at the factory.

![Figure 3: Indication field](image)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tap position indicator</td>
</tr>
<tr>
<td>2</td>
<td>The two drag hands indicate the regulating range currently used</td>
</tr>
<tr>
<td>3</td>
<td>Tap-change indicator: Shows the current position of the control cam (33 tap-change indicator sections per operating position)</td>
</tr>
<tr>
<td>4</td>
<td>The mechanical operations counter shows the overall number of tap-change operations</td>
</tr>
</tbody>
</table>

3.4.2 Anti-condensation heater

The anti-condensation heater is designed as a panel heater which also acts as the front cover of the swing frame.

The design of the motor-drive unit and panel heater ensures that air circulates inside the motor-drive unit and therefore that there is a constant interior temperature which is always higher than the outside temperature.

3.4.3 Swing frame/terminal rail

The swing frame protects all electrical and mechanical parts of the motor-drive unit behind the swing frame against accidental contact.
The terminal rail behind the swing frame makes electrical connection of the motor-drive unit a simple task. The wiring is easily connected using vertically arranged cap rails with the corresponding installed terminal bars.

Figure 4: Terminal rail

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Swing frame</td>
</tr>
<tr>
<td>2</td>
<td>Position transmitter module</td>
</tr>
<tr>
<td>3</td>
<td>Terminal bar X1</td>
</tr>
<tr>
<td>4</td>
<td>Cable duct</td>
</tr>
<tr>
<td>5</td>
<td>Cap rail</td>
</tr>
<tr>
<td>6</td>
<td>Opening for cable entry (sealed by base plate)</td>
</tr>
</tbody>
</table>
3.4.4 Position transmitter equipment

NOTICE
Damage to the on-load tap-changer and motor-drive unit!

Damage to on-load tap-changer and motor-drive unit due to incorrect use of position transmitter equipment!

- Only circuits stated in the chapter Technical data for position transmitter equipment [► 64] may be connected to the position transmitter module connections.

- The switchover point of the position transmitter equipment in the motor-drive unit is not the same as the switchover point of the diverter switch operation. This depends on the type of diverter switch. This fact should be noted when project planning the locking circuits between the motor-drive unit and external equipment (e.g. transformer circuit breaker).

- For external monitoring, locking, and control purposes, it is not therefore the position transmitter equipment but the "Tap changer in operation" position transit contact shown in the connection diagram that should be used.

The position transmitter equipment is used to indicate the operating position of the on-load tap-changer/off-circuit tap-changer when idle.

The remote display is available in various versions.

The position transmitter module for connection by the customer is located on the terminal rail [► 22].

For more information about the position transmitter equipment, see Technical data for position transmitter equipment [► 64].

3.4.5 Transmission gear cover plate

WARNING
Danger of death and severe injury from electrical voltage!

Danger of death and severe injury from electrical voltage if the transmission gear cover plate is not fitted.

- Never start up motor-drive unit without transmission gear cover plate.
The touch-protected transmission-gear cover plate features an opening for the hand crank used in manual mode.

Transmission-gear cover plate
4 Packaging, transport and storage

4.1 Packaging

The products are sometimes supplied with a sealed packaging and sometimes also dried depending on what is required.

A sealed packaging surrounds the packaged goods on all sides with plastic foil. Products that have also been dried are identified by a yellow label on the sealed packaging.

The information in the following sections should be applied as appropriate.

4.1.1 Suitability

NOTICE

Property damage due to incorrectly stacked crates!

Stacking the crates incorrectly can lead to damage to the packaged goods!

► Only stack up to 2 equally sized crates on top of one another.
► Do not stack crates above a height of 1.5 m.

The packaging is suitable for undamaged and fully functional means of transportation in compliance with local transportation laws and regulations.

The packaged goods are packed in a stable crate. This crate ensures that when in the intended transportation position the packaged goods are stabilized to prevent impermissible changes in position, and that none of the parts touch the loading surface of the means of transport or touch the ground after unloading.

A sealed packaging surrounds the packaged goods on all sides with plastic foil. The packaged goods are protected from humidity using a desiccant. The plastic foil is bonded after the drying agent is added.

4.1.2 Markings

The packaging bears a signature with instructions for safe transport and correct storage. The following symbols apply to the shipment of non-hazardous goods. Adherence to these symbols is mandatory.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect against moisture</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>Top</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>Fragile</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>Attach lifting gear here</td>
<td>![Symbol]</td>
</tr>
<tr>
<td>Center of mass</td>
<td>![Symbol]</td>
</tr>
</tbody>
</table>

Table 14: Shipping pictograms
4 Packaging, transport and storage

4.2 Transportation, receipt and handling of shipments

WARNING

Danger of death and damage to property!

- Transport crate only when closed.
- Do not remove the mounting material used in the crate during transport.
- Only trained and appointed persons may select the sling gear and secure the load.
- Do not walk under the hanging load.
- Use means of transport and lifting gear with a sufficient carrying capacity in accordance with the weight stated on the delivery slip.

In addition to oscillation stress and shock stress, jolts must also be expected during transportation. In order to prevent possible damage, avoid dropping, tipping, knocking over and colliding with the product.

If a crate tips over, falls from a certain height (e.g. when slings tear) or experiences an unbroken fall, damage must be expected regardless of the weight.

Every delivered shipment must be checked for the following by the recipient before acceptance (acknowledgment of receipt):

- Completeness based on the delivery slip
- External damage of any type.

The checks must take place after unloading when the crate or transport container can be accessed from all sides.

Visible damage

If external transport damage is detected on receipt of the shipment, proceed as follows:

- Immediately record the transport damage found in the shipping documents and have this countersigned by the carrier.
- In the event of severe damage, total loss or high damage costs, immediately notify the sales department at Maschinenfabrik Reinhausen and the relevant insurance company.
- After identifying damage, do not modify the condition of the shipment further and retain the packaging material until an inspection decision has been made by the transport company or the insurance company.
- Record the details of the damage immediately onsite together with the carrier involved. This is essential for any claim for damages!
- Photograph damage to packaging and packaged goods. This also applies to signs of corrosion on the packaged goods due to moisture inside the packaging (rain, snow, condensation).
- **NOTICE!** Be absolutely sure to also check the sealed packaging. If the sealed packaging is damaged, do not under any circumstances install or commission the packaged goods. Either dry the dried packaged goods again as per the operating instructions for the relevant on-load tap-
4 Packaging, transport and storage

changer/de-energized tap-changer or contact Maschinenfabrik Reinhausen GmbH to agree on how to proceed with drying. If this is not done, the packaged goods may be damaged.

- Name the damaged parts.

Hidden damage When damages are not determined until unpacking after receipt of the shipment (hidden damage), proceed as follows:

- Make the party responsible for the damage liable as soon as possible by telephone and in writing, and prepare a damage report.
- Observe the time periods applicable to such actions in the respective country. Inquire about these in good time.

