Table of contents

1 Introduction.. 8
 1.1 Manufacturer.. 8
 1.2 Completeness .. 8
 1.3 Safekeeping ... 8
 1.4 Notation conventions .. 8
 1.4.1 Hazard communication system .. 8
 1.4.2 Information system .. 10
 1.4.3 Instruction system .. 10
 1.4.4 Typographic conventions ... 11

2 Safety .. 12
 2.1 Appropriate use ... 12
 2.2 Fundamental Safety Instructions ... 12
 2.3 Personnel qualification ... 14
 2.4 Personal protective equipment ... 15

3 Product description .. 17
 3.1 Scope of delivery ... 17
 3.2 Function description of the voltage regulation .. 17
 3.3 Performance features ... 17
 3.4 Operating modes ... 18
 3.5 Hardware ... 20
 3.5.1 Name plate ... 21
 3.5.2 Operating controls .. 23
 3.5.3 Display elements ... 25
 3.5.4 Serial interface ... 26
 3.5.5 Assemblies ... 26

4 Packaging, transport and storage .. 28
 4.1 Packaging .. 28
 4.1.1 Purpose ... 28
 4.1.2 Suitability, structure and production ... 28
 4.1.3 Markings ... 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Transportation, receipt and handling of shipments</td>
<td>29</td>
</tr>
<tr>
<td>4.3</td>
<td>Storage of shipments</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Mounting</td>
<td>31</td>
</tr>
<tr>
<td>5.1</td>
<td>Mounting device</td>
<td>31</td>
</tr>
<tr>
<td>5.2</td>
<td>Connecting device</td>
<td>32</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Cable recommendation</td>
<td>32</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Electromagnetic compatibility</td>
<td>33</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Information about laying fiber-optic cable</td>
<td>36</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Connecting cables to the system periphery</td>
<td>37</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Wiring device</td>
<td>37</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Checking functional reliability</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>Commissioning</td>
<td>46</td>
</tr>
<tr>
<td>6.1</td>
<td>Function tests</td>
<td>46</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Checking control functions</td>
<td>46</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Checking additional functions</td>
<td>48</td>
</tr>
<tr>
<td>6.2</td>
<td>Setting parameters</td>
<td>51</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Setting the language</td>
<td>51</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Setting date and time</td>
<td>51</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Setting further parameters</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>Operation</td>
<td>55</td>
</tr>
<tr>
<td>7.1</td>
<td>General</td>
<td>55</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Setting device ID</td>
<td>55</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Setting the baud rate</td>
<td>56</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Setting the voltage display kV/V</td>
<td>56</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Setting current display unit</td>
<td>57</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Setting the switching pulse time</td>
<td>57</td>
</tr>
<tr>
<td>7.1.6</td>
<td>Setting the consumption interval</td>
<td>59</td>
</tr>
<tr>
<td>7.1.7</td>
<td>Setting motor runtime monitoring</td>
<td>60</td>
</tr>
<tr>
<td>7.1.8</td>
<td>Setting the behavior in the event of negative active power flow</td>
<td>62</td>
</tr>
<tr>
<td>7.1.9</td>
<td>Defining the signal type</td>
<td>62</td>
</tr>
<tr>
<td>7.2</td>
<td>Key lock</td>
<td>63</td>
</tr>
<tr>
<td>7.3</td>
<td>NORMset</td>
<td>64</td>
</tr>
<tr>
<td>7.4</td>
<td>Control parameters</td>
<td>66</td>
</tr>
</tbody>
</table>
Table of contents

7.4.1 Setting desired value 1...4.. 69
7.4.2 Analog setting of the desired value (optional).. 69
7.4.3 Bandwidth ... 72
7.4.4 Setting voltage balance.. 75
7.4.5 Setting delay time T1 .. 75
7.4.6 Setting control response T1 ... 76
7.4.7 Setting delay time T2 .. 77
7.5 Limit values... 78
7.5.1 Setting undervoltage monitoring V< .. 78
7.5.2 Setting overvoltage monitoring V> .. 81
7.5.3 Activating/deactivating function monitoring ... 83
7.5.4 Setting hunting alarm limit .. 83
7.6 Compensation... 84
7.6.1 R&X compensation .. 84
7.6.2 Z compensation ... 87
7.7 Transformer data.. 88
7.7.1 Setting the phase difference for the current transformer/voltage transformer................................. 89
7.7.2 Setting the primary transformer voltage .. 93
7.7.3 Setting the secondary transformer voltage .. 93
7.7.4 Setting primary transformer current ... 94
7.8 Configurable inputs and outputs .. 94
7.8.1 Linking inputs with functions .. 94
7.8.2 Setting user-defined collective message ... 96
7.9 Parallel operation.. 97
7.9.1 Assigning CAN bus address ... 98
7.9.2 Assigning a parallel operation group .. 98
7.9.3 Selecting parallel operation method ... 99
7.9.4 Setting delay time for parallel operation error messages ... 102
7.9.5 Setting the follower tapping direction .. 103
7.9.6 Activating/deactivating parallel operation ... 104
7.9.7 Setting the behavior in the event of CAN bus error ... 104
7.10 LED selection.. 105
7.11 Memory.. 105
7.11.1 Setting undervoltage threshold ... 106
7.11.2 Setting overvoltage threshold ... 107
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.11.3</td>
<td>Setting time difference of average value interval</td>
<td>108</td>
</tr>
<tr>
<td>7.11.4</td>
<td>Setting event memory size</td>
<td>108</td>
</tr>
<tr>
<td>7.11.5</td>
<td>Time plotter</td>
<td>111</td>
</tr>
<tr>
<td>7.12</td>
<td>Communication interface</td>
<td>117</td>
</tr>
<tr>
<td>7.12.1</td>
<td>Selecting the communication protocol</td>
<td>117</td>
</tr>
<tr>
<td>7.12.2</td>
<td>Selecting communication port</td>
<td>118</td>
</tr>
<tr>
<td>7.12.3</td>
<td>Selecting communication baud rate</td>
<td>118</td>
</tr>
<tr>
<td>7.12.4</td>
<td>Assigning network address</td>
<td>119</td>
</tr>
<tr>
<td>7.12.5</td>
<td>Assigning TCP port</td>
<td>119</td>
</tr>
<tr>
<td>7.12.6</td>
<td>Setting fiber-optic cable transmission behavior</td>
<td>120</td>
</tr>
<tr>
<td>7.12.7</td>
<td>Setting CI address</td>
<td>120</td>
</tr>
<tr>
<td>7.12.8</td>
<td>Setting SCADA master address</td>
<td>121</td>
</tr>
<tr>
<td>7.12.9</td>
<td>Enabling unsolicited messages</td>
<td>122</td>
</tr>
<tr>
<td>7.12.10</td>
<td>Setting number of attempts to transmit unsolicited messages</td>
<td>122</td>
</tr>
<tr>
<td>7.12.11</td>
<td>Timeout for application confirm responses</td>
<td>123</td>
</tr>
<tr>
<td>7.12.12</td>
<td>Setting transmission delay time for RS485 interface</td>
<td>123</td>
</tr>
<tr>
<td>7.13</td>
<td>Tap positions</td>
<td>124</td>
</tr>
<tr>
<td>7.13.1</td>
<td>Analog tap position capture (optional)</td>
<td>124</td>
</tr>
<tr>
<td>7.13.2</td>
<td>Tap position output</td>
<td>126</td>
</tr>
<tr>
<td>7.13.3</td>
<td>Permitted tap positions</td>
<td>127</td>
</tr>
<tr>
<td>7.13.4</td>
<td>Tap-position indication</td>
<td>128</td>
</tr>
<tr>
<td>7.14</td>
<td>Displaying information about device</td>
<td>129</td>
</tr>
<tr>
<td>7.14.1</td>
<td>Displaying the info screen</td>
<td>129</td>
</tr>
<tr>
<td>7.14.2</td>
<td>Displaying measured values</td>
<td>129</td>
</tr>
<tr>
<td>7.14.3</td>
<td>Carrying out LED test</td>
<td>130</td>
</tr>
<tr>
<td>7.14.4</td>
<td>Display of the IO status</td>
<td>131</td>
</tr>
<tr>
<td>7.14.5</td>
<td>Displaying status of the AI card</td>
<td>131</td>
</tr>
<tr>
<td>7.14.6</td>
<td>Displaying status of the CI card</td>
<td>131</td>
</tr>
<tr>
<td>7.14.7</td>
<td>Resetting parameters</td>
<td>132</td>
</tr>
<tr>
<td>7.14.8</td>
<td>Displaying real-time clock</td>
<td>132</td>
</tr>
<tr>
<td>7.14.9</td>
<td>Displaying parallel operation</td>
<td>133</td>
</tr>
<tr>
<td>7.14.10</td>
<td>Displaying data on CAN bus</td>
<td>133</td>
</tr>
<tr>
<td>7.14.11</td>
<td>Displaying measured value memory</td>
<td>134</td>
</tr>
<tr>
<td>7.14.12</td>
<td>Displaying peak memory</td>
<td>135</td>
</tr>
<tr>
<td>7.14.13</td>
<td>Displaying the operations counters</td>
<td>135</td>
</tr>
</tbody>
</table>
Table of contents

7.14.14 Displaying upcoming messages... 136
7.14.15 Display of the consumption .. 136

8 Fault elimination .. 138
 8.1 No regulation in AUTO mode ... 138
 8.2 Unexplained tap change ... 139
 8.3 Man-machine interface .. 139
 8.4 Incorrect measured values .. 140
 8.5 Parallel operation faults .. 141
 8.6 Customized GPIs/GPOs .. 141
 8.7 General faults .. 141
 8.8 Other faults .. 142

9 Disposal .. 143

10 Overview of parameters ... 144

11 Technical data .. 149
 11.1 Display elements .. 149
 11.2 Voltage supply ... 149
 11.3 Voltage measurement and current measurement .. 149
 11.4 Digital inputs and outputs .. 150
 11.5 Analog inputs and outputs (AI module) .. 152
 11.6 System networking (CI module) .. 153
 11.7 Dimensions and weight ... 153
 11.8 Ambient conditions .. 155
 11.9 Electromagnetic compatibility .. 155
 11.10 Environmental durability tests ... 155
 11.11 Mechanical stability ... 156

Glossary .. 157

List of key words ... 158
1 Introduction

This technical file contains detailed descriptions on the safe and proper installation, connection, commissioning and monitoring of the product.

It also includes safety instructions and general information about the product.

This technical file is intended solely for specially trained and authorized personnel.

1.1 Manufacturer

The product is manufactured by:

Reinhausen Manufacturing Inc.

2549 North 9th Avenue
Humboldt, Tennessee 38343, USA
Tel.: (+1) 731/784-7681
Fax: (+1) 731/784-7682
E-mail: sales@us.reinhausen.com

Further information on the product and copies of this technical file are available from the address listed above or at www.tapcon250.com.

1.2 Completeness

This technical file is incomplete without the further applicable documentation.

The following documents apply to this product:

- Operating instructions
- Connection diagrams

1.3 Safekeeping

Keep this technical file and all supporting documents ready at hand and accessible for future use at all times.

1.4 Notation conventions

This section contains an overview of the symbols and textual emphasis used.

1.4.1 Hazard communication system

Warnings in this technical file are displayed as follows.
1.4.1.1 Warning relating to section

Warnings relating to sections refer to entire chapters or sections, sub-sections or several paragraphs within this technical file. Warnings relating to sections use the following format:

⚠ **WARNING**

Type of danger!
Source of the danger and outcome.
► Action
► Action

1.4.1.2 Embedded warning information

Embedded warnings refer to a particular part within a section. These warnings apply to smaller units of information than the warnings relating to sections. Embedded warnings use the following format:

⚠ **DANGER!** Instruction for avoiding a dangerous situation.

1.4.1.3 Signal words and pictograms

The following signal words are used:

<table>
<thead>
<tr>
<th>Signal word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Indicates a hazardous situation which, if not avoided, will result in death or serious injury.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Indicates a hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Indicates a hazardous situation which, if not avoided, could result in injury.</td>
</tr>
<tr>
<td>NOTICE</td>
<td>Indicates measures to be taken to prevent damage to property.</td>
</tr>
</tbody>
</table>

Table 1: Signal words in warning notices
Pictograms warn of dangers:

<table>
<thead>
<tr>
<th>Pictogram</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warning of a danger point</td>
</tr>
<tr>
<td></td>
<td>Warning of dangerous electrical voltage</td>
</tr>
<tr>
<td></td>
<td>Warning of combustible substances</td>
</tr>
<tr>
<td></td>
<td>Warning of danger of tipping</td>
</tr>
</tbody>
</table>

Table 2: Pictograms used in warning notices

1.4.2 Information system

Information is designed to simplify and improve understanding of particular procedures. In this technical file it is laid out as follows:

Important information.

1.4.3 Instruction system

This technical file contains single-step and multi-step instructions.

Single-step instructions

Instructions which consist of only a single process step are structured as follows:
1 Introduction

Aim of action
✓ Requirements (optional).
► Step 1 of 1.
→ Result of step (optional).
⇒ Result of action (optional).

Multi-step instructions
Instructions which consist of several process steps are structured as follows:

Aim of action
✓ Requirements (optional).
1. Step 1.
→ Result of step (optional).
2. Step 2.
→ Result of step (optional).
⇒ Result of action (optional).

1.4.4 Typographic conventions
The following typographic conventions are used in this technical file:

<table>
<thead>
<tr>
<th>Typographic convention</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPERCASE</td>
<td>Operating controls, switches</td>
<td>ON/OFF</td>
</tr>
<tr>
<td>[Brackets]</td>
<td>PC keyboard</td>
<td>[Ctrl] + [Alt]</td>
</tr>
<tr>
<td>Bold</td>
<td>Software operating controls</td>
<td>Press Continue button</td>
</tr>
<tr>
<td>…>…>…</td>
<td>Menu paths</td>
<td>Parameter > Control parameter</td>
</tr>
<tr>
<td>Italics</td>
<td>System messages, error messages, signals</td>
<td>Function monitoring alarm triggered</td>
</tr>
<tr>
<td>[► Number of pages].</td>
<td>Cross reference</td>
<td>[► 41].</td>
</tr>
</tbody>
</table>

Table 3: Typographic conventions
2 Safety

2.1 Appropriate use

The TAPCON® keeps the output voltage of a transformer with an on-load tap-changer constant. The product is designed solely for use in stationary large-scale electrical energy systems and facilities.

If used as intended, in compliance with the requirements and conditions specified in this technical file and observing the warning notices in this technical file and attached to the product, the product does not pose risk of injury or damage to property or the environment. This applies across the entire service life of the product, from delivery to installation and operation through to disassembly and disposal.

The following is considered appropriate use:

▪ You will find the standard valid for the product and the year of issue on the nameplate.

▪ Operate the product in accordance with this technical file, the agreed-upon delivery conditions and the technical data.

▪ Ensure that all necessary work is performed by qualified personnel only.

▪ Only use the equipment and special tools included in delivery for the intended purpose and in accordance with the specifications of this technical file.

▪ Only operate the product in industrial areas.

▪ Observe the notices in this technical file regarding electromagnetic compatibility and the technical data.

2.2 Fundamental Safety Instructions

To prevent accidents, disruptions and damage as well as unacceptable adverse effects on the environment, those responsible for transport, installation, operation, maintenance and disposal of the product or parts of the product must ensure the following:

Personal protective equipment

Loosely worn or unsuitable clothing increases the danger of becoming trapped or caught up in rotating parts and the danger of getting caught on protruding parts. This increases the danger to life and limb.

▪ All necessary devices and personal protective equipment required for the specific task, such as a hard hat, safety footwear, etc. must be worn. Observe the section "Personal protective equipment" [15].

▪ Never wear damaged personal protective equipment.

▪ Never wear rings, necklaces, or other jewelry.

▪ If you have long hair, wear a hairnet.
Work area

Untidy and poorly lit work areas can lead to accidents.

▪ Keep the work area clean and tidy.
▪ Make sure that the work area is well lit.
▪ Observe the applicable laws for accident prevention in the relevant country.

Working during operation

The product may be operated only in a sound, operational condition. Otherwise it poses a danger to life and limb.

▪ Regularly check the operational reliability of safety equipment.
▪ Comply with the inspection work, maintenance work and maintenance intervals described in this technical file.

Invisible laser radiation

Looking directly into the beam or the reflected beam can cause eye damage. The beam is emitted at the optical connections or at the end of the fiber-optic cables connected to them on the assemblies. Read the chapter "Technical Data" for further information.

▪ Never look directly into the beam or the reflected beam.
▪ Never look into the beam with the aid of optical instruments such as a magnifying glass or a microscope.
▪ In the event that the laser beam strikes your eyes, close your eyes immediately and move your head out of the path of the beam.

Working with current transformers

Dangerous high voltages may occur when a current transformer is operated with an open secondary circuit. This can lead to injuries and property damage.

▪ Never operate a current transformer with an open secondary circuit; short-circuit the current transformer to prevent this.
▪ Observe the information in the current transformer operating instructions.

Explosion protection

Highly flammable or explosive gases, vapors and dusts can cause serious explosions and fire.

▪ Do not install or operate the product in areas where a risk of explosion is present.
Safety markings

Warning signs and safety information plates are safety markings on the product. They are an important aspect of the safety concept.

▪ Observe all safety markings on the product.
▪ Make sure all safety markings on the product remain intact and legible.
▪ Replace safety markings that are damaged or missing.

Ambient conditions

To ensure reliable and safe operation, the product must only be operated under the ambient conditions specified in the technical data.

▪ Observe the specified operating conditions and requirements for the installation location.

Modifications and conversions

Unauthorized or inappropriate changes to the product may lead to personal injury, material damage and operational faults.

▪ Only modify the product after consultation with the manufacturer.

Spare parts

Spare parts not approved by the manufacturer may lead to physical injury, damage to the product and operational faults.

▪ Only use spare parts approved by the manufacturer.
▪ Contact the manufacturer.

2.3 Personnel qualification

The person responsible for assembly, commissioning, operation, maintenance and inspection must ensure that the personnel are sufficiently qualified.

Electrically skilled person

The electrically skilled person has a technical qualification and therefore has the required knowledge and experience, and is also conversant with the applicable standards and regulations. The electrically skilled person is also proficient in the following:

▪ Can identify potential dangers independently and is able to avoid them.
▪ Is able to perform work on electrical systems.
2 Safety

- Is specially trained for the working environment in which (s)he works.
- Must satisfy the requirements of the applicable statutory regulations for accident prevention.

Electrically trained persons

An electrically trained person receives instruction and guidance from an electrically skilled person in relation to the tasks undertaken and the potential dangers in the event of inappropriate handling as well as the protective devices and safety measures. The electrically trained person works exclusively under the guidance and supervision of an electrically skilled person.

Operator

The operator uses and operates the product in line with this technical file. The operating company provides the operator with instruction and training on the specific tasks and the associated potential dangers arising from improper handling.

Technical Service

We strongly recommend having maintenance, repairs and retrofitting carried out by our Technical Service department. This ensures that all work is performed correctly. If maintenance is not carried out by our Technical Service department, please ensure that the personnel who carry out the maintenance are trained and authorized by Maschinenfabrik Reinhausen GmbH to carry out the work.

Authorized personnel

Authorized personnel are trained by Maschinenfabrik Reinhausen GmbH to carry out special maintenance.

2.4 Personal protective equipment

Personal protective equipment must be worn during work to minimize risks to health.
- Always wear the personal protective equipment required for the job at hand.
- Never wear damaged personal protective equipment.
- Observe information about personal protective equipment provided in the work area.
Personal protective equipment to be worn at all times

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protective clothing</td>
<td>Close-fitting work clothing with a low tearing strength, with tight sleeves and with no protruding parts. It mainly serves to protect the wearer against being caught by moving machine parts.</td>
</tr>
<tr>
<td>Safety shoes</td>
<td>To protect against falling heavy objects and slipping on slippery surfaces.</td>
</tr>
</tbody>
</table>

Special personal protective equipment for particular environments

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety glasses</td>
<td>To protect the eyes from flying parts and splashing liquids.</td>
</tr>
<tr>
<td>Visor</td>
<td>To protect the face from flying parts and splashing liquids or other dangerous substances.</td>
</tr>
<tr>
<td>Hard hat</td>
<td>To protect from falling and flying parts and materials.</td>
</tr>
<tr>
<td>Hearing protection</td>
<td>To protect from hearing damage.</td>
</tr>
<tr>
<td>Protective gloves</td>
<td>To protect from mechanical, thermal, and electrical hazards.</td>
</tr>
</tbody>
</table>
3 Product description

This chapter contains an overview of the design and function of the product.

3.1 Scope of delivery

The following items are included in the delivery:

▪ TAPCON® 250
▪ CD MR-Suite (contains the TAPCON®-trol program)
▪ Technical files
▪ Serial cable RS232
▪ USB adapter with installation CD (optional)

Please note the following:

▪ Check the shipment for completeness on the basis of the shipping documents.
▪ Store the parts in a dry place until installation.

3.2 Function description of the voltage regulation

The TAPCON® keeps the output voltage of a transformer with an on-load tap-changer constant.

The TAPCON® compares the transformer's measured voltage (U_{actual}) with a defined reference voltage (U_{desired}). The difference between U_{actual} and U_{desired} is the control deviation dU.

The TAPCON® parameters can be optimally adjusted to the line voltage behavior to achieve a balanced control response with the on-load tap-changer only making a small number of tap-change operations.

3.3 Performance features

The TAPCON® is responsible for controlling tapped transformers.

Apart from control tasks, the TAPCON® provides additional functions such as:

▪ Integrated monitoring functions:
 – Undervoltage blocking and overvoltage blocking
 – Overvoltage detection with high-speed return
 – Oscillation messaging
▪ 4 digital inputs and 1 digital output can be individually programmed on-site by the customer
▪ Additional indicators using LEDs outside the display for freely selectable functions
• Display of all measured values such as voltage, current, active power, apparent power or reactive power, power factor (cos φ)
• Selection of 4 different desired values
• Desired value setting by means of analog signals (optional)
• Tap position capture (optional):
 – Using analog signal 4…20 mA, 0…1 mA, 0…20 mA
 – Using analog signal via resistor contact series
• Tap position output by means of analog signals (optional)
• Parallel operation of up to 6 transformers in 2 groups using the following methods:
 – Master/follower
 – Circulating reactive current minimization
• SCADA:
 – DNP3
 – Modbus ASCII
 – Modbus RTU

3.4 Operating modes

The device can be operated in the following operating modes:

Auto mode (AUTO)

In auto mode, the voltage is automatically controlled in accordance with the set parameters. You cannot change further device settings in auto mode. There is no active management by a higher level control system in this operating mode.

Manual mode (MANUAL)

In manual mode, there is no automatic control. The motor-drive unit can be controlled via the device’s operating panel. You can change the device settings.

Local mode (LOCAL)

There is no active management by a superordinate control system in this operating mode.

Remote mode (REMOTE)

In remote mode, you can execute commands via an external control level. In this case, manual operation of the Mode, Over, Manual and Auto keys is disabled.
3 Product description

<table>
<thead>
<tr>
<th></th>
<th>AUTO + LOCAL</th>
<th>AUTO + REMOTE</th>
<th>MANUAL + LOCAL</th>
<th>MANUAL + REMOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic regulation</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Tap-change operation via operating controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Tap-change operation via inputs</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tap-change operation via SCADA</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Value adjustment via SCADA*</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 4: Overview of operating modes

*) Optional when connecting TAPCON® to a control system (SCADA)
3.5 Hardware

The individual assemblies are mounted in optimized, EMC-protected housings. The front plate contains the operating controls, the display and the LEDs.

