Regulador de tensão
TAPCON® 230 basic

Instruções de serviço

2117246/05 PT
© Todos os direitos da Maschinenfabrik Reinhausen
Salvo autorização expressa, ficam proibidas a transmissão, assim como a reprodução deste documento, a comercialização e a comunicação do seu conteúdo.
Os infratores serão obrigados a prestar indenização. Reservados todos os direitos para o caso de registro de patente, modelo registrado e modelo de apresentação.
Após a conclusão da redação da presente documentação, podem ter ocorrido modificações no produto.
Ficam expressamente reservados todos os direitos às alterações dos dados técnicos ou da estrutura, bem como às alterações do material fornecido.
Como princípio, todas as informações transmitidas e acordos fechados durante o processamento dos respectivos orçamentos e pedidos são juridicamente vinculativas.
As instruções de serviço originais foram redigidas em alemão.
Índice

1 Introdução .. 7
 1.1 Fabricante .. 7
 1.2 Reserva de direito a modificações ... 7
 1.3Integridade ... 7
 1.4 Local de conservação ... 7
 1.5 Convenções de representação .. 7
 1.5.1 Sistema de advertência .. 8
 1.5.2 Sistema de informação .. 9
 1.5.3 Conceito de manuseio .. 9
 1.5.4 Convenções tipográficas .. 10
2 Segurança .. 11
 2.1 Informações gerais de segurança .. 11
 2.2 Utilização apropriada ... 11
 2.3 Utilização inapropriada .. 11
 2.4 Qualificação do pessoal .. 12
 2.5 Cuidados obrigatórios do proprietário ... 12
3 Segurança de TI ... 13
4 Descrição do produto .. 14
 4.1 Material fornecido .. 14
 4.2 Descrição do funcionamento da regulagem de tensão .. 15
 4.3 Características ... 16
 4.4 Modos de operação ... 17
 4.5 Hardware .. 17
 4.5.1 Placa de características .. 18
 4.5.2 Elementos de comando .. 19
 4.5.3 Elementos de indicação .. 20
 4.5.4 Interface serial .. 22
 4.5.5 Componente placa MIO .. 24
5 Embalagem, transporte e armazenagem .. 25
 5.1 Embalagem .. 25
 5.1.1 Utilização .. 25
 5.1.2 Aceitação, montagem e fabricação .. 25
Índice

5.1.3 Marcações.. 25
5.2 Transporte, recebimento e tratamento de envios.. 25
5.3 Armazenagem de material enviado.. 27

6 Montagem.. 28
 6.1 Preparação .. 28
 6.2 Montar o aparelho ... 29
 6.2.1 Instalação embutida em painel .. 30
 6.2.2 Montagem na parede com chapas .. 31
 6.2.3 Montagem com trilho ... 33
 6.2.4 Montagem na parede ... 34
 6.2.5 Desmontar a porta ... 35
 6.3 Conectar o aparelho ... 36
 6.3.1 Cabos recomendados ... 37
 6.3.2 Instruções para a instalação de fibra óptica .. 37
 6.3.3 Compatibilidade eletromagnética .. 38
 6.3.4 Conectar as linhas na periferia do equipamento ... 41
 6.3.5 Alimentação do regulador de tensão através de uma tensão auxiliar ... 42
 6.3.6 Cabear o aparelho ... 42
 6.3.7 Verificar a operacionalidade ... 43

7 Colocação em funcionamento .. 45
 7.1 Ajustar o contraste do visor .. 45
 7.2 Ajustar os parâmetros .. 45
 7.2.1 Definir o idioma ... 46
 7.2.2 Ajustar outros parâmetros ... 46
 7.3 Testes de funcionamento ... 47
 7.3.1 Testar as funções de regulagem ... 47
 7.3.2 Verificar as funções adicionais ... 49

8 Operação .. 53
 8.1 Bloqueio de teclas .. 53
 8.2 Geral ... 53
 8.2.1 Ajustar a ID do aparelho .. 53
 8.2.2 Ajustar a taxa de baud .. 54
 8.2.3 Ajustar a duração de impulso de comutação .. 54
 8.2.4 Ajustar o contador de comutações .. 56
 8.2.5 Escurecer a indicação ... 57
Índice

8.2.6 Ativar/desativar o bloqueio automático das teclas ... 57
8.2.7 Mensagem “Monitoramento de funcionamento” para tensões de medição <30 V 58
8.2.8 Ajustar o tempo de monitoramento de funcionamento do motor ... 59
8.2.9 Ativar a operação manual/operação automática .. 61
8.2.10 Ativar local/remoto .. 62
8.2.11 Configurar a senha de COM1 ... 62
8.2.12 Configurar a duração da senha .. 63
8.3 NORMset .. 63
8.4 Parâmetros de regulagem .. 65
8.4.1 Definir o valor de referência 1...3 ... 69
8.4.2 Selecionar valor de referência .. 69
8.4.3 Faixa de operação .. 70
8.4.4 Ajustar o tempo de retardamento T1 ... 72
8.4.5 Ajustar a resposta de controle T1 .. 72
8.4.6 Ajustar o tempo de retardamento T2 ... 73
8.5 Valores-limite .. 74
8.5.1 Ajustar o monitoramento da subtensão U< ... 75
8.5.2 Ajustar o monitoramento da sobretensão U> ... 77
8.5.3 Ajustar o monitoramento de sobrecorrente I> ... 79
8.5.4 Ajustar o monitoramento de sobrecorrente I< ... 80
8.5.5 Ativar/desativar o monitoramento de potência ativa ... 81
8.6 Compensação .. 81
8.6.1 Compensação de linha .. 81
8.6.2 Compensação Z ... 85
8.7 Dados do transformador .. 87
8.7.1 Ajustar a tensão primária do transformador ... 88
8.7.2 Ajustar a tensão secundária do transformador ... 88
8.7.3 Ajustar a corrente primária do transformador ... 89
8.7.4 Ajustar a conexão do transformador de corrente .. 90
8.7.5 Ajustar a sequência de fases do transformador de tensão/transformador de corrente 90
8.8 Entrada e saídas configuráveis .. 94
8.8.1 Vincular entradas com funções .. 94
8.8.2 Vincular saídas com funções .. 96
8.9 Seleção de LED .. 97
8.10 Exibir informações sobre o aparelho .. 99
8.10.1 Exibir a tela de informações ... 99
8.10.2 Exibir valores de medição ... 99
8.10.3 Exibir valores calculados ... 100
8.10.4 Executar um teste de LEDs ... 101
8.10.5 Exibir o estado da placa MIO ... 101
8.10.6 Redefinir parâmetros .. 102
8.10.7 Exibir a visão geral da memória ... 103
8.10.8 Exibir a visão geral de eventos ... 103

9 Resolução de falhas ... 104
9.1 Não ocorre regulagem no modo de operação AUTO ... 104
9.2 Troca de taps sem motivo ... 104
9.3 Interface homem-máquina ... 105
9.4 Valores de medição incorretos .. 105
9.5 GPIs e GPOs específicas do cliente .. 106
9.6 Falhas gerais ... 107
9.7 Outras falhas ... 107

10 Mensagens .. 108

11 Eliminação ... 110

12 Visão geral dos parâmetros ... 111

13 Dados técnicos ... 114
13.1 Elementos de indicação ... 114
13.2 Dados elétricos .. 114
13.3 Dimensões e peso ... 114
13.4 Condições ambientais .. 116
13.5 Segurança elétrica .. 116
13.6 Compatibilidade eletromagnética ... 116
13.7 Testes de resistência ao ambiente ... 117
13.8 Estabilidade mecânica .. 117

Glossário ... 118

Índice ... 119
1 Introdução

Esta documentação técnica contém descrições detalhadas para montar, conectar o produto de forma correta e segura, além de colocá-lo em funcionamento e monitorá-lo.

Além disso, são apresentadas instruções de segurança e informações gerais sobre o produto.

O público a quem esta documentação técnica se destina é exclusivamente o pessoal técnico autorizado e treinado.

1.1 Fabricante

O fabricante do produto é:
Maschinenfabrik Reinhausen GmbH
Falkensteinstraße 8
93059 Regensburg, Alemanha
Tel.: (+49) 941 4090-0
Fax: (+49) 941 4090-7001
E-mail: sales@reinhausen.com

Se desejar, você poderá receber mais informações sobre o produto e novas edições desta documentação técnica através desse endereço.

1.2 Reserva de direito a modificações

As informações contidas nesta documentação técnica são as especificações técnicas aprovadas no momento da impressão. Alterações significativas serão abordadas em uma nova edição da documentação técnica.

Os números de documento e de versão desta documentação técnica constam do rodapé.

1.3 Integridade

Esta documentação técnica é completa somente se estiver acompanhada dos documentos complementares.

1.4 Local de conservação

Mantenha esta documentação técnica, assim como outros documentos complementares sempre em local acessível e sempre disponíveis para uso futuro.

1.5 Convenções de representação

Este parágrafo contém um resumo dos símbolos e realces de texto utilizados.
1.5.1 Sistema de advertência

Nesta documentação técnica, os avisos de advertência estão representados da forma descrita a seguir.

1.5.1.1 Aviso de advertência específico a determinadas seções

Os avisos de advertências específicos a determinadas seções dizem respeito a capítulos ou seções inteiras, subseções ou vários parágrafos dentro desta documentação técnica. Nesta documentação técnica, as notas de advertência são estruturadas conforme o seguinte modelo:

⚠️ ADVERTÊNCIA

Tipo do perigo!

Origem do perigo e consequências.

► Medida

► Medida

1.5.1.2 Advertência incorporada

Avisos de advertência integrados se referem a uma determinada parte dentro de uma seção. Estes avisos de advertência são válidos para unidades de informação menores que os avisos de advertência específicos a seções. As notas de advertência integradas são estruturadas conforme o seguinte modelo:

⚠️ PERIGO!

Instrução de procedimento para a prevenção de uma situação perigosa.

1.5.1.3 Palavras de sinalização e pictogramas

As seguintes palavras de sinalização são utilizadas:

<table>
<thead>
<tr>
<th>Palavra de sinalização</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERIGO</td>
<td>Indica uma situação perigosa que causa a morte ou ferimentos graves se não for evitada.</td>
</tr>
<tr>
<td>ADVERTÊNCIA</td>
<td>Indica uma situação perigosa que pode causar a morte ou ferimentos graves se não for evitada.</td>
</tr>
<tr>
<td>ATENÇÃO</td>
<td>Indica uma situação perigosa que pode causar ferimentos se não for evitada.</td>
</tr>
<tr>
<td>AVISO</td>
<td>Indica medidas para evitar danos materiais.</td>
</tr>
</tbody>
</table>

Tabela 1: Palavras de sinalização nas notas de advertência
1 Introdução

O alerta para os perigos é feito com pictogramas:

<table>
<thead>
<tr>
<th>Pictograma</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Advertência de uma área de perigo</td>
</tr>
<tr>
<td>⚡️</td>
<td>Advertência de uma tensão elétrica perigosa</td>
</tr>
<tr>
<td>⫝̸</td>
<td>Advertência de materiais inflamáveis</td>
</tr>
<tr>
<td>⫝̸</td>
<td>Advertência do perigo de queda</td>
</tr>
</tbody>
</table>

Tabela 2: Pictogramas em notas de advertência

1.5.2 Sistema de informação

As informações têm como objetivo simplificar e melhorar o entendimento de determinados processos. Nesta documentação técnica, as informações são estruturadas segundo o seguinte modelo:

Informações importantes

1.5.3 Conceito de manuseio

Esta documentação técnica contém informações sobre procedimentos de um só passo e de vários passos.

Informações sobre procedimentos de um só passo

As informações sobre procedimentos de um só passo de trabalho são estruturadas de acordo com o seguinte modelo:
1 Introdução

Objetivo do manuseio
✓ Pré-condições (opcional).

► Passo 1 de 1.

⇒ Resultado do passo de manuseio (opcional).
⇒ Resultado do manuseio (opcional).

Informações sobre procedimentos com mais de uma etapa
As informações sobre procedimentos que compreendem mais de uma etapa de trabalho são estruturadas de acordo o seguinte modelo:

Objetivo do manuseio
✓ Pré-condições (opcional).

1. Passo 1
⇒ Resultado do passo de manuseio (opcional).

2. Passo 2
⇒ Resultado do passo de manuseio (opcional).
⇒ Resultado do manuseio (opcional).

1.5.4 Convenções tipográficas
Nesta documentação técnica são utilizadas as seguintes convenções tipográficas:

<table>
<thead>
<tr>
<th>Convenção tipográfica</th>
<th>Utilização</th>
<th>Exemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIÚSCULAS</td>
<td>Elementos de comando, interruptores</td>
<td>ON/OFF</td>
</tr>
<tr>
<td>[Parênteses]</td>
<td>Teclado de PC</td>
<td>[Ctrl] + [Alt]</td>
</tr>
<tr>
<td>Negrito</td>
<td>Elementos de comando Software</td>
<td>Pressionar o botão Avançar</td>
</tr>
<tr>
<td>…>…>…</td>
<td>Caminhos de menu</td>
<td>Parâmetros > Parâmetros de regulagem</td>
</tr>
<tr>
<td>Itálico</td>
<td>Mensagens de sistema, mensagens de erro, sinais</td>
<td>Alarme Monitoramento de funcionamento disparado</td>
</tr>
<tr>
<td>[► Número da página].</td>
<td>Referência cruzada</td>
<td>[► 41].</td>
</tr>
</tbody>
</table>

Tabela 3: Convenções tipográficas
2 Segurança

2.1 Informações gerais de segurança

A documentação técnica contém descrições detalhadas para montar, conectar o produto de forma correta e segura, além de colocá-lo em funcionamento e monitorá-lo.

▪ Leia esta documentação técnica com atenção para conhecer bem o produto.
▪ Observe especialmente as informações deste capítulo.

2.2 Utilização apropriada

Com a utilização apropriada do produto e respeito aos requisitos e condições mencionadas nesta documentação técnica, assim como às advertências contidas nesta documentação técnica e afixadas no produto, não há nenhum perigo de ferimentos, danos materiais nem ambientais. Isso se aplica a toda a vida útil, desde a entrega, passando pela montagem e operação, e terminando na desmontagem e eliminação.

O sistema de garantia de qualidade da empresa assegura um alto padrão de qualidade contínuo, especialmente em relação à conformidade com os requerimentos de saúde e de segurança.

Os seguintes usos são considerados apropriados:
▪ O produto deve ser utilizado de acordo com esta documentação técnica, com as condições de entrega acordadas e com os dados técnicos
▪ Os dispositivos e ferramentas especiais fornecidos devem ser utilizados exclusivamente para o fim previsto e de acordo com as determinações desta documentação técnica

2.3 Utilização inapropriada

Qualquer utilização do produto que contrarie o que está descrito na seção Utilização apropriada será considerada inapropriada. Além disso, observe o seguinte:
▪ Perigo de explosões e de incêndio por causa de gases, vapores ou pós facilmente inflamáveis ou explosivos. Não operar o produto em áreas sujeitas a explosões.
▪ Modificações ao produto não permitidas ou não apropriadas poderão causar danos pessoais, materiais e falhas no funcionamento. Alterar o produto somente após consultar a Maschinenfabrik Reinhausen GmbH.
2.4 Qualificação do pessoal

O produto é destinado exclusivamente para a utilização em instalações e equipamentos de energia elétrica, nos quais especialistas treinados executem os trabalhos necessários. Especialistas são pessoas familiarizadas com a instalação, montagem, colocação em funcionamento e operação de produtos deste tipo.

2.5 Cuidados obrigatórios do proprietário

Para evitar acidentes, falhas e avarias, bem como danos ao meio-ambiente, o respectivo responsável pelo transporte, montagem, operação, conservação e eliminação do produto ou de peças do produto deve observar o seguinte:

- Seguir todas as notas de advertência e de perigo.
- Esclarecer ao pessoal com regularidade todas as dúvidas que surjam quanto à segurança no trabalho, as instruções de serviço, e especialmente as instruções de segurança nelas contidas.
- Os regulamentos e instruções de operação para trabalhar com segurança, bem como as respectivas instruções de comportamento em caso de acidentes e incêndio devem ser mantidas em local sempre acessível e, se necessário, afixadas no local de trabalho.
- Somente operar o produto se esse estiver em perfeitas condições de funcionamento e, principalmente, verificar os dispositivos de segurança regularmente quanto ao seu funcionamento correto.
- Utilizar exclusivamente as peças de reposição, lubrificantes e aditivos aprovados pelo fabricante.
- Observar as condições de operação indicadas e as exigências relativas ao local de montagem.
- Deixar à disposição todos os aparelhos e os equipamentos de proteção pessoal necessários para as respectivas atividades.
- Respeitar os ciclos de manutenção recomendados e os respectivos regulamentos.
- Somente permitir que a montagem, conexão elétrica e colocação em funcionamento do produto sejam executadas por pessoal qualificado e treinado e em conformidade com esta documentação técnica.
- O operador é responsável por garantir a utilização apropriada do produto.
3 Segurança de TI

Observe as seguintes recomendações para a operação segura do produto.

Geral

▪ Permita o acesso ao aparelho somente a pessoas autorizadas. Para isso, utilize a fechadura da porta do aparelho.
▪ Utilize o aparelho exclusivamente dentro do perímetro de segurança eletrônica (ESP – "electronic security perimeter"). Não ligue o aparelho à Internet sem proteção.
▪ O aparelho deve ser operado exclusivamente por pessoal treinado e conscientizado quanto à segurança de TI.
▪ Não atribua senhas fáceis de descobrir. A senha deve conter 8 caracteres e conter maiúsculas, minúsculas e números.

Colocação em funcionamento

Para a colocação em funcionamento do aparelho, observe as seguintes recomendações:

▪ Ajuste a duração da senha para 5 minutos no máximo [► Parágrafo 8.2.12, Página 63].
▪ Atribua uma senha para a interface frontal COM1 [► Parágrafo 8.2.11, Página 62].

Operação

Durante a operação do aparelho, observe as seguintes recomendações:

▪ Não se afaste do aparelho quando a senha fornecida estiver ativa. A senha fornecida está ativa quando o LED Operação em paralelo pisca.
▪ Altere a senha em intervalos regulares.
4 Descrição do produto

Neste capítulo pode ser encontrada uma visão geral da estrutura e modo de funcionamento do produto.

4.1 Material fornecido

Os seguintes componentes estão contidos no material fornecido:

- Regulador de tensão TAPCON® 230 basic
- Pasta com todos os documentos relativos ao aparelho
- Manual resumido (no lado de dentro da porta do aparelho)
- Chave da porta
- Chave hexagonal com abertura 3
- 2 parafusos de cabeça de lentilha
- Estribo de montagem do painel já instalado na caixa do aparelho

Figura 1: Estribo de montagem do painel

- Chapa para montagem na parede

Figura 2: Chapa

- Barra de cobertura para a porta

Figura 3: Barra de cobertura

Pode ser adquirido como opcional:

- Clipe de trilho
Note o seguinte:
- Verificar se todos os componentes foram fornecidos de acordo com os documentos de expedição.
- Armazenar as peças em local seco até a montagem.

4.2 Descrição do funcionamento da regulagem de tensão

O TAPCON® serve para manter constante a tensão de saída de um transformador com comutador de derivação em carga.

Para isso, o TAPCON® compara a tensão de medição do transformador U_{real} com uma tensão de referência definida U_{ref}. A diferença entre U_{real} e U_{ref} representa o desvio de regulação dU.

Os parâmetros do TAPCON® podem ser ajustados de forma otimizada ao comportamento da tensão da rede de modo que seja atingida uma resposta de controle balanceada com um número mínimo de comutações do comutador de derivação em carga.

A seguinte ilustração mostra uma visão geral da regulagem de tensão.
4.3 Características

O TAPCON® executa a regulagem dos transformadores derivados.

Além das tarefas de regulagem, o TAPCON® oferece funções adicionais, como:

- Funções de monitoramento integradas:
 - Bloqueio por subtensão e bloqueio por sobretensão
 - Comutação rápida de retorno no caso de sobretensão
- Compensação das quedas de tensão na linha (compensação de linha)
- Compensação das diferenças de tensão na rede em malha (compensação Z)
- Entradas e saídas digitais que podem ser programadas individualmente pelo cliente no local
- Indicações adicionais através de LEDs fora do visor para três funções selecionáveis
- Exibição de todos os valores de medição como tensão, corrente, potência ativa, potência aparente ou potência reativa e fator de potência (cos ϕ)
- Três valores de referência diferentes selecionáveis
4.4 Modos de operação

O aparelho pode ser operado nos seguintes modos de operação:

Operação automática (AUTO)

Na operação automática, a tensão é regulada automaticamente de acordo com os parâmetros definidos. Os demais ajustes do aparelho não podem ser alterados na operação automática. Neste modo de funcionamento não existe um comando ativo por um sistema de comando hierarquicamente superior.

Operação manual (MANUAL)

Na operação manual, não ocorre a regulação automática. O acionamento motorizado pode ser comandado através do painel de controle do aparelho. Os ajustes do aparelho podem ser alterados.

Operação local (LOCAL)

Neste modo de funcionamento não existe um comando ativo por um sistema de comando hierarquicamente superior.

Operação remota (REMOOTO)

Na operação remota é possível executar comandos através de um nível de controle externo. Neste caso, a operação manual das teclas e é desativada.

<table>
<thead>
<tr>
<th></th>
<th>AUTO + LOCAL</th>
<th>AUTO + REMOTO</th>
<th>MANUAL + LOCAL</th>
<th>MANUAL + REMOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulagem automática</td>
<td>Sim</td>
<td>Sim</td>
<td>Não</td>
<td>Não</td>
</tr>
<tr>
<td>Comutação através de elementos de comando</td>
<td>Não</td>
<td>Não</td>
<td>Sim</td>
<td>Não</td>
</tr>
<tr>
<td>Comutação através de entradas</td>
<td>Não</td>
<td>Não</td>
<td>Não</td>
<td>Sim</td>
</tr>
</tbody>
</table>

Tabela 4: Visão geral dos modos de operação

4.5 Hardware
4 Descrição do produto

Figura 6: Hardware

<table>
<thead>
<tr>
<th>Número</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Painel de controle com visor e LEDs</td>
</tr>
<tr>
<td>2</td>
<td>Fechadura da porta</td>
</tr>
<tr>
<td>3</td>
<td>Porta</td>
</tr>
<tr>
<td>4</td>
<td>Prensa-cabos métricos</td>
</tr>
</tbody>
</table>

4.5.1 Placa de características

A placa de características encontra-se na partes externa do aparelho:

Figura 7: Placa de características
Elementos de comando

O aparelho contém 15 teclas. A ilustração seguinte mostra uma visão geral de todos os elementos de comando do aparelho.