With hidden damage, it is very hard to make the transportation company (or other responsible party) liable. Any insurance claims for such damages can only be successful if relevant provisions are expressly included in the insurance terms and conditions.

4.3 Storage of shipments

Packaged goods dried by Maschinenfabrik Reinhausen

Upon receipt of the shipment, immediately remove the packaged goods dried by Maschinenfabrik Reinhausen from the sealed packaging and store air-tight in dry insulating oil until used if the packaged goods were not supplied in oil.

Non-dried packaged goods

Non-dried packaged goods but with a functional sealed packaging can be stored outdoors when the following conditions are complied with.

When selecting and setting up the storage location, ensure the following:

- Protect stored goods against moisture (flooding, water from melting snow and ice), dirt, pests such as rats, mice, termites and so on, and against unauthorized access.
- Store the crates on timber beams and planks as a protection against rising damp and for better ventilation.
- Ensure sufficient carrying capacity of the ground.
- Keep entrance paths free.
- Check stored goods at regular intervals. Also take appropriate action after storms, heavy rain or snow and so on.

Protect the packaging foil from direct sunlight so that it does not disintegrate under the influence of UV rays, which would cause the packaging to lose its sealing function.
If the product is installed more than 6 months after delivery, suitable measures must be taken without delay. The following measures can be used:

▪ Correctly regenerate the drying agent and restore the sealed packaging.
▪ Unpack the packed goods and store in suitable storage space (well ventilated, as dust-free as possible, humidity < 50 % where possible).

4.4 Unpacking shipments and checking for transportation damages

▪ **NOTICE!** Transport the packaged crate to the place where installation will take place. Do not open the sealed packaging until just before installation. If this is not done, damage to the packaged goods may occur due to ineffectively sealed packaging.

▪ **WARNING!** When unpacking, check the condition of the packaged goods. Secure packaged goods in an upright crate from tipping out. If this is not done, the packaged goods may be damaged and serious injuries may result.

▪ Check completeness of supplementary parts on the basis of the delivery slip.
5 Mounting

This chapter describes how to correctly install and connect the device.

Danger of explosion!

Danger to life may result from installing the motor-drive unit in an environment at risk of explosion and from installation on an energized transformer/on-load tap-changer components.

- Only perform installation work in an environment not at risk of explosion.
- Ensure the de-energized state of the transformer and on-load tap-changer components during the installation of the motor-drive unit.

5.1 Fitting motor-drive unit on transformer

1. Fit 4 stud bolts (not supplied by MR) to the transformer tank. The arrangement and diameter of the fixing lugs can be found in the drawings in the Annex [► 65].

 ![Figure 5: Stud bolts](image)

 The assembly holes for this purpose are located externally on the protective housing's fixing lugs.

2. **NOTICE!** Fit the drive vertically to the transformer tank so that its output shaft is exactly aligned with the vertical shaft of the bevel gear. If this is not done, the drive may be damaged.
5 Mounting

3. **NOTICE!** Secure the drive without warping or deforming. If this is not done, the drive and drive shaft may be damaged and a lot of noise may be produced.

4. Vibration dampers (MR special design) must be used for transformers where the motor-drive unit is subject to vibration.

5. Ground the motor-drive unit. To do this, only connect the motor-drive unit's ground connection with protection against twisting to the transformer's ground connection.
If necessary, reduce the stated tightening torque according to the grounding line used.

Figure 8: Ground connection

- Connect the main protective conductor to the protective conductor terminal on terminal bar X1 (minimum connection cross-section 2.5 mm²).

Figure 9: Main protective conductor
5.2 Mounting drive shafts and bevel gear

The process of mounting the drive shafts and bevel gear is described in the installation and commissioning instructions for the on-load tap-changer.

5.3 Centering on-load tap-changer and motor-drive unit

WARNING

Danger of death or severe injury!

Danger of death or severe injury due to motor-drive unit starting up by accident and due to electric voltage!

- Before starting any coupling work make sure that the motor protective switch is tripped.
- Carry out any adjustment work in manual mode only.
- When manually operating the motor-drive unit only use the hand crank provided for this purpose.
- Note that the hand crank safety switch causes a 2-pole disconnection of the motor circuit but that the control circuit is not interrupted.

NOTICE

Damage to property!

The on-load tap-changer will be damaged by incorrectly centering the motor-drive unit.

- Do not perform more than 250 tap-change operations on the on-load tap-changer. If more than 250 tap-change operations are performed, completely fill oil compartment with insulating oil and lubricate sliding surfaces of contacts on selector and selector gear with insulating oil.

The following steps for centering the on-load tap-changer and motor-drive unit do not apply to the DEETAP® DU and COMTAP® ARS. The process for centering the motor-drive unit and DEETAP® DU or COMTAP® ARS is described in the relevant operating instructions.

One on-load tap-change operation is represented by one rotation of the tap-change indicator. This indicator is divided into 33 tap-change indicator sections, each of which corresponds to one hand crank revolution in the standard motor-drive unit design. The time of the switchover depends on the on-load tap-changer/de-energized tap-changer type, but is always 2 tap-change indicator sections before the area marked in gray on the tap-change indicator at the latest.

To center the on-load tap-changer and motor-drive unit, proceed as follows.

1. **NOTICE!** Move the on-load tap-changer/de-energized tap-changer and the motor-drive unit into the adjustment position before commencing any adjustment work. Ensure that the tap position indicators for the motor-
drive unit and the on-load tap-changer/de-energized tap-changer match. Otherwise damage to the on-load tap-changer and transformer may result.

Figure 10: Adjustment position

2. Attach the hand crank in the motor-drive unit to the shaft end located in the upper cover plate. This activates a hand crank interlock switch, which disconnects the motor circuit at 2 poles.

Figure 11: Hand crank
3. Turn the hand crank clockwise until the diverter switch operation begins. When turning the hand crank, observe the tap-change indicator, which mechanically reflects the progress of the tap-change operation.

![Figure 12: Turning the hand crank until the diverter switch operation begins](image)

4. Once the diverter switch operation begins, turn the hand crank in the same direction while counting the tap-change indicator sections required for the pointer to reach the mid-position of the area marked in gray on the tap-change indicator. Note the number counted (value A) and the direction of rotation (example: A=2).

![Figure 13: Counting the tap changes needed to reach the mid-position](image)

5. If value A is greater than 8 tap-change indicator sections, the tap-change operation has been completed correctly. If value A is less than 8 tap-change indicator sections, turn another 8-A tap-change indicator sections in the same direction (example: 8-2=6) to complete the tap-
change operation. Then turn in the opposite direction until the pointer is in the mid-position of the area marked in gray on the tap-change indicator.