Figure 1: Front view
3.5.1 Name plate

The nameplate can be found on the rear side of the device and contains the following information:

![Nameplate Image]

Figure 2: Example appearance of the nameplate

<table>
<thead>
<tr>
<th>S/N</th>
<th>Serial number (e.g. SKJVN140195)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art.</td>
<td>Article number in accordance with configuration (e.g. TC250-4-P-C1-03)</td>
</tr>
</tbody>
</table>

Article number

The article number is composed in accordance with your order and is constructed using the following system: TC250-V-W-XY-ZZ

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Possible parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC250</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>Analog tap position capture (AI module)</td>
</tr>
<tr>
<td>• 0: No AI module</td>
<td></td>
</tr>
<tr>
<td>• 1: Input 0...1 mA; output 0...1 mA or 4...20 mA (available for selection)</td>
<td></td>
</tr>
<tr>
<td>• 2: Input 0...20 mA; output 0...1 mA or 4...20 mA (available for selection)</td>
<td></td>
</tr>
<tr>
<td>• 4: Input 4...20 mA; output 0...1 mA or 4...20 mA (available for selection)</td>
<td></td>
</tr>
<tr>
<td>• P: Potentiometer, output 0...1 mA or 4...20 mA (available for selection)</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Parallel operation</td>
</tr>
<tr>
<td>• 0: No parallel operation</td>
<td></td>
</tr>
<tr>
<td>• P: Parallel operation</td>
<td></td>
</tr>
<tr>
<td>Scheme</td>
<td>Possible parameters</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
</tr>
<tr>
<td>X</td>
<td>SCADA (CI module)</td>
</tr>
<tr>
<td></td>
<td>• 0: No CI module</td>
</tr>
<tr>
<td></td>
<td>• C: CI module with RS232 and RS485</td>
</tr>
<tr>
<td></td>
<td>• E: CI module with RS232, RS485 and RJ45 (Ethernet)</td>
</tr>
<tr>
<td></td>
<td>• M: CI module with RS232, RS485 and RJ45 (modem)</td>
</tr>
<tr>
<td>Y</td>
<td>Optional fiber-optic cable (CI module)</td>
</tr>
<tr>
<td></td>
<td>• 0: No fiber-optic cable</td>
</tr>
<tr>
<td></td>
<td>• 1: Fiber-optic cable</td>
</tr>
<tr>
<td>ZZ</td>
<td>Reserved for special applications</td>
</tr>
</tbody>
</table>

Table 5: Article number scheme
3.5.2 Operating controls

The device has 15 pushbuttons. The illustration below is an overview of all the device’s operating controls.

![Operating controls diagram]

Figure 3: Operating controls
<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAISE</td>
<td>In manual mode, send a control command to the motor-drive unit to increase the voltage.</td>
</tr>
<tr>
<td>LOWER</td>
<td>In manual mode, send a control command to the motor-drive unit to reduce the voltage.</td>
</tr>
<tr>
<td>REMOTE</td>
<td>Activate/deactivate "Remote" operating mode. When you deactivate this operating mode, the "Local" operating mode is automatically activated.</td>
</tr>
<tr>
<td>MANUAL</td>
<td>Activate "Manual mode" operating mode.</td>
</tr>
<tr>
<td>AUTO</td>
<td>Activate "Auto mode" operating mode.</td>
</tr>
<tr>
<td>PREV</td>
<td>Change measured value display and switch to previous parameters.</td>
</tr>
<tr>
<td>NEXT</td>
<td>Change measured value display and switch to next parameters.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Confirm selection and save modified parameters.</td>
</tr>
<tr>
<td>ESC</td>
<td>Exit current menu and select previous menu levels.</td>
</tr>
<tr>
<td>MENU</td>
<td>Select main menu.</td>
</tr>
<tr>
<td>F1 to F5</td>
<td>Function keys: Select functions displayed on the screen.</td>
</tr>
</tbody>
</table>
3.5.3 Display elements

The device has a graphics display and 15 LEDs, which indicate the various operating statuses or events.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overcurrent blocking LED, red</td>
</tr>
<tr>
<td>2</td>
<td>Undervoltage blocking LED, red</td>
</tr>
<tr>
<td>3</td>
<td>Overvoltage blocking LED, red</td>
</tr>
<tr>
<td>4</td>
<td>Parallel operation active LED, green</td>
</tr>
<tr>
<td>5</td>
<td>NORMset active LED, green</td>
</tr>
<tr>
<td>6</td>
<td>LED 1, function can be freely assigned, yellow</td>
</tr>
<tr>
<td>7</td>
<td>LED 2, function can be freely assigned, yellow</td>
</tr>
<tr>
<td>8</td>
<td>LED 3, function can be freely assigned, yellow</td>
</tr>
<tr>
<td>9</td>
<td>LED 4, function can be freely assigned, green/yellow/red</td>
</tr>
<tr>
<td>10</td>
<td>Graphics display</td>
</tr>
<tr>
<td>11</td>
<td>Operating status LED, green</td>
</tr>
<tr>
<td>12</td>
<td>Auto mode active LED</td>
</tr>
<tr>
<td>13</td>
<td>Manual mode active LED</td>
</tr>
<tr>
<td>14</td>
<td>Remote operating mode active LED</td>
</tr>
<tr>
<td>15</td>
<td>Lower tap-change active LED</td>
</tr>
<tr>
<td>16</td>
<td>Raise tap-change active LED</td>
</tr>
</tbody>
</table>
3.5.4 Serial interface

The parameters for the device can be set using a PC. The COM 2 (RS232) serial interface on the front panel is provided for this purpose. You can use the connection cable supplied to establish a connection to your PC via the RS232 or USB port (using the optional USB adapter).

TAPCON®-trol software is needed for parameterization via the serial interface. The software and the related user guide can be found on the CD provided.

![Diagram of device connection to a PC](image)

Figure 5: Device connection to a PC

3.5.5 Assemblies

Depending on configuration, the device may have various assemblies which perform the functions required. The functions of the assemblies are described in the following sections. You can find more information about the assemblies in the Technical data section.

3.5.5.1 AI module

The AI module lets you capture the tap position of the on-load tap-changer as an analog signal. As an alternative to the tap position, you can also specify the desired value as an analog signal.

Furthermore, you can forward the tap position as an analog signal via the AI module analog output (e.g. for an external tap position display).
3.5.5.2 CI module (optional)

The optional CI module makes 4 additional communication interfaces available:

- RS232
- RS485
- Ethernet/modem
- Fiber-optic cable

You can tether the device to a control system using these communication interfaces.

![CI module diagram](image)

Figure 6: CI module

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS232</td>
</tr>
<tr>
<td>2</td>
<td>RS485</td>
</tr>
<tr>
<td>3</td>
<td>RJ45 (Ethernet/modem)</td>
</tr>
<tr>
<td>4</td>
<td>Fiber-optic cable</td>
</tr>
</tbody>
</table>

3.5.5.3 Adapter plate (optional)

The adapter plates available as an option are used to replace various types of voltage regulators with a TAPCON® 250 through simple exchange. Observe the associated supplement for further information on the adapter plate.
4 Packaging, transport and storage

4.1 Packaging

The products are sometimes supplied in a sealed packaging and sometimes in a dry state depending on requirements.

A sealed packaging surrounds the packaged goods on all sides with plastic foil. Products that have also been dried are identified by a yellow label on the sealed packaging.

The information in the following sections should be applied as appropriate.

4.1.1 Purpose

The packaging is designed to protect the packaged goods during transport, loading and unloading as well as periods of storage in such a way that no (detrimental) changes occur. The packaging must protect the goods against permitted transport stresses such as vibration, knocks and moisture (rain, snow, condensation).

The packaging also prevents the packaged goods from moving impermissibly within the packaging. The packaged goods must be prepared for shipment before actually being packed so that the goods can be transported safely, economically and in accordance with regulations.

4.1.2 Suitability, structure and production

The goods are packaged in a sturdy cardboard box. This ensures that the shipment is secure when in the intended transportation position and that none of its parts touch the loading surface of the means of transport or touch the ground after unloading.

The box is designed for a maximum load of 10 kg.

Inlays inside the box stabilize the goods, preventing impermissible changes of position, and protect them from vibration.
4.1.3 Markings

The packaging bears a signature with instructions for safe transport and correct storage. The following symbols apply to the shipment of non-hazardous goods. Adherence to these symbols is mandatory.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>🌧️</td>
<td>Protect against moisture</td>
</tr>
<tr>
<td>⬆️</td>
<td>Top</td>
</tr>
<tr>
<td>🍷</td>
<td>Fragile</td>
</tr>
<tr>
<td>🎬</td>
<td>Attach lifting gear here</td>
</tr>
<tr>
<td>🔞</td>
<td>Center of mass</td>
</tr>
</tbody>
</table>

Table 6: Shipping pictograms

4.2 Transportation, receipt and handling of shipments

In addition to oscillation stress, jolts must also be expected during transportation. In order to prevent possible damage, avoid dropping, tipping, knocking over and colliding with the product.

If a crate tips over, falls from a certain height (e.g. when slings tear) or is subject to an unbroken fall, damage must be expected regardless of the weight.

Every delivered shipment must be checked for the following by the recipient before acceptance (acknowledgment of receipt):

- Completeness based on the delivery slip
- External damage of any type

The checks must take place after unloading when the crate or transport container can be accessed from all sides.

Visible damage

If external transport damage is detected on receipt of the shipment, proceed as follows:

- Immediately record the transport damage found in the shipping documents and have this countersigned by the carrier.
- In the event of severe damage, total loss or high damage costs, immediately notify the sales department at Maschinenfabrik Reinhausen and the relevant insurance company.
- After identifying damage, do not modify the condition of the shipment further and retain the packaging material until an inspection decision has been made by the transport company or the insurance company.
- Record the details of the damage immediately onsite together with the carrier involved. This is essential for any claim for damages!
4 Packaging, transport and storage

- If possible, photograph damage to packaging and packaged goods. This also applies to signs of corrosion on the packaged goods due to moisture inside the packaging (rain, snow, condensation).
- Be absolutely sure to also check the sealed packaging.

Hidden damage

When damages are not determined until unpacking after receipt of the shipment (hidden damage), proceed as follows:

- Make the party responsible for the damage liable as soon as possible by telephone and in writing, and prepare a damage report.
- Observe the time periods applicable to such actions in the respective country. Inquire about these in good time.

With hidden damage, it is very hard to make the transportation company (or other responsible party) liable. Any insurance claims for such damages can only be successful if relevant provisions are expressly included in the insurance terms and conditions.

4.3 Storage of shipments

When selecting and setting up the storage location, ensure the following:

- Protect stored goods against moisture (flooding, water from melting snow and ice), dirt, pests such as rats, mice, termites and so on, and against unauthorized access.
- Store the crates on timber beams and planks as a protection against rising damp and for better ventilation.
- Ensure sufficient carrying capacity of the ground.
- Keep entrance paths free.
- Check stored goods at regular intervals. Also take appropriate action after storms, heavy rain or snow and so on.
5 Mounting

This chapter describes how to correctly install and connect the device. Observe the connection diagrams provided.

DANGER

Electric shock!

Risk of fatal injury due to electrical voltage. Always observe the following safety regulations when working in or on electrical equipment.

- Disconnect the equipment.
- Lock the equipment to prevent an unintentional restart.
- Make sure all poles are de-energized.
- Ground and short-circuit.
- Cover or cordon off adjacent energized parts.

WARNING

Electric shock!

Dangerous high voltages may occur when a current transformer is operated with an open secondary circuit. This can lead to death, injuries and property damage.

- Never operate a current transformer with an open secondary circuit; short-circuit the current transformer to prevent this.
- Observe the information in the current transformer operating instructions.

NOTICE

Damage to the device!

Electrostatic discharge may cause damage to the device.

- Take precautionary measures to prevent the build-up of electrostatic charges on work surfaces and personnel.

5.1 Mounting device

You can mount the device in the following installation versions:

- Mounting kit for wall mounting
- Adapter plate for flush panel mounting

You can replace existing voltage regulators quickly and easily using the available adapter plates. When doing so, observe the corresponding technical documentation for the adapter plates.

You can find more information on the available mounting kits and adapter plates at www.tapcon250.com.
5.2 Connecting device

The following section describes how to establish the electrical connection to the device.

WARNING

Electric shock!

Connection errors can lead to death, injury or property damage.

- Ground the device with a protective conductor using the grounding screw on the housing.
- Note the phase difference of the secondary terminals for the current transformer and voltage transformer.
- Connect the output relays correctly to the motor-drive unit.

Supply the voltage via separators and ensure that current paths can be short circuited. Fit the separator, clearly labeled, close to the device’s power supply so that it is freely accessible. This ensures that the device can be replaced with ease in the event of a defect.

Wiring information

Note this procedure for the wiring:

- To obtain a better overview when connecting cables, only use as many leads as necessary.
- Note the connection diagram.
- Use only the specified cables for wiring. Note the cable recommendation [► 32].
- Wire the leads to the system periphery [► 37].

1. Strip insulation from leads and wires.
2. Crimp stranded wires with wire end sleeves.

5.2.1 Cable recommendation

Please note the following recommendation from Maschinenfabrik Reinhausen when wiring the device.

Excessive line capacitance can prevent the relay contacts from breaking the contact current. In control circuits operated with alternating current, take into account the effect of the line capacitance of long control cables on the function of the relay contacts.
5 Mounting

<table>
<thead>
<tr>
<th>Cable</th>
<th>Terminal</th>
<th>Cable type</th>
<th>Conductor cross-section</th>
<th>Max. length</th>
<th>Max. permissible torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN bus</td>
<td>P1</td>
<td>Shielded</td>
<td>AWG 18 (1.0 mm²)</td>
<td>1.2 miles (2000 m)</td>
<td>4.5 lb in (0.5 Nm)</td>
</tr>
<tr>
<td>Voltage measurement, current measurement</td>
<td>P2.1...P2.6</td>
<td>Unshielded</td>
<td>AWG 12...24 (0.2....3.3 mm²)</td>
<td>-</td>
<td>4.5 lb in (0.5 Nm)</td>
</tr>
<tr>
<td>Digital inputs/outputs</td>
<td>P2.7...P2.32</td>
<td>Unshielded</td>
<td>AWG 12...24 (0.2....3.3 mm²)</td>
<td>-</td>
<td>4.5 lb in (0.5 Nm)</td>
</tr>
<tr>
<td>Analog inputs/outputs</td>
<td>P2.33...P2.27</td>
<td>Shielded</td>
<td>AWG 12...24 (0.2....3.3 mm²)</td>
<td>-</td>
<td>4.5 lb in (0.5 Nm)</td>
</tr>
<tr>
<td>Auxiliary voltage</td>
<td>P3</td>
<td>Unshielded</td>
<td>AWG 12...24 (0.2....3.3 mm²)</td>
<td>-</td>
<td>4.5 lb in (0.5 Nm)</td>
</tr>
</tbody>
</table>

Table 7: Recommendation for connection cables

Use a wire end sleeve for all cables (e.g. TYCO/AMP 131331)

5.2.2 Electromagnetic compatibility

The device has been developed in accordance with applicable EMC standards. The following points must be noted in order to maintain the EMC standards.

5.2.2.1 Wiring requirement of installation site

Note the following when selecting the installation site:
- The system's overvoltage protection must be effective.
- The system's ground connection must comply with all technical regulations.
- Separate system parts must be joined by a potential equalization.
- The device and its wiring must be at least 10 m away from circuit-breakers, load disconnectors and busbars.

5.2.2.2 Wiring requirement of operating site

Note the following when wiring the operating site:
- Route the connecting leads in grounded metal cable ducts.
- Do not route lines which cause interference (e.g. power lines) and lines susceptible to interference (e.g. signal lines) in the same cable duct.
• Maintain a distance of more than 100 mm between lines which cause interference and those which are susceptible to interference.

![Figure 7: Recommended wiring](image)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Cable duct for lines causing interference</td>
<td>2 Line causing interference (e.g. power line)</td>
<td>3 Cable duct for lines susceptible to interference</td>
<td>4 Line susceptible to interference (e.g. signal line)</td>
</tr>
</tbody>
</table>

- Short-circuit and ground reserve lines.
- Never connect the device with a multi-wire collective pipe.
- For signal transmission, use shielded lines with individual conductors (outgoing conductor / return conductor) twisted in pairs.
- Connect full surface of shielding (360°) to device or to a nearby grounding bar.

Using single conductors may limit the effectiveness of the shielding. Connect close-fitting shielding to cover all areas.
5.2.2.3 Wiring requirement in control cabinet

Note the following when wiring the control cabinet:

- The control cabinet where the device will be installed must be prepared in accordance with EMC requirements:
 - Functional division of control cabinet (physical separation)
 - Constant potential equalization (all metal parts are joined)
 - Line routing in accordance with EMC requirements (separation of lines which cause interference and those susceptible to interference)
 - Optimum shielding (metal housing)
 - Overvoltage protection (lightning protection)
 - Collective grounding (main grounding rail)
 - Cable bushings in accordance with EMC requirements
 - Any contactor coils present must be interconnected

- The device's connection cables must be laid in close contact with the grounded metal housing or in metallic cable ducts with a ground connection.

- Signal lines and power lines/switching lines must be laid in separate cable ducts.

- The device must be grounded at the screw provided, the protective grounding connection, using a ground strap (cross-section min. 8 mm²).
5.2.2.4 Information about shielding the CAN bus

In order for the CAN bus to operate faultlessly, you have to connect the shielding using one of the following variants. If you are not able to use any of the variants detailed below, we recommend using fiber-optic cables. Fiber-optic cables decouple the devices and are not sensitive to electromagnetic interference (surge and burst).

NOTICE

Damage to the device!

If you connect the CAN bus cable to devices with different potentials, current may flow across the shielding. This current may damage the device.

► Connect the devices to a potential equalization rail to equalize the potential.

► If both devices have different potentials, only connect the CAN bus cable shielding to one device.

Variant 1: The connected devices share the same potential

If the devices to be connected share the same potential, proceed as follows:

1. Connect all devices to a potential equalization rail to equalize the potential.
2. Connect the CAN bus cable shielding to all connected devices.

Variant 2: The connected devices have different potentials

Note that the shielding is less effective with this variant.

If the devices to be connected have different potentials, proceed as follows:

► Connect the CAN bus cable shielding to just one device.

5.2.3 Information about laying fiber-optic cable

To ensure the smooth transfer of data via the fiber-optic cable, you must ensure that mechanical loads are avoided when laying the fiber-optic cable and later on during operation. Also observe the information from the manufacturer of the fiber-optic cable and the following instructions:

▪ Radii must not fall below the minimum permissible bend radii (do not bend fiber-optic cable).
▪ The fiber-optic cables must not be over-stretched or crushed. Observe the permissible load values.
▪ The fiber-optic cables must not be twisted.
5 Mounting

- Be aware of sharp edges because they can damage the fiber-optic cable’s coating during laying or can place mechanical loads on the coating later on.
- Provide a sufficient cable reserve near distributor cabinets. Lay the reserve such that the fiber-optic cable is neither bent nor twisted when tightened.

5.2.4 Connecting cables to the system periphery

To obtain a better overview when connecting cables, only use as many leads as necessary.

To connect cables to the system periphery, proceed as follows:

- Use only the specified cables for wiring. Note the cable recommendation.
- Connect the lines to be wired to the device to the system periphery as shown in the connection diagrams supplied.

5.2.5 Wiring device

To obtain a better overview when connecting cables, only use as many leads as necessary.

To wire the device, proceed as follows:

- Only use the specified cables for wiring. Note the cable recommendation [32].
- Wire the leads to the system periphery [37].
Wire the device according to the connection diagram.

Figure 9: Connection terminals of the device
5 Mounting

5.2.5.1 Terminal P1: CAN bus

Terminal P1 is for connecting the device to the CAN bus. You can use the CAN bus to operate several TAPCON® units in parallel.

![Connection diagram for parallel operation of several TAPCON® 250 units via CAN bus.](image)

You must connect a 120 Ω terminating resistor between connections P1.2 and P1.4 at both ends of the CAN bus (first and last voltage regulators).

Additionally, observe the directions on shielding the CAN bus [► 36].

The terminal P1 is assigned as follows:

- **P1.1**: GND
- **P1.2**: CAN low
- **P1.3**: Not connected
- **P1.4**: CAN high
- **P1.5**: Not connected (for special applications only)
5.2.5.2 Terminal P2: External connections

Note that the two input groups P2.26 (MANUAL/AUTO) and P2.27 (LOCAL/REMOTE), and P2.28 (RAISE) and P2.29 (LOWER) have their own reference potentials. In order to prevent any damage, the signal voltages of the two input groups must therefore refer to the same reference potential.
Connection P2.1, voltage input
Input for voltage measurement and supplying the TAPCON® 250. Permissible voltage range of 85...140 V AC. The power consumption of the TAPCON® 250 is 6...12 VA (depending on the product version). The voltage is in reference to the neutral conductor (P2.3).

If using the device without an adapter plate, you must protect the power supply circuit with a fuse with the following rated value: 250 V, 300 mA, and with a "fast-acting" characteristic (e. g. LITTELFUSE #312300).

Connection P2.2, load current (return conductor)
Connection for the current transformer return conductor.

Connection P2.3, neutral
Return conductor for the voltage input (P2.1) and the 12 V DC supply voltage (P2.10).

Connection P2.4, load current (outgoing conductor)
Input for load current measurement. Permissible current range 0...420 mA (200 mA continuous). Load current measurement is used for the "line drop compensation (LDC)" function and for measured value calculation.

Connections P2.5 and P2.6
Connections P2.5 and P2.6 are not used and are bridged.

Connection P2.7, tap changer raise output
This switched output connects the raise winding of the motor-drive unit to the source of the motor supply (connection P2.8). The maximum switching capacity for the output is 6 A at 120/240 V AC.

Connection P2.8, input for supplying the motor-drive unit
Connection for supplying the motor-drive unit. Maximum permissible voltage of 240 V AC.

Connections P2.9 GPI1, P2.13 GPI2, P2.17 GPI3, P2.18 GPI4
You can link these inputs up to various voltage regulator functions (see [▶ 94]). The inputs are activated with 12 V DC from connection P2.10.
Connection P2.10, 12 V DC auxiliary voltage output

Auxiliary voltage output (12 V DC) for wiring the general purpose inputs (GPI). Depending on the voltage at P2.1 and the connected load, the output voltage is 10...18 V DC and the maximum current is 100 mA. Note that the output is not internally protected.

Connections P2.11 and P2.12, operations counter

Digital input for recording the number of tap-change operations. The input is electrically isolated so that a main switching contact can be connected in-line to the auxiliary voltage at P2.10 (12 VDC) or to an external control voltage (<24 VDC) at P2.11. The operations counter is increased each time the connection P2.12 is switched to ground/neutral without current via the N/O contact.

Connections P2.14 and P2.15, input for neutral position detection

Digital inputs for capturing the neutral position. The connections are isolated so that you can connect the switch in-line to the supply voltage or the neutral conductor. Connection P2.14 is normally connected to the auxiliary supply voltage P2.10.

Connection P2.16, tap changer lower output

This switched output connects the lower winding of the motor-drive unit to the source of the motor supply (connection P2.8). The maximum switching capacity for the output is 6 A at 120/240 V AC.

Connection P2.19

Connection P2.19 is reserved for special application cases.

Connections P2.20 and P2.22, freely configurable alarm

This connection pair is a relay to the alarm signal (6 A at 120 V AC) that operates in accordance with the open-circuit principle. The relay closes if the requirements for the alarm configured in the voltage regulator are met. Setting user-defined collective message [► 96]

Connections P2.21 and P2.24, alarm signal self-test

This connection pair is a relay to the alarm signal (6 A at 120 V AC) that operates in accordance with the closed-circuit principle. The relay closes in the event of a fault in the voltage supply or the microcontroller.

Connection P2.23, common P2.28 and P2.29

This is the common connection for inputs P2.28 and P2.29.
Connection P2.25, common P2.26 and P2.27
This is the common connection for inputs P2.26 and P2.27.

Connection P2.26, MANUAL/AUTO input
This input is used for connecting an external MANUAL/AUTO switch. You can activate the voltage regulator's Auto operating mode with this switch. The Auto operating mode is active if you apply 120 V AC. The Manual operating mode is active if there is no voltage applied at the input.

Connection P2.27, Local/Remote input
This input is used for connecting an external remote switch. You can activate the voltage regulator's Remote operating mode with this switch. (e. g. for operation via a control system). The Remote operating mode is active if you apply 120 V AC. The Local operating mode is active if there is no voltage applied at the input.

Connections P2.28 and P2.29, raise/lower tap-change operation display input
These inputs are used for displaying Raise or Lower tap-change operations. They are commonly connected to connections P2.7 and P2.16 in order to detect Raise/Lower tap-change operations triggered by the device or Raise/Lower tap-change operations through external switches.

Connections P2.30 and P2.31, Auto/Manual status output
This connection pair is a relay for outputting the current operating mode (Auto/Manual) If the device is de-energized, the relay is in the Manual position.

Connection P2.32
This connection is the source contact of relay P2.30/31.

Only use shielded cables for connecting analog signals (pins P2.33...P2.37). Place the shield only on the housing of the TACON® 250.

Connection P2.33, tap position (-) analog output, optional
Negative pole for analog tap position output.