Figura 8: Elementos de comando

- **Tecla SUBIR**: Enviar instrução de comando para a comutação para cima ao acionamento motorizado na operação manual.
- **Tecla BAIXAR**: Enviar instrução de comando para a comutação para baixo ao acionamento motorizado na operação manual.
- **Tecla REMOTO**: Ativar/desativar o modo de operação “Remoto”. Desativando esse modo de operação, o modo de operação “Local” será ativado automaticamente.
- **Tecla MANUAL**: Ativar o modo de operação “Operação manual”.
- **Tecla AUTO**: Ativar o modo de operação “Operação automática”.
- **Tecla VOLTAR**: Trocar a exibição do valor de medição e voltar para os parâmetros anteriores.
- **Tecla SEGUINTE**: Trocar a exibição do valor de medição e avançar para os parâmetros seguintes.
- **Tecla ENTER**: Confirmar a seleção e salvar os parâmetros alterados.
- **Tecla ESC**: Sair do menu atual e abrir os níveis de menu anteriores.
4.5.3 Elementos de indicação

O aparelho dispõe de um visor gráfico e 15 LEDs que sinalizam diversos estados de operação ou eventos.

![Diagrama dos LEDs](image)

Figura 9: Elementos de indicação

<table>
<thead>
<tr>
<th>Número</th>
<th>LED</th>
<th>Função</th>
<th>Cor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LED</td>
<td>Indicação de operação, verde</td>
<td>Verde</td>
</tr>
<tr>
<td>2</td>
<td>LED</td>
<td>Bloqueio por sobrecorrente,</td>
<td>Vermelho</td>
</tr>
<tr>
<td>3</td>
<td>LED</td>
<td>Bloqueio por subtensão,</td>
<td>Vermelho</td>
</tr>
<tr>
<td>4</td>
<td>LED</td>
<td>Bloqueio por sobretensão,</td>
<td>Vermelho</td>
</tr>
<tr>
<td>5</td>
<td>LED</td>
<td>Operação em paralelo ativa,</td>
<td>Verde</td>
</tr>
<tr>
<td>6</td>
<td>LED</td>
<td>NORMset ativo, verde</td>
<td>Verde</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>LED</td>
<td>3 Alocação de função livre,</td>
<td>Verde/amarelo</td>
</tr>
<tr>
<td>10</td>
<td>LED</td>
<td>4 Alocação de função livre,</td>
<td>Amarelo/vermelho</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Visor gráfico</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>LED</td>
<td>Modo de operação Automático</td>
<td>Ativo</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Modo de operação Manual ativo</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>LED</td>
<td>Modo de operação Remoto ativo</td>
<td></td>
</tr>
</tbody>
</table>
4 Descrição do produto

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>LED 1 Alocação de função livre, amarelo</td>
</tr>
<tr>
<td>8</td>
<td>LED 2 Alocação de função livre, amarelo</td>
</tr>
<tr>
<td>15</td>
<td>LED Comutação para baixo ativa</td>
</tr>
<tr>
<td>16</td>
<td>LED Comutação para cima ativa</td>
</tr>
</tbody>
</table>

Visor

![Visor](image)

Figura 10: Visor

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linha de status</td>
</tr>
<tr>
<td>2</td>
<td>Tensão de medição U_{real}</td>
</tr>
<tr>
<td>3</td>
<td>Tensão de referência U_{ref}</td>
</tr>
<tr>
<td>4</td>
<td>Outros valores de medição (alternar com ↩ ou ↩️)</td>
</tr>
<tr>
<td>5</td>
<td>Faixa de operação (limite superior e inferior)</td>
</tr>
<tr>
<td>6</td>
<td>Barra de tempo do tempo de retardamento de T1</td>
</tr>
<tr>
<td>7</td>
<td>Marcação para tensão de medição U_{real}</td>
</tr>
<tr>
<td>8</td>
<td>Marcação para tensão de referência U_{ref}</td>
</tr>
<tr>
<td>9</td>
<td>Tempo restante do tempo de retardamento T1</td>
</tr>
</tbody>
</table>
Outros valores de medição

Com as teclas → ou ← é possível ajustar a exibição do valor de medição na operação manual e na operação automática: Os seguintes valores de medição podem ser exibidos:

<table>
<thead>
<tr>
<th>Unidade</th>
<th>Valor de medição</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆U</td>
<td>Desvio de regulação</td>
</tr>
<tr>
<td>I</td>
<td>Corrente</td>
</tr>
<tr>
<td>S</td>
<td>Potência aparente</td>
</tr>
<tr>
<td>P</td>
<td>Potência ativa</td>
</tr>
<tr>
<td>Q</td>
<td>Potência reativa</td>
</tr>
<tr>
<td>Fase</td>
<td>Ângulo de fase</td>
</tr>
<tr>
<td>Cos</td>
<td>Cosseno</td>
</tr>
</tbody>
</table>

Tabela 5: Exibição de valor de medição

Linha de status

Na linha de status são indicados mensagens e eventos atuais. Mais informações sobre mensagens e eventos podem ser encontradas no capítulo Mensagens.

4.5.4 Interface serial

O aparelho pode ser parametrizado com auxílio de um PC. Para isso, existe a interface COM 1 (RS232) na placa frontal. Com o cabo de ligação fornecido é possível criar uma conexão ao seu PC através da interface RS 232 ou USB (por meio de um adaptador USB opcional).

Figura 11: Conexão do aparelho a um PC
4.5.5 Componente placa MIO

O aparelho dispõe de um componente interno. Para fazer o cabeamento, siga o esquema de conexão fornecido.

Figura 12: Placa MIO

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Saídas de relé (terminal X4)</td>
</tr>
<tr>
<td>2</td>
<td>Entradas de sinal (terminal X4)</td>
</tr>
<tr>
<td>3</td>
<td>Saídas de relé (terminal X3)</td>
</tr>
<tr>
<td>4</td>
<td>Conexão do transformador de corrente (terminal X1)</td>
</tr>
<tr>
<td>5</td>
<td>Conexão do transformador de tensão e conexão de rede (terminal X2)</td>
</tr>
</tbody>
</table>
5 Embalagem, transporte e armazenagem

5.1 Embalagem

5.1.1 Utilização

A embalagem tem a finalidade de proteger o produto embalado durante o transporte, carga e descarga e também durante os períodos de armazenamento para que esse não seja prejudicado de nenhum modo. A embalagem deve proteger o produto contra os efeitos normais de transporte como vibrações, golpes, umidade (chuva, neve, água de condensação).

A embalagem impede também uma mudança de posição indesejada do material embalado dentro da embalagem. Para que o produto possa ser transportado de modo correto e econômico, antes da embalagem propriamente dita ele deve ser deixado pronto para o envio.

5.1.2 Aceitação, montagem e fabricação

A embalagem do material é feita com uma caixa de papelão resistente. Esta garante que o envio na posição de transporte prevista seja seguro e que nenhuma de suas peças toque a área de carga do meio de transporte ou o piso após o descarregamento.

A caixa pode suportar uma carga máxima de até 10 kg.

O material embalado é estabilizado dentro da caixa para impedir alterações de posição indesejadas e protegido contra vibrações por meio de divisórias.

5.1.3 Marcações

A embalagem contém instruções para o transporte seguro e a armazenagem adequada. Para o envio de produtos não perigosos, aplicam-se os seguintes símbolos. Estes símbolos devem ser sempre observados.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Umbrella]</td>
<td>Proteger contra a umidade</td>
</tr>
<tr>
<td>![Up Arrow]</td>
<td>Este lado para cima</td>
</tr>
<tr>
<td>![Glass]</td>
<td>Frágil</td>
</tr>
<tr>
<td>![Lock]</td>
<td>Suspender por aqui</td>
</tr>
<tr>
<td>![Target]</td>
<td>Centro de gravidade</td>
</tr>
</tbody>
</table>

| Tabela 6: Símbolos válidos para o envio |

5.2 Transporte, recebimento e tratamento de envios

Além das vibrações, geralmente também ocorrem impactos durante o transporte. Para afastar a possibilidade de danos, deve-se evitar que o aparelho sofra quedas, tombamentos, choques que seja virado de borco.
Caso uma caixa tombe, caia de certa altura (p. ex. por rompimento do anteparo) ou caia livremente, geralmente ocorrem danos independentemente do seu peso.

Antes da aceitação (confirmação de recebimento), o destinatário deve verificar cada entrega quanto a:

▪ integridade do material de acordo com a nota de expedição
▪ danos exteriores de qualquer tipo

As verificações devem ser efetuadas depois do descarregamento, quando é possível ter acesso à caixa ou à embalagem de transporte por todos os seus lados.

Danos visíveis
Se, durante o recebimento do envio, forem constatados danos de transporte externos, proceda da seguinte forma:

▪ Descreva imediatamente os danos de transporte verificados nos documentos de expedição e exija a assinatura do responsável pela entrega.
▪ No caso de danos graves, perda total e altos custos de reparação, entre em contato imediatamente com o setor de vendas da Maschinenfabrik Reinhausen e com a seguradora responsável.
▪ Após a constatação do dano, não altere o seu estado e mantenha o material de embalagem até que tenha sido decidida a realização uma vistoria por parte da empresa de transporte ou da seguradora.
▪ Registre no local o dano com as empresas de transporte responsável. Isso é indispensável para um pedido de indenização!
▪ Se possível, fotografe os danos na embalagem e no produto. Isso também se aplica a danos por corrosão no material de embalagem pela penetração de umidade (chuva, neve, água de condensação).
▪ Não deixe de verificar também a vedação da embalagem.

Danos ocultos
No caso de danos que só são descobertos após a retirada da embalagem (danos ocultos), proceda da seguinte forma:

▪ Entre em contato com o possível causador do dano o mais rápido possível por telefone e por escrito, comunicando-lhe da sua responsabilidade e prepare uma descrição dos danos.
▪ Para isso, observe os prazos válidos no respectivo país. Informe-se sobre isso com a antecedência necessária.

No caso dos danos ocultos, é difícil responsabilizar a empresa de transportes (ou outros causadores do dano). Em termos atuariais, uma solicitação de indenização dessa natureza somente tem chances de sucesso se isso estiver expressamente determinado no contrato de seguro.
5 Embalagem, transporte e armazenagem

5.3 Armazenagem de material enviado

Na seleção e preparação do local de armazenamento, é obrigatório:

▪ Proteger o material armazenado contra umidade (alagamentos, água de degelo de neve e gelo), sujeira, animais nocivos como ratazanas, ratos, cupins, etc. e contra o acesso não autorizado.

▪ Apoiar as caixas sobre caibros e ripas para protegê-las contra a umidade do piso e proporcionar melhor ventilação.

▪ Garantir que a base de sustentação tenha capacidade de carga suficiente.

▪ Manter as vias de acesso livres.

▪ Verificar o material armazenado em intervalos regulares, especialmente após tempestades, chuvas fortes, nevascas, etc. e tomar as providências adequadas.
6 Montagem

Este capítulo contém uma descrição de como montar e conectar o aparelho corretamente. Observe os esquemas de conexão aplicáveis.

PERIGO

Choque elétrico!

Perigo de morte por tensão elétrica! Durante trabalhos nas ou junto às instalações elétricas, respeitar sempre as seguintes regras de segurança.

► Desligar a instalação da eletricidade.
► Proteger a instalação contra religamento.
► Verificar se não há tensão em todos os polos.
► Aterrar e curto-circuitar.
► Cobrir ou tornar inacessíveis partes vizinhas que estejam sob tensão.

ADVERTÊNCIA

Choque elétrico!

Durante a operação de um transformador de corrente com circuito de corrente secundário aberto, podem ocorrer tensões perigosamente altas. Isso pode ocasionar a morte, ferimentos graves e danos materiais.

► Nunca operar transformadores de corrente com o circuito de corrente secundário aberto, curto-circuitar portanto o transformador de corrente.
► Consulte as informações contidas nas instruções de serviço do transformador de corrente.

AVISO

Danos ao aparelho!

A descarga eletrostática pode causar danos ao aparelho.

► Tomar precauções para evitar o carregamento eletrostático de superfícies de trabalho e do pessoal.

6.1 Preparação

Para a montagem, são necessárias as seguintes ferramentas:

- Chaves hexagonais fornecidas com abertura 3 (parte do material fornecido)
- Chave de fenda pequena para a conexão dos condutores de sinal e de alimentação

Dependendo do local de montagem, poderão ser necessárias mais ferramentas.
6.2 Montar o aparelho

É possível montar o aparelho nas seguintes variantes:
- Instalação embutida em painel
- Montagem na parede
- Montagem na parede com chapas
- Montagem com trilho (opcional)

Preparar a montagem

Antes de começar a montagem, é necessário retirar os dois estribos de fixação da parte posterior do aparelho e desmontar a chapa do prensacabo. Para isso, faça o seguinte:

1. Soltar os quatro parafusos de cabeça hexagonal interna com as chaves hexagonais fornecidas para remover o estribo de fixação.

Figura 13: Soltar o estribo de fixação
2. Soltar os quatro parafusos de cabeça hexagonal interna da chapa do prensa-cabo com as chaves hexagonais fornecidas para remover a chapa.

![Figura 14: Soltar a chapa do prensa-cabo](image)

O estribo de fixação e a chapa do prensa-cabo estão desmontadas.

As seguintes seções contêm descrições das respectivas variantes de montagem.

6.2.1 Instalação embutida em painel

Na instalação embutida em painel, o aparelho é deslizado através de uma abertura no painel e fixado por trás com os estribos de fixação no painel ou armário de distribuição. A ilustração seguinte mostra a medida necessária do recorte de painel.

![Figura 15: Medida para o recorte](image)
Para fixar o aparelho com firmeza, é necessária uma espessura de material de 2...5 mm (0,08...0,2 pol.).

Para montar o aparelho no painel ou no armário de distribuição, faça o seguinte:
1. Fechar a porta do aparelho.
2. Deslizar o aparelho através da abertura no painel ou no armário de distribuição.
3. Parafusar os dois estribos de fixação com os dois parafusos de sextavado interno na parte traseira do aparelho.

![Diagrama de instalação embutida em painel](image)

Figura 16: Instalação embutida em painel

☞ O aparelho está montado e pode ser cabeado.

Execute o cabeamento como indicado do esquema de conexão e como descrito na seção Conectar o aparelho [☞ Parágrafo 6.3, Página 36].

6.2.2 Montagem na parede com chapas

Como alternativa à montagem direta na parede, o aparelho pode ser fixado na parede com as chapas fornecidas.
Faça quatro furos com 5,5 mm (0,22 pol.) de diâmetro na parede de acordo com o gabarito apresentado a seguir.

Figura 17: Furos para a montagem na parede com chapas

Para montar o aparelho com as chapas, faça o seguinte:
1. Deitar o aparelho cuidadosamente, apoiando-o sobre a porta.
2. Parafusar as chapas fornecidas com os parafusos de cabeça hexagonal interna ao aparelho pela parte traseira 1.
3. Fixar o aparelho à parede com quatro parafusos (diâmetro máximo de 5 mm/0,22 pol.) 2.

Os parafusos para fixação na parede não fazem parte do material fornecido. O comprimento de parafuso necessário varia conforme a espessura da parede.

Figura 18: Montagem na parede com chapas

⇒ O aparelho está montado e pode ser cabeado 3.

Execute o cabeamento como indicado do esquema de conexão e como descrito na seção Conectar o aparelho [⇒ Parágrafo 6.3, Página 36].
6.2.3 Montagem com trilho

Opcionalmente, o aparelho pode ser montado com um clipe de trilho (perfil de extrusão de barra de alumínio com mola de arame centralizada integrada). Com isso, o aparelho pode ser montado em um trilho.

Ao instalar o trilho, deixe espaço suficiente para o aparelho. A partir dos parafusos de fixação do trilho, é preciso deixar, para a caixa do aparelho, um espaço de 5 cm (1.97 in) no mínimo para cima e de 35 cm (13.78 in) no mínimo para baixo.

Para montar o aparelho com o trilho, faça o seguinte:
1. Deitar o aparelho cuidadosamente, apoiando-o sobre a porta.
2. Parafusar o clipe do trilho com os parafusos de cabeça escareada M5 com sextavado interno fornecidos nos dois furos superiores da parte traseira.
3. Prenda o clipe no trilho e pressione a parte inferior cuidadosamente em direção à parede até ouvir o encaixe do clipe.

O aparelho está montado e pode ser cabeado.

Execute o cabeamento como indicado do esquema de conexão e como descrito na seção Conectar o aparelho [Parágrafo 6.3, Página 36].
6.2.4 Montagem na parede

Na montagem na parede, o aparelho é fixado diretamente na parede. Faça quatro furos com 5,5 mm de diâmetro cada na parede de acordo com o gabarito apresentado a seguir.

Figura 20: Gabarito de furos para montagem na parede

Para montar o aparelho diretamente na parede, faça o seguinte:
- Fechar a porta do aparelho.
- Fixar o aparelho na parede com quatro parafusos M5 pela parte traseira

Os parafusos para montagem na parede não fazem parte do material fornecido. O comprimento de parafuso necessário varia conforme a espessura da parede.

Figura 21: Montagem na parede

O aparelho está montado e pode ser cabeado

Execute o cabeamento como indicado do esquema de conexão e como descrito na seção Conectar o aparelho.
6.2.5 Desmontar a porta

Com a porta montada, o aparelho corresponde ao tipo de proteção IP54. Se o aparelho for operado exclusivamente em uma atmosfera seca e protegida contra as intempéries climáticas, a porta poderá ser desmontada. O aparelho corresponde então ao tipo de proteção IP21.

Para desmontar a porta, faça o seguinte:

1. Soltar o cabo de ligação à terra da porta com a chave inglesa.

2. Soltar o parafuso de fixação com uma chave de fenda e levantar a porta da ponto de apoio de cima.

Figura 22: Desmontar a porta

Figura 23: Remover a porta do ponto de apoio
3. Inserir a barra de cobertura no ponto de apoio de cima 1 e de baixo 2 e apertar com os parafusos de cabeça de lentilha fornecidos.

Figura 24: Fixar a barra de cobertura

☞ A porta está desmontada e os pontos de apoio abertos estão cobertos.

6.3 Conectar o aparelho

A seção seguinte contém uma descrição da conexão elétrica do aparelho.

⚠️ ADVERTÊNCIA

Choque elétrico!

Erros de conexão pode ocasionar a morte, ferimentos e danos materiais.
► Aterrar o aparelho através do parafuso de ligação à terra fixado na caixa com um condutor de proteção.
► Observar a sequência de fases das conexões secundárias do transformador de corrente e do transformador de tensão.
► Conectar corretamente o relé de saída ao acionamento motorizado.

Conduza tensões por separadores e faça com que os caminhos da corrente possam ser ligados em curto-circuito. Coloque uma identificação clara no separador e permita o acesso livre a ele nas proximidades da alimentação de tensão do aparelho. Desse modo, se houver algum defeito, é possível trocar o aparelho sem problemas.

Informações sobre o cabeamento

Para o cabeamento, observe estas recomendações:
✓ Para ter uma melhor visão geral do conjunto ao conectar, faça o cabeamento somente de tantos cabos quanto forem necessários
✓ Observe o esquema de conexão.
✓ Para o cabeamento, utilize exclusivamente os cabos especificados. Observe os cabos recomendados [⇒ Parágrafo 6.3.1, Página 37].
✓ Faça o cabeamento das linhas na periferia do equipamento [⇒ Parágrafo 6.3.4, Página 41].
1. Isolar os cabos e fios.
2. Crimpar os fios cochados com caixas terminais.

6.3.1 Cabos recomendados

Durante o cabeamento do aparelho, observe a seguinte recomendação da Maschinenfabrik Reinhausen.

Capacidades de potência altas demais podem impedir que os contatos de relé interrompam a corrente de contato. Em circuitos de controle acionados por corrente alternada, leve em consideração a influência da capacidade de potência de condutores de comando longos no funcionamento dos contatos de relé.

<table>
<thead>
<tr>
<th>Cabo</th>
<th>Terminal</th>
<th>Tipo de cabo</th>
<th>Seção transversal do fio</th>
<th>Comprimento máx.</th>
<th>Torque máx. permitido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entradas de sinal</td>
<td>X4</td>
<td>blindado</td>
<td>1,5 mm²</td>
<td>-</td>
<td>0,6 Nm</td>
</tr>
<tr>
<td>RS232 SUB-D</td>
<td>-</td>
<td>blindado</td>
<td>0,25 mm²</td>
<td>25 m</td>
<td>-</td>
</tr>
<tr>
<td>Saídas de relé*</td>
<td>X3</td>
<td>não blindado</td>
<td>1,5 mm²</td>
<td></td>
<td>0,6 Nm</td>
</tr>
<tr>
<td>Saídas de relé* opcionais</td>
<td>X4</td>
<td>não blindado</td>
<td>1,5 mm²</td>
<td></td>
<td>0,6 Nm</td>
</tr>
<tr>
<td>Medicação de corrente</td>
<td>X1:5/6/9</td>
<td>não blindado</td>
<td>4 mm²</td>
<td></td>
<td>1,5 Nm</td>
</tr>
<tr>
<td>Medicação de tensão</td>
<td>X2:1/2</td>
<td>blindado</td>
<td>1,5 mm²</td>
<td></td>
<td>0,6 Nm</td>
</tr>
<tr>
<td>Conexão à rede</td>
<td>X2:3/4</td>
<td>não blindado</td>
<td>1,5 mm²</td>
<td></td>
<td>0,6 Nm</td>
</tr>
</tbody>
</table>

Tabela 7: Cabos recomendados para cabos de conexão

*) Observar a capacitância dos cabos, ver nota acima.

Os terminais de cabo X1 até X4 encontram-se na placa MIO do aparelho.

6.3.2 Instruções para a instalação de fibra óptica

Para que a transmissão de dados através da fibra óptica ocorra sem problemas, é necessário ter o cuidado necessário para que sejam evitadas sobrecargas mecânicas não só na instalação da fibra óptica, mas também posteriormente durante a operação. Para isso, observe os dados do fabricante da fibra óptica, além das seguintes informações:

- Os raios de curvatura mínimos permitidos não podem ser ultrapassados (não dobrar a fibra óptica).
- Os cabos de fibra óptica não podem ser estirados nem comprimidos. Respeite os respectivos valores de carga permitidos.
- Os cabos de fibra óptica não podem ser torcidos nem entrelaçados.
• Durante a instalação, tenha cuidado com arestas afiadas, pois essas podem danificar o revestimento dos cabos de fibra óptica ou podem posteriormente exercer sobrecarga mecânica sobre o revestimento.

• Deixe uma reserva de cabo suficiente na área dos armários de distribuição. Posicione a reserva de modo a impedir que o cabo de fibra óptica seja dobrado ou girado ao puxar.

6.3.3 Compatibilidade eletromagnética

O aparelho foi desenvolvido em conformidade com as normas de CEM aplicáveis. Para que as exigências das normas de CEM sejam mantidas, devem ser observados os pontos indicados a seguir.

6.3.3.1 Exigência relativa ao cabeamento do local de montagem

Ao escolher o local de montagem, observe o seguinte:

▪ A proteção contra sobretensão da instalação deve ser eficaz.