Figure 14: Completing the diverter switch operation

6. Turn the hand crank counter-clockwise until the diverter switch operation begins.

Figure 15: Turning the hand crank in the opposite direction
7. Once the diverter switch operation begins, turn the hand crank in the same direction while counting the tap-change indicator sections required for the pointer to reach the mid-position of the area marked in gray on the tap-change indicator. Note the number counted (value B) and the direction of rotation (example: B=5).

![Figure 16: Counting the tap-change indicator sections needed to reach the mid-position](image)

8. If value B is greater than 8 tap-change indicator sections, the tap-change operation has been completed correctly. If value B is less than 8 tap-change indicator sections, turn another 8-B tap-change indicator sections in the same direction (example: 8-5=3) to complete the tap-change operation. Then turn in the opposite direction until the pointer is in the mid-position of the area marked in gray on the tap-change indicator.

![Figure 17: Completing the diverter switch operation](image)

9. If the values obtained for A and B are identical, the on-load tap-changer and the motor-drive unit are correctly coupled (a slight imbalance of maximum 1 tap-change indicator section is permitted). If the values obtained for A and B are different, establish correction value C by halving the difference between A and B:

\[C = \left|\frac{(A-B)}{2}\right| \]

Example:

\[C = \left|\frac{(2-5)}{2}\right| = \left|\frac{-3}{2}\right| = 1.5 \]
Also take numbers after the decimal point into account.

10. If the correction value $|C|$ is less than 0.5 tap-change indicator sections, no further action is required. Refer to point 18 for how to proceed next.

11. Use the hand crank to perform one on-load tap-change operation up to the diverter switch action in the direction with the higher value A or B (example: counter-clockwise because $B > A$).

12. After the diverter switch action, continue turning another 8 hand crank revolutions in the same direction to correctly complete the tap-change operation.
13. Uncouple the motor-drive unit and vertical drive shaft by removing the coupling brackets. After uncoupling, do not turn the drive shaft any further.

![Figure 18: Uncoupling the motor-drive unit and drive shaft](image)

14. Operate the motor-drive unit using the hand crank in the same direction, continuing by C tap-change indicator sections on the tap-change indicator (example: 1.5 tap-change indicator sections).

15. Couple the motor-drive unit and on-load tap-changer by refitting the vertical drive shaft (tightening torque 9 Nm). Do not turn the drive shaft and output shaft of the bevel gear and motor-drive unit any further.

16. Continue to turn in the same direction while counting the tap-change indicator sections required for the pointer to reach the mid-position of the area marked in gray on the tap-change indicator. Note the number counted (value A) and the direction of rotation. If value A is greater than 8 tap-change indicator sections, the tap-change operation has been completed correctly. If value A is less than 8 tap-change indicator sec-
tions, turn another 8-A tap-change indicator sections in the same direction (example: 8-4=4) to complete the tap-change operation. Then turn in the opposite direction until the indicator is in the mid-position of the area marked in gray on the tap-change indicator. Check the coupling again as described previously.

17. The pointer of the tap-change indicator must be in the mid-position of the area marked in gray once the on-load tap-change operation with the hand crank is complete.

![Figure 19: Pointer in the mid-position](image)

18. Once coupling is complete in both directions, check by undertaking several on-load tap-change operations and check that the on-load tap-changer and motor-drive unit are in the same tap position.

5.4 Cable recommendation

Electromagnetic interference on signal lines, which can be expected due to the environment of the transformer, can disrupt the proper operation of the motor-drive unit.

That is why Maschinenfabrik Reinhausen GmbH recommends using shielded signal lines when possible.

NOTICE

Damage to the device!

Current flow through the shielding of signal lines can lead to the device getting damaged.

- For signal lines between the motor-drive unit and transformer, connect the shielding of the signal line to the motor-drive unit only.
- For all other signal lines, connect the shielding on both sides, as long as there is no potential difference between the two devices. If there is a potential difference, then connect the shielding only on one side for these signal lines, too.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Function</th>
<th>Cable type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor circuit</td>
<td>Power supply</td>
<td>Unshielded, separate cable</td>
</tr>
<tr>
<td>Control circuit</td>
<td>Power supply</td>
<td>Unshielded, separate cable</td>
</tr>
<tr>
<td></td>
<td>Tap-change supervisory control</td>
<td>Shielded</td>
</tr>
</tbody>
</table>
5.5 Installing electrics for motor-drive unit

WARNING

Danger of death or severe injury!

An energized transformer and energized on-load tap-changer components could cause death or serious injuries when installing the electrics!

- Adherence to the following safety precautions is mandatory.

The device may only be connected to circuits with an external overcurrent protection device and an all-pole isolating device so the equipment can be fully de-energized if required (service, maintenance etc.).

Suitable equipment includes isolating devices in accordance with IEC 60947-1 and IEC60947-3 (e.g. circuit breaker). When selecting the circuit breaker type, the properties of the relevant circuits (voltage, maximum currents) must be observed. The following should also be noted during installation:

- It must be easy for the operator to access the isolating device
- The isolating device must be labeled for the device and circuits to be isolated
- The isolating device must not be part of the power line
- The isolating device must not interrupt the main protective conductor

Unless specified otherwise, the connections for the supply circuits must have a conductor cross-section of at least 1.5 mm² (16 AWG).

The voltage supply for the motor-drive unit must be able to provide 5…7 times the nominal operating current of the motor-drive unit for one second.

A voltage tolerance of -20…+10% of the nominal voltage must be observed to avoid damage to the drive.

Only use Ex-certified cable bushings that do not impair the leakage loss rate of the motor-drive unit to connect the motor-drive unit to the supply circuits.
Proceed as follows to electrically connect the motor-drive unit:

1. Switch off the voltage supply.
2. Lock the voltage supply to prevent unintentional restart.
3. Make sure everything is de-energized.
4. Visibly ground and short circuit the motor-drive unit.
5. Cover or cordon off adjacent energized parts.
6. Connect the motor-drive unit in accordance with the connection diagrams provided in the document pocket. Observe the supply voltages (motor circuit, control circuit, heater circuit) and pin assignments stated in the connection diagram.

7. When operating the motor-drive unit, ensure that a current corresponding to that stated in the Technical Data chapter (load capacity of micro-switches, see page [► 63]) flows across the micro-switches in the motor-drive unit at all times to ensure correct functioning of the switches.
6 Commissioning

6.1 Pre-flushing the motor-drive unit

Before commissioning, flush the motor-drive unit with air or N₂, so no explosive gas atmosphere is created inside the motor-drive unit.

Proceed as follows:

1. Ensure that an Ex-certified protective gas supply unit is connected to the motor-drive unit and that it meets the requirements described on page [► 15].
2. Pre-flush the motor-drive unit with 1,700 dm³ air or N₂.

6.2 Starting up motor-drive unit

Proceed as follows to electrically start up the motor-drive unit.