Connection P2.34, tap position (+) analog output, optional
Positive pole for analog tap position output 0...1 mA or 4...20 mA (adjustable). Requires the AI module.
Connection P2.35, tap position (+) analog input, optional
Input (+) for tap position capture as 0...1 mA or 4...20 mA analog signal. When using a potentiometer, this is the connection for the "tapping".

The total resistance between pins P2.36 and P2.37 must not be greater than 2 kΩ. Take this into consideration when selecting the cables.

Connection P2.36, tap position (-) analog input, optional
Input (+) for tap position capture as an analog signal. When using a potentiometer, this is the connection for "minimum".

Connection P2.37, supply for potentiometer (+5 V) analog input, optional
Internal voltage output +5 VDC. When using a potentiometer, this is the connection for "maximum".

Connection P2.38
The connection P2.38 is not used.

5.2.5.3 Terminal P3: Auxiliary supply voltage
The device is normally supplied by the voltage transformer. Alternatively, you can supply the device via an external auxiliary voltage 12 V DC, 1 A to ensure operation of the device even when the transformer is switched off.

Proceed as follows to supply the device with auxiliary voltage:
► Connect the auxiliary voltage to terminal P3 (P3.1 = +, P3.2 = -).

5.2.6 Checking functional reliability
To ensure that the device is wired correctly, check its functionality.

NOTICE Damage to device and system periphery
An incorrectly connected device can lead to damages in the device and system periphery.
► Check the entire configuration before commissioning.
► Prior to commissioning, be sure to check the actual voltage and operating voltage.
Check the following:

- Once you have connected the device to the grid, the screen displays the MR logo and then the operating screen.
- The green *Operating display* LED at the bottom right of the device's front panel lights up.

The device is fully mounted and can be configured. The actions required for this are described in the following chapter.
6 Commissioning

You need to set several parameters and perform function tests before commissioning the device. These are described in the following sections.

NOTICE

Damage to device and system periphery

An incorrectly connected device can lead to damages in the device and system periphery.

► Check the entire configuration before commissioning.

► Prior to commissioning, be sure to check the actual voltage and operating voltage.

We recommend using a device for industrial instrumentation to record the actual transformer voltage value in order to evaluate how the device is functioning.

6.1 Function tests

Before switching from manual mode to auto mode, Maschinenfabrik Reinhausen recommends carrying out function tests. These function tests are described in the following sections. Note the following points for all function tests:

- You must ensure that REMOTE mode is disabled before you can control the on-load tap-changer manually in manual mode.
- You can only activate the on-load tap-changer manually in manual mode using the \[\text{BASE} \] and \[\text{LOAD} \] keys.
- During the function test, you must set the most important parameters. Details on the parameters listed can be found in the Operation \[\text{[55]} \] chapter.

6.1.1 Checking control functions

This section describes how you can check the device's control functions:

✓ Supply voltage must be present.

1. Press \[\text{MANUAL} \] to select manual mode.
2. Set transmission ratio for voltage transformer, current transformer and measuring set-up.
3. Measure actual voltage and compare with the measured value displayed on the device's main screen.
4. Press key several times to display the operating values for current, power and phase angle and compare them with values of service instruments.

5. Control the on-load tap-changer manually with the or keys until the measured voltage \(U_{\text{actual}} \) reaches the desired voltage \(U_{\text{desired}} \) set in the next stage.

6. Set desired value 1 to the value you want.

7. Set bandwidth depending on step voltage [► 72].

8. Set delay time T1 to 20 seconds [► 75].

9. Set control response T1 to linear [► 76].

10. Press to raise the on-load tap-changer 1 step.

11. Press to select auto mode.
 - After 20 seconds, the device returns the on-load tap-changer to the original operating position.

12. Press to select manual mode.

13. Press to lower the on-load tap-changer 1 step.

14. Press to select auto mode.
 - After 20 seconds, the device returns the on-load tap-changer to the original operating position.

15. Press to select manual mode.

16. Set delay time T2 to 10 seconds [► 77].

17. Activate delay time T2.

18. Press twice to raise the on-load tap-changer 2 steps.

19. Press to select auto mode.
 - After 20 seconds, the device lowers the on-load tap-changer one step and after another 10 seconds another step.

20. Press to select manual mode.

21. Set delay time T1 [► 75] and delay time T2 [► 77] to the desired value.

We recommend a temporary setting of 100 seconds for delay time T1 when commissioning the transformer. Depending on the operating conditions, you can also specify the delay time following a longer observation period. In this regard, it is useful to register how the actual voltage progresses and the number of tap-change operations per day.
6.1.2 Checking additional functions

This section describes how you can check the following additional functions:

- Undervoltage blocking
- Overvoltage blocking
- R&X compensation
- Z compensation
- Desired value 2, 3 and 4

Checking undervoltage blocking U<

1. The measured voltage is 120 V.
 1. Press \text{MANUAL} to select manual mode.
 2. Set the desired value 1 parameter to 130 V.
 3. Set the undervoltage U< parameter to 125 V.
 4. Set the U< blocking parameter to On.
 \(\Rightarrow\) The \textit{Undervoltage} U< LED will light up.
 \(\Rightarrow\) The \textit{undervoltage} message appears in the display after approx. 10 seconds.
 5. Press \text{AUTO} to select auto mode.
 \(\Rightarrow\) The device blocks and does not issue any control commands.
 6. Press \text{MANUAL} to select manual mode.
 7. Reset the \textit{desired value 1} and \textit{undervoltage U<} parameters to the desired operating values.
 \(\Rightarrow\) The function test for undervoltage blocking is complete.

Checking overvoltage blocking U>

1. The measured voltage is 120 V.
 1. Press \text{MANUAL} to select manual mode.
 2. Set the desired value 1 parameter to 110 V.
 3. Set the overvoltage U> parameter to 115 V.
 \(\Rightarrow\) The \textit{overvoltage} U> LED will light up.
 \(\Rightarrow\) The \textit{overvoltage} message appears in the display.
 4. Press \text{AUTO} to select auto mode.
 \(\Rightarrow\) The LOWER output relay emits a control command every 1.5 seconds.
 5. Press \text{MANUAL} to select manual mode.
6. Reset the operating values for **desired value 1** and **overvoltage U>** to the desired operating values.

⇒ The function test for overvoltage blocking is complete.

Checking R&X compensation

If you want to use R&X compensation, you need to run this function test. A load current of ≥ 10% of the nominal transformer current must flow for the following function tests.

1. Press **MANUAL** to select manual mode.
2. Set all parameters for R&X compensation and Z compensation to 0.
3. Press **ESC** until the main screen is displayed.
4. If necessary, press **➡️** until the control deviation dU is shown.
 ⇒ The measured voltage must be within the bandwidth.
5. Set line drop compensation U_r parameter to 20.0 V.
6. Press **ESC** until the main screen is displayed.
7. If necessary, press **➡️** until the control deviation dU is shown.
 ⇒ The value for control deviation dU must be negative.
8. Set line drop compensation U_r parameter to -20.0 V.
9. Press **ESC** until the main screen is displayed.
10. If necessary, press **➡️** until the control deviation dU is shown.
 ⇒ The value for control deviation dU must be positive.

If the control deviation appears in the opposite direction, change the polarity of the current transformer.

11. Set the **line drop compensation U_r** and **line drop compensation U_x** parameters to the desired operating values.

⇒ The function test for line drop compensation is complete.

Checking Z compensation

If you want to use Z compensation, you need to run this function test. A load current of ≥ 10 % of the nominal transformer current is needed for the following function test.

1. Press **MANUAL** to select manual mode.
2. Set all parameters for R&X compensation and Z compensation to 0.
3. Press **ESC** until the main screen is displayed.
4. If necessary, press until the control deviation dU is shown.
 ⇒ The measured voltage must be within the bandwidth.
5. Set the Z compensation parameter to 15.0 V.
6. Press until the main screen is displayed.
7. If necessary, press until the control deviation dU is shown.
 ⇒ The control deviation dU must be negative.

If the control deviation appears in the opposite direction, change the polarity of the current transformer.

8. Set the Z compensation and Z compensation limit value parameters to the desired operating values.
 ⇒ The function test for Z compensation is complete.

Checking the changeover to desired value 2, 3, and 4

To check the changeover to the desired value 2, 3 and 4, proceed as follows:

✓ The inputs GPI 1 (P2.9) and GPI 2 (P2.13) are connected to the +12 VDC supply voltage by means of a switch.

1. Press to select manual mode.
2. Assign the function AVL2 to input GPI 1.
3. Assign the function AVL3 to input GPI 2.
4. Set the parameters for desired value 1, desired value 2, desired value 3, and desired value 4 to various values.
5. To apply a signal at GPI 1, close the switch.
 ⇒ The value set for desired value 2 is displayed on the main screen (U_{ref}).
6. Close the switch in order to apply a signal at GPI 2.
 ⇒ The value set for the desired value 3 is displayed on the main screen (U_{ref}).
7. To apply a signal at GPI 1 and GPI 2, close the switch.
 ⇒ The value set for the desired value 4 is displayed on the main screen (U_{ref}).
8. Open the switches.
 ⇒ The value set for the desired value 1 is displayed on the main screen (U_{ref}). The function test is complete.
6.2 Setting parameters

To commission the device, you must set the following parameters. For more detailed information about the parameters, refer to the respective sections.

6.2.1 Setting the language

You can use this parameter to set the display language for the device. The following languages are available:

<table>
<thead>
<tr>
<th>Language</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Spanish</td>
</tr>
<tr>
<td>German</td>
<td>Portuguese</td>
</tr>
<tr>
<td>French</td>
<td></td>
</tr>
</tbody>
</table>

To set the language, proceed as follows:

1. Configuration > General. → Language
2. Press F1 or F5 to select the required language.
3. Press ← The language is set.

6.2.2 Setting date and time

You must set the system date and system time on the device. You must set the date and time in the following formats:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD.MM.YY</td>
<td>HH:MM:SS</td>
</tr>
</tbody>
</table>

Table 8: Formats

The time does not switch from daylight saving time to standard time and back automatically. You have to change the time manually.
6 Commissioning

Time
To set the time, proceed as follows:

1. **Menu** > F4 Configuration > F5 Continue > F5 Continue > F4 Memory > Press : until the desired display appears.

 ⇒ Time

2. Press F4 to highlight a digit.

 ⇒ The desired position is highlighted and the value can be changed.

3. Press F1 to increase the value or F5 to reduce it.

4. Press ‹

 ⇒ The time is set.

Date
To set the date, proceed as follows:

1. **Menu** > F4 Configuration > F5 Continue > F5 Continue > F4 Memory > Press : until the desired display appears.

 ⇒ Date

2. Press F4 to highlight a digit.

 ⇒ The desired position is highlighted and the value can be changed.

3. Press F1 to increase the value or F5 to reduce it.

4. Press ‹

 ⇒ The date is set.

6.2.3 Setting further parameters
Set further parameters to commission the device. You will find more detailed information about the respective parameters in the Operation [► 55] chapter.

Setting transformer data [► 88]
Set the transformer data and phase difference of the current transformer and voltage transformer:

1. Set primary transformer voltage.
2. Set secondary transformer voltage.
3. Set primary transformer current.
4. Select transformer circuit.
Setting NORMset [► 64]

If you want to commission voltage regulation quickly, you can activate NORMset mode. If you want to set the parameters yourself, continue with "Setting control parameters".

► Activate NORMset and set the relevant parameters.

Setting control parameters [► 66]

Set the following control parameters:
1. Set desired value 1.
2. Set the bandwidth.
3. Set delay time T1.

Setting R&X compensation (optional)

If you need R&X compensation [► 84], you must set the parameters required for this:
1. Set the ohmic voltage drop Ur.
2. Set the inductive voltage drop Ux.

Setting Z compensation (optional)

If you need Z compensation [► 87], you must set the parameters required for this:
1. Set voltage increase.
2. Set voltage limit value.

Setting parallel operation (optional)

If you need parallel operation, you must set the parameters required for this. You will find more information on parallel operation in the "Parallel operation [► 97]" section.

Setting tap position capture via analog input (optional)

If you want to capture the tap position via the analog input, you must set the parameters [► 124] required for this.

Setting the desired voltage level remotely (optional)

If you want to set the desired voltage level remotely, you must set the parameters required for this.
- Desired value selection by means of customer input [► 94]
- Desired value setting by means of analog input [► 69]
Setting control system protocol (optional)

If you require a control system protocol, you must set the parameters [► 117] required for this.
7 Operation

This chapter describes all the functions and setting options for the device.

7.1 General

You can undertake general settings on the device in the General menu item.

- Language [► 51]
- Device ID
- Baud rate (COM2 setting)
- Voltage display V/kV
- Electrical current display unit
- Switching pulse time
- Consumption interval
- Motor runtime
- Behavior in the event of negative power flow
- Local/Remote and Manual/Auto signal type

7.1.1 Setting device ID

You can use the device ID parameter to assign a 4-digit ID to the device. This ID is used to uniquely identify the device in the TAPCON®-trol software.

To set the device ID, proceed as follows:

2. Press [F1] to change the first digit.
 ► If you wish to enter a multi-digit sequence, proceed to step 3. If you do not wish to enter additional digits, proceed to step 7.
3. Press [F1] (digit > 9) until another digit position appears.
4. If necessary, press [F4] in order to highlight the digit position.
 ► The required digit is highlighted and can be changed.
5. Press [F1] or [F5] to change the digit.
6. Repeat steps 3 to 5 until all required digits have been entered.
7. Press []
 ► The device ID is set.
7.1.2 Setting the baud rate

You can use this parameter to set the COM2 interface’s baud rate. You can select the following options:

- 9.6 kilobaud
- 19.2 kilobaud
- 38.4 kilobaud
- 57.6 kilobaud

To set the baud rate, proceed as follows:

1. Press > F4 Configuration > F3 General > until the desired parameter is displayed.
 ⇒ Baud rate

2. Press F1 or F5 to select the required baud rate.

3. Press .

 ⇒ The baud rate is set.

7.1.3 Setting the voltage display kV/V

This parameter sets how the measured voltage is displayed and used. You can select the following options:

- V: The secondary voltage of the system’s voltage transformer is displayed in V and is the reference value for the control parameters.
- kV: The primary voltage of the system’s voltage transformer is displayed in kV and is the reference value for the control parameters.

The voltage transformer’s primary voltage is calculated by the device. For correct functions, you must set the transformer data.

To change the desired unit for the voltage display, proceed as follows:

1. Press MENU > F4 Configuration > F3 General > until the desired parameter is displayed.
 ⇒ Display kV/V.

2. Press F1 or F5 to select kV or V units.

3. Press .

 ⇒ The required unit is set for the voltage display.
7.1.4 Setting current display unit

In this display, you can set the unit for the limit values displayed for overcurrent and undercurrent as a percentage ("%") or absolute value ("A").

It is only possible to change from % to A if all the transformer data have previously been entered.

To set the desired unit for the current display, proceed as follows:

1. Press \text{MENU} > F4 Configuration > F3 General > \rightarrow until the desired parameter is displayed.
 \rightarrow Display %/A
2. Press F1 or F5 to select % or A units.
3. Press \leftarrow
 \rightarrow The required unit is set for the current display.

7.1.5 Setting the switching pulse time

You can use this parameter to set the duration of the switching pulse for the motor-drive unit.

If you set the switching pulse time to 0 s, the motor-drive unit is activated with a continuous signal. The signal then remains active for as long as the or keys are pressed.

Switching pulse in normal mode

If you set the switching pulse time to 1.5 seconds for example, after the set delay time T_1 or delay time T_2 there will be a switching pulse of 1.5 seconds.
The waiting time between 2 consecutive switching pulses corresponds to the set delay time T_1 or delay time T_2.

![Figure 19: Switching pulse time in normal mode](image)

1. Set delay time T_1 or T_2
2. Set switching pulse time (for example 1.5 seconds)

If the motor-drive unit does not start with the factory setting (1.5 seconds), you need to extend the raise switching pulse time / lower switching pulse time.
Switching pulse for rapid return control

If you set the raise switching pulse time or lower switching pulse time to 1.5 seconds, for example, the next earliest switching pulse occurs in rapid return control mode 1.5 seconds after the previous switching pulse ended.

Figure 20: Switching pulse in rapid return control mode

1 Start of first raise switching pulse/lower switching pulse
2 Set switching pulse time (for example 1.5 seconds)
3 Earliest time for the next raise switching pulse/lower switching pulse (for example 1.5 seconds)

To set the pulse duration, proceed as follows:

1. **MENU > F4** Configuration > **F3** General > Press ➔ until the desired parameter is displayed.
 ⇒ R/L pulse duration.

2. Press **F1** or **F5** to select the pulse duration you want.

3. Press ➔.
 ⇒ The R/L pulse duration is now set.

7.1.6 Setting the consumption interval

You can use this parameter to set the time constant for simulating an analog wattmeter. This time constant displays the time after which 90% of a charge change has been reached. This setting has an influence on the peak display and the average value display in the *Information* menu.
To set the consumption interval, proceed as follows:

1. \(\text{MENU} \rightarrow \text{F4 Configuration} \rightarrow \text{F3 General} \rightarrow \text{Press } \rightarrow \) until the desired parameter is displayed.

 ➔ Consumption interval.

2. Press \(\text{F1} \) or \(\text{F5} \) to select the desired consumption interval.

3. Press \(\rightarrow \). ➔ The consumption interval is set.

7.1.7 Setting motor runtime monitoring

You can use this motor runtime parameter to set the motor runtime. The motor-drive unit's runtime can be monitored by the device. This function is used to identify motor-drive unit malfunctions during the tap-change operation and to trigger any actions needed.

Behavior

The motor-drive unit issues the *Motor-drive unit running* signal during the tap-change operation. This signal is present until the tap-change operation is complete. The device compares the duration of this signal with the set motor runtime. If the set motor runtime is exceeded, the device triggers the following actions:

1. *Motor runtime monitoring* message is issued
2. Continuous signal via output relay *Motor-drive unit runtime exceeded* (optional)
3. Pulse signal via *Trigger motor protective switch* output relay (optional)

Parameterizing control input

To use runtime monitoring, you need to correctly wire the corresponding control input and parameterize to *Motor running*. The motor runtime must also be set.
Wiring control input/output relay

If you want to monitor the motor runtime, the device and motor-drive unit must be connected and parameterized as shown below.

![Wiring diagram](image)

Figure 23: Wiring for motor runtime monitoring

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor running control input I/O</td>
<td>Motor protective switch triggered control input I/O (optional)</td>
<td>Motor protective switch output relay I/O (optional)</td>
<td>Motor-drive unit runtime exceeded output relay I/O (optional)</td>
</tr>
</tbody>
</table>

If you want to use the output relay, the feedback from the motor-drive unit **Motor protective switch triggered** must also be wired to a control input and parameterized. This message resets the **Motor runtime exceeded** output relay when the motor protective switch is switched back on and activates the **Motor protective switch triggered** message.

If the runtime monitoring is set to 0.0 seconds this equates to it being switched off.
To set the motor runtime, proceed as follows:

1. Press \text{F4} \rightarrow \text{Configuration} \rightarrow \text{F3} \rightarrow \text{General} \rightarrow \text{Press} \rightarrow \text{F4} \rightarrow \text{until the desired parameter is displayed.} \rightarrow \text{Motor runtime.}

2. Press \text{F4} \rightarrow \text{to highlight the position.} \rightarrow \text{The desired position is highlighted and the value can be changed.}

3. Press \text{F1} \rightarrow \text{to increase the value or F5} \rightarrow \text{to reduce it.}

4. Press \rightarrow \text{The motor runtime is set.}

7.1.8 Setting the behavior in the event of negative active power flow

You can use this parameter to set the behavior of the device in the event of negative active power flow.

You can set the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore</td>
<td>Off</td>
</tr>
<tr>
<td>Block</td>
<td>Automatic voltage regulation blocked</td>
</tr>
<tr>
<td>To neutral</td>
<td>Switch the on-load tap-changer to the "neutral" position</td>
</tr>
</tbody>
</table>

Table 9: Options in the event of negative active power flow

To set the behavior in the event of negative active power flow, proceed as follows:

1. Press \rightarrow \text{Menu} \rightarrow \text{F4} \rightarrow \text{Configuration} \rightarrow \text{F3} \rightarrow \text{General} \rightarrow \text{Press} \rightarrow \text{until the desired parameter is displayed.} \rightarrow \text{Reverse power flow behavior}

2. Press \text{F1} \rightarrow \text{or F5} \rightarrow \text{to select the option you want.}

3. Press \rightarrow \text{The behavior in the event of negative active power flow is set.}

7.1.9 Defining the signal type

You can use this parameter to define the behavior of the inputs. You can change the operating modes Local/Remote and Manual/Auto using the inputs.
You can set the following signal types:

<table>
<thead>
<tr>
<th>Signal type</th>
<th>Description</th>
</tr>
</thead>
</table>
| Pulsed | • Set up the pulse signal to switch from Manual to Auto or from Local to Remote.
 • Operating controls can be used. |
| Not pulsed | • Apply a continuous signal to switch from Manual to Auto or from Local to Remote.
 • If a continuous signal is applied, switching is not possible by means of the operating controls. |

Table 10: Signal type

To set the signal type of the Local/Remote input, proceed as follows:

1. Press Configuration > F3 General > Press → until the desired parameter is displayed.
 ⇒ Local/Remote input.
2. Press F1 or F5 to select the signal type.
3. Press ←.
 ⇒ The signal type is set.

To set the signal type of the Manual/Automatic input, proceed as follows:

1. Press Configuration > F3 General > Press → until the desired parameter is displayed.
 ⇒ Manual/Automatic input.
2. Press F1 or F5 to select the signal type.
3. Press ←.
 ⇒ The signal type is set.

7.2 Key lock

The device is equipped with a key lock to prevent unintentional operation. You can only set or change the parameters when the key lock is deactivated in manual mode.

Activating key lock

To activate the key lock, proceed as follows:

1. Press ESC and F5 at the same time.
2. A confirmation appears in the display for a brief period. The key lock is activated. Parameters can no longer be entered.
Deactivating key lock

To deactivate the key lock, proceed as follows:

► Press Esc and F5 at the same time.

⇒ The key lock is deactivated. Parameters can be entered.

7.3 NORMset

NORMset mode is used for quickly starting voltage regulation. In NORMset mode, the bandwidth and delay time parameters are automatically adapted to the requirements of the grid.

To start NORMset mode, you must set the following parameters:

▪ Normset activation
▪ Desired value 1
▪ Primary voltage
▪ Secondary voltage

Line drop compensation cannot be performed in NORMset mode.

Set the following parameters to operate the device in NORMset mode.

Activating/deactivating NORMset

You can use this parameter to activate NORMset mode.

A manual tap-change operation is required to activate NORMset. This is how the voltage regulator determines the bandwidth required.

If the transformer is switched off, another manual tap-change operation is required.

To activate/deactivate NORMset mode, proceed as follows:

1. Menu > F2 NORMset

⇒ NORMset activation.

2. Press F1 or F5 to activate NORMset by selecting On or to deactivate NORMset by selecting Off.

3. Press ↵.

⇒ NORMset is activated/deactivated.
Setting the primary voltage

With this parameter, you can set the voltage transformer's primary voltage. Proceed as follows to set the primary voltage:

1. **MENU > F2** NORMset > Press until the desired parameter is displayed.
2. Press **F1** to increase the value or **F5** to reduce it.
3. Press **Enter**

 The primary voltage is set.

Setting the secondary voltage

With this parameter, you can set the voltage transformer's secondary voltage. Proceed as follows to set the secondary voltage:

1. **MENU > F2** NORMset > Press until the desired parameter is displayed.
2. Press **F1** to increase the value or **F5** to reduce it.
3. Press **Enter**

 The secondary voltage is set.

Setting desired value 1

With this parameter, you can set the desired value for automatic voltage regulation. You can enter the desired value in V or in kV. If you enter the desired value in V, the value relates to the voltage transformer's secondary voltage. If you set the desired value in kV, the value relates to the voltage transformer's primary voltage.

Settings in kV are only possible if you have previously entered the parameters for primary and secondary voltage.
To set the desired value, proceed as follows:

1. **MENU > F2 NORMset > Press until the desired parameter is displayed.**
 - Desired value 1.