▪ A ligação à terra da instalação de corresponder aos regulamentos técnicos.

▪ Peças separadas da instalação devem ser ligadas através de uma compensação de potencial.

▪ O aparelho e o respectivo cabeamento devem manter uma distância mínima de 10 m a interruptores de potência, separadores de carga e barramentos.

6.3.3.2 Exigência relativa ao cabeamento do local de operação

Durante o cabeamento do local de operação, observe o seguinte:

▪ Instalar os condutores de ligação em canais de cabo metálicos aterrados.

▪ Não acondicionar, no mesmo canal de cabos, condutores propensos a causar interferência (por exemplo, condutores de alimentação) ou condutores sensíveis a interferência (por exemplo, condutores de sinal).

▪ Manter uma distância maior que 100 mm entre as linhas que geram interferência e linhas sensíveis a interferência.
Figura 25: Acondicionamento de cabos recomendado

<table>
<thead>
<tr>
<th>1</th>
<th>Canal de cabos para condutores propensos a causar interferência</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Condutor propenso a causar interferência (por exemplo, condutor de alimentação)</td>
</tr>
<tr>
<td>3</td>
<td>Canal de cabos para condutores sensíveis a interferência</td>
</tr>
<tr>
<td>4</td>
<td>Condutor sensível a interferência (por exemplo, condutor de sinal)</td>
</tr>
</tbody>
</table>

- Ligar à terra e curto-circuitar os condutores de reserva.
- Nunca conectar o aparelho a um condutor principal de quatro fios.
- Para a transmissão de sinais, utilizar linhas blindadas com condutores separados enrolados aos pares (condutor de saída/retorno).
- Ligar a blindagem de superfície completa (360°) no dispositivo ou a um trilho de aterramento.

A utilização de condutores separados pode reduzir consideravelmente a eficácia da blindagem. Ligue a blindagem com pouca extensão e por toda a superfície.
6.3.3.3 Exigência relativa ao cabeamento no armário de distribuição

No cabeamento do armário de distribuição, observe o seguinte:

- O armário de distribuição para a montagem do aparelho deve ser preparado de acordo com CEM:
 - Divisão funcional do armário de distribuição (separação espacial)
 - Compensação de potencial constante (todas as peças de metal são interligadas)
 - Cabeamento em conformidade com CEM (separação de linhas propensas a causar interferência de linhas sensíveis a interferência)
 - Blindagem otimizada (caixa de metal)
 - Proteção contra sobretensão (proteção contra raios)
 - Aterramento geral (barra de aterramento principal)
 - Cabeamentos em conformidade com CEM
 - As bobinas de acionador existentes devem ser conectadas

- Os cabos de conexão do aparelho devem ser acondicionados bem próximos à caixa metálica ligada à terra ou em suportes de cabos de metal ligados à terra.

- As linhas de sinal e de força devem ser acondicionadas em suportes de cabos separados.

- A ligação à terra do aparelho deve ser feita pelo parafuso previsto para essa finalidade, a conexão de terra de proteção, com uma fita de massa (seção transversal mínima de 8 mm²).
6.3.4 Conectar as linhas na periféria do equipamento

Para ter uma melhor visão do conjunto ao conectar, faça o cabeamento somente de tantos cabos quanto forem necessários.
Para conectar as linhas à periferia da instalação, faça o seguinte:

✔ Para o cabeamento, utilize exclusivamente os cabos especificados. Observe os cabos recomendados.

➤ Conecte à periferia da instalação as linhas que devem ser cabeadas com o aparelho conforme os esquemas de conexão fornecidos.

6.3.5 Alimentação do regulador de tensão através de uma tensão auxiliar

O aparelho é alimentado normalmente através do transformador de tensão. Se a tensão de alimentação e potência necessárias (ver “Dados técnicos”) não estiverem disponíveis para o transformador de tensão, o aparelho deve ser alimentado através de uma tensão auxiliar de 88...265VAC/DC, 50...60Hz.

Para alimentar o aparelho através de uma tensão auxiliar, faça o seguinte:

1. **AVISO!** Danos ao transformador de tensão. Se houver pontes encaixadas entre os terminais X2:1/3 e X2:2/4, a conexão de uma tensão auxiliar pode causar danos ao transformador de tensão. Remover as pontes entre os terminais X2:1/3 e X2:2/4.

2. Conectar o transformador de tensão aos terminais X2:1 e X2:2.

![Figura 29: Conexão de transformador de tensão e tensão auxiliar](image)

6.3.6 Cabear o aparelho

Para ter uma melhor visão do conjunto ao conectar, faça o cabeamento somente de tantos cabos quanto forem necessários.
Para fazer o cabeamento do aparelho, faça o seguinte:

- Para o cabeamento, utilize exclusivamente os cabos especificados. Observe os cabos recomendados [►Parágrafo 6.3.1, Página 37].
- Faça o cabeamento das linhas na periferia do equipamento [►Parágrafo 6.3.4, Página 41].

1. Remover os quatro parafusos de sextavado interno da placa de cobertura e remover a própria placa.
2. Desconectar os conectores necessários.
3. Remover os quatro parafusos de cabeça hexagonal interior da chapa do prensa-cabo e retirar a chapa.
4. Remover os bujões cegos dos prensa-cabos necessários para que seja possível passar os cabos.

Os prensa-cabos não utilizados devem ser fechados com bujões cegos para garantir o tipo de proteção IP54.

5. Isolar os cabos e fios.
6. Crimpar os fios cochados com caixas terminais.
7. Passar os cabos pelo prensa-cabo
8. Passar os fios pelos respectivos terminais do conector.
10. Passar a chapa do prensa-cabo pela abertura do aparelho destinada a isso.
11. Conectar os conectores nas respectivas tomadas.
12. Fixar a chapa de prensa-cabo na caixa do aparelho com quatro parafusos de sextavado interno.

6.3.7 **Verificar a operacionalidade**

Para ter certeza de que o cabeamento do aparelho está correto, verifique a operacionalidade do aparelho.

AVISO

Danos ao aparelho e periferia da instalação

Um aparelho conectado incorretamente pode sofrer danos e causar danos à periferia da instalação.

► Antes da coloção em funcionamento, verificar o circuito total.
► Antes da coloção em funcionamento, verificar a tensão real e a tensão de serviço.
Verifique os seguintes pontos:

- Depois de conectar o aparelho na rede elétrica, a tela exibirá o logotipo MR e, em seguida, a tela de operação.
- O LED verde Indicação de operação na parte superior esquerda da placa frontal do aparelho acende.

A montagem do aparelho está concluída e o aparelho pode ser configurado. Os procedimentos necessários para isso estão descritos no capítulo seguinte.
7 Colocação em funcionamento

Antes de colocar o aparelho em funcionamento, é preciso ajustar alguns parâmetros e realizar alguns testes de funcionamento. Esses testes estão descritos nos próximos capítulos.

AVISO

Danos ao aparelho e periferia da instalação

Um aparelho conectado incorretamente pode sofrer danos e causar danos à periferia da instalação.

► Antes da colocação em funcionamento, verificar o circuito total.
► Antes da colocação em funcionamento, verificar a tensão real e a tensão de serviço.

Para a avaliação do modo de operação do aparelho, recomenda-se a utilização de um aparelho de registro para registrar o valor real da tensão do transformador de medição.

7.1 **Ajustar o contraste do visor**

O contraste do visor pode ser ajustado através de um parafuso de ajuste na parte da frente do aparelho. Para ajustar o contraste, faça o seguinte:

► Rodar o parafuso de ajuste na parte da frente do aparelho com uma chave de fenda até estar ajustado o contraste desejado.

![Figura 30: Ajustar o contraste do visor](image)

7.2 **Ajustar os parâmetros**

Para a colocação em funcionamento do aparelho, você deve ajustar os seguintes parâmetros. Para informações mais detalhadas sobre os parâmetros, consulte as respectivas seções.
7.2.1 Definir o idioma

Com este parâmetro, você pode ajustar o idioma de exibição do aparelho. Estão disponíveis os seguintes idiomas:

<table>
<thead>
<tr>
<th>Idioma</th>
<th>Italiano</th>
<th>Alemão</th>
<th>Português</th>
<th>Francês</th>
<th>Russo</th>
<th>Espanhol</th>
</tr>
</thead>
</table>

Para definir o idioma, faça o seguinte:

1. **MENU > F4 Configuração > F3 Generalidades.**
 ⇒ Idioma
2. Pressionar **F1** ou **F5** para selecionar o idioma desejado.
3. Pressionar ** ↩**
 ⇒ O idioma está definido.

7.2.2 Ajustar outros parâmetros

Ajuste outros parâmetros para a colocação em funcionamento do aparelho. Informações mais detalhadas sobre os parâmetros podem ser encontradas no capítulo “Operação” [► Parágrafo 8, Página 53].

Ajustar os dados do transformador

Ajuste os dados do transformador e a sequência de fases do transformador de corrente e do transformador de tensão:

1. Ajustar a tensão primária do transformador [► Parágrafo 8.7.1, Página 88].
2. Ajustar a tensão secundária do transformador [► Parágrafo 8.7.2, Página 88].
3. Ajustar a corrente primária do transformador [► Parágrafo 8.7.3, Página 89].
4. Selecionar a conexão do transformador de corrente [► Parágrafo 8.7.4, Página 90].
5. Selecionar a comutação do transformador [► Parágrafo 8.7.5, Página 90].

Ajustar NORMset

Para colocar a regulagem de tensão em funcionamento com rapidez, é possível ativar o modo NORMset. Para ajustar os parâmetros por si mesmo, prossiga com as seções seguintes.

► Ativar NORMset e ajustar os parâmetros correspondentes [► Parágrafo 8.3, Página 63].
Ajustar os parâmetros de regulagem

Ajuste os seguintes parâmetros de regulagem:
1. Ajustar o valor de referência 1 [Parágrafo 8.4.1, Página 69].
2. Ajustar a faixa de operação [Parágrafo 8.4.3.2, Página 71].
3. Ajustar o tempo de retardoamento T1 [Parágrafo 8.4.4, Página 72].

Ajustar a compensação de linha (opcional)

Se for necessário usar compensação de linha, é necessário ajustar todos os parâmetros importantes para isso:
1. Selecionar o método de compensação LDC [Parágrafo 8.6.1, Página 81].
2. Ajustar os dados da linha para a queda de tensão ôhmica Ur [Parágrafo 8.6.1.1, Página 83].
3. Ajustar os dados da linha para a queda de tensão indutiva Ux [Parágrafo 8.6.1.2, Página 84].

7.3 Testes de funcionamento

Antes de comutar da operação manual para a operação automática, a Maschinenfabrik Reinhausen recomenda a realização de testes de funcionamento. Esses testes de funcionamento estão descritos nas seções seguintes. Para todos os testes de funcionamento, observe os seguintes pontos:
- O modo de operação REMOTO tem de estar desativado para que seja possível comandar manualmente o comutador de derivação em carga na operação manual.
- O comutador de derivação em carga somente pode ser comandado de forma manual na operação manual com as teclas e .
- Durante o teste de funcionamento devem ser ajustados os parâmetros mais importantes. Os detalhes sobre os parâmetros mencionados podem ser encontrados no capítulo Funções e ajustes [Parágrafo 8, Página 53].

7.3.1 Testar as funções de regulagem

Esta seção descreve como é possível testar as funções de regulagem do aparelho:
- A tensão de alimentação deve estar disponível.
1. Pressionar para selecionar a operação manual.
2. Ajustar a relação de transformação dos transformadores de tensão e transformadores de corrente, assim como a disposição de medição.
3. Medir a tensão real e comparar com o valor de medição exibido na tela principal do aparelho.
4. Pressionar repetidamente a tecla \(\rightarrow \) para exibir os valores de operação de corrente, potência e ângulo de fase e compará-los com os valores dos dispositivos de medição.

5. Comandar o comutador de derivação em carga manualmente com as teclas \(\uparrow \) ou \(\downarrow \) até que a tensão de medição \(U_{\text{ref}} \) atinja a tensão de referência \(U_{\text{ref}} \) que deve ser ajustada no passo seguinte.

6. Ajustar o valor de referência 1 para o valor desejado.

7. Ajustar a faixa de operação em conformidade com a tensão de tap [⇒ Parágrafo 8.4.3, Página 70].

8. Ajustar o tempo de retardamento T1 para 20 segundos [⇒ Parágrafo 8.4.4, Página 72].

9. Ajustar a resposta de controle T1 para linear [⇒ Parágrafo 8.4.5, Página 72].

10. Pressionar \(\downarrow \) para passar o comutador de derivação em carga para 1 posição mais alta.

11. Pressionar \(\text{AUTO} \) para selecionar a operação automática.

\(\Rightarrow \) Depois de 20 segundos, o aparelho comanda o comutador de derivação em carga de volta para a posição de serviço original.

12. Pressionar \(\text{MANUAL} \) para selecionar a operação manual.

13. Pressionar \(\uparrow \) para passar o comutador de derivação em carga para 1 posição mais baixa.

14. Pressionar \(\text{AUTO} \) para selecionar a operação automática.

\(\Rightarrow \) Depois de 20 segundos, o aparelho comanda o comutador de derivação em carga de volta para a posição de serviço original.

15. Pressionar \(\text{MANUAL} \) para selecionar a operação manual.

16. Ajustar o tempo de retardamento T2 para 10 segundos [⇒ Parágrafo , Página 73].

17. Ativar o tempo de retardamento T2.

18. Pressionar \(\uparrow \) 2 vezes para passar o comutador de derivação em carga para 2 posições mais altas.

19. Pressionar \(\text{AUTO} \) para selecionar a operação automática.

\(\Rightarrow \) Depois de 20 segundos o aparelho passa o comutador de derivação em carga 1 posição para baixo e, decorridos mais 10 segundos, mais uma posição para baixo.

20. Pressionar \(\text{MANUAL} \) para selecionar a operação manual.

Para o tempo de retardamento T1 recomendamos para a colocação em funcionamento do transformador um ajuste provisório de 100 segundos. Dependendo das condições de serviço, é possível determinar o tempo de retardamento também somente depois de um tempo de observação mais longo. Para isso, é conveniente registrar a evolução da tensão real e o número de comutações de taps por dia.

7.3.2 Verificar as funções adicionais

Esta seção descreve como é possível testar as seguintes funções adicionais:

▪ Bloqueio por subtensão
▪ Bloqueio por sobretensão
▪ Ativação dos valores de referência 2 e 3
▪ Compensação de linha
▪ Compensação Z

Para isso, faça o seguinte:

Testar o bloqueio por subtensão U<

2. Ajustar a subtensão U< [%] para o valor 85 %.
3. Ajustar o parâmetro Bloqueio U< como ligado [Parágrafo , Página 76].
4. Ajustar o valor de referência 1 de modo que a tensão de medição Ureal esteja abaixo do valor-limite da subtensão U< [%].

Tensão de medição = 100 V
Valor de referência 1 = ajustar para o valor 120 V (superior a 100 V/0,85 = 117 V).

⇒ O LED Subtensão U< acende.
⇒ Após cerca de 10 segundos é exibida no visor a mensagem Subtensão e o respectivo relé de sinalização é ativado. O contato X4:1/3 fecha e o contato X4:2/3 abre.
5. Pressionar AUTO para selecionar a operação automática.
⇒ O aparelho está bloqueado e não emite nenhum comando de posição.
7. Voltar a ajustar os valores de operação do Valor de referência 1 e Subtensão U< [%] com os valores de operação desejados.
⇒ O teste de funcionamento para o bloqueio por subtensão está concluído.

Testar o bloqueio por sobretensão U>

2. Ajustar a sobretensão \(U> \) [%] para o valor 115 %.
3. Ajustar o parâmetro Valores-limite absolutos como desligado.
4. Ajustar o valor de referência 1 de modo que a tensão de medição \(U_{\text{real}} \) esteja acima do valor-limite da sobretensão \(U> \) [%].

Tensão de medição = 100 V
Valor de referência 1 = Ajustar para o valor 85 V (inferior a \(100 \, V/1,15 = 87 \, V \)).

- O LED \(\text{Sobretensão} \, U> \) acende.
- A mensagem \(\text{Sobretensão} \) é exibida no visor e o respectivo relé de sinalização é ativado. O contato \(X4:1/3 \) fecha e o contato \(X4:2/3 \) abre.

5. Pressionar \(\text{AUT} \) para selecionar a operação automática.
- O relé de saída Baixar emite um comando de posição a cada 1,5 segundos.

6. Pressionar \(\text{MAN} \) para selecionar a operação manual.

7. Voltar a ajustar os valores de operação do \textit{Valor de referência 1} e \textit{Sobretensão} \(U> \) [%] com os valores de operação desejados.
- O teste de funcionamento para o bloqueio por sobretensão está concluído.

\textbf{Testar o valor de referência 2 e o valor de referência 3}

1. Pressionar \(\text{MAN} \) para selecionar a operação manual.
2. Ajustar o \textit{Valor de referência 2} para o valor desejado.
3. Ligar a tensão \(L^+ \) ao terminal \(X4:17 \) \textit{Valor de referência 2} (ver esquema de ligação).
4. Pressionar \(\text{ESC} \) repetidamente até que seja exibida a tela principal.
- O \textit{Valor de referência 2} é exibido na tela principal.
5. Ajustar o valor de referência 3 para o valor desejado.
6. Ligar a tensão \(L^+ \) ao terminal \textit{Valor de referência 3} (ver esquema de ligação).
7. Pressionar \(\text{ESC} \) repetidamente até que seja exibida a tela principal.
- O \textit{Valor de referência 3} é exibido na tela principal.
- Os testes de funcionamento para o \textit{Valor de referência 2} e \textit{Valor de referência 3} estão concluídos.

\textbf{Testar a compensação de linha}

Para utilizar a compensação de linha, é necessário realizar este teste de funcionamento. Para os testes de funcionamento seguintes tem de existir uma corrente de carga de \(\geq 10 \% \) da corrente nominal do transformador.
7 Colocação em funcionamento

Antes do teste de funcionamento, certifique-se de que todos os parâmetros para a Line Drop Compensation e para a Compensação Z estão ajustados para o valor 0.

1. Pressionar para selecionar a operação manual.
2. Definir o parâmetro Método de compensação como LDC.
3. Pressionar repetidamente até que seja exibida a tela principal.
4. Se necessário, pressionar até que seja exibido o desvio de regulação \(dU\).
 \(\Rightarrow\) A tensão de medição deve estar situada dentro da faixa de operação.
5. Ajustar o parâmetro Compensação de linha Ur com 20,0 V.
6. Pressionar repetidamente até que seja exibida a tela principal.
7. Se necessário, pressionar até que seja exibido o desvio de regulação \(dU\).
 \(\Rightarrow\) O valor do desvio de regulação \(dU\) deve ser negativo.
8. Ajustar o parâmetro Compensação de linha Ur com -20,0 V.
9. Pressionar repetidamente até que seja exibida a tela principal.
10. Se necessário, pressionar até que seja exibido o desvio de regulação \(dU\).
 \(\Rightarrow\) O valor do desvio de regulação \(dU\) deve ser positivo.

Se o desvio de regulação ocorrer na direção oposta, a polaridade do transformador de corrente deve ser trocada.

11. Ajustar os parâmetros Compensação de linha Ur e Compensação de linha Ux com os valores de operação desejados.
 \(\Rightarrow\) O teste de funcionamento para a compensação de linha está concluído.

Testar a compensação Z

Para utilizar a compensação Z, é necessário realizar este teste de funcionamento. Para o teste de funcionamento seguinte é necessário que exista uma corrente de carga de \(\geq 10\%\) da corrente nominal do transformador.

1. Pressionar para selecionar a operação manual.
2. Ajustar todos os parâmetros para Line Drop Compensation e compensação Z para 0.
3. Ajustar o parâmetro Método de compensação para Z.
4. Pressionar repetidamente até que seja exibida a tela principal.
5. Se necessário, pressionar \(\rightarrow \) até que seja exibido o desvio de regulação \(dU \).

 \(\Rightarrow \) A tensão de medição deve estar situada dentro da faixa de operação.

6. Ajustar o parâmetro Compensação Z com 15,0 V.

7. Pressionar \(\text{ESC} \) repetidamente até que seja exibida a tela principal.

8. Se necessário, pressionar \(\rightarrow \) até que seja exibido o desvio de regulação \(dU \).

 \(\Rightarrow \) O desvio de regulação \(dU \) deve ser negativo.

Se o desvio de regulação ocorrer na direção oposta, a polaridade do transformador de corrente deve ser trocada.

 \(\Rightarrow \) O teste de funcionamento para a compensação Z está concluído.
8 Operação

Neste capítulo são descritas todas as funções e ajustes do aparelho.

8.1 Bloqueio de teclas

O aparelho é dotado de um bloqueio de teclas contra operação acidental. Os parâmetros somente podem ser definidos ou alterados na operação manual e se o bloqueio de teclas estiver desativado.

Ativar o bloqueio de teclas

Para ativar o bloqueio de teclas, faça o seguinte:

▸ Pressionar **ESC** e **F5** simultaneamente.

⇒ Na exibição aparece uma confirmação por um período breve. O bloqueio de teclas está ativado. Não é mais possível inserir parâmetros.

Desativar o bloqueio de teclas

Para desativar o bloqueio de teclas, faça o seguinte:

▸ Pressionar **ESC** e **F5** simultaneamente.

⇒ O bloqueio de teclas está desativado. É possível inserir parâmetros.

8.2 Geral

Com o item de menu **Geral** podem ser executados ajustes gerais no aparelho.

▪ Idioma [▸ Parágrafo 7.2.1, Página 46]
▪ ID do regulador
▪ Taxa de baud (Ajuste COM1)
▪ Duração de impulso subir/baixar
▪ Contador de comutações
▪ Escurecimento do visor
▪ Bloqueio de teclas
▪ Monitoramento de funcionamento
▪ Tempo de funcionamento do motor
▪ Operação manual/operação automática
▪ Local/remoto

8.2.1 Ajustar a ID do aparelho

Com o parâmetro ID do aparelho é possível atribuir ao aparelho uma identificação com 4 dígitos. Esta identificação serve para atribuir o aparelho no software TAPCON®-trol de forma inequívoca.
Para definir a ID do aparelho, faça o seguinte:

1. **Menu > F4 Configuração > F3** Geral e pressionar repetidamente até que seja exibido o parâmetro desejado.
 ⇒ ID do regulador.

2. Pressionar **F1** para alterar o primeiro dígito.
 ⇒ Se desejar inserir uma sequência de dígitos com várias casas, passe para a etapa 3. Se não desejar inserir mais nenhum dígito, continue com a etapa 7.

3. Pressionar **F1** repetidamente (dígitos >9) até que apareça uma nova posição de dígito.

4. Se necessário, pressionar **F4** para marcar uma posição de dígito.
 ⇒ O dígito desejado está marcado e o valor pode ser alterado.

