Spannungsregler TAPCON® 230 AVT
Betriebsanleitung
Inhaltsverzeichnis

1 Einleitung ... 13
 1.1 Hersteller ... 13
 1.2 Änderungsvorbehalte ... 13
 1.3 Vollständigkeit ... 13
 1.4 Mitgeltende Dokumente ... 14
 1.5 Aufbewahrungsорт ... 14
 1.6 Darstellungskonventionen .. 14
 1.6.1 Verwendete Abkürzungen .. 15
 1.6.2 Warnkonzept .. 17
 1.6.3 Informationskonzept ... 18
 1.6.4 Schreibweisen .. 18
2 Sicherheit .. 19
 2.1 Allgemeine Sicherheitsinformationen ... 19
 2.2 Bestimmungsgemäße Verwendung .. 19
 2.3 Bestimmungswidrige Verwendung .. 20
 2.4 Qualifikation des Personals ... 20
 2.5 Sorgfaltspflicht des Betreibers ... 20
3 Produktbeschreibung .. 23
 3.1 Funktionsbeschreibung ... 23
 3.2 Leistungsmerkmale TAPCON® 230 AVT .. 25
 3.3 Lieferumfang .. 27
 3.4 Beschreibung der Hardware ... 27
 3.5 Beschreibung der Frontplatte .. 31
Inhaltsverzeichnis

3.6 Beschreibung des Displays ... 32
3.7 Beschreibung der Tastenfunktionen ... 33
3.8 Bediensicherheit am TAPCON® 230 AVT ... 35

4 Verpackung, Transport und Lagerung .. 37
4.1 Verpackung .. 37
4.1.1 Verwendung .. 37
4.1.2 Eignung, Aufbau und Herstellung ... 37
4.1.3 Markierungen .. 37
4.2 Transport, Empfang und Behandlung von Sendungen 38
4.3 Einlagern von Sendungen .. 39

5 Funktionen und Einstellungen .. 41
5.1 NORMset ... 42
5.1.1 NORMset aktivieren ... 43
5.1.2 NORMset deaktivieren ... 44
5.1.3 Sollwert 1 einstellen ... 45
5.2 Regelparameter ... 46
5.2.1 Spannungsregelung ... 46
5.2.2 Grenzwerte ... 58
5.3 Konfiguration ... 68
5.3.1 Allgemeines .. 68
5.4 Parallellauf .. 79
5.4.1 Parallellauf aktivieren .. 80
5.4.2 Parallellauf deaktivieren ... 80
5.4.3 Parallellaufmethode .. 81
5.4.4 Parallellaufgruppe zuweisen ... 86
5.4.5 CAN Adresse eingeben .. 87
5.4.6 Einzelbetrieb Blockierung aktivieren/deaktivieren 87
5.4.7 Kreisblindstromempfindlichkeit einstellen 88
5.4.8 Blockiergrenze für maximal zulässigen Kreisblindstrom einstellen ... 89
5.4.9 Master/Follower Stromblockierung aktivieren/deaktivieren 90
5.4.10	Verzögerungszeit für Parallellauffehlermeldung einstellen	91
5.4.11	Follower Stufenrichtung auswählen	92
5.4.12	Maximale Stufendifferenz einstellen	93
5.4.13	Follower ohne Messspannung schalten aktivieren/deaktivieren	94
5.5	Frei konfigurierbare Eingänge/Ausgänge zuweisen	95
5.5.1	Eingänge (GPIs) zuweisen	96
5.5.2	Ausgänge (GPOs) zuweisen	97
5.5.3	LEDs einstellen	100
5.5.4	Frei konfigurierbare Eingänge/Ausgänge zuweisen	95
5.6	Stufenstellungserfassung	103
5.6.1	Arten der Stufenstellungserfassung	104
5.6.2	Analogwert der minimalen Stufe zuweisen	105
5.6.3	Analogwert der maximalen Stufe einstellen	106
5.6.4	Unterste Stufenstellung einstellen	107
5.6.5	Oberste Stufenstellung einstellen	108
5.6.6	Untere Stufenblockierungsgrenze festlegen	109
5.6.7	Obere Stufenblockierungsgrenze festlegen	110
5.6.8	Stufenblockierungsverhalten auswählen	111
5.7	Sollwertferneinstellung	112
5.7.1	Arten der Sollwertferneinstellung	113
5.7.2	Analogwert des minimalen Sollwerts einstellen	114
5.7.3	Analogwert des maximalen Sollwerts einstellen	115
5.7.4	Minimalen Sollwert einstellen	116
5.7.5	Maximalen Sollwert einstellen	117
5.8	Kommunikationsschnittstelle	118
5.8.1	Kommunikationsprotokoll auswählen	119
5.8.2	Kommunikationsanschluss auswählen	120
5.8.3	Baudrate Kommunikation auswählen	121
5.8.4	Netzwerkadresse einstellen	122
5.8.5	TCP Port zuweisen	123
5.8.6	SCADA Adresse einstellen	124
5.8.7	Sendeverzögerung bei RS485-Schnittstelle einstellen	125
5.9	Info	126
5.9.1	Info-Bildschirm anzeigen	127
5.9.2	Messwerte anzeigen	128
5.9.3	Berechnete Werte anzeigen	129
5.9.4 LED-Test durchführen .. 130
5.9.5 MIO-Karte Digitaleingänge anzeigen ... 131
5.9.6 MIO-Karte Digitalausgänge anzeigen .. 131
5.9.7 PIO-Karte Digitaleingänge anzeigen ... 132
5.9.8 PIO-Karte Digitalausgänge anzeigen ... 132
5.9.9 Parallelbetrieb anzeigen... 133
5.9.10 Daten auf CAN-Bus anzeigen .. 133
5.9.11 Peakspeicher anzeigen .. 134
5.9.12 CI-Card SCADA Information .. 134
5.9.13 Speicherübersicht anzeigen .. 135
5.9.14 Ereignisübersicht ... 135

5.10 Sonstige Einstellungen ... 136
5.10.1 Widerstandskontaktreihe kalibrieren ... 136
5.10.2 Default Parameter zurücksetzen .. 137

5.11 Zusammenfassung der Einstellbereiche ... 138

6 Störungsbeseitigung ... 139
6.1 Betriebsstörungen .. 139
6.2 Ereignismeldungen .. 142

7 Technische Daten .. 145

8 Menüübersicht ... 147

9 MR weltweit .. 157
<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Beschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbildung 1</td>
<td>Übersicht für die Spannungsregelung mit dem TAPCON® 230 AVT</td>
<td>24</td>
</tr>
<tr>
<td>Abbildung 2</td>
<td>Blockschaltbild des TAPCON® 230 AVT*</td>
<td>28</td>
</tr>
<tr>
<td>Abbildung 3</td>
<td>Weitere Kommunikationsschnittstellen TAPCON® 230 AVT</td>
<td>29</td>
</tr>
<tr>
<td>Abbildung 4</td>
<td>Frontplatte des TAPCON® 230 AVT mit Bedienfeld</td>
<td>31</td>
</tr>
<tr>
<td>Abbildung 5</td>
<td>Hauptbildschirm</td>
<td>32</td>
</tr>
<tr>
<td>Abbildung 6</td>
<td>Markierungen für den Versand</td>
<td>37</td>
</tr>
<tr>
<td>Abbildung 7</td>
<td>Menü</td>
<td>41</td>
</tr>
<tr>
<td>Abbildung 8</td>
<td>Zeitlicher Verlauf der Messspannung und der Bandbreite</td>
<td>51</td>
</tr>
<tr>
<td>Abbildung 9</td>
<td>Visuelle Darstellung der Abweichung vom Sollwert</td>
<td>52</td>
</tr>
<tr>
<td>Abbildung 10</td>
<td>ΔU/B-Spannungsänderung</td>
<td>57</td>
</tr>
<tr>
<td>Abbildung 11</td>
<td>Schaltimpuls im Standardbetrieb</td>
<td>72</td>
</tr>
<tr>
<td>Abbildung 12</td>
<td>Verdrahtung der Motorlaufzeitüberwachung</td>
<td>76</td>
</tr>
<tr>
<td>Abbildung 13</td>
<td>Bereich der Stufenstellungen</td>
<td>109</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verwendete Abkürzungen</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Signalwörter in Warnhinweisen</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Piktogramme in Warnhinweisen</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Schreibweisen</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>Verfügbare Schnittstellen zur Leitsystemkommunikation</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Lieferumfang</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>Information zur Hardware</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>Einstellbereich Sollwert 1 in V im Modus NORMset</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>Einstellbereich Sollwert 1 in V - Spannungsregelung</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>Einstellbereich Sollwert 2 in V - Spannungsregelung</td>
<td>48</td>
</tr>
<tr>
<td>11</td>
<td>Einstellbereich Sollwert 3 in V - Spannungsregelung</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>Einstellbereich Bandbreite</td>
<td>54</td>
</tr>
<tr>
<td>13</td>
<td>Einstellbereich Verzögerungszeit T1</td>
<td>56</td>
</tr>
<tr>
<td>14</td>
<td>Einstellbereich U< Unterspannungsblockierung</td>
<td>59</td>
</tr>
<tr>
<td>15</td>
<td>Einstellbereich U< Unterspannungsverzögerung</td>
<td>60</td>
</tr>
<tr>
<td>16</td>
<td>Einstellbereich U> Überspannungsgrenze</td>
<td>62</td>
</tr>
<tr>
<td>17</td>
<td>Einstellbereich I> Überstromblockierung</td>
<td>64</td>
</tr>
<tr>
<td>18</td>
<td>Einstellbereich I< Unterstromblockierung</td>
<td>66</td>
</tr>
<tr>
<td>19</td>
<td>Einstellbereich H/T-Schaltimpulsdauer</td>
<td>72</td>
</tr>
<tr>
<td>20</td>
<td>Einstellbereich Schaltungszähler</td>
<td>73</td>
</tr>
<tr>
<td>21</td>
<td>Einstellbereich Motorlaufzeit</td>
<td>77</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