2. Press **F1** to increase the value or **F5** to reduce it.

3. Press **F1**.
 - The desired value is set.

7.4 Control parameters

All of the parameters required for the regulation function are described in this section. For voltage regulation, you can set the following parameters:

- Desired values 1…4
- Bandwidth
- Delay time T1
- Control response T1
- Delay time T2

For voltage regulation, you can set delay time T1 and also delay time T2. The following sections describe how the regulation function responds in both cases:
Behavior only with delay time T1

If the measured voltage \(U_{\text{actual}} \) is within the set bandwidth \(B\% \), no control commands are issued to the motor-drive unit for the tap-change operation. Control commands will also not be issued to the motor-drive unit if the measured voltage returns to the tolerance bandwidth \(B\% \) within the set delay time \(T_1 \). However, if the measured voltage deviates from the set bandwidth for a long period, a tap-change command occurs after expiration of the set delay time \(T_1 \). The on-load tap-changer carries out a tap-change in a raise or lower direction to return to the tolerance bandwidth.

Figure 27: Behavior of the regulation function with delay time T1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(+ B %): Upper limit</td>
</tr>
<tr>
<td>2</td>
<td>(U_{\text{desired}}): Desired value</td>
</tr>
<tr>
<td>3</td>
<td>(- B %): Lower limit</td>
</tr>
<tr>
<td>4</td>
<td>Set delay time (T_1)</td>
</tr>
<tr>
<td>5</td>
<td>(U_{\text{actual}}): Measured voltage</td>
</tr>
<tr>
<td>6</td>
<td>(B%): Tolerance bandwidth</td>
</tr>
</tbody>
</table>

A \(U_{\text{actual}} \) is outside the bandwidth. Delay time \(T_1 \) starts.

B \(U_{\text{actual}} \) is within the bandwidth before delay time \(T_1 \) is complete.

C \(U_{\text{actual}} \) is outside the bandwidth. Delay time \(T_1 \) starts.

D \(U_{\text{actual}} \) is still outside the bandwidth when delay time \(T_1 \) is complete. Tap-change operation is initiated.
Behavior with delay times T1 and T2

Delay time T2 can be used to correct major control deviations more quickly. Ensure that you set a lower value in the "Delay time T2" parameter than in the "Delay time T1" parameter.

If the measured voltage U_{actual} deviates from the set bandwidth for a long period A, a control impulse is output to the motor-drive unit after the set delay time T1 B. If the measured voltage U_{actual} is still outside the bandwidth, delay time T2 B starts once delay time T1 is complete. Once delay time T2 is complete, a control impulse is again output to the motor-drive unit for the tap change C to return to the tolerance bandwidth.

![Figure 28: Behavior of the regulation function with delay times T1 and T2](image)

<table>
<thead>
<tr>
<th>1</th>
<th>+ B %: Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>U_{desired}: Desired value</td>
</tr>
<tr>
<td>3</td>
<td>- B %: Lower limit</td>
</tr>
<tr>
<td>4</td>
<td>Set delay times T1 and T2.</td>
</tr>
<tr>
<td>5</td>
<td>U_{actual}: Measured voltage</td>
</tr>
<tr>
<td>6</td>
<td>B %: Tolerance bandwidth</td>
</tr>
</tbody>
</table>

A U_{actual} is outside the bandwidth. Delay time T1 starts.
B Delay time T1 complete. Tap change triggered.
C Delay time T2 complete. Tap change triggered.

The following sections describe how to set the relevant control parameters.
7.4.1 Setting desired value 1...4

You can use these parameters to set up to 4 desired voltage values U_{desired}. The desired voltage value is specified as a fixed value. The desired value 1 is the default desired value.

The desired values 2 and 3 are activated by selecting the correct function for the customer inputs (GPI) and applying a continuous signal to the input. For desired value 4, note that you have to apply a continuous signal to the inputs for desired value 2 and desired value 3.

Reference of kV and V for voltage transformer

Desired values set in kV refer to the primary voltage of the voltage transformer. Desired values set in V refer to the secondary voltage of the voltage transformer. The transformer data must be entered correctly for this display.

To set the desired value, proceed as follows:

1. Parameter > Control parameter > Press \(\rightarrow \) until the desired parameter is displayed.
2. If you have already entered the transformer data, press \(\rightarrow \) to select the unit you want: "V" or "kV".
3. Press \(\rightarrow \) to highlight the position.
 - The desired position is highlighted and the value can be changed.
4. Press \(\rightarrow \) to increase the value or \(\rightarrow \) to reduce it.
5. Press \(\rightarrow \)
 - The desired value is set.

7.4.2 Analog setting of the desired value (optional)

If the device is equipped with an AI module, you can set the desired voltage value by means of analog signal. To do so, you must configure the analog input (P2.35 and P2.36) accordingly.

You can use the analog input (P2.35 and P2.36) either for capturing the tap position or for setting the desired voltage level remotely. You cannot use both functions simultaneously.

To set the desired value by means of an analog signal, you must enter the following parameter values:

- Set desired voltage level remotely
- AI lower limit
- AI upper limit
- Min. remote desired value
- Max. remote desired value
TAPCON® 250

Analog setting of the desired value

<table>
<thead>
<tr>
<th></th>
<th>Min. desired value</th>
<th>Min. remote desired value (e.g. 100 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max. desired value</td>
<td>Max. remote desired value (e.g. 135 V)</td>
</tr>
<tr>
<td></td>
<td>Min. analog signal</td>
<td>Min. remote desired value (e.g. 100 V)</td>
</tr>
<tr>
<td></td>
<td>Max. analog signal</td>
<td>Max. remote desired value (e.g. 135 V)</td>
</tr>
</tbody>
</table>

Activating/deactivating setting the desired voltage level remotely

You can use this parameter to activate or deactivate setting the desired voltage level remotely. If you activate setting the desired voltage level remotely, the parameter for capturing the tap position via analog signal is deactivated automatically.

To activate/deactivate setting the desired voltage level remotely, proceed as follows:

1. **MENU > F4** Configuration > 3x **F5** Continue > **F4** Set desired voltage level remotely > Press **→** until the desired parameter is displayed.

 - Set desired voltage level remotely.

2. Press **F1** or **F5** to activate (On) or deactivate (Off) setting the desired voltage level remotely.

3. Press **←**.

 - Setting the desired voltage level remotely has been activated/deactivated.

Setting AI lower limit

You can use this parameter to set the minimum value of the analog signal. The setting is made as a percentage based on the 20 mA measuring range.
Example: If you would like to use a 4...20 mA signal, you must set the parameter to 20% (20% x 20 mA = 4 mA).

1. Press \(\text{F4} \) to highlight the digit.
 \(\Rightarrow \) The desired position is highlighted and the value can be changed.
2. Press \(\text{F5} \) to increase the value or \(\text{F6} \) to reduce it.
3. Press \(\text{F7} \) to set the desired voltage level remotely.

Setting AI upper limit

You can use this parameter to set the maximum value of the analog signal. The setting is made as a percentage based on the 20 mA measuring range.

Example: If you would like to use a 4...20 mA signal, you must set the parameter to 100% (100% x 20 mA = 20 mA).

1. Press \(\text{F4} \) to highlight the digit.
 \(\Rightarrow \) The desired position is highlighted and the value can be changed.
2. Press \(\text{F5} \) to increase the value or \(\text{F6} \) to reduce it.
3. Press \(\text{F7} \) to set the desired voltage level remotely.

Setting min. remote desired value

You can use this parameter to set the desired value that corresponds to the minimum level of the analog signal.

1. Press \(\text{F4} \) to highlight the digit.
 \(\Rightarrow \) The desired position is highlighted and the value can be changed.
2. Press \(\text{F5} \) to increase the value or \(\text{F6} \) to reduce it.
3. Press \(\text{F7} \) to set the desired voltage level remotely.
4. Press \(\leftarrow \).
 ⇒ The minimum desired value is set.

Setting max. remote desired value

You can use this parameter to set the desired value that corresponds to the maximum level of the analog signal.

1. \[\text{MENU} \rightarrow F4 \] Configuration > 3x \[F5 \] Continue \(\rightarrow \) F4 Set desired voltage level remotely > Press \(\rightarrow \) until the desired parameter is displayed.
 ⇒ Max. remote desired value

2. Press \(F4 \) to highlight a digit.
 ⇒ The desired position is highlighted and the value can be changed.

3. Press \(F1 \) to increase the value or \(F5 \) to reduce it.

4. Press \(\leftarrow \).
 ⇒ The maximum desired value is set.

7.4.3 Bandwidth

You can use this parameter to set the maximum permissible deviation in measured voltage \(U_{\text{Act}} \). The deviation relates to the activated desired value. The following sections describe how you determine and set the bandwidth required.

7.4.3.1 Determining bandwidth

In order to set the correct value, the transformer's step voltage and nominal voltage must be known.

Too small/large a bandwidth

You have to set the bandwidth in such a way that the output voltage of the transformer \((U_{\text{Act}}) \) returns to within the specified tolerance bandwidth after the tap change. If too small a bandwidth is defined, the output voltage exceeds the bandwidth selected and the device immediately issues a tap-change command in the opposite direction. If a very large bandwidth is selected, this results in a major control deviation.
7 Operation

The following value is recommended for the bandwidth setting:

\[
\pm B\% \geq 0,6 \cdot \frac{U_{n-1} - U_n}{U_{\text{nom}}} \cdot 100\%
\]

Figure 35: Recommended bandwidth

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_{n-1})</td>
<td>Step voltage of tap position n-1</td>
</tr>
<tr>
<td>(U_n)</td>
<td>Step voltage of tap position n</td>
</tr>
<tr>
<td>(U_{\text{nom}})</td>
<td>Nominal voltage</td>
</tr>
</tbody>
</table>

The following transformer values are used to determine the recommended bandwidth:

- Nominal voltage \(U_{\text{nom}} = 11,000 \) V
- Step voltage in tap position 4 \(U_{\text{Step4}} = 11,275 \) V
- Step voltage in tap position 5 \(U_{\text{Step5}} = 11,000 \) V

\[
\pm B\% \geq 0,6 \cdot \frac{U_{\text{Step4}} - U_{\text{Step5}}}{U_{\text{nom}}} \cdot 100\%
\]

\[
\pm B\% \geq 0,6 \cdot \frac{11275 \text{ V} - 11000 \text{ V}}{11000 \text{ V}} \cdot 100\%
\]

\[
\pm B\% \geq 1,5\%
\]

The following section describes how you can set the bandwidth.

7.4.3.2 Setting the bandwidth

You can set the bandwidth of the absolute value in V or as a relative value as a percentage.

Absolute bandwidth

You can use this parameter to set the bandwidth as an absolute value (V) or as a relative value (%).
To do so, proceed as follows:

1. Press the parameter until the desired parameter is displayed.
2. Press
 or to select the option you want.
3. Press .
 The parameter is set.

Setting the bandwidth as a percentage

To enter the determined bandwidth as a percentage, proceed as follows:

1. Press the parameter until the desired parameter is displayed.
2. Press to highlight the position.
 The desired position is highlighted and the value can be changed.
3. Press to increase the value or to reduce it.
4. Press .
 The bandwidth is set.

Setting the bandwidth in V

To enter the determined bandwidth in V, proceed as follows:

1. Press the parameter until the desired parameter is displayed.
2. Press to increase the value or to reduce it.
3. Press .
 The bandwidth is set.

7.4.3.3 Visual display

The deviation from the set bandwidth is shown visually in the device's display. The measured voltage highlighting shows whether the measured voltage is above, within or below the set bandwidth. Progress of delay time T_1 is indicated by the gradual filling of the time bar. The seconds display above this indicates the remaining delay time T_1.
7.4.4 Setting voltage balance

You can use this parameter to set a voltage balance in order to compensate for deviations through the measuring section. The measured voltage is increased by the set value.

1. \text{MENU} \rightarrow \text{F3} Parameter \rightarrow \text{F2} Control parameter \rightarrow \text{Press} \rightarrow \text{until the desired parameter is displayed.}

\rightarrow \text{Voltage balance.}

2. Press \text{F4} to highlight the position.

\rightarrow \text{The desired position is highlighted and the value can be changed.}

3. Press \text{F1} to increase the value or \text{F5} to reduce it.

4. Press \rightarrow

\rightarrow \text{The voltage balance is set.}

7.4.5 Setting delay time T1

Use this parameter to set delay time T1. This function delays the issuing of a tap-change command for a defined period. This prevents unnecessary tap-change operations if the tolerance bandwidth is exited.
To set the delay time T1, proceed as follows:

1. Press MENU > F3 Parameter > F2 Control parameter > Press until the desired parameter is displayed.
2. Press F4 to highlight the position. The desired position is highlighted and the value can be changed.
3. Press F1 to increase the time or F5 to reduce it.
4. Press \(\Rightarrow \). The delay time T1 is set.

7.4.6 Setting control response T1

The control response T1 can be set to linear or integral.

Linear control response T1

With linear control response, the device responds with a constant delay time regardless of the control deviation.

Integral control response T1

With integral control response, the device responds with a variable delay time depending on the control deviation. The greater the control deviation \(\Delta U \) in relation to the set bandwidth \(B \), the shorter the delay time. The delay time can therefore be reduced down to 1 second. This means that the device responds faster to large voltage changes in the grid. Regulation accuracy improves as a result but the frequency of tap-changes increases too.

\[\frac{\Delta U}{B} \]

Control deviation "\(\Delta U \)" as % of desired value as ratio to the set bandwidth "\(B \)" as % of desired value

1 "Delay time T1" parameter
To set the control response T1, proceed as follows:

1. **MENU > [F3]** Parameter > [F2] Control parameter > Press ➔ until the desired parameter is displayed.
2. Press [F1] or [F5] to set the response you want.
3. Press ➔

Δ The control response T1 is set.

7.4.7 Setting delay time T2

With this parameter, you can set delay time T2. Delay time T2 is used to compensate for large control deviations faster.

The delay time T2 only takes effect if more than one tap-change operation is required to return the voltage to within the set bandwidth. The first output pulse occurs after the set delay time T1. After the set tap-change delay time T2 has elapsed, additional pulses occur in order to correct the existing control deviation.

The following requirements must be noted to set delay time T2:

- The delay time T2 must be greater than the switching pulse time.
- The delay time T2 must be greater than the maximum operating time of the motor-drive unit.
- The delay time T2 must be less than the value set for delay time T1.

To set the delay time T2, proceed as follows:

1. **MENU > [F3]** Parameter > [F2] Control parameter > Press until the desired parameter is displayed.

 Δ Delay time T2.
2. Press [F1] to increase the time or [F5] to reduce it.
3. Press ➔

Δ The delay time T2 is set.

Activating/deactivating delay time T2

To activate/deactivate delay time T2, proceed as follows:

1. **MENU > [F3]** Parameter > [F2] Control parameter > Press ➔ until the desired parameter is displayed.

 Δ T2 activation.
3. Press \(\text{←} \).
\[\Rightarrow \text{The delay time T2 is activated/deactivated.} \]

7.5 Limit values

In the Limit values menu item, you can set all the parameters needed for limit value monitoring as relative or absolute values. You can set three limit values:

- Undervoltage \(U^< \)
- Overvoltage \(U^> \)
- Overcurrent \(I^> \)

Limit value monitoring is used to reduce damage to the system periphery. The following sections describe how you can set the parameters.

7.5.1 Setting undervoltage monitoring \(V^< \)

You can use these parameters to set the limit values for an undervoltage. Undervoltage monitoring prevents tap-change operations if there is a power cut.
Behavior

If the measured voltage U_{actual} falls below the set limit value 4, the red LED $U<\,$ lights up. The switching pulses to the motor-drive unit are blocked at the same time provided you have activated the blocking undervoltage $U<\,$ parameter. Once the set signaling delay time $6\,$ has passed, the signaling relay activates. The *Undervoltage $U<\,$* message appears in the display. The message is reset as soon as the measured voltage U_{actual} again exceeds the limit value for undervoltage E. If the measured voltage U_{actual} falls below 30 V C (for example when the transformer is switched off), the *undervoltage* message is also displayed. You can however suppress $[\text{81}]\,$ this message.

![Diagram of voltage limits and behaviors](image)

Figure 42: Response to value falling below limit value

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+ B%: Upper limit</td>
</tr>
<tr>
<td>2</td>
<td>U_{desired}: Desired value</td>
</tr>
<tr>
<td>3</td>
<td>- B%: Lower limit</td>
</tr>
<tr>
<td>4</td>
<td>Set limit value for undervoltage $U<$</td>
</tr>
<tr>
<td>5</td>
<td>Limit value for suppressing alarms below 30 V</td>
</tr>
<tr>
<td>6</td>
<td>Set signaling delay time for limit value for undervoltage $U<$</td>
</tr>
<tr>
<td>7</td>
<td>U_{actual}: Measured voltage</td>
</tr>
<tr>
<td>A</td>
<td>Value falls below limit value</td>
</tr>
<tr>
<td>B</td>
<td>Undervoltage $U<,$ message is displayed</td>
</tr>
<tr>
<td>C</td>
<td>Voltage falls below 30 V</td>
</tr>
<tr>
<td>D</td>
<td>Voltage exceeds 30 V again</td>
</tr>
<tr>
<td>E</td>
<td>Value exceeds limit value</td>
</tr>
</tbody>
</table>
Setting undervoltage U< in V/kV

You can use this parameter to set the limit value as an absolute value in the V or kV units. If you use the \[F3\] key to change the display to unit kV, this value relates to the primary transformer voltage. If you change the display to V, this relates to the secondary voltage.

To set the absolute limit value for undervoltage U<, proceed as follows:

1. \[\text{MENU} \rightarrow F3 \rightarrow \text{Parameter} \rightarrow F3 \rightarrow \text{Limit values} \rightarrow \text{Press } \rightarrow \text{until the desired parameter is displayed.}\\
2. If necessary press \[F3\] to select the unit you want, "V" or "kV".\\
3. Press \[F1\] to increase the value or \[F5\] to reduce it.\\
4. Press \[\leftarrow\].\\
 The limit value is set.

Setting signaling delay for undervoltage U<

You can use this parameter to set the delay time after which the Undervoltage relay is to activate and the event message appear on the display. This can be used to prevent messages from being issued when the value briefly falls below the limit value. The undervoltage LED always lights up immediately regardless.

Proceed as follows to set the delay time for this message:

1. \[\text{MENU} \rightarrow F3 \rightarrow \text{Parameter} \rightarrow F3 \rightarrow \text{Limit values} \rightarrow \text{Press } \rightarrow \text{until the desired parameter is displayed.}\\
2. Press \[F4\] to highlight the position.\\
 The desired position is highlighted and the value can be changed.\\
3. Press \[F1\] to increase the time or \[F5\] to reduce it.\\
4. Press \[\leftarrow\].\\
 The signaling delay time for undervoltage U< is set.

Activating/deactivating undervoltage blocking

You can use this parameter to set how the device behaves if the voltage falls below the undervoltage limit. You can select the following options:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Automatic regulation is blocked.</td>
</tr>
<tr>
<td>Off</td>
<td>Automatic regulation remains active.</td>
</tr>
</tbody>
</table>

Table 11: Behavior
Proceed as follows to activate/deactivate the undervoltage blocking:

1. Press \textbf{Parameter} > \textbf{Limit values} > Press until the desired parameter is displayed.
 \(\Rightarrow \text{U< blocking.} \)

2. Press \textbf{F1} for \textbf{On} setting or \textbf{F5} for \textbf{Off} setting.

3. Press \(\odot \)
 \(\Rightarrow \text{Undervoltage blocking is activated/deactivated.} \)

Activating/deactivating message for voltages below 30 V

You can use this parameter to set whether the \textit{Undervoltage} message is to be suppressed at a measured value of less than 30 V. This setting is used to ensure that no event message appears when the transformer is switched off.

You can select the following options:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>The \textit{Undervoltage} message is also displayed when the measured value is less than 30 V.</td>
</tr>
<tr>
<td>Off</td>
<td>The \textit{Undervoltage} message is no longer displayed when the measured value is less than 30 V.</td>
</tr>
</tbody>
</table>

Table 12: Response

Proceed as follows to activate/deactivate the message:

1. Press \textbf{Parameter} > \textbf{Limit values} > Press until the desired parameter is displayed.
 \(\Rightarrow \text{U< also below 30 V.} \)

2. Press \textbf{F1} for \textbf{On} setting or \textbf{F5} for \textbf{Off} setting.

3. Press \(\odot \)
 \(\Rightarrow \text{The message is activated/deactivated.} \)

7.5.2 Setting overvoltage monitoring \textit{V>} |

You can use these parameters to set the limit values for overvoltage monitoring. This overvoltage monitoring triggers tap-change operations to return to the desired operating status. If the operating status can no longer be corrected, a message is triggered by the \textit{Function monitoring relay}.

If the measured voltage \(U_{\text{actual}} \) exceeds the set limit value \(V > \), the red LED \(U > \) and associated signaling relay activate. The \textit{Overvoltage U>} message appears in the display. At the same time, the high-speed return function is activated without delay time \(T1 \). Once the set switching pulse time \(5 \) has
passed, the tap position is lowered \(\text{C} \) by activating the motor-drive unit until the measured voltage \(U_{\text{actual}} \) again falls below the limit value \(\text{B} \). The Over-voltage \(U> \) message is reset.

![Figure 43: Response to limit value being exceeded](image)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set limit value for overvoltage (U>)</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>+ B %: Upper limit</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>(U_{\text{desired}}): Desired value</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>- B %: Lower limit</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>Set switching pulse time</td>
<td></td>
</tr>
</tbody>
</table>

Setting overvoltage \(U> \) in V/kV

You can use this parameter to set the limit value as an absolute value in the V or kV units. If you use the \(\text{F3} \) key to change the display to unit \(\text{kV} \), this value relates to the primary transformer voltage. If you change the display to \(\text{V} \), this relates to the secondary transformer voltage.
Proceed as follows to set the absolute limit value for overvoltage \(U > \):

1. **MENU** > **F3** Parameter > **F3** Limit values > Press \(\rightarrow \) until the desired parameter is displayed.
2. If necessary press **F3** to select the unit you want, \(V \) or \(kV \).
3. Press **F1** to increase the value or **F5** to reduce it.
4. Press \(\rightarrow \)
 \(\Rightarrow \) The limit value is set.

7.5.3 Activating/deactivating function monitoring

If the measured value leaves the current bandwidth (desired value +/- bandwidth) for more than 15 minutes without a tap-change operation taking place, the function monitoring relay is activated. This results in a message on the display which is only reset when the measured value returns to within the current bandwidth.

If the measured voltage is below 30 V, then the measured value is outside the bandwidth and the relevant relay is also activated after 15 minutes. You can deactivate this function if you want to avoid a function monitoring message when the transformer is switched off:

1. **MENU** > **F3** Parameter > **F3** Limit values > Press \(\rightarrow \) until the desired parameter is displayed.
2. Press **F1** or **F5** to select the option you want.
3. Press \(\rightarrow \)
 \(\Rightarrow \) Function monitoring is activated/deactivated.

7.5.4 Setting hunting alarm limit

You can use this parameter to specify the number of tap-change operations within 24 hours after which the *Hunting alarm limit* event message is to be issued. If you select 0, there is no monitoring.

To set the alarm limit, proceed as follows:

1. **MENU** > **F3** Control parameter > **F3** Limit values > Press \(\rightarrow \) until the desired parameter is displayed.
 \(\Rightarrow \) Hunting alarm limit.
2. Press **F1** to increase the value or **F5** to reduce it.
3. Press \(\rightarrow \)
 \(\Rightarrow \) The alarm limit is set.
7.6 Compensation

You can use the "Compensation" function to compensate for the load-dependent voltage drop between the transformer and consumer. The device provides 2 methods of compensation for this purpose:

▪ R&X compensation (line drop compensation)
▪ Z compensation

You can use R&X compensation and Z compensation at the same time. If you do not want to use one method, you have to set the associated parameters to 0.

If you are using the IEC 61850 control system protocol, you can only activate one of the two compensation methods at any one time. A control system command is available for this.

7.6.1 R&X compensation

R&X compensation (LDC) requires exact cable data. Line voltage drops can be compensated very accurately using LDC.

To set R&X compensation correctly, you need to calculate the ohmic and inductive voltage drop in V with reference to the secondary side of the voltage transformer. You also need to correctly set the transformer circuit used.

Figure 45: Equivalent circuit
You can calculate the ohmic and inductive voltage drop using the following formulas. This voltage drop calculation relates to the relativized voltage on the secondary side of the voltage transformer.