5. Pressionar **F1 ou F5** para alterar o dígito.

6. Repetir os passos de 3 a 5 até que todos os dígitos desejados tenham sido inseridos.

7. Pressionar **←**
 ⇒ A ID do aparelho está definida.

8.2.2 Ajustar a taxa de baud

Com esse parâmetro é possível configurar a taxa de baud da interface COM1. É possível selecionar as seguintes opções:

- 9,6 kBaud
- 19,2 kBaud
- 38,4 kBaud
- 57,6 kBaud

Para configurar a taxa de baud, faça o seguinte:

1. **Menu > F4 Configuração > F3** Geral e pressionar repetidamente até que seja exibido o parâmetro desejado.
 ⇒ Taxa de baud.

2. Pressionar **F1 ou F5** para selecionar a taxa de baud desejada.

3. Pressionar **←**
 ⇒ A taxa de baud está configurada.

8.2.3 Ajustar a duração de impulso de comutação

Com este parâmetro é possível ajustar a duração de impulso de comando para o acionamento motorizado.
Ajustando a duração de impulso de comutação para 0 s, o acionamento motorizado será acionado com um sinal constante. Neste caso, o sinal estará presente enquanto forem pressionadas as teclas \[\text{[1]} \] ou \[\text{[2]} \].

Impulso de comutação na operação normal

Ajustando a duração de impulso de comutação para, por exemplo, 1,5 segundos, após decorrer o **tempo de retardamento T1** ou **tempo de retardamento T2** \[\text{[1]} \] ajustado, ocorre um impulso de comutação durante 1,5 segundos \[\text{[2]} \].

O tempo de espera entre 2 impulsos de comutação subsequentes corresponde ao **tempo de retardamento T1** ou **tempo de retardamento T2** \[\text{[1]} \] ajustado.

![Duração de impulso de comutação na operação normal](image)

Figura 32: Duração de impulso de comutação na operação normal

1 **Tempo de retardamento T1 ou T2** ajustado
2 **Duração de impulso de comutação ajustada (por exemplo 1,5 segundos)**

Se o acionamento motorizado não começar a funcionar com a definição de fábrica (1,5 segundos), é necessário prolongar a duração de impulso de comutação de subir/baixar.
Impulso de comutação em retorno rápido

Ajustando a duração de impulso de comutação de subir ou baixar para, por exemplo, 1,5 segundos, ocorre no modo de retorno rápido o impulso de comutação seguinte mais próximo 1,5 segundos após a ocorrência do impulso de comutação anterior.

Figura 33: Impulso de comutação no modo de retorno rápido

Para ajustar a duração de impulso, faça o seguinte:

1. Configuração > Geral e pressionar repetidamente até que seja exibido o parâmetro desejado.

2. Pressionar F1 ou F5 para selecionar a duração de impulso desejada.

3. Pressionar As a duração de impulso de S/B está ajustada.

8.2.4 Ajustar o contador de comutações

O contador de comutações do aparelho é comutado para cima automaticamente em cada comutação de tap. Com este parâmetro é possível ajustar a quantidade das comutações de tap para, por exemplo, executar uma equiparação com o contador de comutação do acionamento motorizado.
Para garantir o funcionamento correto do contador de comutações, é necessário ligar o sinal *Motor em funcionamento* do acionamento motorizado a uma entrada configurável (GPI 1...6) e, em seguida, atribuir a essa entrada a função *Motor em funcionamento*.

Para ajustar o contador de comutações, faça o seguinte:

1. **<key>MENU</key> > F4 Configuração > F3 Geral e pressionar repetidamente até que seja exibido o parâmetro desejado.**
 - Contador de comutações.
2. Pressionar **F4** para marcar um dígito.
 - O dígito desejado está marcado e o valor pode ser alterado.
3. Pressionar **F1** para aumentar o valor ou pressionar **F5** para diminuir o valor.
4. Pressionar **<key>←</key>**.
 - O contador de comutações está ajustado.

8.2.5 Escurecer a indicação

Com este parâmetro você pode ligar ou desligar o escurecimento automático do visor. Você pode selecionar as seguintes opções:

- **Ligado**: O visor é escurecido automaticamente se não for pressionada uma tecla no período de 15 minutos. Ao pressionar uma tecla qualquer, a iluminação do visor é reativada.
- **Desligado**: O escurecimento automático do visor está desligado.

Se você ativar esta função, a vida útil da indicação aumenta.

Para ativar/desativar o escurecimento automático do visor, faça o seguinte:

1. **<key>MENU</key> > F4 Configuração > F3 Geral > Pressionar repetidamente até que o parâmetro desejado seja exibido.**
 - Indicação apagada.
2. Pressionar **F1** ou **F5** para ativar/desativar o escurecimento automático.
3. Pressionar **<key>←</key>**.
 - O escurecimento automático está ajustado.

8.2.6 Ativar/desativar o bloqueio automático das teclas

Ativando esta função, o bloqueio de teclas será ativado automaticamente se você não pressionar nenhuma tecla dentro de 15 minutos. Além disso, você também pode bloquear as teclas manualmente. Você também pode desativar esta função.
Para ajustar o bloqueio automático de teclas, faça o seguinte:

1. **Menu** > **F4** Configuração > **F3** Geral e pressionar repetidamente até que seja exibido o parâmetro desejado.
 → Bloqueio de teclas.

2. Pressionar ou para selecionar **Lig** ou **Desl**.

3. Pressionar →
 → O bloqueio automático de teclas está ajustado.

8.2.7 Mensagem “Monitoramento de funcionamento” para tensões de medição <30 V

Como padrão, a mensagem **Monitoramento de funcionamento** para tensões de medição está ativada. Essa mensagem é enviada assim que a tensão de medição permanecer mais que o tempo de atraso de medição abaixo de 30 V.

Transformador desligado

Para evitar que a mensagem seja enviada constantemente enquanto o transformador estiver desligado, é possível suprimir a mensagem com este parâmetro.

O aparelho se comporta da seguinte maneira:

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Função</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lig</td>
<td>A mensagem Monitoramento de funcionamento é enviada após o tempo de retardamento que você ajustar se a tensão de medição for menor que 30 V.</td>
</tr>
<tr>
<td>Desl</td>
<td>A mensagem Monitoramento de funcionamento é suprimida se a tensão de medição for menor que 30 V.</td>
</tr>
</tbody>
</table>

Tabela 8: Configurações

Ativar/desativar a mensagem

Para ativar/desativar a mensagem **Monitoramento de funcionamento**, faça o seguinte:

1. **Menu** > **F4** Configuração > **F3** Geral e pressionar repetidamente até que seja exibido o parâmetro desejado.
 → Monitoramento de funcionamento.

2. Pressionar ou para selecionar **Lig** ou **Desl**.

3. Pressionar →
 → A mensagem **Monitoramento de funcionamento** para tensões <30 V está ativada/desativada.

Ajustar o tempo de retardamento

É possível ajustar o tempo de retardamento depois do qual a mensagem **Monitoramento de funcionamento** deve ser enviada. Ajustando o valor 0, o monitoramento de funcionamento será desativado.
8 Operação

Para ajustar o tempo de retardamento da mensagem Monitoramento de funcionamento, faça o seguinte:

 Retardamento do monitoramento de funcionamento.

3. Pressionar [←].

 O tempo de retardamento para a mensagem Monitoramento de funcionamento está ajustado.

8.2.8 Ajustar o tempo de monitoramento de funcionamento do motor

Com este parâmetro é possível ajustar o tempo de funcionamento do motor. O tempo de funcionamento do acionamento motorizado pode ser monitorado pelo aparelho. Esta função serve para identificar falhas no funcionamento do acionamento motorizado durante a comutação e, se necessário, desencadear ações.

Comportamento

Durante o procedimento de comutação, o acionamento motorizado emite o sinal Acionamento motorizado em funcionamento. Esse sinal permanece até que o procedimento de comutação esteja concluído. O aparelho compara a duração desse sinal com o tempo de funcionamento do motor ajustado. Se o tempo de funcionamento ajustado do motor for ultrapassado, são desencadeadas as seguintes ações pelo aparelho:

1. É emitida a mensagem Monitoramento de tempo de funcionamento do motor

2. Sinal constante através do relé de saída Ultrapassagem do tempo de funcionamento do acionamento motorizado (opcional)

3. Sinal de impulso através do relé de saída Disparar disjuntor do motor (opcional)

Parametrizar a entrada de comando

Para utilizar o monitoramento de tempo de funcionamento, é necessário cabear corretamente a entrada de comando correspondente e parametrizá-la com Motor em funcionamento. Além disso, o tempo de funcionamento do motor deve ser ajustado.
Cabear a entrada de comando / relé de saída

Se desejar monitorar o tempo de funcionamento do motor, o aparelho e o acionamento motorizado devem ser conectados e parametrizados como indicado na ilustração seguinte.

Figura 35: Cabeamento para o monitoramento de tempo de funcionamento do motor

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Entrada de comando GPI Motor em funcionamento</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Entrada de comando GPI Disjuntor do motor disparado (opcional)</td>
<td>4</td>
</tr>
</tbody>
</table>

Se desejar utilizar o relé de saída, será necessário também cabear e parametrizar a resposta do acionamento motorizado Disjuntor do motor disparado em uma entrada de comando. Quando o disjuntor do motor é religado, essa mensagem reposiciona o relé de saída Tempo de funcionamento do motor ultrapassado e ativa a mensagem Disjuntor do motor disparado.

Ajustando o monitoramento de tempo de funcionamento do motor em "0.0 s" segundos, será o mesmo que estar desligado.
Para ajustar o tempo de funcionamento do motor, faça o seguinte:

1. **MENU** > **F4** Configuração > **F3** Geral e pressionar repetidamente até que seja exibido o parâmetro desejado.
 - **Tempo de funcionamento do motor.**

2. Pressionar **F4** para marcar uma casa decimal.
 - O dígito desejado está marcado e o valor pode ser alterado.

3. Pressionar **F1** para aumentar o valor ou pressionar **F5** para diminuir o valor.

4. Pressionar **←**.
 - O tempo de funcionamento do motor está ajustado.

8.2.9 Ativar a operação manual/operação automática

Com este parâmetro é possível ativar os modos de operação **Manual** ou **Automático**. Este parâmetro tem as mesmas funções que as teclas **MANUAL** e **AUTO**.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Função</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>O aparelho não regula mais automaticamente.</td>
</tr>
<tr>
<td></td>
<td>É possível ajustar ou alterar os parâmetros manualmente.</td>
</tr>
<tr>
<td></td>
<td>É possível comandar o acionamento motorizado através do painel de comando.</td>
</tr>
<tr>
<td>Auto</td>
<td>O aparelho regula a tensão automaticamente.</td>
</tr>
<tr>
<td></td>
<td>Você não pode ajudar ou alternar nenhum parâmetro.</td>
</tr>
<tr>
<td></td>
<td>Você não pode comandar o acionamento motorizado através do painel de controle.</td>
</tr>
</tbody>
</table>

Tabela 9: Parâmetros ajustáveis

Para selecionar o modo de operação, faça o seguinte:

1. **MENU** > **F4** Configuração > **F3** Geral e pressionar repetidamente até que seja exibido o parâmetro desejado.
 - **Manual/automático.**

2. Pressionar **F1** ou **F5** para selecionar o modo de operação desejado.

3. Pressionar **←**.
 - O modo de operação está ajustado.
8 Operação

8.2.10 Ativar local/remoto

Com este parâmetro é possível ativar os modos de operação **Local** ou **Remoto**. Este parâmetro tem as mesmas funções que as teclas *

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Função</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>É possível operar o aparelho com o auxílio do painel de controle.</td>
</tr>
</tbody>
</table>
| Remoto | É possível operar o aparelho com o auxílio de um nível de comando externo.
A operação manual não funciona. |

Tabela 10: Parâmetros ajustáveis

Para ativar o modo de operação manual ou automático, faça o seguinte:

1. **Configuração > F4** Configuração > **F3** Geral e pressionar repetidamente até que seja exibido o parâmetro desejado.
2. **Local/remoto.**
3. Pressionar **F1** ou **F5** para selecionar o modo de operação desejado.
4. Pressionar .

O modo de operação está ajustado.

8.2.11 Configurar a senha de COM1

Com este parâmetro é possível inserir uma senha para a interface frontal COM1. Assim, é possível proteger o aparelho contra o acesso não autorizado através dessas interfaces. Quando uma senha COM1 é atribuída, primeiro insira a senha correta para estabelecer uma conexão através das interfaces.

Observe o seguinte:

- A senha deve ter no mínimo 1 caractere e no máximo 8 caracteres. Se uma senha vazia (somente com um caractere de fim) for inserida, a senha COM1 será desativada.
- É possível inserir caracteres alfanuméricos (A...Z, a...z, 0...9) bem como um caractere de fim (espacos).
- Para usar uma senha com menos de 8 caracteres, é necessário selecionar o caractere de fim depois do último caracter da sua senha.
- Quando a senha é salva, a exibição se altera para xxxxxxxx. A senha é exibida em texto legível somente durante a digitação.
Para ajustar a senha COM1, faça o seguinte:

1. **Configuração > Geral > e pressionar repetidamente até que seja exibido o parâmetro desejado.**

 Senha COM1.

2. Inserir senha COM1 atual. Para isso, pressionar ou para alterar um caractere e pressionar para realçar o caractere seguinte.

3. Pressionar.

 O LED **Operação em paralelo** pisca e é possível estabelecer uma conexão através da interface frontal ou inserir uma senha nova.

4. Pressionar ou para alterar um caractere e pressionar para realçar o caractere seguinte.

5. Pressionar.

 A senha COM1 está configurada, a exibição muda para xxxxxxxxx.

8.2.12 Configurar a duração da senha

Com este parâmetro é possível configurar a duração para a qual a senha deve estar ativa depois de ser inserida. Se a senha fornecida estiver ativa, o LED **Operação em paralelo** pisca.

Quando uma conexão é estabelecida através da interface frontal COM1, a senha permanece ativa enquanto ocorrer uma transferência de dados através da interface. Logo que o tráfego de dados cesar, a duração configurada da senha expira.

Para ajustar a duração da senha, faça o seguinte:

1. **Configuração > Geral > e pressionar repetidamente até que seja exibido o parâmetro desejado.**

 Duração da senha.

2. Pressionar ou para aumentar ou diminuir o valor.

3. Pressionar.

 A duração da senha está configurada.

8.3 NORMset

O modo NORMset serve para colocar a regulagem de tensão rapidamente em funcionamento. No modo NORMset, os parâmetros Faixa de Operação e Tempo de Retardamento são ajustados automaticamente conforme as exigências da rede.
Para ativar o modo NORMset, você deve definir os seguintes parâmetros:

▪ Ativação de Normset
▪ Valor de referência 1
▪ Tensão primária
▪ Tensão secundária

No modo NORMset não é possível executar compensação de linha.

Ajuste os seguintes parâmetros para operar o aparelho no modo NORMset.

Ativar/desativar Normset

Com esse parâmetro, você pode ativar o modo NORMset.

Se você ativar o NORMset, será necessária uma comutação de tap manual. Com isso, o regulador de tensão determina faixa de operação necessária.

Se o transformador for desligado, é necessário fazer uma comutação de tap manual novamente.

Para ativar/desativar o modo NORMset, faça o seguinte:

1. **NORMset**
 ⊳ Ativar NORMset.
2. Pressionar **F1** ou **F5** para ativar NORMset com a opção **Lig.** ou desativar o NORMset com a opção **Desl.**.
3. **O NORMset está ativado/desativado.**

Definir a tensão primária

Com este parâmetro, você pode definir a tensão primária do transformador de tensão.

Para definir a tensão primária, faça o seguinte:

1. **NORMset > F2**
 ⊳ Tensão primária.
2. Pressionar **F1** para aumentar o valor ou pressionar **F5** para diminuir-lo.
3. **A tensão primária está definida.**
Definir a tensão secundária

Com este parâmetro, você pode ajustar a tensão secundária do transformador de tensão.

Para ajustar a tensão secundária, faça o seguinte:

1. **NORMset > Pressionar repetidamente até que o parâmetro desejado seja exibido.**
 ⇒ Tensão secundária.

2. Pressionar **F1** para aumentar o valor ou pressionar **F5** para diminuí-lo.

3. Pressionar **l**.
 ⇒ A tensão secundária está definida.

Ajustar o valor de referência 1

Com este parâmetro, você pode definir o valor de referência para a regulagem de tensão automática. Você pode fornecer o valor de referência em V ou kV. Se você fornecer o valor de referência em V, o valor será relativo à tensão secundária do transformador de tensão. Se você ajustar o valor de referência em kV, o valor será relativo à tensão primária do transformador de tensão.

O ajuste em kV somente é possível se, anteriormente, você tiver fornecido os parâmetros para a tensão primária e a tensão secundária.

Para ajustar o valor de referência, faça o seguinte:

1. **NORMset > Pressionar repetidamente até que o parâmetro desejado seja exibido.**
 ⇒ Valor de referência 1

2. Pressionar **F1** para aumentar o valor ou pressionar **F5** para diminuí-lo.

3. Pressionar **l**.
 ⇒ O valor de referência está ajustado.

8.4 Parâmetros de regulagem

Nesta seção estão descritos todos os parâmetros necessários para a função de regulagem. Para a regulagem de tensão podem ser ajustados os parâmetros seguintes:

- Valores de referência 1...3
- Faixa de operação
- Tempo de retardamento T1
- Resposta de controle T1
- Tempo de retardamento T2
Para a regulagem de tensão, você pode ajustar o tempo de retardamento T1 e adicionalemente o tempo de retardamento T2. Nas seções seguintes é descrito como a função de regulagem se comporta nos dois casos:

Comportamento só com tempo de retardamento T1

Caso a tensão de medição U_{real} esteja situada dentro da faixa de operação ajustada, não são emitidas instruções de comando ao acionamento motorizado para o procedimento de comutação. Também não são emitidas ordens de comando ao acionamento motorizado se a tensão de medição ainda dentro do tempo de retardamento T1 ajustado retornar à área da faixa de operação. No entanto, se a tensão de medição sair da faixa de operação ajustada por um período mais longo, depois de esgotado tempo de retardamento T1 definido, é emitido um comando de comutação. O comutador de derivação em carga executa uma comutação na direção subir tap ou na direção baixar tap para voltar à área da faixa de operação.

Figura 38: Comportamento da função de regulagem com tempo de retardamento T1

1. $+ B \%$: limite superior
2. U_{ref}: Valor de referência
3. $- B \%$: limite inferior
4. Tempo de retardamento definido T1
5. U_{real}: Tensão de medição
6. $B\%$: largura da faixa de operação
8 Operação

A U_{rel}^* está fora da faixa de operação. O tempo de retardamento T1 começa a decorrer.
B U_{rel}^* está na faixa de operação antes do tempo de retardamento T1 ter se esgotado.

C U_{rel}^* está fora da faixa de operação. O tempo de retardamento T1 começa a decorrer.
D U_{rel}^* ainda está fora da faixa de operação até terminar o tempo de retardamento T1. É emitido um comando de procedimento de comutação.

Comportamento com tempo de retardamento T1 e T2

Com o tempo de retardamento T2 é possível compensar mais rápido desvios de regulação acentuados. No parâmetro “tempo de retardamento T2” deve ser ajustado um valor menor do que no parâmetro “tempo de retardamento T1”.

Se a tensão de medição U_{real} sair da faixa de operação por um período mais longo A, é emitido um impulso de comando depois de terminar o tempo de retardamento T_1 ajustado para o acionamento motorizado B. Se a tensão de medição U_{real} continuar fora da faixa de operação, depois de terminar o tempo de retardamento T_1 começa a decorrer o tempo de retardamento T_2 B. Depois de terminar o tempo de retardamento T_2 é novamente emitido um impulso de comando para o procedimento de comutação ao acionamento motorizado C para regressar à área da faixa de operação.

![Figura 39: Comportamento da função de regulagem com tempo de retardamento T_1 e T_2](image)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$+ B %$: limite superior</td>
</tr>
<tr>
<td>2</td>
<td>U_{ref}: Valor de referência</td>
</tr>
<tr>
<td>3</td>
<td>$- B %$: limite inferior</td>
</tr>
<tr>
<td>4</td>
<td>Tempo de retardamento T_1 e tempo de retardamento T_2 ajustados.</td>
</tr>
<tr>
<td>5</td>
<td>U_{real}: Tensão de medição</td>
</tr>
<tr>
<td>6</td>
<td>$B%$: largura da faixa de operação</td>
</tr>
</tbody>
</table>

A U_{real} está fora da faixa de operação. O tempo de retardamento T_1 começa a decorrer. B Tempo de retardamento T_1 decorrido. Procedimento de comutação disparado. C Tempo de retardamento T_2 decorrido. Procedimento de comutação disparado.

As seguintes seções descrevem como ajustar os respectivos parâmetros de regulagem.
8.4.1 Definir o valor de referência 1...3
Com este parâmetro, é possível ajustar até 3 valores de referência de tensão U_{ref}. O valor de referência de tensão é fornecido como uma grandeza fixa. O valor de referência 1 é o valor de referência padrão. Os valores de referência 2 ou 3 são ativados quando um existe um sinal constante nas entradas de comando X4:17 ou X4:18 ajustadas de fábrica, desde que você as tenha programado antes. Se houver simultaneamente um sinal em mais de uma entrada de comando, o valor de referência 2 será ativado.

Possibilidades de ajuste dos valores de referência
O aparelho oferece as seguintes possibilidade para alterar o valor de referência de tensão durante a operação:

- No item de menu Parâmetros de Regulagem através da tela de operação
- Através de entradas binárias
- Através de protocolos de sistema de controle caso exista uma placa de comunicação pronta para operar.

Relação de kV e V no transformador de tensão
A definição do valor de referência em kV refere-se à tensão primária do transformador de tensão. A definição do valor de referência em V refere-se à tensão secundária do transformador de tensão. Esta exibição exige a entrada correta dos dados do transformador.

Para ajustar o valor de referência, faça o seguinte:

1. **MENU** > **F3** Parâmetros de regulagem > **F2** Regulagem de tensão e pressionar **→** repetidamente até que seja exibido o parâmetro desejado.
2. Se já tiver fornecido os dados do transformador, pressione **F3** para selecionar a unidade desejada V ou kV.
3. Pressionar **F4** para marcar uma casa decimal.
 - O dígito desejado está marcado e o valor pode ser alterado.
4. Pressionar **F1** para aumentar o valor ou pressionar **F5** para diminuir o valor.
5. Pressionar **→**.
 - O valor de referência está ajustado.

8.4.2 Selecionar valor de referência
Com esse parâmetro é possível selecionar o valor de referência ativo 1, 2 ou 3.

Se você escolher o valor de referência através das GPIs configuradas de modo apropriado, o ajuste desse parâmetro será ignorado. Mais informações para a configuração das GPIs podem ser encontradas no parágrafo Configuração. [Parágrafo 8.8, Página 94]
Para selecionar um valor de referência, faça o seguinte:

1. [MENÚ] > [F3] Parâmetros de regulagem > [F2] Regulagem de tensão e pressionar repetidamente até que seja exibido o parâmetro desejado.
 ✤ Seleção do valor de referência.