Tabelle 22 Parallellaufgruppe zuweisen .. 86
Tabelle 23 Einstellbereich Kreisblindstromempfindlichkeit 88
Tabelle 24 Einstellbereich Kreisblindstromblockierung 89
Tabelle 25 Einstellbereich Verzögerungszeit Parallellauffehlermeldung 91
Tabelle 26 Einstellbereich erlaubte Stufendifferenz 93
Tabelle 27 Mögliche Funktionen für GPIs .. 96
Tabelle 28 Freikonfigurierbare GPIs .. 97
Tabelle 29 Mögliche Funktionen für GPOs .. 97
Tabelle 30 Freikonfigurierbare GPOs .. 99
Tabelle 31 Mögliche Funktionen für LEDs ... 101
Tabelle 32 Freikonfigurierbare LEDs ... 102
Tabelle 33 Codierung der Stufenstellung ... 104
Tabelle 34 Beispiel zur Konfiguration des Analogeingangs (min.) 105
Tabelle 35 Einstellbereich Analogwert minimale Stufe 105
Tabelle 36 Beispiel zur Konfiguration des Analogeingangs (max.) 106
Tabelle 37 Einstellbereich Analogwert maximale Stufe 106
Tabelle 38 Einstellbereich unterste Stufenstellung 107
Tabelle 39 Einstellbereich oberste Stufenstellung 108
Tabelle 40 Einstellbereich untere Stufenblockierungsgrenze 109
Tabelle 41 Einstellung obere Stufenblockierungsgrenze 110
Tabelle 42 Beispiel zur Konfiguration des Analogeingangs (min.) 114
Tabelle 43 Einstellbereich Analogwert für minimalen Sollwert 114
<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Beschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Beispiel zur Konfiguration des Analogeingangs (max.)</td>
<td>115</td>
</tr>
<tr>
<td>45</td>
<td>Einstellbereich Analogwert für maximalen Sollwert</td>
<td>115</td>
</tr>
<tr>
<td>46</td>
<td>Einstellbereich minimaler Sollwert</td>
<td>116</td>
</tr>
<tr>
<td>47</td>
<td>Einstellbereich maximaler Sollwert</td>
<td>117</td>
</tr>
<tr>
<td>48</td>
<td>Einstellbereich Netzwerkadresse</td>
<td>122</td>
</tr>
<tr>
<td>49</td>
<td>Einstellbereich TCP-Port</td>
<td>123</td>
</tr>
<tr>
<td>50</td>
<td>Einstellbereich SCADA Adresse</td>
<td>124</td>
</tr>
<tr>
<td>51</td>
<td>Einstellbereich RS485 Sendeverzögerung</td>
<td>125</td>
</tr>
<tr>
<td>52</td>
<td>Auswahl der LEDs für Tests</td>
<td>130</td>
</tr>
<tr>
<td>53</td>
<td>Zusammenfassung aller Einstellbereiche TAPCON® 230 AVT.</td>
<td>138</td>
</tr>
<tr>
<td>54</td>
<td>Zusammenfassung aller Einstellbereiche TAPCON® 230 AVT.</td>
<td>138</td>
</tr>
<tr>
<td>55</td>
<td>Störungsbeseitigung</td>
<td>139</td>
</tr>
<tr>
<td>56</td>
<td>Mögliche Ereignisse des TAPCON® 230 AVT</td>
<td>142</td>
</tr>
<tr>
<td>57</td>
<td>Technische Daten für den TAPCON® 230 AVT</td>
<td>145</td>
</tr>
<tr>
<td>58</td>
<td>MR weltweit</td>
<td>157</td>
</tr>
</tbody>
</table>
1 Einleitung

Diese technische Unterlage enthält detaillierte Beschreibungen um das Produkt sicher und sachgerecht zu verpacken, zu transportieren, zu lagern, zu montieren, in Betrieb zu nehmen und einfache Störungen selbst zu beseitigen.
Daneben enthält sie Sicherheitshinweise sowie allgemeine Hinweise zum Produkt.
Zielgruppe dieser technischen Unterlage ist ausschließlich speziell geschultes und autorisiertes Fachpersonal.

1.1 Hersteller

Hersteller des Spannungsreglers ist:
Maschinenfabrik Reinhausen GmbH
Falkensteinstraße 8
93059 Regensburg
Tel.: (+49) 9 41/40 90-0
Fax: (+49) 9 41/40 90-70 01
E-Mail: sales@reinhausen.com

1.2 Änderungsvorbehalte

1.3 Vollständigkeit

Diese technische Unterlage ist nur zusammen mit den mitgeltenden Dokumenten vollständig.
1.4 Mitgeltende Dokumente

Zusätzlich zu dieser technischen Unterlage gelten die Kurzanleitung und die Betriebsanleitung sowie die zugehörigen Schaltbilder. Alle Dokumente sind Teil des Lieferumfangs.

Beachten Sie außerdem allgemein gültige, gesetzliche und sonstige verbindliche Regelungen der europäischen und der nationalen Gesetzgebung sowie die in Ihrem Land gültigen Vorschriften zur Unfallverhütung und zum Umweltschutz.

1.5 Aufbewahrungsort

Diese technische Unterlage sowie sämtliche mitgeltenden Dokumente müssen griffbereit und jederzeit zugänglich für den späteren Gebrauch aufbewahrt werden.

1.6 Darstellungskonventionen

Dieser Abschnitt enthält eine Übersicht der verwendeten Abkürzungen, Symbole und textlichen Hervorhebungen.
1 Einleitung

1.6.1 Verwendete Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>A</td>
<td>Ampere</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current (Wechselstrom)</td>
</tr>
<tr>
<td>B</td>
<td>Bandbreite</td>
</tr>
<tr>
<td>bzw.</td>
<td>Beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller-Area-Network</td>
</tr>
<tr>
<td>CE</td>
<td>Conformité Européene</td>
</tr>
<tr>
<td>CI</td>
<td>Communication Interface</td>
</tr>
<tr>
<td>COM</td>
<td>Computer Object Model</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current (Gleichstrom)</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung</td>
</tr>
<tr>
<td>DNP</td>
<td>Distributed Network Protocol</td>
</tr>
<tr>
<td>EMV</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>ESC</td>
<td>Escape</td>
</tr>
<tr>
<td>GPI</td>
<td>General Purpose Input (Mehrzweckeingang)</td>
</tr>
<tr>
<td>GPO</td>
<td>General Purpose Output (Mehrzweckausgang)</td>
</tr>
<tr>
<td>H/T</td>
<td>Höher/Tiefer</td>
</tr>
<tr>
<td>HCS</td>
<td>Hard Clad Silica Optical Fiber (Hart-ummantelter LWL)</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>I</td>
<td>Strom</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>kV</td>
<td>Kilovolt</td>
</tr>
<tr>
<td>LDC</td>
<td>Line-Drop Compensation</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LWL</td>
<td>Lichtwellenleiter</td>
</tr>
<tr>
<td>max.</td>
<td>Maximal</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>min.</td>
<td>Minimal</td>
</tr>
<tr>
<td>MIO</td>
<td>Measurement Input/Output (Messeingang/-Ausgang)</td>
</tr>
</tbody>
</table>

Tabelle 1 Verwendete Abkürzungen
1 Einleitung

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MMI</td>
<td>Man Machine Interface</td>
</tr>
<tr>
<td>ms</td>
<td>Millisekunde</td>
</tr>
<tr>
<td>PIO</td>
<td>Parallel Input/Output</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>T</td>
<td>Zeit</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>U</td>
<td>Spannung</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>