Preparation

1. Make sure that the motor-drive unit is connected as shown in the connection diagram provided.
2. Ensure that all protective conductors are connected correctly.
3. Ensure that the preliminary fuse is selectively configured for the protective devices in the motor-drive unit.
4. Ensure that motor-drive unit and on-load tap-changer are correctly coupled and the operating positions of the motor-drive unit and on-load tap-changer match.
5. Ensure that the hand crank is not inserted in the hand crank aperture.
6. Ensure that the motor protective switch and control circuit fuse are disabled.

Commissioning

1. Apply voltage to motor-drive unit.
2. Measure voltage and frequency of motor circuit at terminal X1 and compare with details on nameplate. The details must match.
3. As an option with separate control-circuit supply: Measure voltage and frequency of control circuit at terminal X1 and compare with details on nameplate. The details must match.
4. As an option with separate heating-circuit supply: Measure voltage of heating circuit at terminal X1 and compare with details on connection diagram. The details must match.
5. As an option with three-phase motor: Make sure that voltage applied to the connection terminals has a clockwise phase sequence.
6. As an option with DC motor: Make sure that the motor voltage has the right polarity.
7. Engage motor protective switch and fuses for control circuit and heating circuit (if present).
 → LED of voltage monitor and LED of thermostat (if present) on rear of swing frame must light up green.

If you have successfully completed the above steps, you can undertake the following tests on the motor-drive unit and transformer. Please contact Maschinenfabrik Reinhausen GmbH if anything is not clear or you encounter problems during commissioning.

6.3 Tests on the motor-drive unit

Danger of explosion!

Death or serious injury may result from testing the motor-drive unit in an environment at risk of explosion!

- Only test the motor-drive unit in an environment not at risk of explosion.

Electric shock!

Risk of severe injury or death due to electrical voltage!

- The relevant safety instructions must be observed.
- Make sure that the motor-drive unit is correctly connected as shown in the connection diagrams provided.
- Make sure that the supply voltage is matched to the technical data of the motor-drive unit.
- Provide protection against accidental contact before energizing the drive. The transmission gear cover plate must be fitted and the motor and swing frame closed.
- Ensure that the motor-drive unit and on-load tap-changer/de-energized tap-changer are correctly coupled and that they are in the same tap position for each operating position.

Please contact Maschinenfabrik Reinhausen GmbH (MR) if any aspect of the tests is not clear.

6.3.1 Checking correct electric switch-off

1. Change over motor-drive unit by moving control switch S3.
2. Check that the pointer of the tap-change indicator stops within the gray field after completing a tap-change operation.
3. Carry out this test in both directions.
6.3.2 Checking mechanical and electric end stop of on-load tap-changer/off-circuit tap-changer and motor-drive unit

1. Press the Raise/Lower control switch to switch the motor-drive unit to the second to last operating position.

![Raise/Lower control switch](image1)

2. Open the motor-drive unit door and switch off the motor protective switch Q1 (position O).

3. Using the hand crank, operate the motor-drive unit to move it to its last operating position. If the last operating position is not reached, check the coupling between the on-load tap-changer/de-energized tap-changer and motor-drive unit.

4. Continue turning the motor-drive unit in the same direction with the hand crank until the motor-drive unit is mechanically blocked.

5. Turn back the motor-drive unit with the hand crank to the mid-position of the tap-change indicator.

6. Remove the hand crank.

7. Switch on motor protective switch Q1 (position I).

8. Close the motor-drive unit door.

9. Check that the motor-drive unit no longer starts up when the S3 switch is turned further in the same operating direction as under item 1.

10. Perform the check for both end positions.

6.3.3 Checking the leakage loss rate

Check that the cable bushings used do not impair the leakage loss rate of the motor-drive unit.

Proceed as follows:

1. Lock the locking screw at the gas outlet valve (see page [20]).
2. Connect the compressed air supply at the gas inlet valve (see page [▶ 20]).
 ⇒ The leakage loss rate must not exceed 0.3 dm3/h at a maximum pressure of 2,000 Pa whether air or N2 is used as the protective gas.

6.3.4 Checking tripping of motor protective switch

Proceed as follows to check tripping of the motor protective switch:

✓ The motor protective switch Q1 is switched on (position I).
1. Close X1:14 - X1:15 Q1 OFF connection to trip the motor protective switch.
 ⇒ The motor protective switch is tripped (position O). If the motor protective switch is not tripped, contact Maschinenfabrik Reinhausen GmbH.
2. Switch on motor protective switch again (position I).
 ⇒ The tripping of the motor protective switch is checked.

6.4 Tests on the transformer

Please contact Maschinenfabrik Reinhausen GmbH (MR) if any aspect of the tests is not clear.
6.4.1 High-voltage tests on the transformer

WARNING

Danger of death or severe injury from explosive gases under the on-load tap-changer head cover, in the pipework system, in the oil conservator, at the dehydrating breather opening, and from flying parts and hot oil splashing!

► Ensure that there are no naked flames, hot surfaces or sparks (for example caused by static charging) in the immediate surroundings and that none occur.
► Ensure that the oil compartment of the on-load tap-changer is completely filled with oil.
► Only use conductive and grounded hoses, pipes, and pump equipment that are approved for flammable liquids.
► Ensure that all protective devices for the on-load tap-changer are ready for use.
► Use suitable personal protective equipment/clothing.
► Keep away from the danger area during the transformer test.
► Observe applicable fire protection regulations.
► Make sure that only trained technicians perform work on the transformer.

It is essential that you ensure only trained, instructed expert personnel who are familiar with and comply with the pertinent safety and technical regulations, who are aware of the potential risks, and who consistently use the occupational safety equipment provided to prevent injury and property damage are assigned to perform such a transformer test.

Note the following points **before** undertaking high voltage tests on the transformer:

- Ensure that the ground connections on the motor-drive protective housing and protective housing fastening are free of paint.
- Only perform high voltage test if motor-drive unit door is closed.
- Disconnect external connections to electronic components in the motor-drive unit to prevent damage from overvoltage.
- When connecting the motor-drive unit's supply voltage, only use the cable bushings in the protective housing base intended for lead insertion.
- Guide all ground connecting leads to one central connection point (establishment of suitable reference earth).
- Disconnect all electronic components before the high voltage test. Before a wiring dielectric test, remove all devices with a withstand voltage of < 1,000 V.
- Remove leads used for testing before the high voltage test as these function as antennas.
- Wherever possible, route the measurement and data leads separately from the energy cables.
6 Commissioning

Contact the manufacturer if you have any questions about possible sources of danger.

6.4.2 Dielectric tests on transformer wiring

Note the following points for dielectric tests on the transformer wiring:

The motor-drive unit is put through dielectric tests before delivery.

► Before the dielectric test for the transformer wiring, disconnect drive from the section to be tested to rule out increased component loading for those components fitted in the motor-drive unit.