3. Pressionar [←].
 ✤ O valor de referência está ativo.

8.4.3 Faixa de operação

Com este parâmetro, você pode ajustar o desvio máximo permitido da tensão de medição U_{Real}. O desvio se refere ao valor de referência ativado. As seções seguintes contêm uma descrição de como você pode determinar e ajustar a faixa de operação necessária.

8.4.3.1 Determinar a faixa de operação

Para poder ajustar um valor correto, é preciso conhecer as tensões de tap e a tensão nominal do transformador.

Vocês deve selecionar a faixa de operação de modo que, depois da comutação, a tensão de saída U_{Real} do transformador volte a se situar dentro da faixa de operação determinada. Caso seja escolhida uma faixa de operação estreita demais, a tensão de saída salta a faixa de operação selecionada e o aparelho emite imediatamente um comando de comutação na direção oposta. Caso seja escolhida uma faixa de operação muito larga, o desvio de regulação será muito grande.

Para o ajuste da faixa de operação, recomendamos o seguinte valor:

$$[\pm B\%] \geq 0.6 \cdot \frac{U_{n-1} - U_n}{U_{\text{nom}}} \cdot 100\%$$

Figura 41: Faixa de operação recomendada

<table>
<thead>
<tr>
<th>U_{n-1}</th>
<th>Tensão de tap da posição de tap n-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_n</td>
<td>Tensão de tap da posição de tap n</td>
</tr>
<tr>
<td>U_{nom}</td>
<td>Tensão nominal</td>
</tr>
</tbody>
</table>
Para determinar a faixa de operação recomendada, são utilizados os seguintes valores característicos do transformador:

- Tensão nominal \(U_{nom} = 11000 \text{ V} \)
- Tensão de tap na posição de tap 4 \(U_{pos4} = 11275 \text{ V} \)
- Tensão de tap na posição de tap 5 \(U_{pos5} = 11000 \text{ V} \)

\[
\pm B\% \geq 0.6 \cdot \frac{U_{pos4} - U_{pos5}}{U_{nom}} \cdot 100\
\]

\[
\pm B\% \geq 0.6 \cdot \frac{11275 \text{ V} - 11000 \text{ V}}{11000 \text{ V}} \cdot 100\
\]

\[
\pm B\% \geq 1.5\%\
\]

A seção seguinte contém uma descrição de como você pode ajustar a faixa de operação.

8.4.3.2 Ajustar faixa de operação

Para inserir a faixa de operação, faça o seguinte:

1. \(\Rightarrow \) \(\text{MIN} > \) \(F3 > \) Parâmetros \(\succ \) Parâmetros de regulagem \(\succ \) Pressionar repetidamente até que o parâmetro desejado seja exibido.

2. Pressionar \(F4 \) para realçar um dígito.
 \(\Rightarrow \) O dígito desejado está realçado e o valor pode ser alterado.

3. Pressionar \(F1 \) para aumentar o valor ou pressionar \(F5 \) para diminuí-lo.

4. Pressionar \(\Leftarrow \)
 \(\Rightarrow \) A faixa de operação está ajustada.

8.4.3.3 Representação visual

No visor do aparelho, o desvio é representado de modo visual em relação à faixa de operação ajustada. A marcação da tensão de medição indica se a tensão de medição está acima, dentro ou abaixo da faixa de operação ajustada. \(\text{O decurso do tempo de retardamento T1 é indicado pelo preenchimento progressivo da barra de tempo.} \)

\(\text{A exibição de segundos situada acima indica o tempo restante do tempo de retardamento T1.} \)
8.4.4 Ajustar o tempo de retardamento T1

Com este parâmetro, você pode ajustar o tempo de retardamento T1. Essa função retarda a execução de um comando de comutação por um período determinado. Desse modo são evitados procedimentos de comutação desnecessários quando o valor estiver fora da área da faixa de operação.

Para definir o tempo de retardamento T1, faça o seguinte:

O tempo de retardamento T1 está ajustado.

8.4.5 Ajustar a resposta de controle T1

A resposta de controle T1 pode ser definida de modo linear ou integral:

Resposta de controle linear T1

No caso da resposta de controle linear, o aparelho reage independentemente do desvio de regulação com um tempo de retardamento constante.

Resposta de controle integral T1

No caso da resposta de controle integral, o aparelho reage conforme o desvio de regulação com um tempo de retardamento variável. Quanto maior for o desvio de regulação (ΔU) com relação à faixa de operação (B)
ajustada, mais curto será o tempo de retardamento. Assim, o tempo de retardamento pode se reduzir até 1 segundo. Com isso o aparelho reage com mais rapidez a alterações significativas de tensão na rede. Desse modo a precisão de regulagem aumenta, ao passo que a frequência das comutações diminui.

Figura 43: Diagrama de resposta de controle integral

<table>
<thead>
<tr>
<th>(\Delta U/B)</th>
<th>Desvio de regulagem "(\Delta U)" em % do valor de referência em relação à faixa de operação "(B)" ajustada em % do valor de referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parâmetro "Tempo de retardamento T1"</td>
</tr>
</tbody>
</table>

Para definir a resposta de controle T1, faça o seguinte:

1. \(<\) \(\text{Parâmetros } F3 \rightarrow \text{Parâmetros de regulagem } F2 \rightarrow \text{Pressionar repetidamente até que o parâmetro desejado seja exibido.} \)
2. Pressionar \(F1 \) ou \(F5 \) para selecionar a resposta desejada.
3. Pressionar \(\leftarrow \).

A resposta de controle T1 está definida.

8.4.6 Ajustar o tempo de retardamento T2

Com este parâmetro, você pode ajustar o tempo de retardamento T2. O tempo de retardamento T2 serve para compensar grande desvios de regulação com rapidez.

O tempo de retardamento T2 somente se torna ativo quando é necessária mais de uma comutação de tap para que a tensão esteja novamente dentro da faixa de operação ajustada. O primeiro impulso de saída ocorre depois do tempo de retardamento T1 definido. Uma vez decorrido o atraso de comutação T2 definido, ocorrem novos impulsos para corrigir o desvio de regulação existente.
Para ajustar o tempo de retardamento T2, é necessário observar as seguintes condições:

- O valor do tempo de retardamento T2 deve ser maior que a duração de impulso de comutação.
- O valor do tempo de retardamento T2 deve ser maior que o tempo máximo de funcionamento do acionamento motorizado.
- O valor do tempo de retardamento T2 deve ser menor que o valor definido para o tempo de retardamento T1.

Para definir o tempo de retardamento T2, faça o seguinte:

1. Pressionar repetidamente até que o parâmetro desejado seja exibido.
 - Tempo de retardamento T2.
2. Pressionar para aumentar o tempo ou pressionar para diminuí-lo.
3. Pressionar .
 - O tempo de retardamento T2 está ajustado.

Ativar/desativar o tempo de retardamento T2

Para ativar/desativar o tempo de retardamento T2, faça o seguinte:

1. Pressionar repetidamente até que o parâmetro desejado seja exibido.
 - Ativação T2.
2. Pressionar ou para ativar/desativar T2.
3. Pressionar .
 - O tempo de retardamento T2 está ativado/desativado.

8.5 Valores-limite

No ponto do menu Valores-limite você pode ajustar todos os parâmetros necessários para o monitoramento de valores-limite como valores relativos ou absolutos. Você pode ajustar 3 valores-limite:

- Subtensão U<
- Sobretensão U>
- Sobrecorrente I>

O monitoramento de valores-limite serve para reduzir os danos na periferia do equipamento. As seguintes seções descrevem como ajustar os parâmetros.
8.5.1 Ajustar o monitoramento da subtensão $U<$

Estes parâmetros permitem ajustar os valores-limite para uma subtensão. Este monitoramento da subtensão evita comutações de tap no caso de uma queda de rede.

Comportamento

Se a tensão de medição U_{real} descender abaixo do valor-limite ajustado $U<$ o LED vermelho $U<$ acende. Simultaneamente são bloqueados os impulsos de comutação ao acionamento motorizado desde que tenha ativado o parâmetro "Bloqueio por subtensão $U<$". Quando o tempo de retardamento de mensagem, [Parágrafo , Página 76] ajustado tiver terminado, o relé de sinalização é ativado. No visor é exibida a mensagem *Subtensão $U<$*

A mensagem é reposta logo que a tensão de medição U_{real} voltar a ultrapassar o valor-limite para a subtensão $U<$. Se a tensão de medição U_{real} descer abaixo de 30 V (por exemplo em caso de desligamento do transformador), é também exibida a mensagem *Subtensão*. No entanto, é possível suprimir [Parágrafo , Página 77] esta mensagem.

![Figura 44: Comportamento caso o valor-limite não seja alcançado](image)

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U_{real}: Tensão de medição</td>
</tr>
<tr>
<td>2</td>
<td>U_{ref}:Valor de referência</td>
</tr>
<tr>
<td>3</td>
<td>$-B%$: limite inferior</td>
</tr>
<tr>
<td>4</td>
<td>Valor-limite ajustado Subtensão $U<$</td>
</tr>
<tr>
<td>5</td>
<td>Supressão da mensagem do valor-limite inferior a 30 V</td>
</tr>
<tr>
<td>6</td>
<td>Tempo de retardamento de mensagem ajustado para o valor-limite Subtensão $U<$</td>
</tr>
<tr>
<td>7</td>
<td>U_{real}: Tensão de medição</td>
</tr>
</tbody>
</table>

$B\%$: limite superior

A: Valor-limite não alcançado

B: Tensão desce abaixo de 30 V

C: Tensão se desce abaixo de 30 V

D: Tensão novo acima de 30 V

E: Ultrapassagem do valor-limite
Ajustar o monitoramento da subtensão U< em %

Com este parâmetro é possível ajustar o valor-limite como valor relativo.

Para ajustar o valor-limite de subtensão U< em %, faça o seguinte:

1. \[\text{Parâmetros de regulagem} \rightarrow \text{Valores-limite} \rightarrow \text{F3} \]
 Repetidamente até que seja exibido o parâmetro desejado.

2. Pressionar \[\text{F1} \] para aumentar o valor ou pressionar \[\text{F5} \] para diminuir o valor.

3. Pressionar \[\leftarrow \]

O valor-limite para a subtensão U< está ajustado.

Ajustar o retardamento de mensagem para a subtensão U<

Com este parâmetro você pode ajustar o tempo de retardamento após o qual o relê Subtensão deve ser ativado e o aviso de evento deve aparecer no visor. Dessa forma podem ser evitadas as mensagens que ocorrem quando o valor-limite não é alcançado temporariamente. Independente disso, o LED Subtensão acende sempre imediatamente.

Para ajustar o tempo de retardamento para essa mensagem, faça o seguinte:

1. \[\text{Parâmetros de regulagem} \rightarrow \text{Valores-limite} \rightarrow \text{F3} \]
 Repetidamente até que seja exibido o parâmetro desejado.

2. Pressionar \[\text{F4} \] para marcar uma casa decimal.

3. Pressionar \[\text{F1} \] para aumentar o tempo ou pressionar \[\text{F5} \] para diminuir o tempo.

4. Pressionar \[\leftarrow \]

O tempo de retardamento de mensagem para a subtensão U< está ajustado.

Ativar/desativar o bloqueio por subtensão

Com este parâmetro você pode ajustar o comportamento do aparelho quando não é alcançado o limite de subtensão. Você pode selecionar as seguintes opções:

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Função</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lig</td>
<td>A regulagem automática está bloqueada.</td>
</tr>
<tr>
<td>Desl</td>
<td>A regulagem automática continua ativa.</td>
</tr>
</tbody>
</table>

Tabela 11: Comportamento
Para ativar/desativar o bloqueio por subtensão, faça o seguinte:

1. **MENÚ > F3** Parâmetros de regulagem > F3 Valores-limite e pressionar repetidamente até que seja exibido o parâmetro desejado.

 ⇒ U< Bloqueio.

2. Pressionar **F1** para o ajuste **Lig** ou **F5** para o ajuste **Desl**.

3. Pressionar ←.

 ⇒ O bloqueio por subtensão está ativado/desativado.

Ativar/desativar a mensagem para tensões com menos de 30 V

Com este parâmetro você pode ajustar se a mensagem *Subtensão* deve ser suprimida com um valor de medição inferior a 30 V. Este ajuste tem como finalidade que não apareça um aviso de evento com o transformador desligado. Você pode selecionar as seguintes opções:

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Função</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lig</td>
<td>A mensagem Subtensão é exibida também com um valor de medição inferior a 30 V.</td>
</tr>
<tr>
<td>Desl</td>
<td>A mensagem Subtensão deixa de ser exibida com um valor de medição inferior a 30 V.</td>
</tr>
</tbody>
</table>

Tabela 12: Comportamento

Para ativar/desativar a mensagem, faça o seguinte:

1. **MENÚ > F3** Parâmetros de regulagem > F3 Valores-limite e pressionar repetidamente até que seja exibido o parâmetro desejado.

 ⇒ U< também abaixo 30 V.

2. Pressionar **F1** para o ajuste **Lig** ou **F5** para o ajuste **Desl**.

3. Pressionar ←.

 ⇒ A mensagem está ativada/desativada.

8.5.2 Ajustar o monitoramento da sobretensão U>

Com estes parâmetros você pode ajustar os valores-limite para um monitoramento da sobretensão. Este monitoramento da sobretensão provoca comutações de taps para retornar ao estado de operação desejado. Caso o estado de operação não possa ser mais compensado, o relé *Monitoramento de funcionamento* emitirá uma mensagem.

Se a tensão de medição U_{real} ultrapassar o valor-limite ajustado 1, o LED vermelho $U>$ acende e o respectivo relé de sinalização é ativado. No visor é exibida a mensagem *Sobretensão U>*. Simultaneamente é ativada a função de retorno rápido sem o tempo de retardamento T_1. Depois de decorrida a duração de impulso de comutação ajustada 3 é realizada a comutação de...
baixar através da ativação do acionamento motorizado C, até a tensão de medição \(U_{\text{real}} \) voltar a estar abaixo do valor-limite E. A mensagem *Sobretensão U>* é redefinida.

Figura 45: Comportamento em caso ultrapassagem do valor-limite

<table>
<thead>
<tr>
<th>1</th>
<th>Valor-limite de sobretensão (U_\text{>}) ajustado</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>+ B %: limite superior</td>
</tr>
<tr>
<td>3</td>
<td>(U_{\text{ref}}): Valor de referência</td>
</tr>
<tr>
<td>4</td>
<td>- B %: limite inferior</td>
</tr>
<tr>
<td>5</td>
<td>Duração de impulso de comutação ajustada</td>
</tr>
<tr>
<td>6</td>
<td>(U_{\text{real}}): Tensão de medição</td>
</tr>
<tr>
<td>A</td>
<td>Ultrapassagem do valor-limite</td>
</tr>
<tr>
<td>B</td>
<td>Valor-limite não alcançado</td>
</tr>
<tr>
<td>C</td>
<td>Retorno rápido é iniciado (comutação de baixar)</td>
</tr>
</tbody>
</table>

Comportamento com bloqueio por sobretensão

Se você tiver ativado o bloqueio por sobretensão, em caso de ultrapassagem do valor-limite, serão bloqueados todos os impulsos de comutação ao acionamento motorizado. Simultaneamente acende o LED vermelho \(U_\text{>} \) e é exibida a mensagem *Sobretensão U>*. O bloqueio e a mensagem serão repostos logo que a tensão de medição \(U_{\text{real}} \) volte a estar abaixo do valor-limite.

As seguintes seções descrevem como é possível ajustar os parâmetros para o valor-limite de sobretensão \(U_\text{>} \).
Ajustar a sobretensão U> em %

O valor-limite é inserido como valor relativo (%) do valor de referência ajustado. Para ajustar o valor-limite, faça o seguinte:

1. **Parâmetros de regulagem > Valores-limite e pressionar repetidamente até que seja exibido o parâmetro desejado.**

 \(U> \) sobretensão (%).

2. **Pressionar F1 para aumentar o valor ou pressionar F5 para diminuir o valor.**

3. **Pressionar.**

 \(U> \) sobretensão (%).

 O valor-limite está ajustado.

Ativar o bloqueio por sobretensão/retorno rápido

Com este parâmetro é possível ajustar o comportamento do aparelho em caso de sobretensão. Podem ser feitos os seguintes ajustes:

<table>
<thead>
<tr>
<th>Ajuste</th>
<th>Comportamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lig</td>
<td>No caso de sobretensão, o aparelho bloqueia todos os impulsos de comutação ao acionamento motorizado.</td>
</tr>
<tr>
<td>Desl</td>
<td>Em caso de sobretensão, será realizado repetidamente um retorno rápido até que o valor esteja novamente abaixo do valor-limite.</td>
</tr>
</tbody>
</table>

Tabela 13: Ajustes possíveis

Para ajustar o comportamento do aparelho em caso de sobretensão, faça o seguinte:

1. **Parâmetros de regulagem > Valores-limite e pressionar repetidamente até que seja exibido o parâmetro desejado.**

 Bloqueio por sobretensão U>.

2. **Pressionar F1 ou F5 para selecionar a opção desejada.**

3. **Pressionar.**

 O comportamento está ajustado.

8.5.3 Ajustar o monitoramento de sobrecorrente I>

Com este parâmetro é possível ajustar o valor-limite para a sobrecorrente, para evitar comutações de taps com correntes de carga altas demais.

Se a corrente medida ultrapassar o valor-limite ajustado, o LED vermelho I> acende. No visor é exibida a mensagem *Sobrecorrente*. Simultaneamente são bloqueados os impulsos de saída do aparelho.
Ajustar a sobrecorrente $I_>$ em %

Para ajustar o valor-limite $I_>$ Sobrecorrente para o bloqueio por sobrecorrente, faça o seguinte:

1. **Parâmetros de regulagem > Valores-limite e pressionar repetidamente até que seja exibido o parâmetro desejado.**
 - $I_>$ sobrecorrente.
2. Pressionar F_1 para aumentar o valor ou pressionar F_5 para diminuir o valor.
3. Pressionar \leftarrow.
 - O valor-limite está ajustado.

Ativar/desativar bloqueio por sobrecorrente

Para ativar/desativar o bloqueio por sobrecorrente, faça o seguinte:

1. **Parâmetros de regulagem > Valores-limite e pressionar repetidamente até que seja exibido o parâmetro desejado.**
 - Bloqueio por sobrecorrente $I_>$
2. Pressionar F_1 ou F_5 para ativar o bloqueio por sobrecorrente (LIG)/desativar (DESL).
3. Pressionar \leftarrow.
 - O bloqueio por sobrecorrente está ativado/desativado.

8.5.4 Ajustar o monitoramento de sobrecorrente $I_<$

Com estes parâmetros é possível ajustar o monitoramento de subcorrente. Assim que a corrente medida ficar abaixo do valor-limite definido, a regulagem é bloqueada.

Ajustar a Subcorrente $I_<$

Para ajustar o valor-limite para a monitoração de subcorrente, faça o seguinte:

1. **Parâmetros de regulagem > Valores-limite e pressionar repetidamente até que seja exibido o parâmetro desejado.**
 - Subcorrente $I_<$ [%].
2. Pressionar F_1 para aumentar o valor ou pressionar F_5 para diminuir o valor.
3. Pressionar \leftarrow.
 - O valor-limite Subcorrente $I_<$ está ajustado.
Ativar/desativar o bloqueio de subcorrente

Para ativar/desativar o monitoramento de subcorrente, faça o seguinte:

1. Parâmetros de regulagem > Valores-limite e pressionar repetidamente até que seja exibido o parâmetro desejado.
 \(\Rightarrow \) Bloqueio de subcorrente \(I^> \).

2. Pressionar \(F_1 \) ou \(F_5 \) para ativar (LIG)/desativar (DESL) o bloqueio de subcorrente.

3. Pressionar \(\leftrightarrow \).
 \(\Rightarrow \) O bloqueio por subtensão \(I^< \) está ativado/desativado.

8.5.5 Ativar/desativar o monitoramento de potência ativa

Com este parâmetro é possível ajustar o monitoramento da potência ativa. Ativando o bloqueio, será bloqueada a regulagem se for identificado um fluxo negativo de potência ativa. No entanto, isso somente é possível se a conexão do transformador de corrente estiver conectada e ajustada corretamente. Se você desativar o bloqueio da regulagem, o sinal da potência ativa não terá nenhuma influência sobre a regulagem.

Para ativar/desativar o bloqueio da regulagem, faça o seguinte:

1. Parâmetros de regulagem > Compensação e pressionar repetidamente até que seja exibido o parâmetro desejado.
 \(\Rightarrow \) Bloqueio de potência ativa neg.

2. Pressionar \(F_1 \) ou \(F_5 \) para selecionar a opção desejada.

3. Pressionar \(\leftrightarrow \).
 \(\Rightarrow \) O bloqueio da regulagem com potência ativa negativa está ativado/desativado.

8.6 Compensação

A função "Compensação" permite compensar a queda de tensão dependente da carga entre o transformador e o consumidor. Para isso, o aparelho disponibiliza 2 métodos de compensação:

- Compensação R-X (Line Drop Compensation)
- Compensação Z

8.6.1 Compensação de linha

A compensação R-X (LDC) exige o conhecimento dos dados exatos da linha. Com ela, as perdas de tensão nas linhas podem ser compensadas de modo muito preciso.
Para ajustar corretamente a compensação R-X é necessário calcular a queda de tensão ôhmica e indutiva, com relação ao lado secundário do transformador de tensão em V. Além disso, é necessário ajustar corretamente a comutação do transformador utilizada.

Figura 46: Circuito equivalente

Figura 47: Representação do ponteiro

É possível calcular a queda de tensão ôhmica e indutiva de acordo com as fórmulas seguintes. Esse cálculo da queda de tensão se refere à tensão relativizada no lado secundário do transformador de tensão.

Fórmula para o cálculo da queda de tensão ôhmica:

\[U_r = I_N \cdot \frac{k_{CT}}{k_{VT}} \cdot r \cdot L \cdot K [V] \]

Fórmula para o cálculo da queda de tensão indutiva:

\[U_x = I_N \cdot \frac{k_{CT}}{k_{VT}} \cdot x \cdot L \cdot K [V] \]
8 Operação

\(U_r \)	Queda de tensão em V por causa da resistência ôhmica específica
\(U_x \)	Queda de tensão em V por causa da resistência indutiva específica
\(I_n \)	Corrente nominal (ampère) da conexão selecionada do transformador de corrente no aparelho: 1 A; 5 A
\(k_{CT} \)	Transmissão do transformador de corrente
\(k_{VT} \)	Transmissão do transformador de tensão
\(r \)	Carga de resistência ôhmica em \(\Omega/km \) por fase
\(x \)	Carga de resistência indutiva em \(\Omega/km \) por fase
\(L \)	Comprimento da linha em km
\(K \)	Fator de tensão nominal

Selecionar a compensação de linha

Para selecionar a compensação de linha, faça o seguinte:

1. Pressionar \(\Rightarrow \) ou \(\Rightarrow \) até que seja exibida a opção LDC.
2. A compensação de linha está selecionada.