Tabelle 1 Verwendete Abkürzungen
1 Einleitung

1.6.2 Warnkonzept

Warnhinweise in dieser technischen Unterlage sind nach folgendem Muster aufgebaut:

<table>
<thead>
<tr>
<th>SIGNALWORT</th>
<th>Gefahr</th>
<th>Folgen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maßnahme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maßnahme</td>
<td></td>
</tr>
</tbody>
</table>

Folgende Signalwörter werden verwendet:

<table>
<thead>
<tr>
<th>Signalwort</th>
<th>Gefahrenstufe</th>
<th>Folge bei Nichtbeachtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefahr</td>
<td>unmittelbar drohende Gefahr</td>
<td>Tod oder schwere Körperverletzung</td>
</tr>
<tr>
<td>Warnung</td>
<td>mögliche drohende Gefahr</td>
<td>Tod oder schwere Körperverletzung</td>
</tr>
<tr>
<td>Achtung</td>
<td>mögliche gefährliche Situation</td>
<td>Leichte Körperverletzung</td>
</tr>
<tr>
<td>Hinweis</td>
<td>mögliche gefährliche Situation</td>
<td>Sachschäden</td>
</tr>
</tbody>
</table>

Vor Gefahren wird mit Piktogrammen gewarnt:

<table>
<thead>
<tr>
<th>Piktogramm</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefahr</td>
<td>Gefahr</td>
</tr>
<tr>
<td></td>
<td>Gefährliche elektrische Spannung</td>
</tr>
<tr>
<td></td>
<td>Brandgefahr</td>
</tr>
</tbody>
</table>

Tabelle 2 Signalwörter in Warnhinweisen

Tabelle 3 Piktogramme in Warnhinweisen
1.6.3 Informationskonzept

Informationen dienen zur Vereinfachung und zum besseren Verständnis bestimmter Betriebsverläufe. In dieser technischen Unterlage sind sie nach folgendem Muster aufgebaut:

Tabelle 3 Piktogramme in Warnhinweisen

1.6.4 Schreibweisen

Schreibweisen in dieser technischen Unterlage sind nach folgendem Muster aufgebaut:

<table>
<thead>
<tr>
<th>Schreibweise</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>...>...>...</td>
<td>Handlungsschritt bei Software-Beschreibungen in das darauffolgende Menü</td>
</tr>
<tr>
<td>VERSALIEN</td>
<td>Bezeichnungen für Tasten; z.B. „MENU-Taste“</td>
</tr>
</tbody>
</table>

Tabelle 4 Schreibweisen
2 Sicherheit

2.1 Allgemeine Sicherheitsinformationen

Diese technische Unterlage enthält detaillierte Beschreibungen um das Produkt sicher und sachgerecht zu verpacken, zu transportieren, zu lagern, zu montieren und in Betrieb zu nehmen.

- Lesen Sie diese technische Unterlage aufmerksam durch, um sich mit dem Produkt vertraut zu machen
- Beachten Sie besonders die Informationen in diesem Kapitel.

2.2 Bestimmungsgemäße Verwendung

Das Produkt sowie die mitgelieferten Vorrichtungen und Spezialwerkzeuge entsprechen den zum Zeitpunkt der Auslieferung geltenden Gesetzen, Vorschriften und Normen, insbesondere den einschlägigen Sicherheits- und Gesundheitsanforderungen.

Bei bestimmungsgemäßer Verwendung und Einhaltung der in dieser technischen Unterlage genannten Voraussetzungen und Bedingungen sowie der in dieser technischen Unterlage und am Produkt angebrachten Warnhinweise gehen vom Produkt keine Gefahren für Personen, Sachwerte und die Umwelt aus. Dies gilt über die gesamte Lebensdauer, von der Lieferung über die Montage und den Betrieb bis zur Demontage und Entsorgung.

Das betriebliche Qualitätssicherungssystem gewährleistet einen durchgängig hohen Qualitätsstandard insbesondere auch im Hinblick auf die Einhaltung der Sicherheits- und Gesundheitsanforderungen.

Die Verwendung gilt als bestimmungsgemäß, wenn
- das Produkt gemäß den vereinbarten Lieferbedingungen und technischen Daten betrieben wird sowie
- die mitgelieferten Vorrichtungen und Spezialwerkzeuge ausschließlich für den vorgesehenen Zweck und entsprechend den Festlegungen dieser technischen Unterlage eingesetzt werden.
- das Produkt nur für den der Bestellung zugrundeliegenden Anwendungsfall verwendet wird.
2.3 Bestimmungswidrige Verwendung

Als bestimmungswidrige Verwendung gilt, wenn das Produkt anders verwendet wird, als es in Kapitel 2.2 beschrieben ist.

Die Maschinenfabrik Reinhausen übernimmt keine Haftung für Schäden aus unerlaubter oder nicht sachgerechter Veränderung des Produkts. Unsachgemäße Veränderungen am Produkt ohne Rücksprache mit der Maschinenfabrik Reinhausen können zu Personenschäden, Sachschäden sowie Funktionsstörungen führen.

2.4 Qualifikation des Personals

Das Produkt ist ausschließlich für den Einsatz in Anlagen und Einrichtungen der elektrischen Energiotechnik vorgesehen, in denen geschulte Fachkräfte die erforderlichen Arbeiten durchführen. Fachkräfte sind Personen die mit der Aufstellung, Montage, Inbetriebsetzung und dem Betrieb derartiger Produkte vertraut sind.

2.5 Sorgfaltspflicht des Betreibers

Zur Vermeidung von Unfällen, Störungen und Havarien sowie unzulässigen Beeinträchtigungen der Umwelt muss der jeweils Verantwortliche für Transport, Montage, Betrieb, Instandhaltung und Entsorgung des Produkts oder von Teilen des Produkts folgendes sicherstellen:

- Alle Warn- und Gefahrenhinweise beachten.
- Das Personal regelmäßig in allen zutreffenden Fragen der Arbeitssicherheit, dieser technischen Unterlage und insbesondere der darin enthaltenen Sicherheitshinweise unterweisen.
- Vorschriften und technische Unterlagen für sicheres Arbeiten sowie die entsprechenden Hinweise für das Verhalten bei Unfällen und Bränden durch das Personal jederzeit griffbereit aufbewahren und ggf. in der Betriebsstätte aushängen.
- Das Produkt nur in einwandfreiem, funktionstüchtigen Zustand betreiben und besonders die Sicherheitseinrichtungen regelmäßig auf ihre Funktionsfähigkeit überprüfen.
- Ausschließlich die vom Hersteller zugelassenen Ersatzteile verwenden.
- Angegebene Betriebsbedingungen und Anforderungen an den Aufstellort beachten.
- Alle notwendige Geräte sowie die für die jeweilige Tätigkeit erforderliche persönliche Schutzausrüstungen zur Verfügung stellen.
2 Sicherheit

- Die vorgeschriebenen Wartungszyklen und die entsprechenden Vorschriften einhalten.
- Einbau, elektrischen Anschluss und Inbetriebnahme des Produkts ausschließlich von qualifiziertem, ausgebildeten Personal gemäß dieser technischen Unterlage durchführen lassen.
- Der Betreiber hat für die bestimmungsgemäße Verwendung des Produkts Sorge zu tragen.
3 Produktbeschreibung

3.1 Funktionsbeschreibung

Die Spannungsregelung an Transformatoren mit Laststufenschaltern ist ein wichtiges Thema der Energieversorgungsunternehmen.

Der vollkommen neu konzipierte Spannungsregler TAPCON® 230 AVT übernimmt sowohl einfache Regelaufgaben als auch komplexe Anforderungen eines modernen Überwachungs- und Regelgeräts.

Der Spannungsregler TAPCON® 230 AVT vergleicht kontinuierlich den Istwert U_{ist} (Ausgangsspannung am Transformator) und einen festen oder lastabhängigen Sollwert U_{Soll}, den Sie selbst festlegen können.

Der Laststufenschalter schaltet, wenn die von Ihnen vorgegebene Bandbreite B ($U_{\text{Soll}} +/ - B\%$) unter- bzw. überschritten wird. Die minimale Wartezeit zwischen zwei aufeinander folgende Schaltungen beträgt 60 s.

Somit wird die Spannung am Transformator konstant gehalten. Schwankungen innerhalb der zulässigen Bandbreite haben keinen Einfluss auf das Regelverhalten bzw. den Schaltvorgang.

Die Parameter des Spannungsreglers können dem Verhalten der Netzspannung optimal angepasst werden, so dass ein ausgewogenes Regelverhalten bei geringer Schaltzahl des Laststufenschalters erreicht wird.

Abbildung 1 zeigt eine Übersicht für die Spannungsregelung mit dem TAPCON® 230 AVT.
Abbildung 1 Übersicht für die Spannungsregelung mit dem TAPCON® 230 AVT
3.2 Leistungsmerkmale TAPCON® 230 AVT

Der TAPCON® 230 AVT übernimmt in bewährter Zuverlässigkeit die Regelung von Stufentransformatoren.