Formula for calculating the ohmic voltage drop:

$$U_r = I_N \cdot \frac{k_{CT}}{k_{VT}} \cdot r \cdot L \cdot K \ [V]$$

Formula for calculating the inductive voltage drop:

$$U_x = I_N \cdot \frac{k_{CT}}{k_{VT}} \cdot x \cdot L \cdot K \ [V]$$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_r</td>
<td>Voltage drop in V due to ohmic line resistance</td>
</tr>
<tr>
<td>U_x</td>
<td>Voltage drop in V due to inductive line resistance</td>
</tr>
<tr>
<td>I_N</td>
<td>Nominal current (amps) of selected current-transformer connection on device: 1 A; 5 A</td>
</tr>
<tr>
<td>k_{CT}</td>
<td>Current transformer ratio</td>
</tr>
<tr>
<td>k_{VT}</td>
<td>Voltage transformer ratio</td>
</tr>
<tr>
<td>r</td>
<td>Ohmic resistance load in Ω/km per phase</td>
</tr>
<tr>
<td>x</td>
<td>Inductive resistance load in Ω/km per phase</td>
</tr>
<tr>
<td>L</td>
<td>Length of line in km</td>
</tr>
<tr>
<td>K</td>
<td>Nominal current factor</td>
</tr>
</tbody>
</table>
7 Operation

7.6.1.1 Setting the ohmic voltage drop Vr

You can use this parameter to set the ohmic voltage drop (ohmic resistance load).

If you do not want to use line drop compensation, you have to set the value 0.0 V.

To set the ohmic voltage drop Vr, proceed as follows:

 ⇒ Vr line drop compensation.
 ⇒ The desired position is highlighted and the value can be changed.
3. Press [F1] to increase the value or [F5] to reduce it.
4. Press .
 ⇒ The ohmic voltage drop Vr is set.

7.6.1.2 Setting the inductive voltage drop Vx

You can use this parameter to set the inductive voltage drop (inductive resistance load). The compensation effect can be rotated by 180° in the display using a plus or minus sign.

If you do not want to use line drop compensation, you have to set the value 0.0 V.

To set the inductive voltage drop Vx, proceed as follows:

 ⇒ Vx line drop compensation.
 ⇒ The desired position is highlighted and the value can be changed.
3. Press [F1] to increase the value or [F5] to reduce it.
4. Press .
 ⇒ The inductive voltage drop Vx is set.
7.6.2 Z compensation

To keep the voltage constant for the consumer, you can use Z compensation to activate a current-dependent increase in voltage. Z compensation is not dependent on the phase angle φ and should only be used for small changes in phase angle.

You can also define a limit value to avoid excess voltage on the transformer.

To use Z compensation, you need to calculate the increase in voltage (ΔV) taking the current into account. Use the following formula for this purpose:

$$\Delta V = 100 \cdot \frac{U_{Tr} - U_{Load}}{U_{Load}} \cdot \frac{I_N \cdot k_{CT}}{I}$$

<table>
<thead>
<tr>
<th>ΔV</th>
<th>Voltage increase</th>
<th>I</th>
<th>Load current in A</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{Tr}</td>
<td>Transformer voltage with current I</td>
<td>I_N</td>
<td>Nominal current of current transformer connection in A (1 A; 5 A)</td>
</tr>
<tr>
<td>V_{Load}</td>
<td>Voltage on line end with current I and on-load tap-changer in same operating position</td>
<td>k_{CT}</td>
<td>Current transformer ratio</td>
</tr>
</tbody>
</table>

Sample calculation: $V_{Tr} = 100.1 \text{ V}$, $V_{Load} = 100.0 \text{ V}$, $I_N = 5 \text{ A}$, $k_{CT} = 200 \text{ A/5 A}$, $I = 100 \text{ A}$

Produces a voltage increase ΔV of 0.2%

The following sections describe how you can set the parameters you need for Z compensation.
7.6.2.1 Setting Z compensation

This parameter sets the voltage increase ΔU previously calculated.

If you do not want to use Z compensation, you have to set the value 0.0 %.

To set the Z compensation, proceed as follows:

1. Press F3 Parameter > F4 Compensation > Press \rightarrow until the desired parameter is displayed.
 - Z compensation.
2. Press F1 to increase the value or F5 to reduce it.
3. Press \leftarrow.
 - The Z compensation is set.

7.6.2.2 Setting the Z compensation limit value

You can use this parameter to define the maximum permissible voltage increase to avoid excess voltage on the transformer.

If you do not want to use a limit value, you have to set the value 0.0 %.

To set the limit value, proceed as follows:

1. Press F3 Parameter > F4 Compensation > Press \rightarrow until the desired parameter is displayed.
 - Z comp. limit value.
2. Press F1 to increase the value or F5 to reduce it.
3. Press \leftarrow.
 - The limit value is set.

7.7 Transformer data

The transformation ratios and measuring set-up for the voltage and current transformers used in the system can be set with the following parameters. The device uses this information to calculate the corresponding measured values on the primary side of the current transformer (and therefore the transformer) from the recorded measured values. These are then displayed.
The following parameters are available for this purpose:

- Primary voltage
- Secondary voltage
- Primary current
- Transformer circuit

Note that the electrical current input of the TAPCON® 250 is specified at 200 mA. You can purchase a current transformer with the ratio of 8.66 A : 2 A or 5 A : 2 A from Reinhausen Manufacturing upon request.

The measured values displayed for the device are influenced by the settings for the above parameters. Note the table below.

<table>
<thead>
<tr>
<th>Parameter set</th>
<th>Measured value display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary voltage</td>
<td>Secondary voltage [V]</td>
</tr>
<tr>
<td>Secondary voltage</td>
<td>Primary voltage [kV]</td>
</tr>
<tr>
<td>Primary current</td>
<td>Secondary current [A]</td>
</tr>
</tbody>
</table>

Table 13: Influence of transformer data on measured value display

7.7.1 Setting the phase difference for the current transformer/voltage transformer

You can use this parameter to set the phase difference of the current transformer and voltage transformer. You can set the common transformer circuits as follows:

<table>
<thead>
<tr>
<th>Tap-change operation</th>
<th>Setting</th>
<th>Measurement method</th>
<th>Phase difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 1PH</td>
<td>1 phase</td>
<td>0°</td>
</tr>
<tr>
<td>B</td>
<td>0 3PHN</td>
<td>3 phase</td>
<td>0°</td>
</tr>
<tr>
<td>C</td>
<td>0 3PH</td>
<td>3 phase</td>
<td>0°</td>
</tr>
<tr>
<td>D</td>
<td>90 3PH</td>
<td>3 phase</td>
<td>90°</td>
</tr>
<tr>
<td>E</td>
<td>30 3PH</td>
<td>3 phase</td>
<td>30°</td>
</tr>
<tr>
<td>F</td>
<td>-30 3PH</td>
<td>3 phase</td>
<td>-30°</td>
</tr>
</tbody>
</table>

Table 14: Set values for transformer circuit
Note the following sample circuits to select the correct transformer circuit.

Circuit A: 1-phase measurement in 1-phase grid

![Circuit A diagram](image1)

- The voltage transformer VT is connected to the outer conductor and neutral conductor.
- The current transformer CT is looped into the outer conductor.
- The voltage U_{L1} and current I_{L1} are in phase.
- The voltage drop on an outer conductor is determined by the current I_{L1}.

Circuit B: 1-phase measurement in 3-phase grid

![Circuit B diagram](image2)

- The voltage transformer VT is connected to the outer conductors L1 and neutral.
- The current transformer CT is looped into the outer conductor L1.
- The voltage U and current I are in phase.
- The voltage drop on an outer conductor is determined by the current I_{L1}.
Circuit C:

- The voltage transformer VT is connected to the outer conductors L1 and L2.
- The current transformer CT1 is looped into the outer conductor L1 and CT2 into the outer conductor L2.
- The current transformers CT1 and CT2 are connected crosswise in parallel (total current \(I_{L1} + I_{L2} \)).
- The total current \(I_{L1} + I_{L2} \) and voltage \(U_{L1}-U_{L2} \) are in phase.
- The voltage drop on an outer conductor is determined by the current: \((I_{L1} + I_{L2}) / \sqrt{3} \).

Circuit D

- The voltage transformer VT is connected to the outer conductors L1 and L2.
- The current transformer CT is looped into the outer conductor L3.
- The current \(I_{L3} \) is ahead of voltage \(U_{L1}-U_{L2} \) by 90°.
- The voltage drop on an outer conductor is determined by the current \(I_{L3} \).
Circuit E

Figure 52: Phase difference 30 3PH

- The voltage transformer VT is connected to the outer conductors L1 and L2.
- The current transformer CT is looped into the outer conductor L2.
- The current I_{L2} is ahead of voltage $U_{L2}-U_{L1}$ by 30°.
- The voltage drop on an outer conductor is determined by the current I_{L2}.

Circuit F

Figure 53: Phase difference -30 3PH

- The voltage transformer VT is connected to the outer conductors L1 and L2.
- The current transformer CT is looped into the outer conductor L1.
- The current I_{L1} lags behind $U_{L1}-U_{L2}$ by 30°. This corresponds to a phase shift of -30°.
- The voltage drop on an outer conductor is determined by the current I_{L1}.
To set the phase difference for the transformer circuit, proceed as follows:

1. **MENU > F4** Configuration > **F2** Transformer data > Press ➔ until the desired parameter is displayed.
 - Transformer circuit.
2. Press F1 or F5 to select the required phase difference.
3. Press ➔
 - The phase difference is set.

7.7.2 Setting the primary transformer voltage

This parameter can be used to set the primary transformer voltage in kV. When you are setting the primary transformer voltage, the device shows the primary voltage rather than the secondary voltage in the main screen and you can also set the control parameters in kV.

If a setting of 0 kV is chosen, no primary transformer voltage is displayed.

To set the primary transformer voltage, proceed as follows:

1. **MENU > F4** Configuration > **F2** Transformer data.
 - Primary voltage.
2. Press F3 to highlight the decimal place.
 - The decimal place is defined and the value can be changed.
3. Press F4 to highlight the position.
 - The desired position is highlighted and the value can be changed.
4. Press F1 to increase the value or F5 to reduce it.
5. Press ➔
 - The primary transformer voltage is set.

7.7.3 Setting the secondary transformer voltage

This parameter can be used to set the secondary transformer voltage in V.
To set the secondary transformer voltage, proceed as follows:

1. **MENU** > **F4** Configuration > **F2** Transformer data > Press

 ➔ Secondary voltage.

2. Press **F4** to highlight the position.

 ➔ The desired position is highlighted and the value can be changed.

3. Press **F1** to increase the value or **F5** to reduce it.

4. Press

 ➔ The secondary transformer voltage is set.

7.7.4 Setting primary transformer current

This parameter can be used to set the primary transformer current.
- When you are setting the primary transformer current, the measured value is displayed in the main screen.
- If you set a value of 0, no measured value is displayed in the main screen.

Proceed as follows to set the primary transformer current:

1. **MENU** > **F4** Configuration > **F2** Transformer data > Press

 ➔ Primary current.

2. Press **F4** to highlight the position.

 ➔ The desired position is highlighted and the value can be changed.

3. Press **F1** to increase the value or **F5** to reduce it.

4. Press

 ➔ The primary transformer current is set.

7.8 Configurable inputs and outputs

You can individually configure 4 digital inputs (GPI) and one output for a collective message.

7.8.1 Linking inputs with functions

You can control the inputs with a continuously applied input signal (status: high-level). For this purpose, use the device’s +12 V voltage source (pin P2.10).
You can assign one of the following functions to each of the digital inputs (GPI 1...4):

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No function selected.</td>
</tr>
<tr>
<td>AVL2</td>
<td>Activate desired value 2.</td>
</tr>
<tr>
<td>AVL3</td>
<td>Activate desired value 3</td>
</tr>
<tr>
<td>ParGroup1</td>
<td>Assign parallel operation group 1.</td>
</tr>
<tr>
<td>ParGroup2</td>
<td>Assign parallel operation group 2.</td>
</tr>
<tr>
<td>Master/follower</td>
<td>Define master/follower mode.</td>
</tr>
<tr>
<td>Signal on:</td>
<td>Master mode active.</td>
</tr>
<tr>
<td>Signal off:</td>
<td>Follower mode active.</td>
</tr>
<tr>
<td>Set desired voltage level remotely</td>
<td>Activate setting the desired voltage level remotely via the analog input P2.35 and P2.36.</td>
</tr>
<tr>
<td>Rapid tap-change operation</td>
<td>Activate rapid tap-change operation. The delay times T1 and T2 are ignored and a tap-change operation is performed immediately if the bandwidth is exceeded. Do not use this function for master/follower parallel operation.</td>
</tr>
<tr>
<td>Auto inhibit</td>
<td>Block automatic voltage regulation.</td>
</tr>
<tr>
<td>Trans Alarm*</td>
<td>Collective message for transformer errors, only for forwarding via control system (SCADA).</td>
</tr>
<tr>
<td>Cooling stage 1*</td>
<td>Cooling stage 1 input signal</td>
</tr>
<tr>
<td>Cooling stage 2*</td>
<td>Cooling stage 2 input signal</td>
</tr>
</tbody>
</table>

Table 15: Functions for digital inputs (GPI 1 to 8)

*) only with special firmware

If you assign the same functionality to two inputs, the device produces an event message. This also applies if you assign the same functionality via a static input and via a pulsed input.

If you simultaneously activate desired value 2 and desired value 3, desired value 4 is activated automatically.
Simultaneously activating parallel operation group 1 and parallel operation group 2 leads to a parallel operation error.
To assign a function to a digital input or to deactivate it, proceed as follows:

1. \(\text{Menu} > \text{F4 Configuration} > \text{F3 Customer inputs/outputs}. \)
 \(\Rightarrow \text{GPI} \)
2. Press \(\text{F1} \) or \(\text{F5} \) until the desired function is displayed.
3. Press \(\text{Left} \).
 \(\Rightarrow \) The function is set.

Functions can be assigned to all other GPIs as described above.

7.8.2 Setting user-defined collective message

You can use this parameter to set the requirements for the user-defined collective message. If a requirement is fulfilled, the device issues a signal at output P2.20/22.

You can configure the following requirements for the collective message:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Undervoltage</td>
</tr>
<tr>
<td>2</td>
<td>Overvoltage</td>
</tr>
<tr>
<td>3</td>
<td>Lower tap position blocking</td>
</tr>
<tr>
<td>4</td>
<td>Raise tap position blocking</td>
</tr>
<tr>
<td>5</td>
<td>Overcurrent</td>
</tr>
<tr>
<td>6</td>
<td>Reversal of power flow</td>
</tr>
<tr>
<td>7</td>
<td>Alternative desired value active</td>
</tr>
<tr>
<td>8</td>
<td>AI module sensor defective</td>
</tr>
<tr>
<td>9</td>
<td>Parallel operation error</td>
</tr>
<tr>
<td>10</td>
<td>Analog input error (tap position or setting the desired voltage level remotely)</td>
</tr>
<tr>
<td>11</td>
<td>Hunting limit value exceeded</td>
</tr>
<tr>
<td>12*</td>
<td>Annun Reset: Reset lamp panel with test lamps in the cabinet.</td>
</tr>
</tbody>
</table>

*) only with special firmware
To set the user-defined collective message, proceed as follows:

1. **Configuration > F4** User inputs > Press until the desired parameter is displayed.
 - Programmable alarm.
2. Press **F4** to highlight the desired bit.
3. Press **F1** to increase the value or **F5** to reduce it.
4. Press ****.
 - The user-defined collective message is set.

7.9 Parallel operation

In the **Parallel operation** menu item, you can set the parameters needed for parallel transformer operation. Parallel transformer operation is used to increase the throughput capacity or short-circuit capacity in one place.

Conditions for parallel operation

Compliance with the following general conditions is required for operating transformers in parallel:

- Identical rated voltages
- Transformer power ratio (< 3 : 1)
- Maximum deviation of short-circuit voltages (U_k) for transformers connected in parallel < 10%
- Same number of switching groups
- The same current-transformer connection has to be used for all devices running in parallel

You can control up to 16 transformers connected in parallel in one or 2 groups without detecting the system topology. Information is swapped between the voltage regulators operating in parallel using the CAN bus. Parallel operation is activated using one of 2 status inputs or the control system.

Parallel operation method

The device supports parallel operation following the methods described below:

- Parallel operation following the "Circulating reactive current minimization" principle
- Parallel operation following the "Tap synchronization" (master/follower) principle

You must select the same parallel operation method (circulating reactive current minimization or tap synchronization) for all voltage regulators operating in parallel. Otherwise you cannot operate the devices in parallel.
The following sections describe how you can set the parameters. Ensure that you have set the following parameters when activating parallel operation:

- CAN bus address

7.9.1 Assigning CAN bus address

You can use this parameter to assign a CAN bus address to the device. So that all devices can communicate using the CAN bus, each device requires a unique identifier. If the value is set to 0, then no communication takes place.

To enter the CAN bus address, proceed as follows:

1. **Menu > F4 Configuration > F4 Parallel operation > Press ← until the desired parameter is displayed.**
 ‣ CAN address.
2. Press **F1** to increase the value or **F5** to reduce it.
3. Press **←**.
 ‣ The CAN bus address is saved.

7.9.2 Assigning a parallel operation group

You can use this parameter to assign a transformer group to the device. You can create a total of 2 groups. The parallel operation group can be selected only if you have not programmed an allocation using a GPI control input.

The following groupings are possible:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Device not assigned to any parallel operation group</td>
</tr>
<tr>
<td>Group 1</td>
<td>Device assigned to parallel operation group 1</td>
</tr>
<tr>
<td>Group 2</td>
<td>Device assigned to parallel operation group 2</td>
</tr>
<tr>
<td>Group 1 and group 2</td>
<td>Device assigned to parallel operation groups 1 and 2</td>
</tr>
</tbody>
</table>

Table 17: Parallel operation groups
To assign the device to a parallel operation group, proceed as follows:

1. **MENÜ > F4** Configuration > **F4** Parallel operation > Press → until the desired parameter is displayed.
 - Parallel operation group.
2. Press **F1** or **F5** until the desired setting is displayed.
3. Press ←
 - The device is assigned to a parallel operation group.

7.9.3 Selecting parallel operation method

You can use this parameter to select a parallel operation method. Two different methods can be assigned to the device.

- Circulating reactive current minimization
- Tap synchronization (master/follower)

You must select the same parallel operation method for all voltage regulators operating in parallel.

The following sections describe how you can set the parameters for a parallel operation method.

7.9.3.1 Setting circulating reactive current method

When the **circulating reactive current** parallel operation method is selected, then parallel operation is carried out using the circulating reactive current minimization method. The circulating reactive current is calculated from the transformer currents and their phase angles. A voltage proportional to the circulating reactive current is added to the independently operating voltage regulators as a correction for the measurement voltage. This voltage correction can be reduced or increased using the circulating reactive current sensitivity setting.

The circulating reactive current method is suited to transformers connected in parallel with a similar nominal output and short-circuit voltage U_k and to vector groups with the same and different step voltages. This does not require any information about the tap position.
To set the **circulating reactive current** parallel operation method, proceed as follows:

1. **MENU** > **F4** Configuration > **F4** Parallel operation.
 ⇒ Parallel operation method
2. Press **F1** or **F5** until **circulating reactive current** appears in the display.
3. Press **←**.
 ⇒ The parallel operation method is set.

When using the **circulating reactive current** parallel operation method, you have to set the parameters for the **circulating reactive current sensitivity** and **circulating reactive current blocking**.

Setting circulating reactive current sensitivity

The circulating reactive current sensitivity is a measure of its effect on the behavior of the voltage regulator. At a setting of 0 % no effect is present. With circulating reactive current relating to the rated current of the current transformer, if you set the value to 10 % for example, this would cause the voltage in the voltage regulator to be corrected by 10 %. This correction to the voltage can be increased or decreased with this setting to attain the optimum value.

As soon as you change the circulating reactive current sensitivity value, the value for the result changes in the help text in the display.

To set the circulating reactive current sensitivity, proceed as follows:

1. **MENU** > **F4** Configuration > **F4** Parallel operation > Press **→** until the desired parameter is displayed.
 ⇒ Circulating reactive current sensitivity
2. Press **F1** to increase the value or **F5** to reduce it.
3. If necessary, press **F3** to highlight the decimal place.
 ⇒ The decimal place is now highlighted and the value can be changed.
4. Press **←**.
 ⇒ The circulating reactive current sensitivity is set.

You can set the circulating reactive current sensitivity for parallel operation group 1 and parallel operation group 2 independently of one another.
7 Operation

Setting circulating reactive current blocking

You can use this parameter to set the limit value for the maximum permissible circulating reactive current. If, during parallel operation, the circulating reactive current exceeds the set limit value, then the following event is activated:

- Parallel operation error

All devices operating in parallel are blocked. Depending on the set delay time for the parallel operation error message, the signaling relay Parallel operation error is activated.

To set the blocking limit for the maximum permitted circulating reactive current, proceed as follows:

1. **MENU > Configuration > F4 Parallel operation > Press F4** until the desired parameter is displayed.

 - Circulating reactive current blocking

2. Press **F1** to increase the value or **F5** to reduce it.

3. Press **←**.

 - The blocking limit for the maximum permitted circulating reactive current is set.

You can set the blocking limit for the permissible circulating reactive current for parallel operation group 1 and parallel operation group 2 independently of one another.

7.9.3.2 Setting tap synchronization

With the tap synchronization method, you need to designate one voltage regulator as the master and all others as followers. The master handles voltage regulation and transmits its latest tap positions to all followers via the CAN bus. The followers compare the tap position received with their own tap position. If the set permissible tap difference between the tap position received and their own position is exceeded, the followers switch to the tap position received from the master. This ensures that the transformers operating in parallel are always in the same tap position.
For the tap synchronization method, you can select the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td>The voltage regulator is designated as the master.</td>
</tr>
<tr>
<td>Follower</td>
<td>The voltage regulator is designated as the follower.</td>
</tr>
<tr>
<td>Sync.auto</td>
<td>Automatic assignment of master or follower. If no master is detected, the voltage regulator with the lowest CAN bus address is automatically designated as the master. All other voltage regulators are designated as followers.</td>
</tr>
</tbody>
</table>

Table 18: Tap synchronization method

In parallel operation, an individual CAN bus address must be assigned to each voltage regulator. Up to 16 CAN participants are supported.

To set the tap synchronization method, proceed as follows:

1. `Configuration > F4 Parallel operation > Press` until the desired parameter is displayed.
 - Parallel operation method
2. Press `F1` or `F5` until the desired parameter is displayed.
3. Press `Esc`
 - The tap synchronization method is set.

7.9.4 Setting delay time for parallel operation error messages

You can use this parameter to set the delay time for a parallel operation error message so that brief fault messages are not received if the motor-drive units involved in the parallel operation have different runtimes. Once the set delay time has elapsed, the event is issued at the output relay.

To set the delay time for the parallel operation error message, proceed as follows:

1. `Configuration > F4 Parallel operation > Press` until the desired parameter is displayed.
 - Error message.
2. Press `F1` to increase the value or `F5` to reduce it.
3. Press `Esc`
 - The delay time for the parallel operation error message is set.
7.9.5 Setting the follower tapping direction

With this parameter, you can set how the follower behaves in the event of a raise or lower tap change.

As in "Tap synchronization (master/follower)" parallel operation the tap positions of the transformers which are running in parallel are compared, it is absolutely essential that these transformers have the same position designation. Ensure that all higher tap change operations or lower tap change operations produce the same voltage change in all transformers.

You can select the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>dV>0 = tapping direction toward position 1</td>
</tr>
<tr>
<td></td>
<td>Follower sends a raise tap change command to increase the voltage.</td>
</tr>
<tr>
<td></td>
<td>Follower sends a lower tap change command to reduce the voltage.</td>
</tr>
<tr>
<td>Swapped</td>
<td>dV>0 = tapping direction toward position n</td>
</tr>
<tr>
<td></td>
<td>Follower sends a raise tap change command to increase the voltage.</td>
</tr>
<tr>
<td></td>
<td>Follower sends a lower tap change command to reduce the voltage.</td>
</tr>
</tbody>
</table>

Table 19: Device behavior

Please note whether the voltage regulator is defined as master or follower when setting the tapping direction. The tapping direction can only be swapped for a follower.
To select the tapping direction, proceed as follows:

1. Press F4 Configuration > F4 Parallel operation > until the desired parameter is displayed.
 - Follower tapping direction
2. Press F1 or F5 to select the required tapping direction.
3. Press to select the desired tapping direction.
 - The tapping direction is selected.