6.5 Transporting transformer to the operating site

If you have to remove the drive to transport the transformer, proceed as follows:

1. Ensure that the drive and the on-load tap-changer/de-energized tap-changer are in the adjustment position.
2. Remove the drive (see page [► 60]).
3. Do not actuate the drive while the on-load tap-changer/de-energized tap-changer is not coupled and do not turn the output shaft.
4. Do not actuate an on-load tap-changer/de-energized tap-changer which is not coupled and do not turn its drive shaft.
5. Transport the drive to the installation site in the MR delivery packaging.
6. Fit the drive and drive shaft to the transformer at the installation site in accordance with the respective instructions and check for correct coupling and centering.

6.6 Commissioning the transformer at the operating site

NOTICE

Damage to the on-load tap-changer and motor-drive unit!

Damage to on-load tap-changer and motor-drive unit due to condensate in protective housing of motor-drive unit!

► Always keep protective housing of the motor-drive unit tightly closed.

► In the event of downtimes prior to initial commissioning of more than 8 weeks or operation interruptions of more than 2 weeks, connect and operate the anti-condensation heater in the motor-drive unit. If this is not possible (e.g. during transportation), place a sufficient amount of dehydrating agent in the protective housing.
NOTICE

Damage to the on-load tap-changer and motor-drive unit!
Damage to on-load tap-changer and motor-drive unit due to incorrect use of position transmitter equipment!

► Only circuits stated in the chapter Technical data for position transmitter equipment [► 64] may be connected to the position transmitter module connections.

► The switchover point of the position transmitter equipment in the motor-drive unit is not the same as the switchover point of the diverter switch operation. This depends on the type of diverter switch. This fact should be noted when project planning the locking circuits between the motor-drive unit and external equipment (e.g. transformer circuit breaker).

► For external monitoring, locking, and control purposes, it is not therefore the position transmitter equipment but the "Tap changer in operation" position transit contact shown in the connection diagram that should be used.

1. Before commissioning the transformer, pre-flush the motor-drive unit again (see page [► 43]).
2. Before commissioning the transformer, start up the motor-drive unit (see page [► 43]).
3. ▲ WARNING! Before commissioning the transformer, repeat the tests on the motor-drive unit. Only start up the transformer once you have performed all the tests successfully (see page). Otherwise, there is the risk of fatal injury.
7 Operation

WARNING

Danger of explosion!

Danger to life from an explosive gas atmosphere inside the motor-drive unit.

► After the voltage supply has failed/been switched off, wait at least 30 minutes before opening the motor-drive unit’s door.

► Pre-flush the motor-drive unit after completing any work that requires you to open it (see page [► 43]).

► Check the leakage loss rate of the motor-drive unit once pre-flushing has been performed (see page [► 45]).

7.1 Operating the motor-drive unit remotely

Operate the motor-drive unit remotely during normal operation.

You can do this with a single control pulse, e.g. using a voltage regulator of the TAPCON® series.

This operation is always completed regardless of any other control pulses emitted during the tap-change operation. In the standard design, the next tap-change operation can only proceed once all control devices have reached their resting positions.

Behavior in the event of a voltage interruption

If the voltage is interrupted during a tap-change operation, the motor-drive unit will complete the started tap-change operation once the voltage supply returns.

7.2 Operating motor-drive unit locally

In special operating cases (such as during maintenance tasks) the motor-drive unit can also be operated electrically on site via control switch S3.

In exceptional cases, the unit can be operated using a hand crank. You will find more information in the following section.
7.3 Actuating motor-drive unit with hand crank

Danger of explosion!

Unauthorized operation of the motor-drive unit with the hand crank may result in death or serious injury.

- Only ever open the motor-drive unit when it is de-energized and wait at least 30 minutes after the voltage supply has failed or the motor-drive unit has been switched off before you open it.
- Never operate the motor-drive unit electrically or with the hand crank before the transformer has been disconnected if you think there may be a fault in the transformer or on-load tap-changer/de-energized tap-changer.
- Never use the hand crank to complete a tap-change operation that has begun electrically, but has not been ended completely.
- If the hand crank is difficult to move, you must stop using it.
- When operating the motor-drive unit with the hand crank, never reverse the direction of rotation.
- If there is any doubt about the on-load tap-changer/de-energized tap-changer being in proper working condition or about the cause of a fault in the motor-drive unit, contact the Technical Service department of Maschinenfabrik Reinhausen GmbH immediately.
- To operate the motor-drive unit manually, only use the hand crank mounted in the motor-drive unit.

For information about fault rectification, refer to the "Troubleshooting" [► 53] chapter.

Normal operation

During normal operation, there is no need to operate the unit with the hand crank. The hand crank is mainly required during installation or for tests in the transformer plant.

Use of the hand crank for operating the motor-drive unit is permitted if the transformer is disconnected, e.g., for maintenance tasks, if there is no detectable fault on the transformer or on-load tap-changer/de-energized tap-changer and the previous tap-change operation has been ended correctly.

Emergency operation exception

An operation is considered an emergency operation if a tap-change operation is absolutely necessary when a transformer is energized, despite a fault in the motor-drive unit. In this case, be sure to observe the warnings listed above.

Operating the motor-drive unit with the hand crank

To carry out a tap-change operation with the hand crank, proceed as follows:

- Ensure that the protective gas supply has been switched off.
1. Open the door of the protective housing for the motor-drive unit.
2. Switch off motor protective switch Q1 (position 0).
3. Insert the hand crank mounted in the motor-drive unit into the hand crank aperture in the upper cover plate.
 - The built-in hand crank interlock switch interrupts the motor circuit at two poles. The control circuit will not be interrupted.
4. **NOTICE!** Turn in one direction with the hand crank until the pointer has fully circled the tap-change indicator once and is again in the mid-position of the area marked in gray on the tap-change indicator. Otherwise the tap-change operation is not completed correctly, which may result in damage to the on-load tap-changer and transformer.
 - The tap-change operation is complete.
5. Take off the hand crank and return to the mounting bracket.
6. Switch on motor protective switch Q1 (position I).
7. Close the door of the protective housing for the motor-drive unit.
8. **DANGER!** Pre-flush the motor-drive unit and check the leakage loss rate. Failure to do so will result in the risk of explosion, see page [► 43] and page [► 45].

7.4 Checking motor-drive unit

Checking the motor-drive unit is limited to occasional visual checks. For efficiency reasons these visual checks can be combined with the usual checks on the transformer.

Check the following:
- Gaskets of protective housing of motor-drive unit
- Correct functioning of the installed electrical heater in the protective housing of the motor-drive unit

Contact Maschinenfabrik Reinhausen GmbH if the gaskets or heating are not in perfect condition.
8 Fault elimination

8.1 Safety instructions

WARNING

Danger of death or severe injury!