Neben den Regelaufgaben bietet der TAPCON® 230 AVT zusätzliche Funktionen wie:

- integrierte Schutzfunktionen:
 - Unterspannungs- und Überstromblockierung
 - Schnellrückschaltung bei Überspannung
 - Definierte Mindestwartezeit von 60 s zwischen zwei aufeinanderfolgende Schaltungen
- kundenseitig vor Ort individuell programmierbare digitale Ein- und Ausgänge
- Zusatzanzeigen durch LEDs außerhalb des Displays für frei wählbare Funktionen
- Anzeige aller Messwerte wie Spannung, Strom, Wirk-, Schein- oder Blindleistung, \(\cos \varphi \)
- Anschluss der Kabel mittels moderner Steckklemmen
- 3 verschiedene Sollwerte auswählbar
- Stufenstellungserfassung vor Ort auswählbar zwischen
 - analogem Signal 4 … 20 mA
 - analogem Signal über Widerstandskontaktreihe
 - digitalem Signal via BCD- oder Gray-Code
- Zusätzliche digitale Ein- und Ausgänge zur freien Parametrierung durch den Kunden
- Parallellauf von bis zu 6 Transformatoren in 2 Gruppen mittels den Methoden
 - Master / Follower
 - Kreisblindstromminimierung

Der CAN Bus stellt den störungsfreien Datenaustausch zwischen allen parallel betriebenen TAPCON®-Geräten über eine Entfernung von bis zu zwei Kilometer sicher.

Die Regler erkennen automatisch und ohne Zusatzgerät, welche Transformatoren sich im Parallellauf befinden. Durch die Aktivierung der binären Eingänge für Master / Follower / Independent oder über die Menüeinstellungen kann die Stellung eines Transformators schnell und sicher ausgewählt werden.

<table>
<thead>
<tr>
<th></th>
<th>RS232</th>
<th>RS458</th>
<th>ETHERNET</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODBUS ASCII</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MODBUS RTU</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Tabelle 5 Verfügbare Schnittstellen zur Leitsystemkommunikation

Weitere Informationen zum TAPCON® 230 AVT finden Sie im Internet unter: www.tapcon230.com
3.3 Lieferumfang

Folgende Komponenten sind im Lieferumfang enthalten:

<table>
<thead>
<tr>
<th>Lieferumfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spannungsregler TAPCON® 230 AVT</td>
</tr>
<tr>
<td>Schalttafeleinbaubügel bereits montiert am Gehäuse</td>
</tr>
<tr>
<td>2 Stück Flacheisen für Wandmontage</td>
</tr>
<tr>
<td>Abdeckleiste für Tür</td>
</tr>
<tr>
<td>Sechskant-Stiftschlüssel der Schlüsselweite SW3</td>
</tr>
<tr>
<td>Schlüssel für Tür</td>
</tr>
<tr>
<td>Mappe mit allen Dokumenten zum Gerät</td>
</tr>
<tr>
<td>Kurzbedienungsanleitung DIN A6 in Prospekttasche in der Tür des Reglers</td>
</tr>
</tbody>
</table>

Optional erhältlich

| Hutschienenclip |

Tabelle 6 Lieferumfang

Beachten Sie folgendes:

1. Lieferung anhand der Versandpapiere auf Vollständigkeit prüfen.
2. Teile bis zum Einbau trocken lagern.

Der Funktionsumfang des Produkts richtet sich nach der bestellten Ausstattung oder Produktvariante, nicht nach dem Inhalt dieser technischen Unterlage.

3.4 Beschreibung der Hardware

Der TAPCON® 230 AVT präsentiert sich im flachen Gehäuse mit nur 135 mm Tiefe und kann platzsparend an jeder Wand befestigt werden.

Selbstverständlich ist auch Schalttafeleinbau sowie Montage auf Hutschiene möglich.

Ein LCD-Grafik-Display, Leuchtdioden und Funktionstasten sind in der Frontplatte des TAPCON® 230 AVT integriert.
Das Gerät wird durch einen Mikrocontroller gesteuert und enthält neben dem Spannungs- und Stromwandler potenzialgetrennte Optokopplereingänge und potenzialfreie Relaisausgangskontakte (Abbildung 2).

Abbildung 2 Blockschaltbild des TAPCON® 230 AVT®
3 Produktbeschreibung

Über eine im Regler integrierte serielle Schnittstelle COM 1 (RS232), die an der Frontplatte angeordnet ist, kann der TAPCON® 230 AVT mit Hilfe eines PCs parametriert werden; die entsprechende Software können Sie über die Maschinenfabrik Reinhausen beziehen.

Abbildung 3 Weitere Kommunikationsschnittstellen TAPCON® 230 AVT

1 RS485 Anschluss
2 RS232 Anschluss
3 CAN Bus Anschluss
4 RJ45 Anschluss
Der Spannungsregler TAPCON® 230 AVT ist weitgehend funktionskompatibel zu früheren Reglergenerationen.

<table>
<thead>
<tr>
<th>Funktionstasten</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand/Automatik</td>
<td></td>
</tr>
<tr>
<td>Höher/Tiefer</td>
<td></td>
</tr>
<tr>
<td>Local/Remote</td>
<td></td>
</tr>
<tr>
<td>Menütasten</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzeige</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grafikfähiges, monochromes Display, 128 x 128 dot</td>
<td></td>
</tr>
<tr>
<td>6 LED grün für Betriebsanzeige</td>
<td></td>
</tr>
<tr>
<td>3 LED rot für Grenzwerte U >, U <, I ></td>
<td></td>
</tr>
<tr>
<td>1 LED grün für Meldung Parallelbetrieb ein</td>
<td></td>
</tr>
<tr>
<td>1 LED grün für Meldung NORMset ein</td>
<td></td>
</tr>
<tr>
<td>2 LED gelb zur freien Belegung</td>
<td></td>
</tr>
<tr>
<td>1 LED gelb/grün zur freien Belegung</td>
<td></td>
</tr>
<tr>
<td>1 LED gelb/rot zur freien Belegung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Versorgung</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 (-20%)...350 VDC</td>
<td></td>
</tr>
<tr>
<td>88...265 VAC</td>
<td></td>
</tr>
<tr>
<td>Leistungsaufnahme ca. 5,0 VA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schutzgehäuse</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stahlblechgehäuse mit Sichtfenster (abschließbar)</td>
<td></td>
</tr>
<tr>
<td>Maße (B x H) 198 x 310 mm</td>
<td></td>
</tr>
<tr>
<td>Tiefe 135,5 mm</td>
<td></td>
</tr>
<tr>
<td>Tür (B x H) 242 x 343 mm</td>
<td></td>
</tr>
<tr>
<td>Gewicht 6,8...7,0 kg</td>
<td></td>
</tr>
<tr>
<td>Schutzklasse IP 54 nach IEC 60529</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Betriebstemperatur</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25°C...+70°C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lagertemperatur</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40°C...+85°C</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 7 Information zur Hardware
3.5 Beschreibung der Frontplatte

In Abbildung 4 ist die Frontplatte des TAPCON® 230 AVT dargestellt und die Tasten beschrieben. Weitere Informationen zu den Funktionstasten folgen in Abschnitt 3.7.

Abbildung 4 Frontplatte des TAPCON® 230 AVT mit Bedienfeld

1 Leuchtdioden 1...10
2 Einstellmöglichkeit für Displaykontrast
3 Beschriftungsstreifen für LEDs
4 F1...F5: Funktions- und Menüauswahltasten
5 Anzeige 128x128 LCD-Modul negativ blau, Hintergrund LED weiß
6 Menüauswahl
7 Menü verlassen
8 Eingabe bestätigen
9 Wechsel der Fenster innerhalb einer Menüebene
10 Parametrierschnittstelle COM 1 (RS232)
11 Automatische Spannungsregelung (mit LED Automatikbetrieb grün)
12 Handbetrieb (mit LED Handsteuerung grün)
13 Fernsteuerung (mit LED Ort/Fern grün)
14 Steuerung HÖHER/TIEFER
15 Status LED
3.6 Beschreibung des Displays

Abbildung 5 Hauptbildschirm

Im Fall eines besonderen Ereignisses oder einer Einstellung werden die hiermit verbundenen Hinweise in der Statuszeile angezeigt (Anzeigetext "Events").
3 Produktbeschreibung