As seguintes seções contêm uma descrição de como é possível ajustar os parâmetros para a queda de tensão ôhmica e indutiva.

8.6.1.1 Ajustar a queda de tensão ôhmica \(U_r \)

Com este parâmetro você pode ajustar a queda de tensão ôhmica.
(resistência ôhmica)

Se você não quiser usar a compensação de linha, tem de ajustar o valor 0,0 V.

Para ajustar a queda de tensão ôhmica \(U_r \), faça o seguinte:

1. Pressionar \(\Rightarrow \) repetidamente até que seja exibido o parâmetro desejado.
2. Pressionar \(\Rightarrow \) para marcar uma casa decimal.

Método de compensação LDC selecionado.

O dígito desejado está marcado e o valor pode ser alterado.
3. Pressionar \textbf{F1} para aumentar o valor ou pressionar \textbf{F5} para diminuir o valor.

4. Pressionar \textbf{←}.

⇒ A queda de tensão ôhmica Ur está ajustada.

8.6.1.2 Ajustar a queda de tensão indutiva Ux

Com este parâmetro você pode ajustar a queda de tensão indutiva (resistência indutiva). O efeito da compensação pode ser girado em 180° na exibição com ajuda do sinal.

Se você não quiser usar a compensação de linha, tem de ajustar o valor 0,0 V.

Para ajustar a queda de tensão indutiva Ux, faça o seguinte:

✓ Método de compensação \textbf{LDC} selecionado.

1. \textbf{MENU} > \textbf{F3} Parâmetros > \textbf{F4} Compensação e pressionar \textbf{⇌} repetidamente até que seja exibido o parâmetro desejado.

⇒ Ux - Comp.de linha.

2. Pressionar \textbf{F4} para marcar uma casa decimal.

⇒ O dígito desejado está marcado e o valor pode ser alterado.

3. Pressionar \textbf{F1} para aumentar o valor ou pressionar \textbf{F5} para diminuir o valor.

4. Pressionar \textbf{←}.

⇒ A queda de tensão indutiva Ux está ajustada.
8.6.2 Compensação Z

Para manter a tensão constante no consumidor através da compensação Z é possível ativar um aumento de tensão vinculado à corrente. Além disso, é possível definir um valor-limite para evitar tensões altas demais no transformador.

Figura 49: Compensação Z

Para utilizar a compensação Z é necessário calcular o aumento de tensão (ΔU) considerando a corrente. Para isso, utilize a fórmula seguinte:

$$\Delta U = 100 \cdot \frac{U_T - U_{load}}{U_{load}} \cdot \frac{I_N \cdot k_{CT}}{I}$$

ΔU	Aumento de tensão
U_T	Tensão do transformador com corrente I
I_N	Corrente nominal da conexão do transformador de corrente em A (1 A; 5 A)
U_{load}	Tensão no fim da linha com corrente I e a mesma posição de serviço do comutador de derivação em carga
k_{CT}	Transmissão do transformador de corrente

Exemplo de cálculo: $U_T = 100,1$ V, $U_{load} = 100,0$ V, $I_N = 5$ A, $k_{CT} = 200$ A/5 A, $I = 100$ A

Obtém-se um aumento de tensão ΔU de 0,2%.

As seguintes seções descrevem como é possível ajustar os parâmetros necessários para a compensação Z.
Seletor de compensação Z

Para selecionar a compensação de linha, faça o seguinte:

1. Parâmetro de regulagem > Método de compensação.
2. Pressionar ou até que a opção Z seja exibida.
3. Pressionar

A compensação Z está selecionada.

As seguintes seções descrevem como é possível ajustar os parâmetros necessários para a compensação Z.

8.6.2.1 Ajustar a compensação Z

Com este parâmetro você pode ajustar o aumento de tensão ΔU calculado anteriormente.

Se você não quiser usar a compensação Z, tem de ajustar o valor 0,0 %.

Para ajustar o aumento de tensão dependente de corrente, faça o seguinte:

1. Seletor de método de compensação Z.
2. Pressionar para aumentar o valor ou pressionar para diminuir o valor.
3. Pressionar

O aumento de tensão dependente de corrente está ajustado.

8.6.2.2 Ajustar o valor-limite da compensação Z

Com este parâmetro você pode definir o aumento de tensão máximo permitido para evitar uma tensão alta demais no transformador.

Se você não quiser definir um valor-limite, tem de ajustar o valor 0,0 %.
Para ajustar o valor-limite do aumento de tensão dependente de corrente, faça o seguinte:

- Seleccionar o método de compensação Z.
- Ajustar o parâmetro "Compensação Z".

1. Pressionar \(\text{FUN} \) > \(\text{F3} \) Parâmetros > \(\text{F4} \) Compensação e pressionar \(\rightarrow \) repetidamente até que seja exibido o parâmetro desejado.
 \(\Rightarrow \) Valor limite de comp. Z

2. Pressionar \(\text{F1} \) para aumentar o valor ou pressionar \(\text{F5} \) para diminuir o valor.

3. Pressionar \(\leftarrow \).
 \(\Rightarrow \) O valor-limite está ajustado.

8.7 Dados do transformador

As relações de transformação e a disposição de medição do transformador de tensão e do transformador de corrente utilizados na instalação podem ser ajustadas com os parâmetros seguintes. O aparelho utiliza essas informações para, a partir dos valores de medição registrados, calcular e exibir os respectivos valores de medição do lado primário dos conversores e, assim, do transformador.

Para isso, estão disponíveis os seguintes parâmetros:
- Tensão primária
- Tensão secundária
- Corrente primária
- Corrente secundária (conexão do transformador de corrente)
- Comutação do transformador

A indicação de valores de medição do aparelho é influenciada pelo ajuste dos parâmetros supra mencionados. Para isso, observe a tabela seguinte.

<table>
<thead>
<tr>
<th>Parâmetros ajustados</th>
<th>Indicação de valores de medição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensão primária</td>
<td>Tensão secundária [V]</td>
</tr>
<tr>
<td>Tensão secundária</td>
<td>Corrente secundária [% da conexão]</td>
</tr>
<tr>
<td>Corrente primária</td>
<td>Corrente primária [A]</td>
</tr>
<tr>
<td>Conexão do transformador</td>
<td>Corrente secundária [% da conexão]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tensão primária</th>
<th>Tensão secundária</th>
<th>Corrente primária</th>
<th>Conexão do transformador</th>
<th>Tensão (tela principal)</th>
<th>Corrente (tela principal)</th>
<th>Corrente (tela de informações)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Sim</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Sim</td>
<td>Sim</td>
<td>-</td>
<td></td>
<td>Tensão secundária [V]</td>
<td>-</td>
<td>Corrente secundária [% da conexão]</td>
</tr>
<tr>
<td>Sim</td>
<td>Sim</td>
<td>Sim</td>
<td>-</td>
<td>Tensão primária [kV]</td>
<td>Corrente primária [A]</td>
<td>Corrente secundária [% da conexão]</td>
</tr>
</tbody>
</table>
8.7.1 Ajustar a tensão primária do transformador

Com este parâmetro você pode ajustar a tensão primária do transformador em kV. Quando você ajusta a tensão primária do transformador, o aparelho exibe a tensão primária ao invés da tensão secundária na tela principal e você também pode ajustar os parâmetros de regulagem em kV.

O ajuste 0 kV desativa a indicação da tensão primária do transformador.

Para ajustar a tensão primária do transformador, faça o seguinte:

 - Tensão primária.
 - A casa está marcada e o valor pode ser alterado.
 - O dígito desejado está marcado e o valor pode ser alterado.
5. Pressionar [←]
 - A tensão primária do transformador está ajustada.

8.7.2 Ajustar a tensão secundária do transformador

Com este parâmetro você pode ajustar a tensão secundária do transformador em V.
Para ajustar a tensão secundária do transformador, faça o seguinte:

1. **MENU** > **F4** Configuração > **F2** Dados do transformador > Pressionar repetidamente até que o parâmetro desejado seja exibido.
 - Tensão secundária.
2. Pressionar **F4** para marcar uma casa decimal.
 - O dígito desejado está marcado e o valor pode ser alterado.
3. Pressionar **F1** para aumentar o valor ou pressionar **F5** para diminuir o valor.
4. Pressionar .
 - A tensão secundária do transformador está ajustada.

8.7.3 Ajustar a corrente primária do transformador

Com este parâmetro pode ser ajustada a corrente primária do transformador.

- Quando você ajusta a corrente primária do transformador, o valor de medição é exibido na tela principal.
- Se você ajustar o valor 0, nenhum valor de medição é exibido na tela principal.

<table>
<thead>
<tr>
<th>Parâmetro de ajuste</th>
<th>Corrente alimentada</th>
<th>Indicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrente primária</td>
<td>Corrente secundária</td>
<td>Conexão de corrente</td>
</tr>
<tr>
<td>Sem parametrização</td>
<td>Desconhecido</td>
<td>1 A</td>
</tr>
<tr>
<td>Sem parametrização</td>
<td>1 A</td>
<td>1 A</td>
</tr>
<tr>
<td>50 A</td>
<td>Desconhecido</td>
<td>1 A</td>
</tr>
<tr>
<td>50 A</td>
<td>1 A</td>
<td>1 A</td>
</tr>
</tbody>
</table>

Tabela 15: Exemplo da unidade exibida %/A

Para ajustar a corrente primária do transformador, faça o seguinte:

1. **MENU** > **F4** Configuração > **F2** Dados do transformador > Pressionar repetidamente até que o parâmetro desejado seja exibido.
 - Corrente primária.
2. Pressionar **F4** para marcar uma casa decimal.
 - O dígito desejado está marcado e o valor pode ser alterado.
3. Pressionar **F1** para aumentar o valor ou pressionar **F5** para diminuir o valor.

4. Pressionar ←

 ➞ A corrente primária do transformador está ajustada.

8.7.4 Ajustar a conexão do transformador de corrente

Com este parâmetro pode ser selecionada a conexão do transformador de corrente. Este ajuste é necessário para que o aparelho exiba na tela de informações a corrente secundária correta.

Se você selecionar a opção "Desconhecido", será exibido na tela de informações o valor porcentual relativo à conexão do transformador de corrente utilizada.

- 1 A
- 5 A

Para ajustar a conexão do transformador de corrente, faça o seguinte:

1. **MIN** > **F4** Configuração > **F2** Dados do transformador e pressionar repetidamente até que seja exibido o parâmetro desejado.

 ➞ Conexão transf. corrente.

2. Pressionar **F1** ou **F5** para selecionar uma conexão do transformador de corrente.

3. Pressionar ←

 ➞ A conexão do transformador de corrente está ajustada.

8.7.5 Ajustar a sequência de fases do transformador de tensão/transformador de corrente

Com este parâmetro é possível ajustar a sequência de fases do transformador de corrente e do transformador de tensão. As comutações usuais dos transformadores podem ser ajustadas da seguinte maneira:

<table>
<thead>
<tr>
<th>Comutação</th>
<th>Ajuste</th>
<th>Método de medição</th>
<th>Sequência de fases</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 1PH</td>
<td>monofásico</td>
<td>0°</td>
</tr>
<tr>
<td>B</td>
<td>0 3PHN</td>
<td>trifásico</td>
<td>0°</td>
</tr>
<tr>
<td>C</td>
<td>0 3PH</td>
<td>trifásico</td>
<td>0°</td>
</tr>
<tr>
<td>D</td>
<td>90 3PH</td>
<td>trifásico</td>
<td>90°</td>
</tr>
<tr>
<td>E</td>
<td>30 3PH</td>
<td>trifásico</td>
<td>30°</td>
</tr>
<tr>
<td>F</td>
<td>-30 3PH</td>
<td>trifásico</td>
<td>-30°</td>
</tr>
</tbody>
</table>

Tabela 16: Valores de ajuste para a comutação do transformador
Observe os exemplos de comutações seguintes para selecionar a comutação do transformador correta.

Comutação A: medição monofásica na rede monofásica

- O transformador de tensão VT está conectado ao condutor externo e ao condutor neutro.
- O transformador de corrente CT está inserido no condutor externo.
- A tensão U_{L1} e a corrente I_{L1} estão em fase.
- A queda de tensão em um condutor externo é condicionada pela corrente I_{L1}.

Comutação B: medição monofásica na rede trifásica

- O transformador de tensão VT está conectado aos condutores externos L1 e ao condutor neutro.
- O transformador de corrente CT está inserido no condutor externo L1.
- A tensão U e a corrente I estão em fase.
- A queda de tensão em um condutor externo é condicionada pela corrente I_{L1}.
Comutação C:

- O transformador de tensão VT está conectado aos condutores externos L1 e L2.
- O transformador de corrente CT1 está inserido no condutor externo L1 e o CT2 no condutor externo L2.
- Os transformadores de corrente CT1 e CT2 estão conectados em paralelo de modo cruzado (corrente cumulativa = \(I_{L1} + I_{L2} \)).
- A corrente cumulativa \(I_{L1} + I_{L2} \) e a tensão \(U_{L1} - U_{L2} \) estão em fase.
- A queda de tensão em um condutor externo é condicionada pela corrente: \((I_{L1} + I_{L2}) / \sqrt{3} \).

Comutação D

- O transformador de tensão VT está conectado aos condutores externos L1 e L2.
- O transformador de corrente CT está inserido no condutor externo L3.
- A corrente \(I_3 \) antecipa a tensão \(U_{L1} - U_{L2} \) em 90°.
- A queda de tensão em um condutor externo é condicionada pela corrente \(I_3 \).
8 Operação

Comutação E

Figura 56: Sequência de fases 30 3PH

- O transformador de tensão VT está conectado aos condutores externos L1 e L2.
- O transformador de corrente CT está inserido no condutor externo L2.
- A corrente \(I_{L2} \) antecipa a tensão \(U_{L2} - U_{L1} \) em 30°.
- A queda de tensão em um condutor externo é condicionada pela corrente \(I_{L2} \).

Comutação F

Figura 57: Sequência de fases -30 3PH

- O transformador de tensão VT está conectado aos condutores externos L1 e L2.
- O transformador de corrente CT está inserido no condutor externo L1.
- A corrente \(I_{L1} \) retarda a tensão \(U_{L1} - U_{L2} \) em 30°. Isso corresponde a um deslocamento de fase de -30°.
- A queda de tensão em um condutor externo é condicionada pela corrente \(I_{L1} \).
Para ajustar a sequência de fases para a comutação do transformador, faça o seguinte:

1. **Configuração > Dados do transformador > Pressionar repetidamente até que o parâmetro desejado seja exibido.**

 Logo ComutConversor.

2. Pressionar **F1 ou F3** para selecionar a sequência de fases desejada.

3. Pressionar **←**.

 A sequência de fases está ajustada.

8.8 Entrada e saídas configuráveis

É possível configurar as entradas (GPI) e saídas (GPO) digitais individualmente.

Estão disponíveis as seguintes entradas e saídas digitais:

- 6 entradas digitais (GPI1...6)
- 2 saídas digitais (GPO1 e 2)

8.8.1 Vincular entradas com funções

É possível comandar as entradas da seguinte maneira:

- **Estaticamente através de estados de sinais**

 Para isso, o sinal de entrada deve ser emitido de modo constante (estado: nível alto).

- **Dinamicamente através de impulsos**

 Para isso, é necessário um impulso (flanco ascendente) na entrada. O sinal de entrada deve mudar o seu estado de "Low" para "High". Se você utilizar uma entrada pulsada, poderá disparar a função atribuída paralelamente às teclas conectadas às entradas, também através do sistema de comando.

As entradas pulsadas são identificadas pelo "P:" anteposto. Na tela é exibido o texto informativo “Atenção: P = entradas pulsadas”.

É possível atribuir uma das seguintes funções às entradas digitais (GPI 1...6):

<table>
<thead>
<tr>
<th>Função</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desl</td>
<td>Nenhuma função selecionada.</td>
</tr>
</tbody>
</table>
8 Operação

<table>
<thead>
<tr>
<th>Remoto/Loc.</th>
<th>Determinar o modo de operação remoto/local. Sinal ligado: Tipo de operação "Remoto" ativo. Sinal desligado: Tipo de operação "Local" ativo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloqueio</td>
<td>Bloquear a regulagem automática.</td>
</tr>
<tr>
<td>LigaçãoRap.</td>
<td>Ativar retorno rápido (desativar tempo de retardamento T1/T2).</td>
</tr>
<tr>
<td>MSS conceb.</td>
<td>Entrada para confirmação MSS foi disparado.</td>
</tr>
<tr>
<td>Motor func.</td>
<td>Entrada para a confirmação Motor em funcionamento.</td>
</tr>
<tr>
<td>Val. Teor. 2</td>
<td>Ativar o valor de referência 2.</td>
</tr>
<tr>
<td>Val. Teor. 3</td>
<td>Ativar o valor de referência 3.</td>
</tr>
<tr>
<td>Barra U alta.</td>
<td>Bloquear comutações de tap (subir).</td>
</tr>
<tr>
<td>Barra U bai.</td>
<td>Bloquear comutações de tap (baixar).</td>
</tr>
<tr>
<td>P: VR 1</td>
<td>Ativar o valor de referência 1.</td>
</tr>
<tr>
<td>P: VR 2</td>
<td>Ativar o valor de referência 2.</td>
</tr>
<tr>
<td>P: VR 3</td>
<td>Ativar o valor de referência 3.</td>
</tr>
</tbody>
</table>

Tabela 17: Funções para entradas digitais (GPI 1...6)

Atribuindo a mesma funcionalidade a duas entradas, o aparelho gera um aviso de evento. Isso também se aplica se uma mesma funcionalidade for atribuída através de uma entrada estática e através de uma entrada pulsada.

Outros exemplos da atribuição dupla de funções são (n, m = 1...6):
- GPI n = mestre/escravo e GPI m = P: VR 1
- GPI n = Mestre/escravo GPI m = P: SW2

Para atribuir uma função a uma entrada digital (GPI) ou para desativá-la, faça o seguinte:

1. **MENU** > **F4** Configuração > **F3** Entradas/saídas de cliente (para outras GPIs, pressionar <→).
 ⇨ GPI
2. Pressionar **F1** ou **F5** repetidamente até que a função desejada seja exibida.
3. Pressionar **←**.
 ⇨ A função está definida.
É possível atribuir funções a todas as demais GPIs como descrito acima. É possível escolher as GPIs do seguinte modo:

<table>
<thead>
<tr>
<th>GPI</th>
<th>Pressionar</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPI1 – X4:13</td>
<td>-</td>
</tr>
<tr>
<td>GPI2 – X4:14</td>
<td>1x</td>
</tr>
<tr>
<td>GPI3 – X4:15</td>
<td>2x</td>
</tr>
<tr>
<td>GPI4 – X4:16</td>
<td>3x</td>
</tr>
<tr>
<td>GPI5 – X4:17</td>
<td>4x</td>
</tr>
<tr>
<td>GPI6 – X4:18</td>
<td>5x</td>
</tr>
</tbody>
</table>

Tabela 18: GPIs configuráveis

8.8.2 Vincular saídas com funções

É possível atribuir uma das seguintes funções às saídas digitais (GPO 1 e 2):

<table>
<thead>
<tr>
<th>Função</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desl</td>
<td>Nenhuma função selecionada</td>
</tr>
<tr>
<td>Local/remoto</td>
<td>Mensagem: Operar no local / operar remotamente</td>
</tr>
<tr>
<td>Subtensão</td>
<td>Mensagem: Bloqueio por subtensão</td>
</tr>
<tr>
<td>Sobretensão</td>
<td>Mensagem: Bloqueio por sobretensão</td>
</tr>
<tr>
<td>Subcorrente</td>
<td>Mensagem: Bloqueio por subcorrente</td>
</tr>
<tr>
<td>Sobrecorr.</td>
<td>Mensagem: Bloqueio por sobrecorrente</td>
</tr>
<tr>
<td>Val.Teor.1</td>
<td>Mensagem: Valor de referência 1</td>
</tr>
<tr>
<td>Val.Teor.2</td>
<td>Mensagem: Valor de referência 2</td>
</tr>
<tr>
<td>Val.Teor.3</td>
<td>Mensagem: Valor de referência 3</td>
</tr>
<tr>
<td>Trip MPS</td>
<td>Mensagem: O disjuntor do motor foi disparado.</td>
</tr>
<tr>
<td>MA TFun ></td>
<td>Mensagem: Ultrapassagem do tempo de funcionamento do motor.</td>
</tr>
<tr>
<td>Motor func.</td>
<td>Mensagem: "Motor em funcionamento"</td>
</tr>
<tr>
<td>Larg.Band. ></td>
<td>Mensagem: Faixa de operação não atingida</td>
</tr>
<tr>
<td>Larg.Band. <</td>
<td>Mensagem: Faixa de operação ultrapassada</td>
</tr>
<tr>
<td>GPI 1</td>
<td>Mensagem: GPI 1 ativo</td>
</tr>
<tr>
<td>GPI 2</td>
<td>Mensagem: GPI 2 ativo</td>
</tr>
<tr>
<td>GPI 3</td>
<td>Mensagem: GPI 3 ativo</td>
</tr>
</tbody>
</table>
8 Operação

<table>
<thead>
<tr>
<th>GPI 4</th>
<th>Mensagem: GPI 4 ativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPI 5</td>
<td>Mensagem: GPI 5 ativo</td>
</tr>
<tr>
<td>GPI 6</td>
<td>Mensagem: GPI 6 ativo</td>
</tr>
</tbody>
</table>

Tabela 19: Funções para saídas digitais (GPO 1 e 2)

Para atribuir uma função a uma saída digital ou para desativá-la, faça o seguinte:

1. **Configuração > Entradas/saídas do cliente** e pressionar repetidamente até que seja exibido o parâmetro desejado.

2. Pressionar ou repetidamente até que a função desejada seja exibida.

3. Pressionar .

A função está definida.

É possível atribuir funções a todas as demais GPOs como descrito acima. É possível escolher as GPOs do seguinte modo:

<table>
<thead>
<tr>
<th>GPO</th>
<th>Pressionar</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPO1 – X4:9</td>
<td>8x</td>
</tr>
<tr>
<td>GPO2 – X4:12</td>
<td>9x</td>
</tr>
</tbody>
</table>

Tabela 20: GPOs configuráveis

8.9 Seleção de LED

Este parâmetro permite atribuir funções aos LEDs livres que acendem quando ocorre um evento. É possível puxar a tira de identificação para fora para etiquetagem.

Dependendo da configuração de seu dispositivo, os seguintes parâmetros podem ser utilizados pela MR para funções especiais. Nesse caso, os parâmetros são predefinidos. Em alguns casos, esses parâmetros não são exibidos nem configurados livremente.