Danger of death or severe injury from explosive gases in the on-load tap-changer/de-energized tap-changer, in the pipework system, at the dehydrating breather opening, and from flying parts and hot oil splashing!

- Only ever open the motor-drive unit when it is de-energized and wait at least 30 minutes after the voltage supply has failed or the motor-drive unit has been switched off before you open it.
- Pre-flush the motor-drive unit [► 43] and check the leakage loss rate [► 45] before reconnecting the motor-drive unit to the voltage supply.
- If a protective device has been tripped or you suspect a fault, first check the transformer, on-load tap-changer/de-energized tap-changer, and motor-drive unit. Never operate the motor-drive unit electrically or with the hand crank beforehand as long as the transformer is energized.
- Do not resume operation until troubleshooting has been completed.
- Make sure that only trained technicians perform the work.
- Use suitable personal protective equipment/clothing.
- Ensure that there are no naked flames, hot surfaces or sparks (for example caused by static charging) in the immediate surroundings and that none occur.
- Ensure that all safety devices for the on-load tap-changer/de-energized tap-changer are ready for use.
- Ensure that the oil compartment of the on-load tap-changer is correctly filled with oil as per the instructions.

8.2 General information

Document each fault, even if it is easy to rectify.

In the event of faults on the on-load tap-changer / de-energized tap-changer or motor-drive unit, which cannot be easily and immediately corrected on site, or if a protective device has been tripped, please inform your authorized MR representative, the transformer manufacturer or contact us directly at:

Maschinenfabrik Reinhausen GmbH
Technical Service
Postfach 12 03 60
93025 Regensburg
Germany
Phone: +49 94140 90-0
8 Fault elimination

8.3 Fault in the environment of the motor-drive unit

<table>
<thead>
<tr>
<th>Error pattern</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change in voltage on transformer despite change in position on motor-drive unit</td>
<td>• Contact MR</td>
</tr>
<tr>
<td>Noises on drive shaft or motor-drive unit when changing tap position</td>
<td>• Ensure that the motor-drive unit is attached correctly, in accordance with the "Assembly" chapter.</td>
</tr>
<tr>
<td></td>
<td>• Make sure that the drive shaft including protective cover is assembled correctly, in accordance with the operating instructions for the on-load tap-changer / de-energized tap-changer.</td>
</tr>
</tbody>
</table>

Table 16: Fault in the environment of the motor-drive unit

8.4 Fault in the motor-drive unit when the switching operation has not ended

If the motor-drive unit stops and the arrow of the tap-change indicator does not point in the area highlighted in gray (see the "Indication Field" section, position 3), then the tap-change operation has not been ended correctly.

This is a stationary state that is not allowed and must be rectified immediately. If you cannot rectify the fault immediately, switch off the transformer. Contact the Technical Service department at Maschinenfabrik Reinhausen GmbH immediately.

If you notice a fault in the motor-drive unit right away, you should immediately start troubleshooting as described in the following table.
Fault elimination

Table 17: Fault in the motor-drive unit when the tap-change operation has not been ended

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tripping of the motor protective switch Q1</td>
<td>• Hand crank operation is prohibited.</td>
</tr>
<tr>
<td></td>
<td>• Disconnect the motor-drive unit from the voltage supply and wait at least 30 minutes before you open the motor-drive unit.</td>
</tr>
<tr>
<td></td>
<td>• Switch on Q1 only once.</td>
</tr>
<tr>
<td></td>
<td>• Close the motor-drive unit.</td>
</tr>
<tr>
<td></td>
<td>• Pre-flush the motor-drive unit [► 43] and check the leakage loss rate [► 45].</td>
</tr>
<tr>
<td></td>
<td>• Connect the motor-drive unit to the voltage supply.</td>
</tr>
<tr>
<td></td>
<td>• If Q1 does not trigger again and if no other fault is present, the motor-drive unit automatically ends the tap-change operation that was started.</td>
</tr>
<tr>
<td></td>
<td>• If Q1 is triggered again, do not attempt any more tap-change operations and contact MR.</td>
</tr>
<tr>
<td>Interruption of the supply voltage to the motor-drive unit or motor controller</td>
<td>• Hand crank operation is prohibited.</td>
</tr>
<tr>
<td></td>
<td>• Reestablish the voltage supply.</td>
</tr>
<tr>
<td></td>
<td>• Once the voltage supply returns, the motor-drive unit automatically ends the tap-change operation that was started.</td>
</tr>
<tr>
<td>Component defect in the motor-drive unit</td>
<td>• Hand crank operation is prohibited.</td>
</tr>
<tr>
<td></td>
<td>• Contact MR.</td>
</tr>
</tbody>
</table>

Note:
- **Hand crank operation is prohibited.**
- **Switch on Q1 only once.**
- **Do not attempt any more tap-change operations** and contact MR.
8.5 Fault in the motor-drive unit after the switching operation is ended correctly

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Action</th>
</tr>
</thead>
</table>
| Tripping of the motor protective switch Q1 | ▪ Disconnect the motor-drive unit from the voltage supply and wait at least 30 minutes before you open the motor-drive unit.
 ▪ Switch on Q1.
 ▪ Close the motor-drive unit.
 ▪ Pre-flush the motor-drive unit [► 43] and check the leakage loss rate [► 45]. |
| Interruption of the supply voltage to the motor-drive unit or motor controller | ▪ Reestablish the voltage supply. |
| Component defect in the motor-drive unit | ▪ Contact MR. |

Table 18: Fault in the motor-drive unit after the tap-change operation is ended correctly

8.6 Hand crank operation in the event of faults

Hand crank operation in the event of faults

An operation is considered an emergency operation if a tap-change operation is absolutely necessary when a transformer is energized, despite a fault in the motor-drive unit.
WARNING

Danger of explosion!
Unauthorized operation of the motor-drive unit with the hand crank may result in death or serious injury.

► Only ever open the motor-drive unit when it is de-energized and wait at least 30 minutes after the voltage supply has failed or the motor-drive unit has been switched off before you open it.

► Never operate the motor-drive unit electrically or with the hand crank before the transformer has been disconnected if you think there may be a fault in the transformer or on-load tap-changer/de-energized tap-changer.

► Never use the hand crank to complete a tap-change operation that has begun electrically, but has not been ended completely.

► If the hand crank is difficult to move, you must stop using it.

► When operating the motor-drive unit with the hand crank, never reverse the direction of rotation.

► If there is any doubt about the on-load tap-changer/de-energized tap-changer being in proper working condition or about the cause of a fault in the motor-drive unit, contact the Technical Service department of Maschinenfabrik Reinhausen GmbH immediately.

► To operate the motor-drive unit manually, only use the hand crank mounted in the motor-drive unit.