3.7 Beschreibung der Tastenfunktionen

<table>
<thead>
<tr>
<th>Taste</th>
<th>Symbol</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>HÖHER</td>
<td></td>
<td>Im Handbetrieb kann über die Taste HÖHER der Motorantrieb direkt bedient werden. Durch den Motorantrieb wird der Laststufenschalter und dadurch die Stufenspannung durch die Höherschaltung verändert.</td>
</tr>
<tr>
<td>TIEFER</td>
<td></td>
<td>Im Handbetrieb kann über die Taste TIEFER der Motorantrieb direkt bedient werden. Durch den Motorantrieb wird der Laststufenschalter und dadurch die Stufenspannung durch die Tieferschaltung verändert.</td>
</tr>
<tr>
<td>REMOTE</td>
<td></td>
<td>Bei der Betriebsart „Fern“ werden Befehle einer externen Steuerebene ausgeführt. In diesem Fall ist die manuelle Bedienung der Tasten HÖHER, TIEFER, MANUAL und AUTO außer Funktion.</td>
</tr>
<tr>
<td>MANUAL</td>
<td></td>
<td>Handbetrieb. Zur manuellen Ansteuerung des Motorantriebs und Parametrierung des TAPCON® 230 AVT.</td>
</tr>
<tr>
<td>AUTO</td>
<td></td>
<td>Automatikbetrieb. Spannung wird automatisch geregelt.</td>
</tr>
<tr>
<td>Pfeiltasten</td>
<td></td>
<td>Mit den Pfeiltasten können Sie im Auto- und Handbetrieb die Messwertanzeige einstellen: Außerdem können Sie zwischen den Fenstern in den Unter- menüs wechseln. Nach dem Einschalten des Gerätes wird in der Messwertanzeige immer die Regelabweichung dU gezeigt. Mit den Pfeiltasten können Sie zwischen folgenden Anzeigen wechseln:</td>
</tr>
<tr>
<td>WEITER / ZURÜCK</td>
<td></td>
<td>• Regelabweichung (dU:)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Strom (I:)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Scheinleistung (Leist.:)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wirkleistung (P:)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Blindleistung (Q:)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Phasenwinkel (Phase:)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cosinus (Cos:)</td>
</tr>
</tbody>
</table>
Produktbeschreibung

<table>
<thead>
<tr>
<th>Tasten</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER</td>
<td>Bestätigung bzw. Speicherung eines veränderten Parameters der Parametermenüs.</td>
</tr>
<tr>
<td>ESC</td>
<td>Nach Betätigung der ESC-Taste gelangen Sie jeweils in die übergeordnete Menüebene, also immer eine Menüebene zurück.</td>
</tr>
<tr>
<td>MENU</td>
<td>Nach Betätigung der Taste wird das Fenster Menüauswahl angezeigt.</td>
</tr>
<tr>
<td>F1...F5</td>
<td>Die Funktionstasten sind Menüauswahltasten. Außerem dienen sie zum Blättern in den Menüuntergruppen und Eingabemasken sowie zum Markieren einer Dezimalstelle, die von Ihnen eingestellt werden kann.</td>
</tr>
<tr>
<td>COM 1 Schnittstelle</td>
<td>Verbindung des TAPCON® 230 AVT mit einem PC. Die Software zur Parametrierung ist nicht im Lieferumfang enthalten.</td>
</tr>
</tbody>
</table>

Bediensicherheit am TAPCON® 230 AVT

Das Bedienfeld am TAPCON® 230 AVT teilt sich in zwei verschiedene Ebenen auf.

Wir sprechen in diesem Zusammenhang von der Betriebsführungsebene und dem Bereich zur Parametrierung und Konfiguration.

Dabei sind die Tasten zur Betriebsführung von denen zur Parametrierung deutlich getrennt. Auf der Betriebsführungsebene wird das Betätigen der Tasten über LEDs visuell gemeldet.

Diese visuelle Überwachungsmöglichkeit erleichtert Ihnen die Bedienung des TAPCON® 230 AVT.
4 Verpackung, Transport und Lagerung

4.1 Verpackung

4.1.1 Verwendung

4.1.2 Eignung, Aufbau und Herstellung

Die Verpackung des Packgutes erfolgt in einem stabilen Pappkarton. Dieser gewährleistet, dass die Sendung in der vorgesehenen Transportlage sicher steht und keines ihrer Teile die Ladefläche des Transportmittels oder nach dem Abladen den Boden berühren.

Der Karton ist belastbar bis maximal 10 kg.

Das Packgut wird innerhalb des Kartons durch Inlays gegen unzulässige Lageveränderungen stabilisiert und vor Erschütterungen geschützt.

4.1.3 Markierungen

Abbildung 6 Markierungen für den Versand

![Vor Nässe schützen](umbrella.png) ![Oben](arrows.png) ![Zerbrechlich](wineglass.png)

Vor Nässe schützen Oben Zerbrechlich
4.2 Transport, Empfang und Behandlung von Sendungen

Neben Schwing- und Schockbeanspruchungen ist beim Transport auch mit Stoßbeanspruchungen zu rechnen. Um mögliche Beschädigungen auszuschließen, muss ein Fallen, Kippen, Umstürzen und Prellen vermieden werden.

Sollte ein Karton aus einer bestimmten Höhe fallen oder ungebremst durchfallen, so ist unabhängig vom Gewicht mit einer Beschädigung zu rechnen.

Jede angelieferte Sendung muss vom Empfänger vor der Abnahme (Empfangsquittierung) kontrolliert werden auf

• Vollständigkeit anhand des Lieferscheins
• äußere Beschädigungen aller Art.

Stellen Sie beim Empfang der Sendung äußerlich sichtbare Transportschäden fest, verfahren Sie wie folgt:

• Tragen Sie den festgestellten Transportschaden sofort in die Frachtpapiere ein und lassen Sie vom Abliefernden gegenzeichnen.
• Verständigen Sie bei schweren Schäden, Totalverlust und bei hohen Schadenskosten unverzüglich den Vertrieb der Maschinenfabrik Reinhausen und die zuständige Versicherung.
• Verändern Sie den Schadenszustand nach seiner Feststellung nicht weiter und bewahren Sie das Verpackungsmaterial auf, bis über eine Besichtigung durch das Transportunternehmen oder den Transportversicherer entschieden worden ist.
• Protokollieren Sie mit den beteiligten Transportunternehmen den Schadensfall an Ort und Stelle. Dies ist für eine Schadensersatzforderung unentbehrlich!
• Fotografieren Sie nach Möglichkeit Schäden an Verpackung und Packgut. Das gilt auch für Korrosionsscheinungen am Packgut durch eingedrungene Feuchtigkeit (Regen, Schnee, Kondenswasser).
• Benennen Sie die beschädigten Teile.

Bei verdeckten Schäden, d. h. Schäden, die erst nach Empfang der Sendung beim Auspacken festgestellt werden, gehen Sie wie folgt vor:

• Machen Sie den möglichen Schadensverursacher schnellstens telefonisch und schriftlich haftbar und fertigen Sie ein Schadensprotokoll an.
• Beachten Sie die hierfür die im jeweiligen Land gültigen Fristen; erkundigen Sie sich rechtzeitig danach.

Bei verdeckten Schäden ist ein Rückgriff auf das Transportunternehmen (oder andere Schadensverursacher) nur schwer möglich. Versicherungstechnisch kann ein derartiger Schadensfall mit Aussicht auf Erfolg nur abgewickelt werden, wenn dies in den Versicherungsbedingungen ausdrücklich festgelegt ist.
4.3 Einlagern von Sendungen

Bei der Auswahl und Einrichtung des Lagerplatzes sollten nachfolgende Anforderungen erfüllt sein:

- Lagergut gegen Feuchtigkeit (Überschwemmung, Schmelzwasser von Schnee und Eis), Schmutz, Schädlinge wie Ratten, Mäuse, Termiten usw. und gegen unbefugten Zugang geschützt.
- Karton zum Schutz gegen Bodenfeuchtigkeit und zur besseren Belüftung auf Bohlen und Kanthölzern abgestellt.
- Tragfähigkeit des Untergrundes ausreichend.
- Anfahrtswege freigehalten.

Lagergut in regelmäßigen Abständen kontrollieren, zusätzlich noch nach Sturm, starken Regenfällen, reichlichem Schneefall usw. geeignete Maßnahme treffen.
5 Funktionen und Einstellungen

Der Aufbau der Kapitel orientiert sich dabei an der Menüstruktur des Geräts; siehe Abbildung 7.

Die Funktionen des Spannungsreglers werden über die Tasten am Gerät einge- stellt. Einstellungen können ausschließlich bei deaktivierter Tastensperre im Handbetrieb vorgenommen werden. Durch Drücken von ESC + F5-Taste wird die Tastensperre aktiviert und deaktiviert.

Bevor Sie die Parametrierung durchführen, gehen Sie wie folgt vor:
1. Gegebenenfalls Tastensperre deaktivieren: ESC + F5-Taste drücken.

Das Hauptmenü des Spannungsreglers wird angezeigt.