7.9.6 Activating/deactivating parallel operation

This parameter can be used to activate or deactivate parallel operation. When activating parallel operation, make sure you have configured the following parameters:

- CAN bus address
- Assigning a parallel operation group

To deactivate parallel operation, proceed as follows:

1. Press F4 Configuration > F4 Parallel operation.
 - Parallel operation activation.
2. Press F1 or F5 to activate parallel operation by selecting On or deactivate parallel operation by selecting Off.
3. Press to select the desired tapping direction.
 - Parallel operation is deactivated.

7.9.7 Setting the behavior in the event of CAN bus error

You can use this parameter to set the behavior of the device when a CAN bus error occurs. You can select the following options:

- Blocking: Automatic voltage regulation is blocked.
- Independent: Automatic voltage regulation is continued in simplex mode.

To set the behavior in the event of a CAN bus error, proceed as follows:

1. Press F4 Configuration > F5 Continue > F3 Parallel operation > until the desired parameter is displayed.
 - Behavior in the event of CAN bus error.
2. Press F1 or F5 to select the option you want.
3. Press \(\rightarrow \).
 \(\Rightarrow \) The behavior in the event of CAN bus error is set.

7.10 LED selection

You can use this parameter to assign functions to the free LEDs which light up when an event occurs. You can use labeling strips to label the LED.

Depending on your device configuration, the following parameters can be used by MR for special functions. In this case, these parameters are pre-assigned. You may not be able to view or freely assign these parameters.

7.11 Memory

With this you can undertake measured value memory settings. This configures the event memory and recorder function. The device has a memory capacity of 8 MB. The memory is split into 2 areas:

Average value memory

In the average value memory, all measured and calculated values are averaged and saved using the average value intervals you set. You can set \(\Rightarrow 108 \) the average value intervals in stages between 1 and 40 seconds.

Event memory

Data is always saved to the event memory at the highest resolution without first being averaged. You can also determine how much memory space is to be made available exclusively for the event memory \(\Rightarrow 108 \).

Triggering event

The data recorder can trigger an event depending on the undervoltage and/or overvoltage limit value that you can set. The data recorded here are stored in the measured value memory’s event memory.

Chronological sequence

To allow instances where values exceed or fall below the limit values to be better evaluated, the chronological sequence for the measured and calculated values also includes the last 10 seconds before values actually exceed or fall below the limit value. Each event is saved for a maximum of 5 minutes.

When an event is active, only the chronological sequence of the measured and calculated values is stored in the event memory.
As soon as there is no more free space in the event memory, the oldest values are overwritten by the new values measured. You can access information about the current event memory content via the Info menu.

Data recorder

The data-recorder module can be used to save the data listed below and display and evaluate it either on the display or using the TAPCON®-trol visualization software on a PC.

The following values are displayed:

- Measured values
 - On-load tap-changer position
 - Voltage
 - Active current
 - Reactive current

- Calculated values
 - Active power
 - Reactive power
 - Apparent power
 - Output factor

Calculation of the values stated depends on the measured values captured and the parameters set, for example:

- Current measuring circuit
- Primary current
- Voltage transformer data from primary and secondary sides

A correct calculation can only be undertaken if you have correctly entered the configuration data in full.

7.11.1 Setting undervoltage threshold

You can use these parameters to set the undervoltage threshold as an absolute value. If the voltage falls below the set undervoltage threshold, high-resolution measured values are saved for as long as this situation prevails.

Absolute value

Entries can be made either in V or kV. If you enter the absolute value in V, it relates to the secondary transformer voltage. If you enter the absolute value in KV, it relates to the primary voltage.
To set the undervoltage threshold, proceed as follows:

1. **MENU** > **F4** Configuration > **F5** Continue > **F5** Continue > **F3** Memory > Press \rightarrow until the desired parameter is displayed.
 \Rightarrow **U< memory**.
2. If necessary press **F3** to select the unit you want, **V** or **kV**.
3. If **V** is selected, press **F4** to highlight the decimal place.
 \Rightarrow The decimal place is now highlighted and the value can be changed.
4. Press **F1** to increase the value or **F5** to reduce it.
5. Press \leftarrow
 \Rightarrow The undervoltage threshold is set.

Setting overvoltage threshold

You can use these parameters to set the overvoltage threshold as an absolute value. If the voltage exceeds the set overvoltage threshold, high-resolution measured values are saved for as long as this situation prevails.

Absolute value

Entries can be made either in **V** or **kV**. If you enter the absolute value in **V**, it relates to the secondary transformer voltage. If you enter the absolute value in **kV**, it relates to the primary voltage.

To set the overvoltage threshold, proceed as follows:

1. **MENU** > **F4** Configuration > **F5** Continue > **F5** Continue > **F3** Memory > Press \rightarrow until the desired parameter is displayed.
 \Rightarrow **U> memory**.
2. If necessary press **F3** to select the unit you want, **V** or **kV**.
3. If **V** is selected, press **F4** to highlight the decimal place.
 \Rightarrow The decimal place is now highlighted and the value can be changed.
4. Press **F1** to increase the value or **F5** to reduce it.
5. Press \leftarrow
 \Rightarrow The surge threshold is set.
7.11.3 Setting time difference of average value interval

You can use this parameter to set the long-term memory for the device. The memory is split into the average value memory and event memory. Depending on the setting, intervals of 1; 2; 4; 10; 20 or 40 seconds are saved in the average value memory.

When you set the average value interval, the complete memory is cleared once the change is confirmed.

To set the average value interval, proceed as follows:
1. Press \textit{F4} Configuration > \textit{F5} Continue > \textit{F5} Continue > \textit{F3} Memory > Press \textit{until the desired parameter is displayed.}
 \textit{Average value interval.}
2. Press \textit{F1} to increase the time or \textit{F5} to reduce it.
3. Press \textit{.}
 \textit{The average value interval is set.}

7.11.4 Setting event memory size

You can use this parameter to configure the event memory size. The event memory stores instances of values exceeding or falling below the preset threshold values (U> and U<). It stores this information in high resolution. The maximum number of events depends on the size of the event memory:

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Event memory size & 256 kB & 512 kB & 1024 kB & 2048 kB \\
\hline
Maximum number of events & 20 & 40 & 80 & 160 \\
\hline
\end{tabular}
\caption{Event memory size}
\end{table}

\textbf{Event lasting less than 5 minutes}

If the event lasts less than 5 minutes, the event is recorded with high-resolution. The high-resolution data is first recorded 10 seconds before the event. If the voltage has returned to the bandwidth before the overrun time of 10 seconds has passed, the event is still recorded until the overrun time of 10 seconds has passed.
At a low resolution 2, the entire process is saved.

Figure 66: Event duration (<5 minutes)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

1 Saving at high resolution
2 Saving at low resolution
3 Run-in time/overrun time; duration: 10 seconds
A Start of event's run-in time

B Event occurs (voltage departs from bandwidth)
C Event occurs (voltage returns to bandwidth)
D End of event's overrun time
Event lasting longer than 5 minutes

The high-resolution data is first recorded 10 seconds before the event. If the event is still active after 5 minutes, the data continues to be recorded with low resolution. If the voltage returns to the bandwidth, this is considered a new event. The high-resolution recording of new data commences at the start of the 10-second run-in time and ends after the 10-second overrun time.

Figure 67: Event duration (more than 5 minutes)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High-resolution recording</td>
</tr>
<tr>
<td>2</td>
<td>Low-resolution recording</td>
</tr>
<tr>
<td>3</td>
<td>Duration: 10 seconds</td>
</tr>
<tr>
<td>4</td>
<td>Duration of high-resolution recording: 5 minutes</td>
</tr>
<tr>
<td>A</td>
<td>Start of event's run-in time</td>
</tr>
<tr>
<td>B</td>
<td>Event occurs (voltage departs from bandwidth)</td>
</tr>
<tr>
<td>C</td>
<td>End of high-resolution recording; start of low-resolution recording</td>
</tr>
<tr>
<td>D</td>
<td>Start of event's run-in time</td>
</tr>
<tr>
<td>E</td>
<td>Event occurs (voltage returns to bandwidth)</td>
</tr>
<tr>
<td>F</td>
<td>End of event's overrun time</td>
</tr>
</tbody>
</table>
The table below shows the memory time. Depending on the average value interval and the size of the event memory, it is a maximum of 401 days.

<table>
<thead>
<tr>
<th>Mean value interval</th>
<th>Size of event memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>256 kB</td>
</tr>
<tr>
<td>1 s</td>
<td>10 d</td>
</tr>
<tr>
<td>2 s</td>
<td>20 d</td>
</tr>
<tr>
<td>4 s</td>
<td>40 d</td>
</tr>
<tr>
<td>10 s</td>
<td>100 d</td>
</tr>
<tr>
<td>20 s</td>
<td>201 d</td>
</tr>
<tr>
<td>40 s</td>
<td>401 d</td>
</tr>
</tbody>
</table>

Table 21: Memory time of measured value memory

When you set the event memory size, the complete memory is cleared as soon as you confirm the change.

To set the event memory size, proceed as follows:

1. Press \(\text{MENU} \) \(\rightarrow \) \(\text{F4} \) Configuration \(\rightarrow \) \(\text{F5} \) Continue \(\rightarrow \) \(\text{F5} \) Continue \(\rightarrow \) \(\text{F3} \) Memory \(\rightarrow \) Press \(\rightarrow \) until the desired parameter is displayed.
 \(\Rightarrow \) Event memory.

2. Press \(\text{F1} \) or \(\text{F5} \) to set the event memory size you want.

3. Press \(\leftarrow \)
 \(\Rightarrow \) The event memory size is set.

7.11.5 Time plotter

The Info menu item is where you'll find the time plotter function. The actual voltage and desired value you have set is displayed here. The units of voltage per unit are defined automatically and you can change them at any time. You can undertake the following settings in the time plotter function:

- Division of time axis
- Voltage range
- Retrace time
- Retrace date

The following sections describe how you can access the time plotter.
7.11.5.1 Visual display of time plotter function

The time plotter is displayed as follows:

Symbols

![Time Plotter Symbols]

- 1 Move time axis back
- 2 Move time axis forward
- 3 Increase set values by one unit
- 4 Select values to set
- 5 Decrease set values by one unit

Desired/actual voltage value display

![Desired/Actual Value Display]

- 1 Set desired voltage value display
- 2 Actual voltage value display
- 3 Actual voltage value display
- 4 Set desired voltage value display
7.11.5.2 Moving time axis

You can set the reporting times in the setting box in the time plotter. Refer to the table for the time axis division and the resulting duration of the range shown.

<table>
<thead>
<tr>
<th>Steps which can be set (grid width)</th>
<th>15 s</th>
<th>30 s</th>
<th>1 min</th>
<th>2.5 min</th>
<th>5 min</th>
<th>10 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed range (in full display)</td>
<td>3.5 min</td>
<td>7 min</td>
<td>14 min</td>
<td>35 min</td>
<td>70 min</td>
<td>140 min</td>
</tr>
</tbody>
</table>

Table 22: Duration of range displayed
To undertake settings, proceed as follows:

1. Press \[\text{F5} \] until the desired display appears.
 - Time plotter.

2. Press \[\text{F4} \] to highlight the setting box for reporting times.
 - The setting box is now highlighted and the value can be changed.

3. Press \[\text{F3} \] to move the display forwards one step or \[\text{F5} \] to move it back one step.
 - The time axis is set.
7.11.5.3 Setting voltage range

In this display the voltage range is shown in the area between the horizontal grid lines. You can restrict the area between the horizontal grid lines in the corresponding setting box. Depending on the display setting, you can display the voltage range to be displayed in V or kV. The voltage range to be displayed is divided as follows:

<table>
<thead>
<tr>
<th>Division</th>
<th>0.5 V</th>
<th>1 V</th>
<th>2 V</th>
<th>5 V</th>
<th>10 V</th>
<th>15 V</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1 kV</td>
<td>0.2 kV</td>
<td>0.5 kV</td>
<td>1 kV</td>
<td>2 kV</td>
<td>5 kV</td>
<td>10 kV</td>
<td>20 kV</td>
</tr>
</tbody>
</table>

Table 23: Voltage range between the horizontal grid lines

To set the voltage range, proceed as follows:

1. Press [F5] Info > Press ← until the desired display appears.
 ⇒ Time plotter.
2. Press [F4] until the setting box for the voltage range is highlighted.
 ⇒ The setting box is now highlighted and the value can be changed.
3. Press [F3] to advance one unit or [F5] to move back one unit.
 ⇒ The voltage range is set.
7.11.5.4 Setting retrace time

This function allows you to move the sequence to a precise time in order to trace how voltage has behaved in the past.

Any time between the present time and the oldest time in the memory can be set. The time is entered in the following format: HH:MM:SS

![Figure 73: Retrace time](image)

To move the sequence to a precise time, proceed as follows:

1. Press \[\text{MENU} \rightarrow \text{F5 Info} \rightarrow \text{Press} \rightarrow \] until the desired display appears.
 ⇒ Time plotter.
2. Press \[\text{F4} \] until the setting box for the retrace time is highlighted.
 ⇒ The setting box is now highlighted and the value can be changed.
3. Press \[\text{F3} \] to advance the time or \[\text{F5} \] to move it back.
 ⇒ The retrace time is set. The sequence for the specified time appears in the display.

7.11.5.5 Setting retrace date

This function allows you to display the sequences of measured values for a time or date you have selected in order to trace how voltage has behaved in the past.
Any date between the present date and the oldest time in the memory can be set. The date is entered in the following format: **DD.MM.YY**

![Figure 74: Retrace date](image)

To move the sequence to a precise time, proceed as follows:

1. **INFO > Press F5 until the desired display appears.**
 - Time plotter.
2. Press **F4 until the setting box for the retrace date is highlighted.**
 - The setting box is now highlighted and the value can be changed.
3. Press **F3 to advance the date by one digit or F5 to move it back one digit.**
 - The retrace date is set. The sequence for the specified day appears in the display.

7.12 Communication interface

7.12.1 Selecting the communication protocol

You can activate one of the following communication protocols:

- TAPCON-trol® (visualization software)
- DNP3
- MODBUS ASCII
- MODBUS RTU

Only one communication protocol can be selected. Simultaneous use of several communication protocols is not possible.
To select the communication protocol, proceed as follows:

1. MENU > F4 Configuration > F5 Continue > F5 Continuer > F5 Comm. interface.
 ⇒ CI protocol.
2. Press F1 or F5 to set the desired option.
3. Press ↑.
 ⇒ The communication portal is selected.

7.12.2 Selecting communication port

This allows the physical interface to be activated. The following options are available:

- RS232
- RS485
- Ethernet
- Modem
- Fiber-optic cable

You can only select one communication port. It is not possible to use several communication ports at the same time.

To select the communication port, proceed as follows:

1. MENU > F4 Configuration > F5 Continue > F5 Continuer > F5 Comm. interface. > Press [→] until the desired parameter is displayed.
 ⇒ CI port.
2. Press F1 or F5 to set the desired option.
3. Press ↑.
 ⇒ The communication port is selected.

7.12.3 Selecting communication baud rate

You can use this parameter to set the desired baud rate for the communication interface. You can select the following options:

- 9.6 kilobaud
- 19.2 kilobaud
- 38.4 kilobaud
- 57.6 kilobaud
The baud rate of 57.6 kilobaud is only active for communication interfaces RS232, RS485 and fiber-optic cable. A baud rate of 57.6 kilobaud cannot be used for Ethernet.

This parameter is only provided for the following control system protocols:

- DNP3
- MODBUS ASCII/RTU

To set the communication interface baud rate, proceed as follows:

1. Select > Configuration > Continue > Comm. interface. > Press until the desired parameter is displayed. ⇒ CI baud rate.
2. Press or to set the desired option.
3. Press . ⇒ The baud rate is selected.

7.12.4 Assigning network address

You can use this parameter to assign a network address (IPv4) to the device. If you want to connect the device by means of Ethernet, you need to set a valid network address.

To assign the network address, proceed as follows:

1. Select > Configuration > Continue > Comm. interface. > Press until the desired parameter is displayed. ⇒ Network address
2. Press in order to highlight the position. ⇒ The position is highlighted and the value can be changed.
3. Press or to increase the value or to reduce it.
4. Press . ⇒ The network address is assigned.

7.12.5 Assigning TCP port

You can use this parameter to assign a TCP port to the device. If you want to connect the device by means of Ethernet, you need to set a valid TCP port.
To assign the TCP port, proceed as follows:

1. **Operation**
 - **MENU** > **F4** Configuration > **F5** Continue > **F5** Continuer > **F5**
 - Comm. interface. > Press until the desired parameter is displayed.
 - TCP port
2. Press **F4** in order to highlight the position.
 - The position is highlighted and the value can be changed.
3. Press **F1** to increase the value or **F5** to reduce it.
4. Press **←**.
 - The TCP port is assigned.

7.12.6 Setting fiber-optic cable transmission behavior

You can use this parameter to set the device’s transmission behavior, when you connect the device via optical fiber (OF). This determines whether or not the transmit LED lights up when the signal (logical 1) is active.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Logical 1</th>
<th>Logical 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Light on</td>
<td>Light off</td>
</tr>
<tr>
<td>OFF</td>
<td>Light off</td>
<td>Light on</td>
</tr>
</tbody>
</table>

Table 24: Transmission behavior for various parameter settings

To set the transmission behavior, proceed as follows:

1. **Operation**
 - **MENU** > **F4** Configuration > **F5** Continue > **F5** Continuer > **F5**
 - Comm. interface. > Press until the desired parameter is displayed.
 - OF inversion.
2. Press **F1** or **F5** to set the desired option.
3. Press **←**.
 - The transmission behavior is set.

7.12.7 Setting CI address

You can use this parameter to assign a SCADA address to the device. You have to define this parameter if the device is to communicate via the control system protocol.
To set the SCADA address, proceed as follows:

1. \textbf{MENU} > \textbf{F4} Configuration > \textbf{F5} Continue > \textbf{F5} Continue > \textbf{F5} Comm. interface > Press \textbf{•} until the desired parameter is displayed.
 → CI address.

2. Press \textbf{F1} to change the first digit.
 → If you wish to enter a multi-digit sequence, proceed to step 3. If you do not wish to enter additional digits, proceed to step 7.

3. Press \textbf{F1} until another digit position appears.

4. Press \textbf{F4} to highlight a digit position.
 → The required digit is highlighted and can be changed.

5. Press \textbf{F1} or \textbf{F5} to change the digit.

6. Repeat steps 3 to 5 until all required digits have been entered.

7. Press \textbf{•}.
 → The CI address is set.

7.12.8 Setting SCADA master address

You can use this parameter to set the SCADA address for the master station. When the device is restarted, the device data is sent to this master station without prompting.

To set the SCADA master address, proceed as follows:

1. \textbf{MENU} > \textbf{F4} Configuration > \textbf{F5} Continue > \textbf{F5} Continue > \textbf{F5} Comm. interface. > Press \textbf{•} until the desired display appears.
 → Master address

2. Press \textbf{F1} to change the first digit.
 → If you wish to enter a multi-digit sequence, proceed to step 3. If you do not wish to enter additional digits, proceed to step 7.

3. Press \textbf{F1} until another digit position appears.

4. Press \textbf{F4} to highlight a digit position.
 → The required digit is highlighted and can be changed.

5. Press \textbf{F1} or \textbf{F5} to change the digit.

6. Repeat steps 3 to 5 until all required digits have been entered.

7. Press \textbf{•}.
 → The master address is set.
7.12.9 Enabling unsolicited messages

When using the control system protocol DNP3, you can release the unsolicited data transmission through the device with this parameter. Data is transferred when a corresponding event occurs.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Unsolicited messages are transmitted</td>
</tr>
<tr>
<td>Off</td>
<td>Unsolicited messages are not transmitted</td>
</tr>
</tbody>
</table>

Table 25: Setting range for unsolicited messages

To enable or block unsolicited messages, proceed as follows:

1. **MENU > F4** Configuration > **F5** Continue > **F5** Continue > **F5** Comm. interface > Press until the desired parameter is displayed.
 - Unsolicited messages
2. Press **F1** or **F5** to enable (On) or block (Off) unsolicited messages.
3. Press .
 - Unsolicited messages are enabled or blocked.

7.12.10 Setting number of attempts to transmit unsolicited messages

This parameter is used to set the maximum number of attempts to transmit unsolicited messages.

If the device receives no release for data transmission through the Master (for example, in case of transmission errors), then the data transmission is repeated in accordance with the set maximum number of send attempts.

If the value 0 is set, then an infinite number of attempts is made to transmit.
To set the maximum number of attempts to transmit unsolicited messages, proceed as follows:

1. **MENU > F4 Configuration > F5 Continue > F5 Continue > F5 Comm. interface > Press ** until the desired parameter is displayed.
 - Unsolicited retries.
2. Press ** to increase the value or ** to reduce it.
3. Press **
 - The maximum number of attempts to transmit unsolicited messages is set.

7.12.11 Timeout for application confirm responses

You can use this parameter to define the permissible time which the device waits for the following feedback from the master device:

- Application confirmation response
- Confirmation of unsolicited message

If the permissible time is exceeded, another transmission request is sent to the master device. The number of requests sent is dependent on the set number of attempts to transmit unsolicited messages (122).

To set the timeout for application confirm responses, proceed as follows:

1. **MENU > F4 Configuration > F5 Continue > F5 Continue > F5 Comm. interface > Press ** until the desired parameter is displayed.
 - Application conf. Timeout.
2. Press ** to increase the value or ** to reduce it.
3. Press **
 - The timeout for application confirm responses is set.

7.12.12 Setting transmission delay time for RS485 interface

You can use this parameter to set a send delay for the interface, for example, to compensate for the reaction time of an external RS485/RS232 transformer when changing between transmitting and receiving operation.
To set the transmission delay time for the RS485 interface, proceed as follows:

1. **Menu** > **F4** Configuration > **F5** Continue > **F5** Continue > **F5**

 Comm. interface > Press ▶ until the desired parameter is displayed.

 Transmit delay time.

2. Press **F1** to increase the value or **F5** to reduce it.

3. Press ▶

 The transmission delay time for the RS485 interface is set.

7.13 Tap positions

7.13.1 Analog tap position capture (optional)

If the device is equipped with an AI module, you can capture the current tap position of the on-load tap-changer by means of analog signal. To do so, you must configure the analog input (P2.35 and P2.36) accordingly.

You can set the following options:

- Off: No tap position capture active
- Keep Track: tap position capture by means of the "Keep Track" function
- AI (optional): Tap position capture by means of analog signal

You can use the following tap position transmitters:

<table>
<thead>
<tr>
<th>Resistor contact series</th>
<th>AI module (P2.35 and P2.36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100...2,000 ohms</td>
<td>0...1 mA, 0/4...20 mA</td>
</tr>
</tbody>
</table>

Table 26: Analog tap position capture

Adjustment to the existing tap position transmitter must be carried out during commissioning.

To select an analog tap position capture, proceed as follows:

1. **Menu** > **F4** Configuration > **F5** Continue > **F5** Continue > **F3** Tap position

 Tap pos. capture

2. Press **F1** or **F5** to set the desired option.

3. Press ▶

 The tap position capture is set.
7 Operation

Setting lower tap position

You can use this parameter to set the lower value of the tap position.

To set the lowest tap position, proceed as follows:
1. Press [Enter] > F4 Configuration > F5 Continue > F5 Continue > F3 Tap position > Press ← until the desired parameter is displayed. ➔ Tap min.
2. Press F1 to increase the value or F5 to reduce it.
3. Press ←. ➔ The lowest tap position is set.

Setting upper tap position

You can use this parameter to set the upper value of the tap position.

To set the highest tap position, proceed as follows:
1. Press [Enter] > F4 Configuration > F5 Continue > F5 Continue > F3 Tap position > Press ← until the desired parameter is displayed. ➔ Tap max.
2. Press F1 to increase the value or F5 to reduce it.
3. Press ←. ➔ The highest tap position is set.

Setting tap position for the Keep Track application

You can use this parameter to set the current tap position for the Keep Track application.

To set the current tap position Keep Track, proceed as follows:
1. Press [Enter] > F4 Configuration > F5 Continue > F5 Continue > F3 Tap position > Press ← until the desired parameter is displayed. ➔ Current tap position.
2. Press F1 to increase the value or F5 to reduce it.
3. Press ←. ➔ The current tap position is set.