For a detailed description of operation using the hand crank, refer to the "Operation" chapter.
9 Inspection and maintenance

This chapter contains information about inspecting and maintaining the product.

9.1 Care

You can clean the outside of the motor-drive unit’s protective housing with a damp cloth. You can clean the inside of the protective housing with a dry cloth.

9.2 Inspection

Check the tripping of the motor protective switch from the control room at least once a year.

Proceed as follows:

- The motor protective switch Q1 is switched on (position I).

1. Trip the motor protective switch from the control room.

 - The motor protective switch is tripped (position O). If the motor protective switch is not tripped, check the switch’s connection to the control room and if necessary contact Maschinenfabrik Reinhausen GmbH.

2. Switch on motor protective switch again (position I).

 - The tripping of the motor protective switch from the control room is checked.

9.3 Maintenance

After 500,000 tap-change operations, contact our Technical Service department if you are using the motor-drive unit for industrial transformers.

If you are using it on other transformers, maintenance of the motor-drive unit is not required. The condition of the motor-drive unit and its correct function must however be checked in accordance with the section “Tests on the motor-drive unit” (see page) each time the on-load tap-changer is maintained. In addition, the motor-drive unit must be pre-flushed with protective gas (see page [► 43]) and the leakage loss rate must be checked (see page [► 45]).

Furthermore, certain components of the motor-drive unit (e.g., cam switches, relays, contactors) have to be replaced every 1 million tap-change operations. Contact the Technical Service department of Maschinenfabrik Reinhausen GmbH for this.
We strongly recommend having on-load tap-changer maintenance and motor-drive unit checks carried out by our Technical Service department. This ensures that, in addition to the correct performance of all work, certain components will be upgraded to the latest state of technology and manufacturing status.

If the maintenance and checks are not carried out by our Technical Service department, please ensure that the personnel who carry out the maintenance are trained by MR or are otherwise suitably qualified to carry out the work. In such cases, we would ask you to forward to us a report on the maintenance performed so we can update our maintenance files. For inquiries about spare parts, please provide the serial number (see nameplates on the on-load tap-changer and motor-drive unit) and the number of tap-change operations.

Technical Service
Maschinenfabrik Reinhausen GmbH
Technical Service
Postfach 12 03 60
93025 Regensburg
Germany
Phone: +49 94140 90-0
Fax: +49 941 40 90-7001
E-mail: service@reinhausen.com
Internet: www.reinhausen.com
10 Disassembly

The safe disassembly of the motor-drive unit is described below.

WARNING

Risk of severe injury or death!

An energized transformer and energized on-load tap-changer and motor-drive unit components can cause death or serious injuries during disassembly!

- Switch off voltage supply.
- Lock voltage supply to prevent unintentional restart.
- Make sure everything is de-energized.
- Cover or cordon off adjacent energized parts.

To disassemble the motor-drive unit, proceed as follows:

1. Remove horizontal drive shaft and protective tube between bevel gear and motor-drive unit.

 ![Figure 22: Disassembling protective tube and horizontal drive shaft](image)

2. Connect lifting gear to fixing lugs on motor-drive unit.

3. Remove the nuts for fastening the motor-drive unit.
4. **WARNING!** Disassemble and lower the motor-drive unit using the lifting gear. While doing so, ensure that the lifting gear cable angle does not fall below 45° in relation to the horizontal. If this is not done, the motor-drive unit may be damaged and serious injuries may result.

\[\Rightarrow\] The motor-drive unit is disassembled.
11 Special motor-drive unit designs

The standard design of the motor-drive unit can be modified to accommodate specific operating requirements.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Special equipment in motor-drive unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-load tap-changer with change-over selector for star-delta change-over operation</td>
<td>Star-delta monitoring</td>
</tr>
<tr>
<td>Furnace and electrolysis operation</td>
<td>Additional input terminals for "operation without step-by step switch"</td>
</tr>
<tr>
<td>Higher maximum number of operating positions</td>
<td>Control gear + on-load tap-change position indicator for 70 operating positions</td>
</tr>
<tr>
<td></td>
<td>Control gear + on-load tap-change position indicator for 105 operating positions</td>
</tr>
<tr>
<td>Vibration-damped design</td>
<td>Protective housing with vibration dampers (see page [► 67])</td>
</tr>
</tbody>
</table>

Table 19: Special designs
12 Technical data

12.1 Technical data for motor-drive unit

The technical data applies to the standard design and may vary depending on the design delivered. Subject to change without prior notice.

<table>
<thead>
<tr>
<th>Motor-drive unit</th>
<th>ED 100/200-S-Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor power</td>
<td>0.75 kW</td>
</tr>
<tr>
<td></td>
<td>2.0 kW</td>
</tr>
<tr>
<td></td>
<td>2.2 kW</td>
</tr>
<tr>
<td>Motor circuit voltage supply</td>
<td>3 AC/N 230/400 V</td>
</tr>
<tr>
<td>Current</td>
<td>approx. 1.9 A</td>
</tr>
<tr>
<td></td>
<td>approx. 5.2 A</td>
</tr>
<tr>
<td></td>
<td>approx. 6.2 A</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Synchronous speed</td>
<td>1,500 rpm</td>
</tr>
<tr>
<td>Rotations of the drive shaft per tap-change operation</td>
<td>16.5</td>
</tr>
<tr>
<td>Duration of the tap-change operation</td>
<td>approx. 5.4 s</td>
</tr>
<tr>
<td>Rated torque on the drive shaft</td>
<td>45 Nm</td>
</tr>
<tr>
<td></td>
<td>90 Nm</td>
</tr>
<tr>
<td></td>
<td>125 Nm</td>
</tr>
<tr>
<td>Rotations of the hand crank per tap-change operation</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Maximum number of operating positions</td>
<td>35</td>
</tr>
<tr>
<td>Voltage supply of control and heating circuits</td>
<td>AC 230 V</td>
</tr>
<tr>
<td>Power consumption of the control circuit (control/operation)</td>
<td>100 VA/25 VA</td>
</tr>
<tr>
<td>Heating power</td>
<td>50 W</td>
</tr>
<tr>
<td>Load capacity of micro-switches</td>
<td>Switching capacity: 100 W</td>
</tr>
<tr>
<td></td>
<td>AC voltage/current intensity: 250 V AC 100 mA...4 A</td>
</tr>
<tr>
<td></td>
<td>DC voltage/current intensity: 220 V DC 10 mA...250 mA</td>
</tr>
<tr>
<td>Temperature range (ambient temperature)</td>
<td>-25 °C to +40 °C (T4)</td>
</tr>
<tr>
<td></td>
<td>-25 °C to +50 °C (T3)</td>
</tr>
<tr>
<td>Protection from foreign objects and water</td>
<td>IP 66 in accordance with DIN EN 60529</td>
</tr>
<tr>
<td>Test voltage to ground</td>
<td>2 kV/60 s</td>
</tr>
<tr>
<td>Weight</td>
<td>maximum 100 kg</td>
</tr>
<tr>
<td>Housing degree of protection</td>
<td>IP 66</td>
</tr>
</tbody>
</table>

Table 20: Technical data for TAPMOTION® ED

12.2 Technical data for pressurized enclosure "p"

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum overpressure at gas inlet valve [Pa]</td>
<td>100</td>
</tr>
<tr>
<td>Maximum overpressure at gas inlet valve [Pa]</td>
<td>2,000</td>
</tr>
<tr>
<td>Minimum pre-flush volume [dm³]</td>
<td>1,700</td>
</tr>
<tr>
<td>Protective gas</td>
<td>Air, nitrogen (N₂)</td>
</tr>
</tbody>
</table>
12.3 Technical data for position transmitter equipment

Resistance-type position transmitter module

Standard resistance: 10.0 Ω (0.6 W, +/-1 %) per tap position

The number of desired operating positions determines the number of loaded resistors.