Die gewünschte Funktion kann eingestellt werden.
5.1 NORMset

Alternativ zur manuellen Parametrierung des Spannungsreglers, ermöglicht der NORMset-Modus eine einfache und anwenderfreundliche Inbetriebnahme des Spannungsreglers mit eingeschränktem Parametersatz. Wenn Sie diesen Modus wählen, werden die Werkseinstellungen für die Spannungsregelung übernommen.

Bei der Inbetriebnahme des Spannungsreglers im NORMset-Modus muss folgender Parameter eingestellt werden:

- Sollwert 1

Alle anderen für eine einfache Spannungsregelung notwendigen Parameter sind werksseitig vorbelegt.

Wie Sie den NORMset-Modus aktivieren oder deaktivieren wird in den folgenden Abschnitten beschrieben.

Nachdem NORMset aktiviert wurde, ist eine manuelle Stufenschaltung notwendig. Dadurch bestimmt der Spannungsregler die benötigte Bandbreite. Wurde der Transformator abgeschaltet, ist erneut eine manuelle Stufenschaltung notwendig.
5 Funktionen und Einstellungen

5.1.1 NORMset aktivieren

Bei aktiviertem NORMset-Modus leuchtet die NORMset-LED auf dem Bedienfeld des Spannungsreglers.

Bei aktiviertem NORMset wird die Einstellung der Bandbreite und der Verzögerungszeit T1 vom Spannungsregler automatisch vorgenommen. Vorhandene Einstellungen für diese Parameter werden vom Spannungsregler nicht berücksichtigt.

Folgende Regelparameter müssen im NORMset-Modus eingestellt werden:

• Sollwert 1

Folgende Parameter werden durch den NORMset-Modus nicht automatisch eingestellt:

• Unterspannungsgrenze
• Überspannungsgrenze
• Unterstromgrenze
• Überstromgrenze

Sofern Sie es wünschen, müssen Sie diese Parameter manuell einstellen (siehe Abschnitt 5.2.2 “Grenzwerte” auf Seite 58).

Um den NORMset-Modus zu aktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Normset
 ←<00> Normset Aktivierung

2. F1-Taste oder F5-Taste für die Auswahl "Ein" drücken, um Normset zu aktivieren.

3. ENTER-Taste drücken.

4. HÖHER- oder TIEFER-Taste drücken, um eine manuelle Stufenschaltung durchzuführen.

Der NORMset-Modus ist aktiviert.
5 Funktionen und Einstellungen

5.1.2 NORMset deaktivieren

Der NORMset-Modus des Spannungsreglers können Sie deaktivieren und Ihre gewünschten erweiterten Einstellungen direkt vornehmen.

Um den NORMset-Modus zu deaktivieren, gehen Sie wie folgt vor:

Nachdem Sie den NORMset deaktiviert haben, müssen Sie alle Regelparameter überprüfen und ggf. manuell einstellen.

1. MENU-Taste > Normset
 ↳<00> Normset Aktivierung

2. F1-Taste oder F5-Taste für die Auswahl "Aus" drücken, um NORMset zu deaktivieren.

3. ENTER-Taste drücken.
 Der NORMset-Modus ist deaktiviert.
5.1.3 Sollwert 1 einstellen

Der TAPCON® 230 AVT ist für den Betrieb innerhalb der Sollwertbereiche von 220 V bis 265 V und 380 V bis 440 V ausgelegt.

Einstellbereich

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 V...440 V</td>
<td>0,1 V</td>
<td>400 V</td>
</tr>
</tbody>
</table>

Tabelle 8 Einstellbereich Sollwert 1 in V im Modus NORMset

Um den Sollwert 1 einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Normset > 1x WEITER
 → <01> Sollwert 1

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.
 → Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1-Taste drücken, um den Sollwert zu erhöhen oder F5-Taste drücken, um den Sollwert zu senken.

4. ENTER-Taste drücken.

Der Sollwert 1 ist eingestellt.

Der Bereich von 265 V bis 380 V ist für die Eingabe des Sollwertes nicht vorgesehen und führt zur Ereignismeldung: "Sollwert nicht im erlaubten Messbereich".

Tritt dieses Ereignis auf, wird im Automatikbetrieb nicht mehr geregelt. Im manuellen Betrieb kann weiterhin gestuft werden.
5.2 Regelparameter

In diesem Abschnitt werden alle Funktionen, Parameter und die empfohlenen Einstellbereiche für die Spannungsregelung mit dem TAPCON® 230 AVT beschrieben. Um Ihnen das Auffinden bestimmter Parameter zu erleichtern, sind die Untergruppen mit funktionell zusammengehörigen Einzelparametern beschrieben.

5.2.1 Spannungsregelung

In diesem Untermenü sind alle notwendigen Parameter für die Regelfunktion zusammengefasst.

MENU-Taste > Regelparameter > Spannungsregelung

5.2.1.1 Sollwerte einstellen

Der Spannungssollwert, \(U_{\text{soll}} \), wird als feste Größe vorgegeben. Sie können den Sollwert über die Bedienoberfläche des Spannungsreglers sowohl in der Untergruppe des NORMset-Modus als auch in der Untergruppe des Parametermodus eingeben.

Zusätzlich bietet Ihnen der TAPCON® 230 pro/expert die Möglichkeit an, den Sollwert auch während des Betriebes zu ändern, falls dies notwendig ist.

Die Sollwerte werden über die Binäreingänge aktiviert. Es können bis zu 3 Sollwerte im Parametermodus eingegeben werden:

- Sollwert 1
- Sollwert 2
- Sollwert 3
5 Funktionen und Einstellungen

Der Sollwert 1 ist der Standard-Sollwert. Die Sollwerte 2 oder 3 werden aktiviert, wenn ein Dauersignal an den werkseitig vorbelegten GPIs 5 oder 6 anliegt. Sollte an beiden Eingängen gleichzeitig ein Signal anliegen, ist der Sollwert 2 aktiv.

In den folgenden Absätzen wird beschrieben, wie Sie die Sollwerte einstellen können.

5.2.1.1.1 Sollwert 1 einstellen.

Um den Sollwert 1 einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Spannungsregelung
 \(<00>\) Sollwert 1

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.
 Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1-Taste drücken, um die Spannung zu erhöhen oder F5-Taste drücken, um die Spannung zu senken.

4. ENTER-Taste drücken.
 Der Sollwert 1 ist eingestellt.

Der Bereich von 265 V bis 380 V ist für die Eingabe des Sollwertes nicht vorgesehen und führt zur Ereignismeldung: "Sollwert nicht im erlaubten Messbereich".

Tritt dieses Ereignis auf, wird im Automatikbetrieb nicht mehr geregelt. Im manuellen Betrieb kann weiterhin gestuft werden.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 V...440 V</td>
<td>0,1 V</td>
<td>400 V</td>
</tr>
</tbody>
</table>

Tabelle 9 Einstellbereich Sollwert 1 in V - Spannungsregelung

Das Einstellbereich ist 220 V...440 V und die Schrittweite beträgt 0,1 V. Die Werkseinstellung ist 400 V.
5.2.1.1.2 Sollwert 2 einstellen

Der Sollwert 2 wird aktiviert, wenn ein Dauersignal am GPI 5 anliegt, vorausgesetzt der GPI wurde zuvor darauf programmiert. Wie Sie ein GPI programmieren können, finden Sie unter Abschnitt 5.5.

Um den Sollwert 2 einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Spannungsregelung > 1x WEITER
 `<01> Sollwert 2

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.
 Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1-Taste drücken, um die Spannung zu erhöhen oder F5-Taste drücken, um die Spannung zu senken.

4. ENTER-Taste drücken.

Der Sollwert 2 ist eingestellt.

Der Bereich von 265 V bis 380 V ist für die Eingabe des Sollwertes nicht vorgesehen und führt zur Ereignismeldung: "Sollwert nicht im erlaubten Messbereich".

Tritt dieses Ereignis auf, wird im Automatikbetrieb nicht mehr geregelt. Im manuellen Betrieb kann weiterhin gestuft werden.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 V bis 440 V</td>
<td>0,1 V</td>
<td>400 V</td>
</tr>
</tbody>
</table>
5 Funktionen und Einstellungen

5.2.1.1.3 Sollwert 3 einstellen

Der Sollwert 3 wird aktiviert, wenn ein Dauersignal am GPI 6 anliegt, vorausgesetzt der GPI 6 wurde zuvor darauf programmiert. Wie Sie ein GPI programmieren können, finden Sie unter Abschnitt 5.5.

Um den Sollwert 3 einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Spannungsregelung > 2x WEITER

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.

3. F1-Taste drücken, um die Spannung zu erhöhen oder F5-Taste drücken, um die Spannung zu senken.

4. ENTER-Taste drücken.

Der Sollwert 3 ist eingestellt.

Tabelle 11 Einstellbereich Sollwert 3 in V - Spannungsregelung

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 V...440 V</td>
<td>0,1 V</td>
<td>400 V</td>
</tr>
</tbody>
</table>

Der Bereich von 265 V bis 380 V ist für die Eingabe des Sollwertes nicht vorgesehen und führt zur Ereignismeldung: "Sollwert nicht im erlaubten Messbereich".