Setting lower AI limit

You can use this parameter to set the lower limit value of the AI module.
To set the lower AI limit, proceed as follows:

1. Press \(\text{F}4\) \(\rightarrow\) Configuration \(\rightarrow\) \(\text{F}5\) \(\rightarrow\) Continue \(\rightarrow\) \(\text{F}5\) \(\rightarrow\) Continue \(\rightarrow\) \(\text{F}3\) Tap position \(\rightarrow\) Press \(\uparrow\) until the desired parameter is displayed.
 \(\Rightarrow\) AI lower limit.

2. Press \(\text{F}1\) to increase the value or \(\text{F}5\) to reduce it.

3. Press \(\downarrow\).
 \(\Rightarrow\) The lower limit value of the AI module is set.

Setting upper AI limit

You can use this parameter to set the upper limit value of the AI module.

To set the upper AI limit, proceed as follows:

1. Press \(\text{F}4\) \(\rightarrow\) Configuration \(\rightarrow\) \(\text{F}5\) \(\rightarrow\) Continue \(\rightarrow\) \(\text{F}5\) \(\rightarrow\) Continue \(\rightarrow\) \(\text{F}3\) Tap position \(\rightarrow\) Press \(\uparrow\) until the desired parameter is displayed.
 \(\Rightarrow\) AI upper limit.

2. Press \(\text{F}1\) to increase the value or \(\text{F}5\) to reduce it.

3. Press \(\downarrow\).
 \(\Rightarrow\) The upper limit value of the AI module is set.

7.13.2 Tap position output

You can use this parameter to set the range of the tap position output.

You can choose between the following options:

- Off
- 0...1 mA
- 4...20 mA

To set the range of the tap position output, proceed as follows:

1. Press \(\text{F}4\) \(\rightarrow\) Configuration \(\rightarrow\) \(\text{F}5\) \(\rightarrow\) Continue \(\rightarrow\) \(\text{F}5\) \(\rightarrow\) Continue \(\rightarrow\) \(\text{F}4\) Tap position \(\rightarrow\) Press \(\uparrow\) until the desired parameter is displayed.
 \(\Rightarrow\) Tap position output range.

2. Press \(\text{F}1\) or \(\text{F}5\) to set the desired option.

3. Press \(\downarrow\).
 \(\Rightarrow\) The tap position output range is set.
7.13.3 Permitted tap positions

You can use the parameters described below to restrict the permissible range of tap positions in auto mode.

In manual mode, for manual tap changes on the motor-drive unit or for remote tap changes via a SCADA system, monitoring of the step limits is not active. This may result in the set limits being exceeded.

When switching from manual mode to auto mode, the tap changer should be within the permitted tap positions.

7.13.3.1 Setting the tap position blocking mode

You can set the tap position blocking mode in relation to the upper and lower tap position blocking limits:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>The tap position blocking mode is deactivated</td>
</tr>
<tr>
<td>Directional</td>
<td>During raise and lower tap changes, the device blocks as soon as the defined upper/lower tap position limit is reached or exceeded. Further tap changes are prevented.</td>
</tr>
<tr>
<td>Non-directional</td>
<td>The device blocks in both directions as soon as the defined lower/upper tap position limit is reached or exceeded. Further tap changes are prevented.</td>
</tr>
</tbody>
</table>

Table 27: Tap position blocking mode

To set the tap position blocking mode, proceed as follows:

1. Press `MEN` to select manual mode.
2. Press `F4` Configuration > `F5` Continue > `F5` Continue > `F3` Tap position > Press `⇒` until the desired parameter is displayed.
 - Tap Pos Limit Block Mode
3. Press `F1` or `F5` to set the desired option.
4. Press `↔` The tap position blocking mode is set.
7.13.3.2 Setting highest tap position blocking limit

You can define an upper tap position blocking limit to limit the number of tap positions available in operation. When the tap position defined as the upper tap position blocking limit is reached, tap position blocking is activated. This prevents any further tap change upwards.

To define the upper tap position blocking limit, proceed as follows:

1. **Configuration > Continue > Continue > Tap position** > Press `→` until the desired parameter is displayed.
 - **Highest tap position**

2. Press `F1` to increase the value or `F5` to reduce it.

3. Press `←`.

 ➞ The upper blocking limit is defined.

7.13.3.3 Setting the lowest tap position blocking limit

You can define a lower tap position blocking limit to limit the number of tap positions available in operation. When the tap position defined as lower tap position blocking limit is reached, tap position blocking is activated. This prevents any further tap change downwards.

To define the lower tap position blocking limit, proceed as follows:

1. **Configuration > Continue > Continue > Tap position** > Press `→` until the desired parameter is displayed.
 - **Lowest tap position**

2. Press `F1` to increase the value or `F5` to reduce it.

3. Press `←`.

 ➞ The lower tap position blocking limit is defined.

7.13.4 Tap-position indication

You can use this parameter to set the display of the tap position.

You can set the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Standard format ±/+</td>
</tr>
<tr>
<td>On</td>
<td>US format L (lower) / R (raise)</td>
</tr>
</tbody>
</table>

Table 28: Options for tap-position indication
To set the tap-position indication, proceed as follows:

1. Configuration > F5 Continue > F5 Continue > F3 Tap position > Press \[→\] until the desired parameter is displayed.
 \[→\] L-R tap-position indication.
2. Press \[F1\] or \[F5\] to select the option you want.
3. Press \[←\]
 \[→\] Tap-position indication is set.

7.14 Displaying information about device

The next section describes how you can display information about the device.

7.14.1 Displaying the info screen

Information about the device can be viewed here.

The following information is displayed:

- Device model
- Firmware version number and date
- EEPROM memory
- RAM
- Flash memory

To display the info screen, proceed as follows:

\[→\] Menu > F5 Info
\[→\] Info.

7.14.2 Displaying measured values

The current measured values are shown in this display. The following measured values can be displayed:
To display the measured values, proceed as follows:

► **MENU** > **F5** Info > Press **→** until the desired measurement parameter is displayed.

⇒ Measured values.

7.14.3 Carrying out LED test

You can check whether the LEDs are functioning properly. To do this, press the relevant function key to illuminate an LED:

<table>
<thead>
<tr>
<th>Key</th>
<th>LED no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1, F5</td>
<td>LED 1...LED 5</td>
</tr>
<tr>
<td>F1 + F4, F5</td>
<td>LED 6...LED 9</td>
</tr>
<tr>
<td></td>
<td>All LEDs</td>
</tr>
</tbody>
</table>

Table 29: Arrangement of keys for the LED test

This function will only test the functional reliability of the respective LED. The function of the device linked to the LED is not tested.

To carry out the LED test, proceed as follows:

1. **MENU** > **F5** Info > Press **→** until the desired measurement parameter is displayed.

⇒ LED test.

2. To carry out the function test, press any F key for the LED you want to test.
7.14.4 Display of the IO status

The status of the inputs is shown in this display. As soon as a continuous signal is present at the input, status 1 is displayed. 0 indicates no signal at the input.

Proceed as follows to display the status:
► MENU > F5 Info > Press → until the desired display appears.
⇒ Input/output status

7.14.5 Displaying status of the AI card

The status of the analog inputs and outputs is shown in this display:
- Input: Percentage measured value, based on the measuring range (0...20 mA) and calculated value (e.g. tap position). If the measured value is not within the permitted measuring range, “?” is displayed.
- Output: Percentage value of the output signal, based on the signal range (0...20 mA)

Proceed as follows to display the status:
► MENU > F5 Info > Press → until the desired display appears.
⇒ AI card status

7.14.6 Displaying status of the CI card

The status of the CI card is shown in this display:
- Protocol
- Software version
- Data format
- You can also reset the SCADA Ethernet connection.
To display the information, proceed as follows:

► **MENU** > **F5** Info > Press ▶ until the desired display appears.
 ⇒ CI card status.

► If necessary, press **F3** and **F4** at the same time to reset the Ethernet connection.
 ⇒ The Ethernet connection is reset.

7.14.7 Resetting parameters

With this display you can reset your settings to the factory settings. It also shows whether all parameters are saved correctly.

Reseting the parameters to the factory settings permanently deletes your settings.

To reset all the set parameters, proceed as follows:

1. Press **MENU** > **F5** Info > ▶ until the desired measurement parameter is displayed.
 ⇒ Parameters.
2. Press **F3** and **F4** at the same time.
3. Press ▼.
 ⇒ All parameters have been reset to the factory settings.

7.14.8 Displaying real-time clock

An operations counter is started when the device is first switched on. This continues to run even if the device is switched off. Each of the operations counter's times is overwritten with that of the PC to visualize the measured values.

To display the real-time clock, proceed as follows:

► Press **MENU** > **F5** Info > ▶ until the desired measurement parameter is displayed.
 ⇒ RTC.
7 Operation

7.14.9 Displaying parallel operation

This display indicates the regulator number (CAN bus address) for parallel operation and the number of voltage regulators which are currently operating in parallel.

To display the parallel operation data, proceed as follows:

► MENU > F5 Info > Press → until the desired display appears.
 ⇔ Parallel operation.

7.14.10 Displaying data on CAN bus

The CAN bus data of the connected devices is shown in this display.

![Figure 102: CAN bus data](image)

<table>
<thead>
<tr>
<th>1</th>
<th>CAN bus address of device</th>
<th>4</th>
<th>Reactive current in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Voltage in V</td>
<td>5</td>
<td>Current tap position</td>
</tr>
<tr>
<td>3</td>
<td>Active current in %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To display the CAN bus data, proceed as follows:

1. Press **MEN** > **F5** Info > **···** until the desired measurement parameter is displayed.
 - DATA ON CAN BUS.
2. Press and hold **F1** to display more data.
 - The additional information is displayed until you release the key.

7.14.11 Displaying measured value memory

As an option, the device can be equipped with a long-term memory module. You can display information about the memory in this window.
To display the measured value memory, proceed as follows:

► MENU > F5 Info > Press ➔ until the desired measurement parameter is displayed.

⇒ MEASURED VALUE MEMORY

7.14.12 Displaying peak memory

The minimum and maximum values as well as the time of occurrence are shown in this display for the following measured values:

- Voltage
- Tap position
- Apparent current
- Apparent power
- Active power (P)
- Reactive power (Q)

The minimum and maximum values continue to be stored in an internal fixed value memory even in the event of power failure. The time and date are displayed in the following format: HH:MM:SS, DD:MM:YY.

To display the peak memory, proceed as follows:

► MENU > F5 Info > Press ➔ until the desired measurement parameter is displayed.

⇒ Peak memory.

7.14.13 Displaying the operations counters

The status of the number of tap-change operations is shown in this display:

- Hunting counter: Number of tap-change operation per day. Automatically resets after 24 hours and can be manually reset.
- Operations counter: Number of tap-change operations. Can be manually reset.
- Total tap-change operation counter: Total number of tap-change operations. Cannot be manually reset.
To display the operations counter, proceed as follows:

1. Press $\text{INFO} \rightarrow \text{F5}$ Info \rightarrow Press \rightarrow until the desired display appears.
 ⇒ Operations counter

2. If necessary press F1 and F2 simultaneously to reset the hunting counter.

3. If necessary press F3 and F4 simultaneously to reset the operations counter.

7.14.14 Displaying upcoming messages

This display shows upcoming messages, such as:

- Undervoltage
- Overvoltage
- Fault in parallel operation
- etc.

To display the upcoming messages, proceed as follows:

\Rightarrow Press $\text{INFO} \rightarrow \text{F5}$ Info \rightarrow until the desired measurement parameter is displayed.

⇒ UPCOMING MESSAGES

7.14.15 Display of the consumption

You can display the consumption at present (average value) and the maximum consumption. For this purpose, the device uses a simulation of a wattmeter.

Consumption at present

The consumption at present is shown in this display.

To display the consumption at present, proceed as follows:

\Rightarrow Press $\text{INFO} \rightarrow \text{F5}$ Info \rightarrow until the desired display appears.

⇒ Consumption at present.
7 Operation

Highest consumption

The highest amount of consumption and the time of occurrence is shown in this display.

To display the highest consumption, proceed as follows:

1. **MEN** > [F5] Info > Press → until the desired display appears.

 ⇒ Highest consumption.

2. If necessary press [F3] and [F4] simultaneously to reset the highest consumption.
8 Fault elimination

This chapter describes how to rectify simple operating faults.

8.1 No regulation in AUTO mode

<table>
<thead>
<tr>
<th>Characteristics/detail</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device control commands have no effect. RAISE/LOWER LEDs light up periodically</td>
<td>LOCAL/REMOTE switch in motor-drive unit switched to LOCAL.</td>
<td>Check operating mode. Correct if necessary.</td>
</tr>
<tr>
<td></td>
<td>No connection</td>
<td>Check wiring as per connection diagram.</td>
</tr>
<tr>
<td>Blocking</td>
<td>Reverse power lock active.</td>
<td>Check parameters. Correct if necessary.</td>
</tr>
<tr>
<td></td>
<td>Negative power flow</td>
<td>Check current transformer polarity. Correct if necessary.</td>
</tr>
<tr>
<td></td>
<td>Function assigned to several GPIs.</td>
<td>Check parameterization of GPIs. Correct if necessary.</td>
</tr>
<tr>
<td></td>
<td>One of the GPIs is parameterized with "Blocking" and has an appropriate input signal.</td>
<td>Check parameterization and status in "Info" menu. Correct if necessary.</td>
</tr>
<tr>
<td></td>
<td>NORMset active</td>
<td>Carry out manual tap-change operation with or keys.</td>
</tr>
<tr>
<td></td>
<td>Undercurrent blocking active</td>
<td>Check parameters. Correct if necessary.</td>
</tr>
<tr>
<td>Blocking</td>
<td>Undervoltage blocking active</td>
<td>Check parameters. Correct if necessary.</td>
</tr>
<tr>
<td>U< LED illuminated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking</td>
<td>Overvoltage blocking active</td>
<td>Check parameters. Correct if necessary.</td>
</tr>
<tr>
<td>U> LED illuminated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocking</td>
<td>Overcurrent blocking active</td>
<td>Check parameters. Correct if necessary.</td>
</tr>
<tr>
<td>I> LED illuminated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth set too high</td>
<td>-</td>
<td>Determine the recommended bandwidth</td>
</tr>
</tbody>
</table>

Table 30: No regulation in AUTO mode
8.2 Unexplained tap change

<table>
<thead>
<tr>
<th>Characteristics/detail</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Compensation activated | Setting:
- Line drop compensation
- Z compensation | Check parameters.
Correct if necessary. |

Table 31: Unexplained tap change

8.3 Man-machine interface

<table>
<thead>
<tr>
<th>Characteristics/details</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Keys
- MANUAL/AUTO operating mode cannot be changed | REMOTE operating mode active and LED in key illuminated. | Press to activate LOCAL mode. |
| Keys
- LEDs in keys and not illuminated. | Parameter error | Reset parameters to factory settings [132]. |
| Display
- No display. | Contrast incorrectly set. | Set contrast.
- Power supply interrupted. | Check the voltage supply.
- Fuse faulty. | Contact Maschinenfabrik Reinhausen. |
| LEDs
- Freely configurable LED lights up | Customized LED parameterization. | Check parameters. |
| LEDs
- LED flashing | Input signal not constant. | Check input signal. |
| COM 2
- Cannot be connected to PC using TAPCON®-trol. | Different baud rates set. | Check baud rate set on device and PC. |

Table 32: Man-machine interface
8.4 Incorrect measured values

<table>
<thead>
<tr>
<th>Characteristics/detail</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured voltage</td>
<td>Connection has no contact in the plug terminal.</td>
<td>Check wiring and plug terminal.</td>
</tr>
<tr>
<td>• No measured value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation trapped</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire not inserted far enough.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit breaker tripped.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured voltage</td>
<td>Voltage drop on measuring lead.</td>
<td>Check measured voltage at plug terminal P2.1.</td>
</tr>
<tr>
<td>• Measured value too low.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured voltage</td>
<td>Possible sources of fault:</td>
<td>Check measured voltage at plug terminal P2.1.</td>
</tr>
<tr>
<td>• Measured value fluctuates.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 ▪ Leads laid in parallel. | Increase distance from source of interference. |
 ▪ Tap-change operations. |
| Measured current | Line to current transformer interrupted. | Check wiring. |
| • No measured value. | | |
| Short-circuiting jumper in current transformer not removed. | Remove short-circuiting jumper. |
| Measured current | Transmission ratio not correctly parameterized. | Correct parameterization. |
| • Measured value too high. | | |
| • Measured value too low. | | |
| Phase angle | Fault in external transformer circuit. | Check transformer circuit. |
| • U/I. | | |
| Transformer circuit incorrectly parameterized. | Compare with system connection diagram. Correct parameters. |
| Compare measurement values on info screen. |
| Transpose current transformer connection. |
| Check polarity of transformer circuit. Correct if necessary. |
| Check circuit. Correct if necessary. |
| Check measurement points. Correct if necessary. |

Table 33: Incorrect measured values
8.5 Parallel operation faults

<table>
<thead>
<tr>
<th>Characteristics/detail</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• LED not lit up.</td>
<td>CAN bus address of device set to "0".</td>
<td>Set CAN bus address (anything but 0).</td>
</tr>
<tr>
<td>Problem with CAN bus.</td>
<td>Device incorrectly connected (plug twisted, offset).</td>
<td>Check connections. Connect as shown in connection diagram.</td>
</tr>
<tr>
<td>• Device not listed.</td>
<td>Devices have the same CAN bus addresses.</td>
<td>Set different CAN bus addresses.</td>
</tr>
</tbody>
</table>

Table 34: Parallel operation faults

8.6 Customized GPIs/GPOs

<table>
<thead>
<tr>
<th>Characteristics/detail</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function expected from the factory setting does not take place</td>
<td>Parameterization has been overwritten manually or via TAPCON®-trol.</td>
<td>Check active parameters</td>
</tr>
<tr>
<td>Signal discontinuous.</td>
<td>Intermittent DC voltage.</td>
<td>Check source of DC voltage. Check signal transmitter. Check wiring.</td>
</tr>
<tr>
<td>No signal Info screens "Bandwidth!, "Delay time T1", "Control response T1", "Delay time T2" display 0.</td>
<td>Supply voltage too low</td>
<td>Reset parameters to factory settings.</td>
</tr>
</tbody>
</table>

Table 35: Fault elimination: GPIs and GPOs

8.7 General faults

<table>
<thead>
<tr>
<th>Characteristics/detail</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No function</td>
<td>No power supply</td>
<td>Check the power supply</td>
</tr>
<tr>
<td>• Operating status LED does not illuminate</td>
<td>Fuse tripped</td>
<td>Contact Maschinenfabrik Reinhausen GmbH</td>
</tr>
<tr>
<td>Relays chatter</td>
<td>Supply voltage too low</td>
<td>Check the supply voltage</td>
</tr>
<tr>
<td></td>
<td>High EMC load</td>
<td>Use shielded cables or external filters</td>
</tr>
<tr>
<td></td>
<td>Poor grounding</td>
<td>Check protective ground</td>
</tr>
</tbody>
</table>

Table 36: General faults
8.8 Other faults

If you cannot resolve a problem, please contact Maschinenfabrik Reinhausen. Please have the following data on hand:

- Serial number
 - Name plate (Outer right side when viewed from the front)
 - Info screen (MEN > F5 Info)

Please provide answers to the following questions:

- Has a firmware update been carried out?
- Has there previously been a problem with this device?
- Have you previously contacted Maschinenfabrik Reinhausen about this issue? If yes, then who was the contact?
9 Disposal

Observe the national requirements applicable in the country of use.
10 Overview of parameters

This section contains an overview of the relevant menus and parameters. The availability of individual parameters varies depending on your device function.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting range</th>
<th>Factory setting</th>
<th>Current setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normset activation</td>
<td>On/Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Desired value 1</td>
<td>100 to 135 V</td>
<td>120 V</td>
<td></td>
</tr>
<tr>
<td>Primary voltage</td>
<td>0...9999 kV</td>
<td>0 kV</td>
<td></td>
</tr>
<tr>
<td>Secondary voltage</td>
<td>100 to 135 V</td>
<td>120 V</td>
<td></td>
</tr>
<tr>
<td>Parameter > Control parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desired value 1</td>
<td>100 to 135 V</td>
<td>120.0 V</td>
<td></td>
</tr>
<tr>
<td>Desired value 2</td>
<td>100 to 135 V</td>
<td>120.0 V</td>
<td></td>
</tr>
<tr>
<td>Desired value 3</td>
<td>100 to 135 V</td>
<td>120.0 V</td>
<td></td>
</tr>
<tr>
<td>Desired value 4</td>
<td>100 to 135 V</td>
<td>120.0 V</td>
<td></td>
</tr>
<tr>
<td>Absolute bandwidth</td>
<td>On/Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Bandwidth (%)</td>
<td>0.5...9 %</td>
<td>1.00 %</td>
<td></td>
</tr>
<tr>
<td>Bandwidth (V)</td>
<td>0.5 to 10 V</td>
<td>1.2 V</td>
<td></td>
</tr>
<tr>
<td>Voltage offset</td>
<td>0 to 20 V</td>
<td>0.0 V</td>
<td></td>
</tr>
<tr>
<td>T1 delay time</td>
<td>0...600 s</td>
<td>40 s</td>
<td></td>
</tr>
<tr>
<td>T1 control response</td>
<td>T1 linear/T1 integral</td>
<td>T1 linear</td>
<td></td>
</tr>
<tr>
<td>T2 activation</td>
<td>T2 on/T2 off</td>
<td>T2 off</td>
<td></td>
</tr>
<tr>
<td>T2 delay time</td>
<td>1...60 s</td>
<td>10.0 s</td>
<td></td>
</tr>
<tr>
<td>Parameter > Limit values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U< Undervoltage (V)</td>
<td>95 to 135 V</td>
<td>110.0 V</td>
<td></td>
</tr>
<tr>
<td>U> Overvoltage (V)</td>
<td>100 to 140 V</td>
<td>130.0 V</td>
<td></td>
</tr>
<tr>
<td>I> Overcurrent</td>
<td>50...210 %</td>
<td>110 %</td>
<td></td>
</tr>
<tr>
<td>Monitoring Monitoring</td>
<td>On/Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>U< delay</td>
<td>0...20 s</td>
<td>10.0 s</td>
<td></td>
</tr>
<tr>
<td>U< blocking</td>
<td>On/Off</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td>U< also under 30 V</td>
<td>On/Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Hunting alarm limit</td>
<td>0...100</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Parameter > Compensation

Reinhausen Manufacturing Inc. 2018
10 Overview of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting range</th>
<th>Factory setting</th>
<th>Current setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ur line drop compensation</td>
<td>-25 to 25 V</td>
<td>0.0 V</td>
<td></td>
</tr>
<tr>
<td>Ux line drop compensation</td>
<td>-25 to 25 V</td>
<td>0.0 V</td>
<td></td>
</tr>
<tr>
<td>Z compensation</td>
<td>0...15 %</td>
<td>0.0 %</td>
<td></td>
</tr>
<tr>
<td>Z comp. limit value</td>
<td>0...15 %</td>
<td>0.0 %</td>
<td></td>
</tr>
</tbody>
</table>

Configuration > Transformer data

- **Primary voltage**: 0...9999 kV, Factory setting: 0 kV
- **Secondary voltage**: 100 to 135 V, Factory setting: 120.0 V
- **Primary current**: 0...10000 A, Factory setting: 0 a
- **Transformer circuit**: See [► 89], Factory setting: 0 1PH

Configuration > General

- **Language**: See [► 51], Factory setting: German
- **Regulator ID**: See [► 55], Factory setting: 0000
- **COM1 setting**: 9.6 kilobaud; 19.2 kilobaud; 38.4 kilobaud; 57.6 kilobaud, Factory setting: 57.6 kilobaud
- **Display kV/V**: kV/V, Factory setting: V
- **Display % / A**: On/Off, Factory setting: Off
- **R/L pulse duration**: 0...10 s, Factory setting: 1.5 s
- **Consumption interval**: 15 min; 30 min; 1 h, Factory setting: 15 min
- **Motor runtime**: 0...30 s, Factory setting: 0.0 s
- **Reverse power flow behavior**: Ignore; block; to neutral, Factory setting: Ignore
- **MANUAL/AUTOMATIC input**: Pulsed / not pulsed, Factory setting: Not pulsed
- **Local/Remote input**: Pulsed / not pulsed, Factory setting: Not pulsed

Configuration > User In/Outputs

- **GPI 1**: See [► 94], Factory setting: Desired value 3
- **GPI 2**: See [► 94], Factory setting: Parallel group 1
- **GPI 3**: See [► 94], Factory setting: Blocking
- **GPI 4**: See [► 94], Factory setting: Desired value 2
- **Programmable alarm**: 0...2047, Factory setting: 0