The decisive power loss of the position transmitter module is 0.6 W because in the worst-case scenario only one resistor is energized. The supply voltage should not exceed DC 220 V. If your setup is more demanding, please contact Maschinenfabrik Reinhausen.

Position transmitter module with N/O contact range (break-before-make contact)

AC: 250 V, 0.5 A (resistive loading)
DC: 220 V, 0.2 A (resistive loading)
Minimum voltage level for signal and data processing: 24 V

Position transmitter module with N/O contact range, (make-before-break-type)

AC, DC: 250 V, 0.02 A (resistive loading)
AC, DC: 24 V, 0.20 A (resistive loading)
Minimum voltage level for signal and data processing: 24 V

Position transmitter module with N/O contact range, 10 A (make-before-break-type) for controlling current matching transformer in industrial applications.

AC, DC: 250 V, 10 A (resistive loading)

Position transmitter module, diode matrix

DC: 220 V, 0.2 A (resistive loading)
Minimum voltage level for signal and data processing: 24 V
13 Appendix
13.1 TAPMOTION® ED-S-Ex, protective housing

- The tightening torque has to be reduced depending on the material of the grounding wire.
- The cover can be opened to the left or to the right.
- Arrangement of fixing holes on protective housing.
- Viewed from behind.
- Openings in protective housing for cables.
13.2 TAPMOTION® ED-S-Ex, vibration-damped protective housing

The cover can be opened to the left or to the right.

arrangement of fixing holes on protective housing (viewed from behind)
MR worldwide

Australia
Reinhausen Australia Pty. Ltd.
17/20-22 St Albans Road
Kingsgrove NSW 2208
Phone: +61 2 9502 2202
Fax: +61 2 9502 2224
E-Mail: sales@au.reinhausen.com

Brazil
MR do Brasil Indústria Mecânica Ltda.
Av. Elias Yazbek, 465
CEP: 06803-000
Embu - São Paulo
Phone: +55 11 4785 2150
Fax: +55 11 4785 2185
E-Mail: vendas@reinhausen.com.br

Canada
Reinhausen Canada Inc.
3755, rue Java, Suite 180
Brossard, Québec J4Y 0E4
Phone: +1 514 370 3777
Fax: +1 450 659 3092
E-Mail: m.foata@ca.reinhausen.com

India
Easun-MR Tap Changers Ltd. (Joint Venture)
612, CTH Road
Tiruniravur, Chennai 602 024
Phone: +91 44 26300883
Fax: +91 44 26390881
E-Mail: service@easunmr.com

Indonesia
Pt. Reinhausen Indonesia
German Center, Suite 6310, Jl. Kap. Subjianto Dj.
BSD City, Tangerang
Phone: +62 21 5315-3183
Fax: +62 21 5315-3184
E-Mail: c.haering@id.reinhausen.com

Iran
Iran Transfo After Sales Services Co. (Joint Venture)
Zanjan, Industrial Township No. 1 (Aliabad)
Corner of Morad Str.
Postal Code 4533144551
E-Mail: service@iran-transfo.com

Italy
Reinhausen Italia S.r.l.
Via Alserio, 16
20159 Milano
Phone: +39 02 69434766
Fax: +39 02 69434766
E-Mail: sales@it.reinhausen.com

Japan
MR Japan Corporation
German Industry Park
1-18-2 Hakusan, Midori-ku
Yokohama 226-0006
Phone: +81 45 929 5728
Fax: +81 45 929 5741

Luxembourg
Reinhausen Luxembourg S.A.
72, Rue de Prés
L-7333 Steinsel
Phone: +352 27 3347 1
Fax: +352 27 3347 99
E-Mail: sales@lu.reinhausen.com

Malaysia
Level 11 Chulan Tower
No. 3 Jalan Conlay
50450 Kuala Lumpur
Phone: +60 3 2142 6481
Fax: +60 3 2142 6422
E-Mail: mr_rap@my.reinhausen.com

P.R.C. (China)
MR China Ltd. (MRT)
开德贸易（上海）有限公司
中国上海浦东新区浦东南路 360 号
新上海国际大厦 4 楼 E 座
邮编：200120
电话：+86 21 61634588
传真：+86 21 61634582
Email: mr-sales@cn.reinhausen.com
mr-service@cn.reinhausen.com

Russian Federation
OOO MR
Naberezhnaya Akademika Tupoleva
15, Bl. 2 ("Tupolev Plaza")
105005 Moscow
Phone: +7 495 980 89 67
Fax: +7 495 980 89 67
E-Mail: mrr@reinhausen.ru

South Africa
Reinhausen South Africa (Pty) Ltd.
No. 15, Third Street, Booyens Reserve
Johannesburg
Phone: +27 11 8352077
Fax: +27 11 8353806
E-Mail: support@za.reinhausen.com

South Korea
Reinhausen Korea Ltd.
21st floor, Standard Chartered Bank Bldg.,
47, Chongno, Chongno-gu,
Seoul 110-702
Phone: +82 2 767 4909
Fax: +82 2 736 0049
E-Mail: you-mi.jang@kr.reinhausen.com

U.S.A.
Reinhausen Manufacturing Inc.
2549 North 9th Avenue
Humboldt, TN 38343
Phone: +1 731 784 7681
Fax: +1 731 784 7682
E-Mail: sales@reinhausen.com

United Arab Emirates
Reinhausen Middle East FZE
Dubai Airport Freezone, Building Phase 6
3rd floor, Office No. 6EB, 341 Dubai
Phone: +971 4 2368 451
Fax: +971 4 2368 225
Email: service@ae.reinhausen.com

Maschinenfabrik Reinhausen GmbH
Falkensteinsstrasse 8
93059 Regensburg

+49 (0)941 4090-0
www.reinhausen.com
+49(0)941 4090-7001
sales@reinhausen.com

271/05 EN • 11/16 •