Tritt dieses Ereignis auf, wird im Automatikbetrieb nicht mehr geregelt. Im manuellen Betrieb kann weiterhin gestuft werden.
5 Funktionen und Einstellungen

5.2.1.1.4 Sollwert auswählen
Mit "Sollwert Auswahl" können Sie den aktiven Sollwert direkt über das Bildschirmmenü bestimmen. Sie können sich zwischen Sollwert 1, Sollwert 2 oder Sollwert 3 entscheiden. Nachdem Sie sich für einen der 3 Sollwerte entschieden haben, orientiert sich der Spannungsregler an diesem Wert.

Um den gewünschten aktiven Sollwert auszuwählen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Spannungsregelung > 3x WEITER
 L<03> Sollwert Auswahl

2. F1-Taste oder F5-Taste drücken, um einen aktiven Sollwert auszuwählen.

3. ENTER-Taste drücken.
 Der gewünschte active Sollwert ist ausgewählt.

Erfolgt die Sollwertauswahl über einen entsprechend konfigurierten GPI, wird die Einstellung des Menüs "Sollwert Auswahl" ignoriert.
Weitere Informationen zur Programmierung der GPIs finden Sie in Kapitel 5.5.
5.2.1.2 Bandbreite

Die Bandbreite ist die zulässige Abweichung der Messspannung vom gewählten Sollwert. Liegt die aktuelle Messspannung innerhalb der Bandbreite, werden keine Steuerbefehle an den Stufenschalter ausgegeben.

Verlässt die Messspannung die vorgegebene Bandbreite, erfolgt nach der eingestellten Verzögerungszeit T1 ein Schaltbefehl. Der Laststufenschalter führt eine Schalthandlung in positiver oder negativer Richtung durch.

Abbildung 8 Zeitlicher Verlauf der Messspannung und der Bandbreite

1 ΔU_{Stufe}: Stufensprung
2 U_{Soll}: Sollwert in V
3 B%: Bereich der Bandbreite
4 T1: Eingestellte Verzögerungszeit
5 U_{Ist}: Messspannung
a U_{Ist} außerhalb der Bandbreite, T1 beginnt abzulaufen
b U_{Ist} vor Ablauf von T1 in Bandbreite, keine Schaltung
c U_{Ist} außerhalb der Bandbreite, T1 beginnt abzulaufen
d U_{Ist} bis Ablauf von T1 außerhalb von B%, Schaltvorgang wird eingeleitet
e Schaltvorgang abgeschlossen, U_{Ist} innerhalb der Bandbreite
5.2.1.2.1 Visuelle Darstellung

Im Display des Spannungsreglers wird die Abweichung im Vergleich zur eingestellten Bandbreite visuell dargestellt (siehe Abbildung 9). Die Markierung der Messspannung zeigt an, ob sich die Messspannung oberhalb, innerhalb oder unterhalb der eingestellten Bandbreite befindet.

Der Ablauf der Verzögerungszeit T1 wird durch schrittweises füllen des Zeitbalkens im Display des Spannungsreglers angezeigt. Die darüber befindliche Sekundenanzeige zeigt die Restdauer der Verzögerungszeit T1 an.

Abbildung 9 Visuelle Darstellung der Abweichung vom Sollwert

1 Bandbreite (obere und untere Grenze)
2 Zeitbalken der Verzögerungszeit T1
3 Spannungssollwert
4 Messspannung
5 Restdauer der Verzögerungszeit T1
5.2.1.2.2 Bandbreite bestimmen

Um den Wert korrekt einstellen zu können, müssen der Stufenspannungen und Nennspannung des Transformators bekannt sein.

Für die Bandbreite "$B\%$" wird folgender Wert empfohlen:

\[[±B\%] \geq 0,6 \cdot \frac{U_{n-1} - U_n}{U_{\text{Nenn}}} \cdot 100\% \]

mit:
- U_{n-1}: Stufenspannung der Stellung n-1
- U_n: Stufenspannung der Stellung n
- U_{Nenn}: Nennspannung

Berechnungsbeispiel

Um die empfohlene Bandbreite zu ermitteln, werden beispielhaft folgende Kennwerte des Transformators verwendet:

- Nennspannung: $U_{\text{Nenn}} = 11000$ V
- Stufenspannung Stellung 4: $U_{\text{Stufe}4} = 11275$ V
- Stufenspannung Stellung 5: $U_{\text{Stufe}5} = 11000$ V

Gemäß der Empfehlung zur Berechnung der Bandbreite ergibt sich in diesem Beispiel:

\[[±B\%] \geq 0,6 \cdot \frac{11275 - 11000}{11000} \cdot 100\% \]
\[[±B\%] \geq 1,5\% \]
5.2.1.2.3 Bandbreite einstellen

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5 %...9 %</td>
<td>0,1 %</td>
<td>2 %</td>
</tr>
</tbody>
</table>

Tabelle 12 Einstellbereich Bandbreite

Die ermittelte Bandbreite wird wie folgt eingegeben:

1. MENU-Taste > Regelparameter>
 Spannungsregelung > 4x WEITER
 →<04> Bandbreite

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.
 ←Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

4. ENTER-Taste drücken.

Die Bandbreite ist eingestellt.
5 Funktionen und Einstellungen

5.2.1.3 Verzögerungszeit T1 einstellen

Die Verzögerungszeit T1 verzögert die Absendung eines Schaltbefehls für einen definierten Zeitraum. Diese Funktion dient dazu, unnötige Schaltvorgänge zu vermeiden, wenn der Bereich der Bandbreite zeitlich nur kurz verlassen wird.

Verlässt die aktuelle Messspannung die Bandbreite, beginnt die Verzögerungszeit T1 abzulaufen. Dies wird in der Anzeige visuell durch Füllen des Zeitbalkens und Anzeige der verbleibenden Zeit dargestellt (siehe Abbildung 9 auf Seite 52).

Ist die Regelabweichung nach Ablauf der Verzögerungszeit noch vorhanden, erfolgt ein Schaltbefehl.

Fällt die Messspannung innerhalb der Verzögerungszeit in den Bereich der Bandbreite zurück, wird die laufende Verzögerungszeit beginnend bei der bereits abgelaufenen Zeit im Sekundentakt heruntergezählt. Dabei erlischt die Absolutanzeige der Zeit aus der Anzeige. Der Zeit-Bargraph wird gestrichelt dargestellt und verkleinert sich stetig.

Überschreitet die Messspannung während des Löschens der Zeit erneut die eingestellte Bandbreite, wird die Zeitverzögerung ab der verbliebenen Zeit neu gestartet.

Die Mindestwartezeit zwischen zwei aufeinander folgende Schaltungen beträgt 60 s.
Um die Verzögerungszeit T1 einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Spannungsregelung > 5x WEITER
 Verzögerungszeit T1

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.
 Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1-Taste drücken, um die Zeit zu erhöhen oder F5-Taste drücken, um die Zeit zu senken.

4. ENTER-Taste drücken.
 Die Verzögerungszeit T1 ist eingestellt.

5.2.1.4 Regelverhalten T1 (linear/integral) einstellen

Die Verzögerungszeit T1 kann linear oder integral eingestellt werden. Der Regler reagiert bei der "Linear-Zeit" unabhängig von der Regelabweichung mit einer konstanten Verzögerungszeit.

Wenn Sie die "Integral-Zeit" einstellen, verkürzt sich die Verzögerungszeit in Abhängigkeit des Verhältnisses von der aktuellen Regelabweichung zur eingestellten Bandbreite B bis auf minimal 1 Sekunde. Je größer die Regelabweichung (ΔU), desto kürzer ist die Reaktionszeit. Der Spannungsregler reagiert somit schneller auf unerwartet große Spannungsänderungen im Netz. Die Regelgenauigkeit nimmt damit auf Kosten der Schalthäufigkeit zu (siehe Abbildung 10 auf Seite 57).
5 Funktionen und Einstellungen

Um das Regelverhalten T1 einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Spannungsgleichung > 6x WEITER
 ↘<06> Charakteristik T1

2. F5-Taste drücken für die Auswahl "linear" oder F1-Taste drücken für die Auswahl "integral".

3. ENTER-Taste drücken.

Das Regelverhalten T1 ist eingestellt.

Abbildung 10 ΔU/B-Spannungsänderung

1 Parameter "Verzögerungszeit T1"

ΔU/B: Regelabweichung "ΔU" in % des Sollwerts im Verhältnis zur eingestellten Bandbreite "B" in % des Sollwerts.
5.2.2 Grenzwerte

In dieser Untergruppe sind alle für die Grenzwert-Überwachung notwendigen Parameter zusammengefasst. Die Grenzwerte werden als prozentuale Werte eingestellt.