Configuration > Parallel operation

- **Parallel operation allowed**: On/Off, Factory setting: On
10 Overview of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting range</th>
<th>Factory setting</th>
<th>Current setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel operation method</td>
<td>Circulating reactive current; master; follower; auto synchronization;</td>
<td>Circulating reactive current</td>
<td></td>
</tr>
<tr>
<td>Parallel operation group</td>
<td>None; group 1; group 2</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CAN address</td>
<td>0...16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Group 1 stability</td>
<td>0...100 %</td>
<td>0.0 %</td>
<td></td>
</tr>
<tr>
<td>Group 1 blocking</td>
<td>0.5...40 %</td>
<td>20.0 %</td>
<td></td>
</tr>
<tr>
<td>Group 2 stability</td>
<td>0...100 %</td>
<td>0.0 %</td>
<td></td>
</tr>
<tr>
<td>Group 2 blocking</td>
<td>0.5...40 %</td>
<td>20.0 %</td>
<td></td>
</tr>
<tr>
<td>Error message</td>
<td>1...99 s</td>
<td>10 s</td>
<td></td>
</tr>
<tr>
<td>Tapping direction</td>
<td>Swapped</td>
<td>Standard; swapped</td>
<td>Standard</td>
</tr>
<tr>
<td>CAN bus error behavior</td>
<td>Independent; blocking</td>
<td>Blocking</td>
<td></td>
</tr>
<tr>
<td>Configuration > LED selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED1</td>
<td>See [► 105]</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>LED2</td>
<td></td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>LED3</td>
<td></td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>LED4 green</td>
<td></td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>LED4 red</td>
<td></td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Configuration > Memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U< memory</td>
<td>95 to 135 V</td>
<td>110.0 V</td>
<td></td>
</tr>
<tr>
<td>U> memory</td>
<td>100 to 140 V</td>
<td>130.0 V</td>
<td></td>
</tr>
<tr>
<td>Mean value interval</td>
<td>See [► 108]</td>
<td>1 s</td>
<td></td>
</tr>
<tr>
<td>Event memory</td>
<td>256 k; 512 k; 1024 k; 2048 k</td>
<td>256 k</td>
<td></td>
</tr>
<tr>
<td>Configuration > Comm. interface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI protocol</td>
<td>TAPCONtrol; DNP3, Modb. ASCII; Modbus RTU</td>
<td>TAPCONtrol</td>
<td></td>
</tr>
<tr>
<td>CI port</td>
<td>See [► 118]</td>
<td>RS232</td>
<td></td>
</tr>
<tr>
<td>CI baud rate</td>
<td>9.6 kilobaud; 19.2 kilobaud; 38.4 kilobaud; 57.6 kilobaud</td>
<td>9.6 kilobaud</td>
<td></td>
</tr>
<tr>
<td>Network address</td>
<td>0.0.0.0… 255.255.255.255</td>
<td>0.0.0.0</td>
<td></td>
</tr>
</tbody>
</table>
10 Overview of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting range</th>
<th>Factory setting</th>
<th>Current setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP port</td>
<td>0…32767</td>
<td>1234</td>
<td></td>
</tr>
<tr>
<td>OF inversion</td>
<td>On/Off</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td>CI Address</td>
<td>0…9999</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Master address</td>
<td>0…9999</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unsolicited messages</td>
<td>On/Off</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td>Unsolicited retries</td>
<td>0…100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Application conf. Timeout</td>
<td>1…60 s</td>
<td>5 s</td>
<td></td>
</tr>
<tr>
<td>Send delay time</td>
<td>0…254 ms</td>
<td>5 ms</td>
<td></td>
</tr>
</tbody>
</table>

Configuration > Set desired voltage level remotely.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting range</th>
<th>Factory setting</th>
<th>Current setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set desired voltage level remotely</td>
<td>On/Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>AI lower limit</td>
<td>0…100 %</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>AI upper limit</td>
<td>0…100 %</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Minimum desired value</td>
<td>100 to 135 V</td>
<td>100 V</td>
<td></td>
</tr>
<tr>
<td>Maximum desired value</td>
<td>100 to 135 V</td>
<td>135 V</td>
<td></td>
</tr>
</tbody>
</table>

Configuration - Tap position options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting range</th>
<th>Factory setting</th>
<th>Current setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap pos. capture</td>
<td>Off; Keep Track; Al</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Tap min.</td>
<td>9…16L</td>
<td>16L</td>
<td></td>
</tr>
<tr>
<td>Tap max.</td>
<td>16…23R</td>
<td>16R</td>
<td></td>
</tr>
<tr>
<td>Current tap position</td>
<td>0; 1…7R</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AI lower limit</td>
<td>0…100 %</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>AI upper limit</td>
<td>0…100 %</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Range of the tap position output</td>
<td>Off, 0…1 mA, 4…20 mA</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>Blocking behavior</td>
<td>Off; direction dep-</td>
<td>Direction depen-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>endent; direction</td>
<td>dent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>independent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower tap position blocking</td>
<td>-50L…1R or -50…+1</td>
<td>16L</td>
<td></td>
</tr>
<tr>
<td>Upper tap position blocking</td>
<td>1L…140R or 1…140</td>
<td>16R</td>
<td></td>
</tr>
<tr>
<td>Tap position indication L/R</td>
<td>On/Off</td>
<td>On</td>
<td></td>
</tr>
</tbody>
</table>

Info

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting range</th>
<th>Factory setting</th>
<th>Current setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td>Info</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measured values
10 Overview of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting range</th>
<th>Factory setting</th>
<th>Current setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input/output status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI card status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI card status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-time clock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data on CAN bus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured value memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations counter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upcoming messages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time plotter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 37: Overview of parameters

Also refer to

- Setting the phase difference for the current transformer/voltage transformer [89]
11 Technical data

11.1 Display elements

<table>
<thead>
<tr>
<th>Display</th>
<th>LCD, monochrome, graphics-capable 128 x 128 pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDs</td>
<td>15 LEDs for operation display and messages, of which 4 LEDs are freely programmable (3x yellow, 1x yellow/green/red)</td>
</tr>
</tbody>
</table>

Table 38: Display elements

11.2 Voltage supply

<table>
<thead>
<tr>
<th>Permissible voltage range</th>
<th>85...140 VAC 12 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible frequency range</td>
<td>50 / 60 Hz</td>
</tr>
<tr>
<td>Power consumption</td>
<td>6...12 VA (depending on the extensions)</td>
</tr>
</tbody>
</table>

Table 39: Voltage supply

11.3 Voltage measurement and current measurement

| Voltage measurement | U_N (RMS): 120 V AC
Measuring range (RMS): 85...140 V AC
Measuring accuracy < ± 0.5%
Intrinsic consumption: < 1 VA |
|---------------------|--|
| Current measurement | I_N: 200 mA
Measuring range: 2...420 mA
Overload capacity: 200 mA (continuous), 420 mA (for 2 h) 4.0 A (for 1 s)
Measuring accuracy < ± 0.5%
Intrinsic consumption: < 1 VA |

Table 40: Voltage measurement and current measurement
11 Technical data

Interfaces

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2.1</td>
<td>Voltage input for phase L</td>
</tr>
<tr>
<td>P2.3</td>
<td>Voltage input for neutral conductor</td>
</tr>
</tbody>
</table>

Table 41: Voltage measurement

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2.2</td>
<td>Current output for phase L</td>
</tr>
<tr>
<td>P2.4</td>
<td>Current input for phase L</td>
</tr>
</tbody>
</table>

Table 42: Current measurement

11.4 Digital inputs and outputs

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Quantity</th>
<th>Logical 0</th>
<th>Logical 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0...5 V AC (RMS)</td>
<td>7...240 V AC (RMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...1 V DC</td>
<td>1.2...30 V DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input current</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 60 mA (AC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 18 mA (DC)</td>
<td></td>
</tr>
</tbody>
</table>

Table 43: Technical data for digital inputs and outputs

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Quantity</th>
<th>Contact loadability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Max. AC: 120/240 VAC; 6 A</td>
</tr>
</tbody>
</table>

Interfaces

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2.7</td>
<td>Make contact (NO) 120/240 VAC</td>
</tr>
<tr>
<td>P2.8</td>
<td>Source contact 240 VAC</td>
</tr>
<tr>
<td>P2.9</td>
<td>Input 12 VDC</td>
</tr>
<tr>
<td>P2.10</td>
<td>Voltage output +12 VDC, max. 100 mA</td>
</tr>
<tr>
<td>P2.11</td>
<td>Source contact 12 VDC</td>
</tr>
<tr>
<td>P2.12</td>
<td>Make contact 12 VDC</td>
</tr>
<tr>
<td>P2.13</td>
<td>Input 12 VDC</td>
</tr>
<tr>
<td>P2.14</td>
<td>Source contact 12 VDC</td>
</tr>
<tr>
<td>P2.15</td>
<td>Make contact 12 VDC</td>
</tr>
</tbody>
</table>
11 Technical data

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2.16</td>
<td>Make contact (NO) 120/240 VAC</td>
</tr>
<tr>
<td>P2.17</td>
<td>Input 12 VDC</td>
</tr>
<tr>
<td>P2.18</td>
<td>Input 12 VDC</td>
</tr>
<tr>
<td>P2.19</td>
<td>-</td>
</tr>
<tr>
<td>P2.20</td>
<td>Make contact (NO) 120 VAC</td>
</tr>
<tr>
<td>P2.21</td>
<td>Make contact (NO) 120 VAC</td>
</tr>
<tr>
<td>P2.22</td>
<td>Source contact 120 VAC</td>
</tr>
<tr>
<td>P2.23</td>
<td>Source contact 240 VAC</td>
</tr>
<tr>
<td>P2.24</td>
<td>Source contact 120 VAC</td>
</tr>
<tr>
<td>P2.25</td>
<td>Source contact 240 VAC</td>
</tr>
<tr>
<td>P2.26</td>
<td>Input 120/240 VAC</td>
</tr>
<tr>
<td>P2.27</td>
<td>Input 120/240 VAC</td>
</tr>
<tr>
<td>P2.28</td>
<td>Input 120/240 VAC</td>
</tr>
<tr>
<td>P2.29</td>
<td>Input 120/240 VAC</td>
</tr>
<tr>
<td>P2.30</td>
<td>Make contact (NC) 120 VAC</td>
</tr>
<tr>
<td>P2.31</td>
<td>Make contact (NO) 120 VAC</td>
</tr>
<tr>
<td>P2.32</td>
<td>Source contact 120 VAC</td>
</tr>
</tbody>
</table>

Table 44: Digital inputs and outputs
11.5 Analog inputs and outputs (AI module)

<table>
<thead>
<tr>
<th>Input</th>
<th>Measuring range</th>
<th>Load resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0...1 mA</td>
<td>0...1 mA: < 3 kΩ</td>
</tr>
<tr>
<td></td>
<td>0...20 mA</td>
<td>0...20 mA: < 150 Ω</td>
</tr>
<tr>
<td></td>
<td>4...20 mA</td>
<td>4...20 mA: < 150 Ω</td>
</tr>
<tr>
<td>Potentiometer: maximum resistance</td>
<td>100 Ω...2 kΩ</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>Signal range</th>
<th>Load resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0...1 mA</td>
<td>0...1 mA: max. 10 kΩ</td>
</tr>
<tr>
<td></td>
<td>4...20 mA</td>
<td>4...20 mA: max. 500 Ω</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>P2.35</td>
</tr>
<tr>
<td>P2.36</td>
</tr>
<tr>
<td>P2.37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>P2.33</td>
</tr>
<tr>
<td>P2.34</td>
</tr>
</tbody>
</table>
11.6 System networking (CI module)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232</td>
<td>9-pin SUB-D connector</td>
</tr>
<tr>
<td></td>
<td>Pin 2: TxD</td>
</tr>
<tr>
<td></td>
<td>Pin 3: RxD</td>
</tr>
<tr>
<td></td>
<td>Pin 5: GND</td>
</tr>
<tr>
<td>RS485</td>
<td>3-pin socket from Phoenix (MC1.5/3 GF 3.5)</td>
</tr>
<tr>
<td></td>
<td>Pin 1: A (non-inverted)</td>
</tr>
<tr>
<td></td>
<td>Pin 2: B (inverted)</td>
</tr>
<tr>
<td></td>
<td>Pin 3: GND</td>
</tr>
<tr>
<td>RJ45 (Ethernet/Modem)</td>
<td>Pin1: Tx+</td>
</tr>
<tr>
<td></td>
<td>Pin2: Tx-</td>
</tr>
<tr>
<td></td>
<td>Pin3: Rx+</td>
</tr>
<tr>
<td></td>
<td>Pin6: Rx-</td>
</tr>
<tr>
<td>Fiber-optic cable</td>
<td>F-ST (850 nm)</td>
</tr>
</tbody>
</table>

Table 48: Technical data for CI module

11.7 Dimensions and weight

<table>
<thead>
<tr>
<th>Description</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing (W x H x D)</td>
<td>5.81 x 8.5 x 3.08 in (147.6 x 216 x 78.2 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 6.2 lbs (2.8 kg)</td>
</tr>
</tbody>
</table>

Table 49: Dimensions and weight
11 Technical data

Figure 109: Front view

Figure 110: View from below
11.8 Ambient conditions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-13 °F…158 °F (-25 °C…+70 °C)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40 °F…176 °F (-40 °C…+80 °C)</td>
</tr>
</tbody>
</table>

Table 50: Ambient conditions

11.9 Electromagnetic compatibility

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High voltage</td>
<td>1500 VAC RMS to ground for 1 minute at a fault current ≤ 15 mA (except for communication interfaces, CAN bus terminal P1 and terminals P.2.33…P2.37)</td>
</tr>
<tr>
<td>IEC 61000-4-2</td>
<td>Electrostatic discharges (ESD) 8 kV / 15 kV</td>
</tr>
<tr>
<td>IEC 61000-4-3</td>
<td>Electromagnetic fields (HF) 10 V/m 80…4000 MHz</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td>Fast transients (burst) 4 kV at 2.5 kHz (1 min)</td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
<td>Immunity to transients (surge) 2 kV (phase conductor / phase conductor), 4 kV (phase conductor / ground)</td>
</tr>
<tr>
<td>IEC 61000-4-6</td>
<td>HF interference immunity (lines) 10 V, 150 kHz…80 MHz</td>
</tr>
<tr>
<td>IEC 61000-4-8</td>
<td>Immunity to magnetic fields 1000 A/m, 60 Hz, continuous</td>
</tr>
<tr>
<td>IEEE C37.90.1-2002</td>
<td>Fast transients (burst) 4 kV</td>
</tr>
</tbody>
</table>

Table 51: Electromagnetic compatibility

11.10 Environmental durability tests

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN EN 60529</td>
<td>Determination of protection class for "protection against contact, ingress of foreign objects and water for electrical equipment" Level IP54</td>
</tr>
<tr>
<td>IEC 60068-2-1</td>
<td>Dry cold -13 °F / 96 hours</td>
</tr>
<tr>
<td>IEC 60068-2-2</td>
<td>Dry heat 158 °F / 96 hours</td>
</tr>
</tbody>
</table>
11.11 Mechanical stability

<table>
<thead>
<tr>
<th>Standard</th>
<th>Test Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60255-21-1 Class 1</td>
<td>Bounce test</td>
</tr>
<tr>
<td>IEC 60255-21-2 Class 1</td>
<td>Shock and bump test</td>
</tr>
<tr>
<td>IEC 60255-21-3 Class 1</td>
<td>Seismic test</td>
</tr>
</tbody>
</table>

Table 53: Mechanical stability

<table>
<thead>
<tr>
<th>Standard</th>
<th>Test Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60068-2-3</td>
<td>Damp heat at a constant 104 °F / 93% / 96 hours</td>
</tr>
<tr>
<td>IEC 60068-2-30</td>
<td>Cyclic moist heat (12 + 12 hours) 131 °F / 6 cycles</td>
</tr>
</tbody>
</table>

Table 52: Environmental durability tests
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>LDC</td>
<td>Line drop compensation</td>
</tr>
<tr>
<td>MR</td>
<td>Maschinenfabrik Reinhausen GmbH</td>
</tr>
<tr>
<td>OF</td>
<td>Abbreviation for fiber-optic cable</td>
</tr>
<tr>
<td>R/L</td>
<td>Raise/lower</td>
</tr>
<tr>
<td>RTC</td>
<td>Real-time clock</td>
</tr>
<tr>
<td>SCADA</td>
<td>Technical processes are monitored and controlled using a computer system (Supervisory Control and Data Acquisition)</td>
</tr>
</tbody>
</table>
List of key words

A
- Application timeout confirmation response 123
- Article number 21
- Assemblies 26
- Auxiliary supply voltage 44
- Average value interval 108
- Average value memory 105

B
- Bandwidth 72
 - Calculation 72
 - Visual display 74
- Baud rate 56, 118
- Behavior in the event of negative active power flow 62

C
- Cable recommendation 32
- CAN bus 98
 - Data 133
- Circulating reactive current blocking 100
 - Sensitivity 101
- COM2 setting 56
- Communication port 118
- Communication protocol 117
- Compensation 84
- Connection 32
- Consumption interval 59
- Control parameter desired value 69
- Control parameters 66
- Control response T1 76

D
- Date 51
- Delay time T1 75
- Delay time T2 77
- Activating 77
- Deactivating 77
- Desired value 65
 - Desired value 69
- Device ID 65
- Display elements LED 25

E
- Electromagnetic compatibility 33
- Event memory 105, 108

F
- Factory setting 132, 144
 - Fiber-optic cable information about laying 36
 - Follower tapping direction 103
- Function monitoring 83
- Function test 48
 - Additional functions 48
 - Control functions 46
 - Overvoltage U> 48
 - R&X compensation 49
 - Undervoltage U< 48
 - Z compensation 49
- Function tests 46

G
- GPI 94

H
- highest tap position blocking limit 128
- High-speed return 81

I
- Info 129

K
- Key lock 63
- Keys 23

L
- Language 51
- LED selection 105
- Limit value 78
 - Limit value monitoring 78
 - Overvoltage U> 81
 - Undervoltage U< 78
- Line drop compensation 86
 - Inductive voltage drop 86
 - Ohmic voltage drop 86
- Local/Remote input 63
- lowest tap position blocking limit 128

M
- Manual/Automatic input 63
- Measured value memory 105, 134
- Measured values 129
- Memory 105
- Motor runtime 60
- Output relay 61

N
- Nameplate 21
- Network address 119
- NORMset 64
List of key words

O
 Operating controls 23
 Operating mode
 Auto mode 18
 Local mode 18
 Manual mode 18
 Remote mode 18
 Optical fiber transmission behavior 120
 Overview of parameters 144
 Overvoltage threshold 107
 Overvoltage U> 81
 Overvoltage U> (V) 82

P
 Parallel operation 97, 133
 Activate 104
 CAN bus 98
 Circulating reactive current 99
 Deactivate 104
 Parallel operation error message 102
 parallel operation group 98
 Parallel operation method 99
 Parameter
 Bandwidth 72
 Peak memory 135
 Phase difference 89
 Primary voltage 65

R
 R&X compensation 84
 Raise/Lower pulse duration 57
 Rectifying faults 138
 Regulator ID 55
 Repeat unsolicited messages 122
 Reset parameters 132
 Retrace date 116
 Retrace time 116
 RTC 132

S
 SCADA address
 Device 120
 Master 121
 Secondary voltage 127
 Send delay time RS485 123
 Serial number 21
 Short-circuit capacity 97
 Tap position blocking mode 127
 Tap position blocking unit highest 128
 Tap position capture
 Analog 124
 highest 128
 lowest 128
 Tap position capture
 Time 51
 Time axis 113
 Time plotter 111
 Retrace date 116
 Retrace time 116
 Time axis 113
 Visual display 112
 Transformer
 Voltage range 115
 Primary current 94
 Transformer data
 Primary voltage 93
 Secondary voltage 93
 Transformer circuit 89

U
 U< blocking 80
 U< threshold 106
 U<delay 80
 U> threshold 107
 Undervoltage threshold 106
 Undervoltage U< (V) 80
 Unsolicited messages 122
 Upcoming messages 136

V
 V< also below 30 V 81
 Voltage display kV/V 56

W
 Wiring 32, 37

Z
 Z compensation
 Activate 88
 Limit value 88
Australia
Reinhausen Australia Pty. Ltd.
17/20-22 St Albans Road
Kingsgrove NSW 2208
Phone: +61 2 9502 2202
Fax: +61 2 9502 2224
E-Mail: sales@au.reinhausen.com

Brazil
MR do Brasil Indústria Mecânica Ltda.
Av. Elias Yazbek, 465
CEP: 06803-000
Embu - São Paulo
Phone: +55 11 4785 2150
Fax: +55 11 4785 2185
E-Mail: ventas@reinhausen.com.br

Canada
Reinhausen Canada Inc.
3755, rue Java, Suite 180
Brossard, Québec J4Y 0E4
Phone: +1 514 370 5377
Fax: +1 450 659 3092
E-Mail: m.foata@ca.reinhausen.com

India
Easun-MR Tap Changers Ltd.
612, CTH Road
Tiruninravur, Chennai 602 024
Phone: +91 44 26300883
Fax: +91 44 26390881
E-Mail: easunmr@vsnl.com

Indonesia
Pt. Reinhausen Indonesia
German Center, Suite 6310,
BSD City, Tangerang
Phone: +62 21 5315-3183
Fax: +62 21 5315-3184
E-Mail: c.haering@id.reinhausen.com

Iran
Iran Transfo After Sales Services Co.
Zanjan, Industrial Township No. 1 (Aliabad)
Corner of Morad Str.
Postal Code 4533144551
E-Mail: itass@iran-transfo.com

Italy
Reinhausen Italia S.r.l.
Via Alserio, 16
20159 Milano
Phone: +39 02 6943471
Fax: +39 02 69434766
E-Mail: sales@it.reinhausen.com

Japan
MR Japan Corporation
German Industry Park
1-18-2 Hakusan, Midori-ku
Yokohama 226-0006
Phone: +81 45 929 5728
Fax: +61 45 929 5741

Luxembourg
Reinhausen Luxembourg S.A.
72, Rue de Près
L-7333 Steinsel
Phone: +352 27 3347 1
Fax: +352 27 3347 99
E-Mail: sales@lu.reinhausen.com

Malaysia
Level 11 Chulan Tower
No. 3 Jalan Conlay
50450 Kuala Lumpur
Phone: +60 3 2142 6481
Fax: +60 3 2142 6422
E-Mail: mr_rap@my.reinhausen.com

P.R.C. (China)
MR China Ltd. (MRT)
开德贸易（上海）有限公司
中国上海浦东新区浦东南路360号
新上海国际大厦4楼E座
邮编: 200120
电话: +86 21 61634988
传真: +86 21 61634582
邮箱: mr-sales@cn.reinhausen.com
mr-service@cn.reinhausen.com

Russian Federation
OOO MR
Naberezhnaya Akademika Tupoleva
15, Bd. 2 ("Tupolev Plaza")
105005 Moscow
Phone: +7 495 980 89 67
Fax: +7 495 980 89 67
E-Mail: smr@reinhausen.ru

South Africa
Reinhausen South Africa (Pty) Ltd.
No. 15, Third Street, Booysens Reserve
Johannesburg
Phone: +27 11 8352077
Fax: +27 11 8353806
E-Mail: support@za.reinhausen.com

South Korea
Reinhausen Korea Ltd.
21st floor, Standard Chartered Bank Bldg.,
47, Chongro, Chongro-gu,
Seoul 110-702
Phone: +82 2 767 4909
Fax: +82 2 736 0049
E-Mail: youmi.jang@kr.reinhausen.com

U.S.A.
Reinhausen Manufacturing Inc.
2549 North 9th Avenue
Humboldt, TN 38343
Phone: +1 731 784 7681
Fax: +1 731 784 7682
E-Mail: sales@reinhausen.com

United Arab Emirates
Reinhausen Middle East FZE
Dubai Airport Freezone, Building Phase 6
3rd floor, Office No. 6EB, 341 Dubai
Phone: +971 4 2368 451
Fax: +971 4 2368 225
Email: service@ae.reinhausen.com

Maschinenfabrik Reinhausen GmbH
Falkensteinstrasse 8
93059 Regensburg

+49 (0)941 4090-0
www.reinhausen.com
+49 (0)941 4090-7001
sales@reinhausen.com

297/08 EN • 08/18 • F0167908