Funções disponíveis para os LEDs: Na tabela seguinte você encontra um resumo de todas as funções possíveis que podem ser atribuídas aos LEDs:

<table>
<thead>
<tr>
<th>Funções disponíveis</th>
<th>Descrição do funcionamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desl</td>
<td>LED desativado</td>
</tr>
<tr>
<td>GPI x</td>
<td>Na entrada de comando GPI x (por exemplo GPI 1) existe um sinal</td>
</tr>
</tbody>
</table>
Funções disponíveis

<table>
<thead>
<tr>
<th>Função</th>
<th>Descrição do funcionamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPO x</td>
<td>O relé de sinalização na saída GPO x (por exemplo GPO 1) foi ativado</td>
</tr>
<tr>
<td>Subcorrente</td>
<td>Existe subcorrente</td>
</tr>
<tr>
<td>MSS disparou</td>
<td>Disjuntor do motor disparou</td>
</tr>
<tr>
<td>Bloqueio</td>
<td>Regulagem está bloqueada</td>
</tr>
<tr>
<td>Automático</td>
<td>Operação automática ativa</td>
</tr>
<tr>
<td>Faixa de operação <</td>
<td>Faixa de operação não alcançada</td>
</tr>
<tr>
<td>Faixa de operação ></td>
<td>Faixa de operação não alcançada</td>
</tr>
<tr>
<td>Valor de referência 1</td>
<td>Valor de referência 1 ativado</td>
</tr>
<tr>
<td>Valor de referência 2</td>
<td>Valor de referência 2 ativado</td>
</tr>
<tr>
<td>Valor de referência 3</td>
<td>Valor de referência 3 ativado</td>
</tr>
<tr>
<td>Monitoramento de funcionamento</td>
<td>Mensagem Monitoramento de funcionamento pendente</td>
</tr>
<tr>
<td>Remoto</td>
<td>Operação remota ativada</td>
</tr>
<tr>
<td>Local</td>
<td>Operação local ativada</td>
</tr>
<tr>
<td>Auto</td>
<td>Operação automática ativada</td>
</tr>
<tr>
<td>Manual</td>
<td>Operação manual ativada</td>
</tr>
</tbody>
</table>

Tabela 21: Funções disponíveis para os LEDs

Atribuir função

Para atribuir uma função a um LED, faça o seguinte:

1. **Menu > F4** Configuração > **F5** Selecção de LED > Pressionar repetidamente até ser exibido o parâmetro desejado.
2. Pressionar **F1** ou **F5** para selecionar a opção desejada.
3. Pressionar **←**

> A função está atribuída.

Todos os demais LEDs podem também ser atribuídos como descrito acima. Você pode ativar os LEDs disponíveis da seguinte maneira:

<table>
<thead>
<tr>
<th>LED (parâmetros)</th>
<th>Características</th>
<th>Pressionar</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 1</td>
<td>de 1 cor</td>
<td>-</td>
</tr>
<tr>
<td>LED 2</td>
<td>de 1 cor</td>
<td>1x</td>
</tr>
<tr>
<td>LED 3 amarelo</td>
<td>de 2 cores</td>
<td>2x</td>
</tr>
</tbody>
</table>
8 Operação

<table>
<thead>
<tr>
<th>LED (parâmetros)</th>
<th>Características</th>
<th>Pressionar</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 3 verde</td>
<td>de 2 cores</td>
<td>3x</td>
</tr>
<tr>
<td>LED 4 vermelho</td>
<td>de 2 cores</td>
<td>4x</td>
</tr>
<tr>
<td>LED 4 amarelo</td>
<td>de 2 cores</td>
<td>5x</td>
</tr>
</tbody>
</table>

Tabela 22: LEDs configuráveis

8.10 Exibir informações sobre o aparelho

8.10.1 Exibir a tela de informações

A tela de informações exibe as seguintes informações:

![Figura 58: Tela de informações](image)

1 Designação de modelo
2 Versão do software
3 Número de série
4 Placas adicionais
5 Memória RAM

Para exibir a tela de informações, faça o seguinte:

► MENU > F5 Informação.
⇒ Informação.

8.10.2 Exibir valores de medição

Nesta indicação são representados os valores de medição atuais. Os valores que podem ser vistos à direita nas linhas 1, 2 e 4 são exibidos somente se os dados do transformador [► Parágrafo 8.7, Página 87] tiverem sido inseridos previamente. Na linha 4 à esquerda, está o valor realmente medido e à direita o valor convertido na comutação do transformador.
Podem ser exibidos os seguintes valores de medição:

![Figura 59: Valores de medição](image1)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tensão U em V ou kV</td>
</tr>
<tr>
<td>2</td>
<td>Corrente I em % ou A</td>
</tr>
<tr>
<td>3</td>
<td>Frequência f em Hz</td>
</tr>
<tr>
<td>4</td>
<td>Potência de medição PMed em % ou MW</td>
</tr>
</tbody>
</table>

Para exibir os valores de medição, faça o seguinte:

► Informação e pressionar repetidamente até que seja exibida a tela desejada.

⇒ Valores de medição.

8.10.3 Exibir valores calculados

Nesta tela são exibidos os valores calculados. Os seguintes valores podem ser exibidos:

![Figura 60: Valores calculados](image2)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I Ativ (parte ativa) em A</td>
</tr>
<tr>
<td>2</td>
<td>I Reat (parte reativa) em A</td>
</tr>
<tr>
<td>3</td>
<td>Potência aparente S em MVA</td>
</tr>
<tr>
<td>4</td>
<td>Potência reativa Q em Mvar</td>
</tr>
<tr>
<td>5</td>
<td>Fator de potência cos ϕ</td>
</tr>
<tr>
<td>6</td>
<td>Operation counter (contador de comutações)</td>
</tr>
</tbody>
</table>

Os valores que podem ser vistos à direita nas linhas são exibidos somente se os dados do transformador tiverem sido inseridos previamente.
Para exibir os valores calculados, faça o seguinte:

► **MENU > F5** Informação e pressionar repetidamente até que seja exibida a tela desejada.

⇒ Valores calculados.

8.10.4 Executar um teste de LEDs

Você pode verificar se todos os LEDs estão operacionais. Para isso, pressionar a respectiva tecla de função para acender o LED:

<table>
<thead>
<tr>
<th>Tecla</th>
<th>Nº do LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>LED 1...LED 5</td>
</tr>
<tr>
<td>F2</td>
<td>LED 6...LED 9</td>
</tr>
<tr>
<td>F3</td>
<td>Todos os LEDs</td>
</tr>
</tbody>
</table>

Tabela 23: Atribuição das teclas para o teste de LEDs

Com esta função é possível testar apenas a operacionalidade de cada LED. O funcionamento do aparelho relativamente aos LEDs não é testado.

Para executar o teste de LEDs, faça o seguinte:

1. **MENU > F5** Informação e pressionar repetidamente até que seja exibida a tela desejada.

⇒ Teste de LEDs.

2. Pressionar a tecla de função do LED desejado para executar o teste de funcionamento.

8.10.5 Exibir o estado da placa MIO

Nessas telas são exibidos os estados das entradas digitais e das saídas digitais.
Entradas digitais

Nesta tela “Entradas digitais da placa MIO” é exibido o estado das entradas do optoacoplador. Se houver um sinal constante na entrada, é exibido o estado 1. Com 0, não há nenhum sinal na entrada.

Para exibir o status, faça o seguinte:
► Informação e pressionar repetidamente até que seja exibida a tela desejada.
⇒ Entradas digitais da placa MIO

Saídas digitais

Na tela “Saídas digitais da placa MIO” é exibido o estado do relé. Assim que for ativado um relé, é exibido o estado 1. Se for exibido o estado 0 isso indica que o relé não foi ativado.

Para exibir o status, faça o seguinte:
► Informação e pressionar repetidamente até que seja exibida a tela desejada.
⇒ Saídas digitais da placa MIO.

8.10.6 Redefinir parâmetros

Com esta indicação você pode redefinir os seus ajustes para os ajustes de fábrica. Além disso, é também indicado se todos os parâmetros estão armazenados corretamente.

Se você redefinir os parâmetros com os ajustes de fábrica, suas configurações serão eliminadas definitivamente.

Para redefinir todos os parâmetros, faça o seguinte:
1. Informação e pressionar repetidamente até que seja exibida a tela desejada.
⇒ Parâmetro padrão.
2. Pressionar simultaneamente.
⇒ É exibido “Parâmetro padrão”.
⇒ Todos os parâmetros são redefinidos com os valores de fábrica.
8.10.7 Exibir a visão geral da memória

Na visão geral de memória é possível exibir diferentes entradas do banco de dados e a respectiva quantidade dos conjuntos de dados. As informações não são relevantes para a operação. Elas são utilizadas somente para inspeções da assistência técnica. São exibidas as seguintes informações:

- Arquivo de parâmetros
- Bits de dados de evento
- Arquivo de Flash
- Eventos

Para exibir as entradas do banco de dados, faça o seguinte:

1. Pressionar \(\text{MENU} \) > \(\text{F5} \) -> \(\text{F2} \) repetidamente até que seja exibida a tela desejada.

\(\Rightarrow \) Visão geral da memória.

2. Pressionar \(\text{F1} \) ou \(\text{F5} \) para selecionar uma entrada.

\(\Rightarrow \) A respectiva quantidade dos conjuntos de dados é exibida.

8.10.8 Exibir a visão geral de eventos

Nessa tela, é possível exibir a quantidade de todos os eventos vermelhos e amarelos atuais. A prioridade dos eventos é identificada por cores:

<table>
<thead>
<tr>
<th>Cor</th>
<th>Identificação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amarelo</td>
<td>Corresponde a um aviso prévio ou informação de status.</td>
</tr>
<tr>
<td>Vermelho</td>
<td>A regulação automática pode bloquear.</td>
</tr>
</tbody>
</table>

Tabela 24: Identificação de eventos

É possível encontrar uma lista de todos os eventos na seção Mensagens.

Para exibir a visão geral de eventos, faça o seguinte:

\(\text{MENU} \) > \(\text{F5} \) -> \(\text{F2} \) repetidamente até que seja exibida a tela desejada.

\(\Rightarrow \) Visão geral de eventos
9 Resolução de falhas

Este capítulo descreve a resolução de falhas de funcionamento simples.

9.1 Não ocorre regulagem no modo de operação AUTO

<table>
<thead>
<tr>
<th>Ocorrência/detalhes</th>
<th>Causa</th>
<th>Resolução</th>
</tr>
</thead>
<tbody>
<tr>
<td>As ordens de comando do aparelho não têm nenhum efeito. Os LEDs de SUBIR/BAIXAR acendem periodicamente</td>
<td>Chave LOCAL/REMOTO no acionamento motorizado na posição LOCAL.</td>
<td>Verificar o modo de operação. Corrigir, se necessário.</td>
</tr>
<tr>
<td></td>
<td>Conexão não existente.</td>
<td>Verificar o cabeamento de acordo com o esquema de ligação.</td>
</tr>
<tr>
<td>Bloqueio</td>
<td>Bloqueio de potência reversa ativo.</td>
<td>Verificar parâmetros.</td>
</tr>
<tr>
<td>Fluxo de potência negativo.</td>
<td>Verificar a polaridade do transformador de corrente.</td>
<td>Corrigir, se necessário.</td>
</tr>
<tr>
<td>Função atribuída a mais de uma GPI.</td>
<td>Verificar a parametrização das GPIs.</td>
<td>Corrigir, se necessário.</td>
</tr>
<tr>
<td>Uma das GPIs está parametrizada com “Bloqueio” e tem um sinal correspondente.</td>
<td>Verificar a parametrização e o status no menu “Informação”.</td>
<td>Corrigir, se necessário.</td>
</tr>
<tr>
<td>NORMset ativo.</td>
<td>Executar uma comutação manual com as teclas ou</td>
<td></td>
</tr>
<tr>
<td>Bloqueio por subcorrente ativo</td>
<td>Verificar parâmetros.</td>
<td>Corrigir, se necessário.</td>
</tr>
</tbody>
</table>

Bloqueio LED U< acende	Bloqueio por subtensão ativo	Verificar parâmetros.
	Corrigir, se necessário.	
Bloqueio LED U> acende	Bloqueio por sobretensão ativo.	Verificar parâmetros.
	Corrigir, se necessário.	
Bloqueio LED I> acende	Bloqueio por sobrecorrente ativo.	Verificar parâmetros.
	Corrigir, se necessário.	
Faixa de operação com ajuste muito alto	-	Determinar a faixa de operação recomendada.

Tabela 25: Não ocorre regulagem no modo de funcionamento AUTO

9.2 Troca de taps sem motivo

<table>
<thead>
<tr>
<th>Ocorrência/detalhes</th>
<th>Causa</th>
<th>Resolução</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compensação ativada</td>
<td>Ajuste:</td>
<td>Verificar parâmetros.</td>
</tr>
<tr>
<td></td>
<td>• Compensação de linha</td>
<td>Corrigir, se necessário.</td>
</tr>
<tr>
<td></td>
<td>• Compensação Z</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 26: Troca de taps sem motivo
9 Resolução de falhas

9.3 Interface homem-máquina

<table>
<thead>
<tr>
<th>Manifestação/detalhe</th>
<th>Causa</th>
<th>Resolução</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teclas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Não é possível mudar o modo de funcionamento MANUAL/AUTO</td>
<td>Modo de funcionamento REMOTO ativo e o LED da tecla acende.</td>
<td>Pressionar para ativar o modo de funcionamento LOCAL.</td>
</tr>
<tr>
<td>Teclas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Os LEDs das teclas e não acendem.</td>
<td>Erro de parâmetro</td>
<td>Redefinir os parâmetros para os ajustes de fábrica.</td>
</tr>
<tr>
<td>Visor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alimentação de tensão interrompida.</td>
<td>Verificar a alimentação de tensão.</td>
</tr>
<tr>
<td></td>
<td>Fusível defeituoso.</td>
<td>Entrar em contato com a Maschinenfabrik Reinhausen.</td>
</tr>
<tr>
<td>LEDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ O LED livremente configurável acende</td>
<td>Parametrização do LED específica do cliente.</td>
<td>Verificar os parâmetros.</td>
</tr>
<tr>
<td>LEDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ LED pisca</td>
<td>Sinal de entrada não é constante.</td>
<td>Verificar o sinal de entrada.</td>
</tr>
<tr>
<td>COM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Conexão com o PC através do TAPCON®-trol não é possível.</td>
<td>Diferentes taxas de baud ajustadas.</td>
<td>Verificar a taxa de baud ajustada no aparelho e no PC.</td>
</tr>
</tbody>
</table>

Tabela 27: Interface homem-máquina

9.4 Valores de medição incorretos

<table>
<thead>
<tr>
<th>Manifestação/detalhe</th>
<th>Causa</th>
<th>Resolução</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensão de medição</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Nenhum valor de medição disponível.</td>
<td>A conexão não tem nenhum contato no terminal de encaixe.</td>
<td>Verificar o cabeamento e o terminal de encaixe.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolamento emperrado</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O fio não está inserido com o comprimento suficiente.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corta-circuito automático disparado.</td>
<td>Verificar o fusível.</td>
</tr>
<tr>
<td>Tensão de medição</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Valor de medição baixo demais.</td>
<td>Queda de tensão na linha de medição.</td>
<td>Verificar a tensão de medição no terminal de encaixeX2:1/X2:2.</td>
</tr>
<tr>
<td>Tensão de medição</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linhas dispostas em paralelo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comutações.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aumentar a distância até a origem da falha.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Se necessário, instalar um filtro.</td>
</tr>
</tbody>
</table>
Manifestação/detalhe | Causa | Resolução
--- | --- | ---
Corrente medida
• Sem valor de medição. | Linha até o transformador de corrente interrompida. | Verificar o cabeamento.

Ponte de curto-circuito não retirada do transformador de corrente. | Remover a ponte de curto-circuito.

Corrente medida
• Valor de medição alto demais.
• Valor de medição baixo demais. | Relação de multiplicação não parametrizada corretamente.
Entrada incorreta conectada. | Corrigir a parametrização.
Remover a ponte de curto-circuito.

Ângulo de fase
• U/I. | Erro na comutação externa do transformador.
Comutação do transformador parametrizada incorretamente. | Verificar a comutação do transformador.
Comparar com o esquema de ligação da instalação.
Corrigir os parâmetros.
Comparar com os valores de medição na tela de informações.
Trocar a conexão do transformador.
Verificar a polaridade da comutação do transformador.
Corrigir, se necessário.
Verificar a comutação.
Corrigir, se necessário.
Verificar os pontos de medição.
Corrigir, se necessário.

Tabela 28: Valores de medição incorretos

9.5 GPIs e GPOs específicas do cliente

Ocorrência/detalhes	Causa	Resolução
A função esperada correspondente ao ajuste de fábrica não ocorre. | A parametrização foi alterada manualmente ou através do TAPCON®-trol. | Verificar os parâmetros ativos.
O sinal não é constante | Tensão contínua pulsante | Verificar a origem da tensão contínua.
Verificar o emissor de sinais
Verificar o cabeamento

Sem sinal
As telas de informação “Faixa de operação”, “Tempo de retardamento T1”, “Resposta de controle T1”, “Tempo de retardamento T2” exibem um 0. | Tensão de alimentação baixa demais | Redefinir os parâmetros para os ajustes de fábrica.

Tabela 29: Resolução de falhas: GPIs e GPOs
9.6 Falhas gerais

<table>
<thead>
<tr>
<th>Ocorrência/detalhe</th>
<th>Causa</th>
<th>Solução</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sem função</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• LED Exibição de operação não acende</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sem alimentação de tensão</td>
<td>Verificar a alimentação de tensão</td>
</tr>
<tr>
<td></td>
<td>Fusível disparado</td>
<td>Entrar em contato com a Maschinenfabrik Reinhausen GmbH</td>
</tr>
<tr>
<td>Os relés chacoalham</td>
<td>Tensão de alimentação baixa demais</td>
<td>Verificar a tensão de alimentação</td>
</tr>
<tr>
<td></td>
<td>Alta carga de EMC</td>
<td>Utilizar cabos blindados ou filtros externos</td>
</tr>
<tr>
<td></td>
<td>Aterramento deficiente</td>
<td>Verificar aterramento de proteção</td>
</tr>
</tbody>
</table>

Tabela 30: Falhas gerais

9.7 Outras falhas

Se não for possível encontrar uma solução para uma falha, entre em contato com a Maschinenfabrik Reinhausen. Tenha à mão os seguintes dados:

• Número de série
 – Placa de características (parede externa direita na visão frontal [Parágrafo 4.5.1, Página 18])
 – Tela de informações (**MENÚ** > **F5** Informação)

Prepare-se para responder às seguintes perguntas:

• Ocorreu uma atualização de firmware?
• Já houve problemas com esse aparelho anteriormente?
• Já houve contato com a Maschinenfabrik Reinhausen por esse motivo? Em caso afirmativo, com quem?
10 Mensagens

<table>
<thead>
<tr>
<th>Nº</th>
<th>Evento (amarelo/ vermelho)</th>
<th>Aviso de evento</th>
<th>Observação:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>vermelho</td>
<td>Subtensão</td>
<td>A mensagem é exibida no caso de subtensão. Ajustar o parâmetro Subtensão U< [► Parágrafo , Página 75].</td>
</tr>
<tr>
<td>4</td>
<td>vermelho</td>
<td>Sobretensão</td>
<td>A mensagem é exibida se ocorrer sobretensão. Ajustar o parâmetro Sobretensão U> [► Parágrafo , Página 77].</td>
</tr>
<tr>
<td>5</td>
<td>vermelho</td>
<td>Sobrecorrente</td>
<td>A mensagem é exibida se ocorrer sobrecorrente. Ajustar o parâmetro Sobrecorrente I> [► Parágrafo , Página 79].</td>
</tr>
<tr>
<td>6</td>
<td>vermelho</td>
<td>Erro na operação em paralelo: métodos de operação em paralelo diferentes</td>
<td>A mensagem é exibida se tiverem sido ajustados métodos de operação em paralelo diferentes em dois ou mais aparelhos no mesmo grupo de operação em paralelo. Ajustar o parâmetro Método de operação em paralelo.</td>
</tr>
<tr>
<td>7</td>
<td>amarelo</td>
<td>Disjuntor de proteção do motor</td>
<td>O disjuntor do motor é disparado pela entrada.</td>
</tr>
<tr>
<td>9</td>
<td>amarelo</td>
<td>Subcorrente</td>
<td>A mensagem é exibida no caso de sobrecorrente. Ajustar o parâmetro Subcorrente I< [► Parágrafo , Página 80].</td>
</tr>
<tr>
<td>11</td>
<td>vermelho</td>
<td>Erro no ajuste das entradas do cliente (alocação dupla)</td>
<td>Pelo menos duas entradas do cliente estão parametrizadas com a mesma função. A mensagem é exibida depois de o 2º parâmetro ser confirmado com .</td>
</tr>
<tr>
<td>12</td>
<td>amarelo</td>
<td>Monitoramento de funcionamento (sem estabilização da tensão dentro do tempo ajustado)</td>
<td>A mensagem é exibida se não ocorrer a estabilização da tensão dentro do tempo ajustado (valor predefinido: 15 minutos).</td>
</tr>
<tr>
<td>13</td>
<td>amarelo</td>
<td>Monitoramento de tempo de funcionamento do acionamento motorizado</td>
<td>A mensagem é exibida no caso de ultrapassagem do tempo de monitoramento de funcionamento do motor ajustado. Ajustar o parâmetro Monitoramento de funcionamento do motor [► Parágrafo 8.2.8, Página 59].</td>
</tr>
<tr>
<td>14</td>
<td>vermelho</td>
<td>Valor de entrada analógica alto demais. Verifique a conexão ao terminal X7!</td>
<td>A mensagem é exibida no caso de ultrapassagem do valor máximo de corrente de 20 mA na conexão X7.</td>
</tr>
<tr>
<td>15</td>
<td>amarelo</td>
<td>Valor de entrada analógica negativo. Verifique a conexão ao terminal X7!</td>
<td>A mensagem é exibida no caso de inversão de polaridade ou se houver erro na conexão X7.</td>
</tr>
<tr>
<td>16</td>
<td>vermelho</td>
<td>Parameter reloaded! Confirm with F3 & Enter</td>
<td>A mensagem é exibida se o conjunto de parâmetros atual estiver danificado e, portanto, o sistema tiver passado para o conjunto de parâmetros padrão.</td>
</tr>
<tr>
<td>17</td>
<td>amarelo</td>
<td>Verificar o contato deslizante!</td>
<td>A mensagem é exibida no caso de a coroa potenciométrica estar conectada incorretamente ou apresentar mau contato.</td>
</tr>
<tr>
<td>30</td>
<td>vermelho</td>
<td>Bloqueio: Existe um bloqueio de entrada de cliente</td>
<td>A mensagem é exibida se existir um sinal na entrada de cliente configurada "Regulação automática bloqueada" (bloqueio).</td>
</tr>
<tr>
<td>31</td>
<td>vermelho</td>
<td>Bloqueio: Potência ativa negativa</td>
<td>A mensagem é exibida se a potência ativa for negativa e o bloqueio estiver ativo no caso de potência ativa negativa.</td>
</tr>
<tr>
<td>Nº</td>
<td>Evento (amarelo/vermelho)</td>
<td>Aviso de evento</td>
<td>Observação:</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>32</td>
<td>vermelho</td>
<td>Bloqueio: Entrada de cliente</td>
<td>A mensagem é exibida se existir um sinal na entrada de cliente configurada "Impulsos para cima bloqueados" (Blq. U alto).</td>
</tr>
<tr>
<td>33</td>
<td>vermelho</td>
<td>Bloqueio: Existe um bloqueio de comutação para cima na entrada de cliente</td>
<td>A mensagem é exibida se existir um sinal na entrada de cliente configurada "Impulsos para baixo bloqueados"</td>
</tr>
<tr>
<td>34</td>
<td>vermelho</td>
<td>Bloqueio: Comutação para baixo bloqueada porque o limite de taps foi atingido ou ultrapassado</td>
<td>A mensagem é exibida se as comutações para baixo estiverem bloqueadas porque o respectivo limite de tap foi atingido ou ultrapassado.</td>
</tr>
<tr>
<td>35</td>
<td>vermelho</td>
<td>Bloqueio: Comutação para cima bloqueada porque o limite de taps foi atingido ou ultrapassado</td>
<td>A mensagem é exibida se as comutações para cima estiverem bloqueadas porque o respectivo limite de tap foi atingido ou ultrapassado.</td>
</tr>
<tr>
<td>36</td>
<td>amarelo</td>
<td>Limite de taps atingido ou ultrapassado</td>
<td>A mensagem é exibida se o respectivo limite de tap tiver sido atingido ou ultrapassado.</td>
</tr>
<tr>
<td>37</td>
<td>amarelo</td>
<td>Potência ativa negativa</td>
<td>A mensagem é exibida se a potência ativa for negativa.</td>
</tr>
<tr>
<td>38</td>
<td>amarelo</td>
<td>Não existe conexão à placa de interface de comunicação</td>
<td>A mensagem é exibida quando não é possível criar nenhuma conexão à placa de interface de comunicação \textit{placa IEC-61850}.</td>
</tr>
</tbody>
</table>

Tabela 31: Aviso de evento
11 Eliminação

Observe os regulamentos nacionais de eliminação do país em que o aparelho for utilizado.
12 Visão geral dos parâmetros

Nesta seção você pode encontrar uma visão geral de todos os menus e parâmetros. Dependendo da sua função de dispositivo, a disponibilidade de alguns parâmetros pode variar.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Faixa de ajuste</th>
<th>Ajuste de fábrica</th>
<th>Ajuste atual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ativação de Normset</td>
<td>Ativado/Desativado</td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>Valor de referência 1</td>
<td>49...140 V</td>
<td>100 V</td>
<td></td>
</tr>
<tr>
<td>Tensão primária</td>
<td>0...9999 kV</td>
<td>0 kV</td>
<td></td>
</tr>
<tr>
<td>Tensão secundária</td>
<td>57...123 V</td>
<td>100 V</td>
<td></td>
</tr>
<tr>
<td>Parâmetros de regulagem > Regulagem de tensão</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valor de referência 1</td>
<td>49...140 V</td>
<td>100,0 V</td>
<td></td>
</tr>
<tr>
<td>Valor de referência 2</td>
<td>49...140 V</td>
<td>100,0 V</td>
<td></td>
</tr>
<tr>
<td>Valor de referência 3</td>
<td>49...140 V</td>
<td>100,0 %</td>
<td></td>
</tr>
<tr>
<td>Faixa de operação</td>
<td>0,5...9 %</td>
<td>2,00 %</td>
<td></td>
</tr>
<tr>
<td>Tempo de retardamento T1</td>
<td>0...600 s</td>
<td>40 s</td>
<td></td>
</tr>
<tr>
<td>Resposta de controle T1</td>
<td>T1 linear/T1 integral</td>
<td>T1 linear</td>
<td></td>
</tr>
<tr>
<td>Ativação T2</td>
<td>T2 ativ./T2 desativ.</td>
<td>T2 desativado</td>
<td></td>
</tr>
<tr>
<td>Tempo de retardamento T2</td>
<td>1...10 s</td>
<td>10,0 s</td>
<td></td>
</tr>
<tr>
<td>Parâmetros de regulagem > Valores-limite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtensão U< [%]</td>
<td>60...100 %</td>
<td>90 %</td>
<td></td>
</tr>
<tr>
<td>Retardamento U<</td>
<td>0...20 s</td>
<td>10,0 s</td>
<td></td>
</tr>
<tr>
<td>Bloqueio por subtensão U<</td>
<td>Ativado/Desativado</td>
<td>Ativado</td>
<td></td>
</tr>
<tr>
<td>U< abaixo de 30 V</td>
<td>Ativado/Desativado</td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>Sobretensão U> [%]</td>
<td>100...140 %</td>
<td>110 %</td>
<td></td>
</tr>
<tr>
<td>Bloqueio por sobretensão U></td>
<td>Ativado/Desativado</td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>Sobrecorrente I> [%]</td>
<td>50...210 %</td>
<td>110 %</td>
<td></td>
</tr>
<tr>
<td>Bloqueio por sobrecorrente I></td>
<td>Ativado/Desativado</td>
<td>Ativado</td>
<td></td>
</tr>
<tr>
<td>Subcorrente I< [%]</td>
<td>0...210 %</td>
<td>0 %</td>
<td></td>
</tr>
<tr>
<td>Bloqueio por subcorrente I<</td>
<td>Ativado/Desativado</td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>Bloqueio por tensão ativa negativa</td>
<td>Ativado/Desativado</td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>Parâmetros de regulagem > Compensação</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Método de compensação</td>
<td>LDC/Z</td>
<td>LDC</td>
<td></td>
</tr>
<tr>
<td>Compensação de linha Ur</td>
<td>-25...25 V</td>
<td>0,0 V</td>
<td></td>
</tr>
<tr>
<td>Compensação de linha Ux</td>
<td>-25...25 V</td>
<td>0,0 V</td>
<td></td>
</tr>
<tr>
<td>Compensação Z</td>
<td>0...15 %</td>
<td>0,0 %</td>
<td></td>
</tr>
<tr>
<td>Valor-limite de comp. Z</td>
<td>0...15 %</td>
<td>0,0 %</td>
<td></td>
</tr>
<tr>
<td>Parâmetros</td>
<td>Faixa de ajuste</td>
<td>Ajuste de fábrica</td>
<td>Ajuste atual</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Configuração > Dados do transformador</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensão primária</td>
<td>0...9999 kV</td>
<td>0 kV</td>
<td></td>
</tr>
<tr>
<td>Tensão secundária</td>
<td>57...123 V</td>
<td>100,0 V</td>
<td></td>
</tr>
<tr>
<td>Corrente primária</td>
<td>0...10000 A</td>
<td>0 a</td>
<td></td>
</tr>
<tr>
<td>Conexão do transformador de corrente</td>
<td>Desconhecida; 1 A; 5 A</td>
<td>Desconhecido</td>
<td></td>
</tr>
<tr>
<td>Comutação do transformador</td>
<td>ver [Parágrafo 8.7.5, Página 90]</td>
<td>0 1PH</td>
<td></td>
</tr>
<tr>
<td>Indicação em kV/V</td>
<td>kV/V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Indicação em %/A</td>
<td>% / A</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Configuração – Generalidades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idioma</td>
<td>ver [Parágrafo 7.2.1, Página 46]</td>
<td>Alemão</td>
<td></td>
</tr>
<tr>
<td>ID do regulador</td>
<td>-</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>Taxa de transmissão</td>
<td>9,6 kBaud; 19,2 kBaud; 38,4 kBaud; 57,6 kBaud</td>
<td>57,6 kBaud</td>
<td></td>
</tr>
<tr>
<td>Duração de impulso de A / B</td>
<td>0...10 s</td>
<td>1,5 s</td>
<td></td>
</tr>
<tr>
<td>Contador de comutações</td>
<td>0...99999999</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Luminosidade do visor</td>
<td>Ativado/Desativado</td>
<td>Ativado</td>
<td></td>
</tr>
<tr>
<td>Bloqueio de teclas</td>
<td>Ativado/Desativado</td>
<td>Ativado</td>
<td></td>
</tr>
<tr>
<td>Monitoramento de funcionamento</td>
<td>Ativado/Desativado</td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>Retardamento do monitoramento de funcionamento</td>
<td>0...120 min</td>
<td>15 min</td>
<td></td>
</tr>
<tr>
<td>Tempo de funcionamento do motor</td>
<td>0...30 s</td>
<td>0,0 s</td>
<td></td>
</tr>
<tr>
<td>Local/remoto</td>
<td>Local/remoto</td>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>Senha de COM1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Duração da senha</td>
<td>1...50 min</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>Configuração > Entradas/saídas de cliente</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPI 1 – X4:13</td>
<td>ver [Parágrafo 8.8, Página 94]</td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>GPI 2 – X4:14</td>
<td></td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>GPI 3 – X4:15</td>
<td></td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>GPI 4 – X4:16</td>
<td></td>
<td>Comutação rápida</td>
<td></td>
</tr>
<tr>
<td>GPI 5 – X4:17</td>
<td></td>
<td>Valor de referência2</td>
<td></td>
</tr>
<tr>
<td>GPI 6 – X4:18</td>
<td></td>
<td>Valor de referência3</td>
<td></td>
</tr>
<tr>
<td>GPO 1 – X4:9</td>
<td></td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>GPO 2 – X4:12</td>
<td></td>
<td>Desativar</td>
<td></td>
</tr>
</tbody>
</table>
12 Visão geral dos parâmetros

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Faixa de ajuste</th>
<th>Ajuste de fábrica</th>
<th>Ajuste atual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuração - Seleção de LED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED1</td>
<td>ver [Parágrafo 8.9, Página 97]</td>
<td>GPI 1</td>
<td></td>
</tr>
<tr>
<td>LED2</td>
<td></td>
<td>GPI 2</td>
<td></td>
</tr>
<tr>
<td>LED3 amarelo</td>
<td></td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>LED3 verde</td>
<td></td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>LED4 amarelo</td>
<td></td>
<td>Desativar</td>
<td></td>
</tr>
<tr>
<td>LED4 vermelho</td>
<td></td>
<td>Desativar</td>
<td></td>
</tr>
</tbody>
</table>

Info
- Informação
- Valores de medição
- Valores calculados
- Teste de LEDs
- Entradas MIO
- Saídas MIO
- Parâmetros padrão
- Visão geral da memória
- Visão geral de eventos

Tabela 32: Visão geral dos parâmetros
13 Dados técnicos

13.1 Elementos de indicação

<table>
<thead>
<tr>
<th>Visor</th>
<th>LCD, monocromático, com capacidade gráfica 128 x 128 Dot</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDs</td>
<td>15 LEDs para indicação de operação e mensagem, dos quais 4 LEDs são livremente programáveis (2 amarelos, 1 amarelo/verde, 1 amarelo/vermelho)</td>
</tr>
</tbody>
</table>

Tabela 33: Elementos de indicação

13.2 Dados elétricos

| Faixa de tensão admissível | 90...264 VAC
| | 100...353 VDC
| | U_n 100...240 VAC
<table>
<thead>
<tr>
<th></th>
<th>U_n 100...353 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faixa de frequência admissível</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Consumo de potência</td>
<td>12,5 VA</td>
</tr>
</tbody>
</table>

Tabela 34: Dados elétricos

13.3 Dimensões e peso

<table>
<thead>
<tr>
<th>Caixa (L x A x P)</th>
<th>198 x 310 x 95,5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porta (L x A)</td>
<td>242 x 343 mm</td>
</tr>
<tr>
<td>Peso</td>
<td>6,0 kg</td>
</tr>
</tbody>
</table>

Tabela 35: Dimensões e peso
Figura 61: Vista frontal e vista lateral

Figura 62: Vista de cima com a porta montada

Figura 63: Vista de baixo sem porta
13.4 Condições ambientais

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura de operação</td>
<td>-25°C...+70°C</td>
</tr>
<tr>
<td>Temperatura de armazenamento</td>
<td>-40°C...+85°C</td>
</tr>
</tbody>
</table>

Tabela 36: Condições ambientais

13.5 Segurança elétrica

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61010-1</td>
<td>Diretivas de segurança para aparelhos elétricos de medição, comando,</td>
</tr>
<tr>
<td></td>
<td>regulagem e laboratório</td>
</tr>
<tr>
<td></td>
<td>• Classe de proteção 1</td>
</tr>
<tr>
<td></td>
<td>• Categoría de sobretensão III</td>
</tr>
<tr>
<td></td>
<td>• Grau de impurezas 2</td>
</tr>
<tr>
<td></td>
<td>• Categoría de mediación III</td>
</tr>
<tr>
<td>IEC 61131-2</td>
<td>Teste de isolamento com frequência de operação</td>
</tr>
<tr>
<td></td>
<td>350 VAC...5870 VAC (dependendo da tensão de trabalho de cada circuito)</td>
</tr>
<tr>
<td>IEC 60255</td>
<td>Teste de isolamento com tensão de impulso 5 kV, 1.2 / 50 µs</td>
</tr>
<tr>
<td>VDE 0435</td>
<td>Corrente de curta duração e resistência à fadiga das entradas do</td>
</tr>
<tr>
<td></td>
<td>transformador de corrente</td>
</tr>
<tr>
<td></td>
<td>• 100 x I_n/1 s</td>
</tr>
<tr>
<td></td>
<td>• 2 x I_n/ constante</td>
</tr>
</tbody>
</table>

Tabela 37: Segurança elétrica

13.6 Compatibilidade eletromagnética

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61000-4-2</td>
<td>Descargas eletrostáticas (ESD) 8 kV / 15 kV</td>
</tr>
<tr>
<td>IEC 61000-4-3</td>
<td>Campos eletromagnéticos (HF) 20 V/m 80...3000 MHz</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td>Transientes rápidos (burst) 6,5 kV</td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
<td>Resistência a interferência contra transientes (surto) 2 kV (condutor</td>
</tr>
<tr>
<td></td>
<td>externo/condutor externo), 4 kV (condutor externo/terra)</td>
</tr>
<tr>
<td>IEC 61000-4-6</td>
<td>Resistência às interferências de radiofrequência (condutores) 10 V, 150</td>
</tr>
<tr>
<td></td>
<td>kHz...80 MHz</td>
</tr>
<tr>
<td>IEC 61000-4-8</td>
<td>Resistência contra campos magnéticos 1000 A/m</td>
</tr>
</tbody>
</table>
13 Dados técnicos

<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61000-6-2</td>
<td>Resistência - indústria</td>
</tr>
<tr>
<td>IEC 61000-6-4</td>
<td>Interferência emitida - indústria</td>
</tr>
</tbody>
</table>

Tabela 38: Compatibilidade eletromagnética

13.7 Testes de resistência ao ambiente

<table>
<thead>
<tr>
<th>Código</th>
<th>Detalhes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN EN 60529</td>
<td>Determinação da classe de proteção “Acesso, corpos estranhos e água em componentes elétricos” - Nível IP 54</td>
</tr>
<tr>
<td>IEC 60068-2-1</td>
<td>Frio seco - 25 °C / 16 horas</td>
</tr>
<tr>
<td>IEC 60068-2-2</td>
<td>Calor seco + 70 °C/ 16 horas</td>
</tr>
<tr>
<td>IEC 60068-2-3</td>
<td>Calor úmido constante + 40 °C / 93 % / 21 dias</td>
</tr>
<tr>
<td>IEC 60068-2-30</td>
<td>Calor úmido cíclico (12 + 12 horas) + 55 °C / 93 % e + 25 °C / 95 % / 6 ciclos</td>
</tr>
</tbody>
</table>

Tabela 39: Testes de resistência ao ambiente

13.8 Estabilidade mecânica

<table>
<thead>
<tr>
<th>Código</th>
<th>Detalhes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60068-2-31</td>
<td>Tombos e quedas sem embalagem - altura da queda 100 mm</td>
</tr>
<tr>
<td>IEC 60068-2-32</td>
<td>Queda livre, sem embalagem - altura da queda 250 mm</td>
</tr>
<tr>
<td>IEC 255-21-1 Classe 1</td>
<td>Teste de vibração</td>
</tr>
<tr>
<td>IEC 255-21-2 Classe 1</td>
<td>Teste de choques</td>
</tr>
<tr>
<td>IEC 255-21-3 Classe 1</td>
<td>Teste de terremotos</td>
</tr>
</tbody>
</table>

Tabela 40: Estabilidade mecânica
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM</td>
<td>LED</td>
</tr>
<tr>
<td>Compatibilidade eletromagnética</td>
<td>Diodo luminoso (Light Emitting Diode)</td>
</tr>
<tr>
<td>GPI</td>
<td>MR</td>
</tr>
<tr>
<td>General Purpose Input</td>
<td>Maschinenfabrik Reinhausen GmbH</td>
</tr>
<tr>
<td>GPO</td>
<td>S/T</td>
</tr>
<tr>
<td>General Purpose Output</td>
<td>Subir/baixar</td>
</tr>
<tr>
<td>LDC</td>
<td></td>
</tr>
<tr>
<td>Line Drop Compensation</td>
<td></td>
</tr>
<tr>
<td>Índice</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ajuste de fábrica</td>
<td>102, 111</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Bloqueio de fluxo negativo de potência ativa</td>
<td>81</td>
</tr>
<tr>
<td>Bloqueio de teclas</td>
<td>53</td>
</tr>
<tr>
<td>Automático</td>
<td>57</td>
</tr>
<tr>
<td>Bloqueio por sobrecorrente</td>
<td>79</td>
</tr>
<tr>
<td>Bloqueio U<</td>
<td>76</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Cabeamento</td>
<td>36, 43</td>
</tr>
<tr>
<td>Cabos recomendados</td>
<td>37</td>
</tr>
<tr>
<td>Clip de trilho</td>
<td>33</td>
</tr>
<tr>
<td>Compatibilidade eletromagnética</td>
<td>38</td>
</tr>
<tr>
<td>Compensação</td>
<td>81</td>
</tr>
<tr>
<td>Compensação Z</td>
<td>85</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Dados do transformador</td>
<td>87</td>
</tr>
<tr>
<td>Comunicação do transformador</td>
<td>90</td>
</tr>
<tr>
<td>Conexão do transformador de corrente</td>
<td>90</td>
</tr>
<tr>
<td>Corrente primária</td>
<td>89</td>
</tr>
<tr>
<td>Tensão primária</td>
<td>88</td>
</tr>
<tr>
<td>Tensão secundária</td>
<td>88</td>
</tr>
<tr>
<td>Duração de impulso subir/baixar</td>
<td>54</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Elementos de comando</td>
<td>19</td>
</tr>
<tr>
<td>Elementos de indicação</td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td>20</td>
</tr>
<tr>
<td>Escurecimento do visor</td>
<td>57</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Faixa de operação</td>
<td>70</td>
</tr>
<tr>
<td>Cálculo</td>
<td>70</td>
</tr>
<tr>
<td>Representação visual</td>
<td>71</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>GPI</td>
<td>94</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>ID do aparelho</td>
<td>53</td>
</tr>
<tr>
<td>ID do regulador</td>
<td>53</td>
</tr>
<tr>
<td>Idioma</td>
<td>46</td>
</tr>
<tr>
<td>Informações</td>
<td>99</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Instalação embutida em painel</td>
<td>30</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Material fornecido</td>
<td>14</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>NORMset</td>
<td>64</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Parâmetro</td>
<td></td>
</tr>
<tr>
<td>Bloqueio por sobrecorrente</td>
<td>79</td>
</tr>
<tr>
<td>Faixa de operação</td>
<td>70</td>
</tr>
<tr>
<td>Retorno rápido</td>
<td>79</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Redefinir parâmetros</td>
<td>102</td>
</tr>
<tr>
<td>Resolução de falhas</td>
<td>104</td>
</tr>
<tr>
<td>Resposta de controle T1</td>
<td>72</td>
</tr>
<tr>
<td>Retardamento U<</td>
<td>76</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Seleção de LED</td>
<td>97</td>
</tr>
<tr>
<td>Senha COM1</td>
<td>62</td>
</tr>
<tr>
<td>Sequência de fases</td>
<td>90</td>
</tr>
<tr>
<td>Sobrecorrente I> relativa</td>
<td>79</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Taxa de baud</td>
<td>54</td>
</tr>
<tr>
<td>Tempo de funcionamento do motor</td>
<td>59</td>
</tr>
<tr>
<td>Relé de saída</td>
<td>60</td>
</tr>
<tr>
<td>Tempo de retardamento T1</td>
<td>72</td>
</tr>
<tr>
<td>Tempo de retardamento T2</td>
<td>73</td>
</tr>
<tr>
<td>Ativar</td>
<td>74</td>
</tr>
<tr>
<td>Desativar</td>
<td>74</td>
</tr>
<tr>
<td>Tensão auxiliar</td>
<td>42</td>
</tr>
<tr>
<td>Tensão primária</td>
<td>64</td>
</tr>
<tr>
<td>Tensão secundária</td>
<td>65</td>
</tr>
<tr>
<td>Teste de funcionamento</td>
<td>50</td>
</tr>
<tr>
<td>Compensação de linha</td>
<td>50</td>
</tr>
<tr>
<td>Compensação Z</td>
<td>51</td>
</tr>
<tr>
<td>Funções adicionais</td>
<td>49</td>
</tr>
<tr>
<td>Funções de regulagem</td>
<td>47</td>
</tr>
<tr>
<td>Line Drop Compensation</td>
<td>50</td>
</tr>
<tr>
<td>Sobretensão U></td>
<td>49</td>
</tr>
<tr>
<td>Subtensão U<</td>
<td>49</td>
</tr>
<tr>
<td>Valor de referência 2</td>
<td>50</td>
</tr>
<tr>
<td>Valor de referência 3</td>
<td>50</td>
</tr>
<tr>
<td>Testes de funcionamento</td>
<td>47</td>
</tr>
<tr>
<td>LDC</td>
<td>50</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>U< também abaixo de 30 V</td>
<td>77</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Valor de referência</td>
<td>65</td>
</tr>
<tr>
<td>Valor de referência</td>
<td>69</td>
</tr>
<tr>
<td>Valores calculados</td>
<td>100</td>
</tr>
<tr>
<td>Valores de medição</td>
<td>99</td>
</tr>
<tr>
<td>Valor-limite</td>
<td></td>
</tr>
<tr>
<td>Monitoramento de valores-limite</td>
<td>74</td>
</tr>
<tr>
<td>Sobretensão U></td>
<td>77</td>
</tr>
<tr>
<td>Subtensão U<</td>
<td>75</td>
</tr>
<tr>
<td>Visão geral da memória</td>
<td>103</td>
</tr>
<tr>
<td>Visão geral dos parâmetros</td>
<td>111</td>
</tr>
</tbody>
</table>