MENU-Taste > Regelparameter > Grenzwerte

5 Funktionen und Einstellungen

5.2.2.1 Grenzwert U< Unterspannung (%) einstellen

Die Unterspannungsblockierung verhindert Stufenschaltungen bei einem Netz- zusammenbruch. Die Ausgangsimpulse des Spannungsgreglers werden blockiert und die rote LED "U<" leuchtet auf, sobald die Messspannung den eingestellten Blockierwert unterschreitet.

Fällt die Messspannung unter den eingestellten Grenzwert, zieht das Meldelais nach der eingestellten U< Unterspannungsverzögerung an (Kontakte MIO-X4-1/3).

Um die Unterspannungsblockierung einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte
2. F1-Taste drücken, um den Wert zu erhöhen oder
 F5-Taste drücken, um den Wert zu senken.
3. ENTER-Taste drücken.

Die Unterspannungsblockierung U< ist eingestellt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %...140 % vom Sollwert</td>
<td>1 %</td>
<td>110 %</td>
</tr>
</tbody>
</table>

Tabelle 14 Einstellbereich U< Unterspannungsblockierung

Um die Unterspannungsblockierung einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte
 ➔<00> U< Unterspannung [%]
2. F1-Taste drücken, um den Wert zu erhöhen oder
 F5-Taste drücken, um den Wert zu senken.
3. ENTER-Taste drücken.

Die Unterspannungsblockierung U< ist eingestellt.
5.2.2.2 U< Unterspannungsverzögerung einstellen

Um bei kurzzeitigen Spannungseinbrüchen nicht sofort das Unterspannungsrelais anziehen zu lassen, kann eine Verzögerungszeit für diese Meldung eingestellt werden. Die LED für die Unterspannung leuchtet unverzüglich in jedem Fall auf.

Um diese Meldeverzögerung einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte > 1 x WEITER
 ➥<01> Verzögerung U<

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.
 ➥Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1-Taste drücken, um die Zeit zu erhöhen oder F5-Taste drücken, um die Zeit zu senken.

4. ENTER-Taste drücken.

Die Unterspannungsverzögerung U< ist eingestellt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 s...20 s</td>
<td>0,1 s</td>
<td>10 s</td>
</tr>
</tbody>
</table>

Tabelle 15 Einstellbereich U< Unterspannungsverzögerung
5 Funktionen und Einstellungen

5.2.2.3 U< Unterspannungsblockierung aktivieren/deaktivieren

Die Unterspannungsblockierung können Sie aktivieren oder deaktivieren. Wenn die Blockierung deaktiviert ist und der festgelegte Blockierwert unterschritten wird, erfolgt nur eine Meldung mittels Relais und LED. Die Regelung wird jedoch nicht blockiert.

Um die U< Unterspannungsblockierung zu aktivieren/deaktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte > 2x WEITER
 ←<02> Blockierung Untersp. U<

2. F1-Taste oder F5-Taste drücken, um Blockierung zu aktivieren/deaktivieren.

3. ENTER-Taste drücken.
 Die U< Unterspannungsblockierung ist aktiviert/deaktiviert.

5.2.2.4 U< Unterspannungsmeldung <30 V unterdrücken

Eine Unterdrückung der Meldung "U< Unterspannung" kann sinnvoll sein, um bei abgeschaltetem Transformator keine Fehlermeldung zu erzeugen (Messspannung U< 30 V am Regler).

Um die U< Unterspannungsmeldung zu unterdrücken, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte > 3x WEITER
 ←<03> U< Unter 30V

2. F1-Taste drücken, um die Unterspannungsmeldung zu unterdrücken.

3. ENTER-Taste drücken.
 Die U< Unterspannungsmeldung ist unterdrückt.
5 Funktionen und Einstellungen

5.2.2.5 Grenzwert U> Überspannung (%) einstellen

Wenn die Überspannungserfassung anspricht, wird der Laststufenschalter durch periodisches Ansteuern des Motorantriebs so lange betätigt, bis die Messspannung den eingestellten Überspannungsgrenzwert unterschritten hat. Die Ansteuerung erfolgt durch das Ausgangsrelais für die Schaltrichtung "Tiefer" im Takt des Mindestabstands zwischen zwei Schaltungen von 60 s, ohne dass die eingestellte Schaltverzögerung wirksam wird. Gleichzeitig leuchtet die LED "U>" und ein Melderelais zieht an (Kontakte MIO-X4-1/3), solange eine Überspannung vorliegt. Die Einstellung für den Takt für die Tieferschaltung finden Sie im Abschnitt "H/T-Schaltimpulsdauer einstellen" auf Seite 72.

Anstatt der Schnellrückschaltfunktion kann die Regelung bei einer Überschreitung des Überspannungswertes auch blockiert werden.

Die U> Überspannungsgrenze wird als prozentualer Wert vom eingestellten Sollwert eingegeben.

Um die Überspannungsbegrenzung einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte > 4x WEITER
 "04> U> Überspannung [%]

2. F1-Taste drücken, um den U> Wert zu erhöhen oder F5-Taste drücken, um den U> Wert zu senken.

3. ENTER-Taste drücken.

Die U> Überspannungsgrenze ist eingestellt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %...140 % vom Sollwert</td>
<td>1 %</td>
<td>110 %</td>
</tr>
</tbody>
</table>

Tabelle 16 Einstellbereich U> Überspannungsgrenze
5.2.2.6 U> Überspannungblockierung aktivieren/deaktivieren

Wenn Sie die Überspannungblockierung deaktivieren, wird bei Überspannung der Schnellrückschaltmodus verwendet.

Um die U> Überspannungsblockierung zu aktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte > 5x WEITER
 ↪<05> Blockierung Übersp. U>

2. F1-Taste oder F5-Taste drücken, um Überspannungssblockierung zu aktivieren/deaktivieren.

3. ENTER-Taste drücken.
 Die U> Überspannungssblockierung ist aktiviert/deaktiviert.
5.2.2.7 Grenzwert I> Überstrom einstellen

Die I> Überstromblockierung verhindert Stufenschaltungen bei Lastströmen, die höher sind als der gewählte Grenzwert (z.B. Überlast).

Sobald der Messstrom den eingestellten Blockierwert überschreitet, wird die Regelung blockiert. Die LED "I>" leuchtet auf und das zugehörige Melderelais zieht an (Kontakte MIO-X4-1/3).

Der von Ihnen eingestellte Grenzwert wird in % eingegeben und wird erst aktiv, wenn Sie die Überstromblockierung aktiviert haben.

Um den Grenzwert I> Überstrom für die Überstromblockierung einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte > 6x WEITER
2. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.
3. ENTER-Taste drücken.

Der Grenzwert I> Überstrom ist eingestellt.

Die I> Überstromblockierung kann jetzt aktiviert werden (siehe Abschnitt 5.2.2.8).
5 Funktionen und Einstellungen

5.2.2.8 I> Überstromblockierung aktivieren/deaktivieren

Nachdem Sie den Grenzwert für die I> Überstromblockierung eingestellt haben (siehe Abschnitt 5.2.2.7), können Sie die I> Überstromblockierung einstellen. Wenn die Überstromblockierung deaktiviert ist, leuchtet nur die LED I> auf und das zugehörige Melderelais zieht an. Die Regelung läuft weiter.

Um die I> Überstromblockierung zu aktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte > 7x WEITER
 ←<07> Blockierung Überstr. I>

2. F1-Taste oder F5-Taste drücken, um Überspannungsblockierung zu aktivieren/deaktivieren.

3. ENTER-Taste drücken.
Die I> Überstromblockierung ist aktiviert/deaktiviert.
5 Funktionen und Einstellungen

5.2.2.9 Grenzwert I< Unterstrom einstellen

Sobald der Messstrom den eingestellten Blockierwert unterschreitet, wird die Regelung blockiert.

Der von Ihnen eingestellte Grenzwert wird in % eingegeben und wird erst aktiv, wenn Sie die Unterstromblockierung aktiviert haben (siehe Abschnitt 5.2.2.10).

Um den Grenzwert für die I< Unterstromblockierung einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte > 8x WEITER
 ↦<08> Unterstrom I< [%]

2. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

3. ENTER-Taste drücken.

Der Grenzwert für die I< Unterstromblockierung ist eingestellt.

Die I< Unterstromblockierung kann jetzt aktiviert werden.

Tabelle 18 Einstellbereich I< Unterstromblockierung

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %...210 %</td>
<td>1 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Einstellbereich: 0 %...210 %
Schrittweite: 1 %
Werkseinstellung: 0 %
5.2.2.10 I< Unterstromblockierung aktivieren/deaktivieren

Nachdem Sie den Grenzwert für die I< Unterstromblockierung eingestellt haben (siehe Abschnitt 5.2.2.9), können Sie die I< Unterstromblockierung einstellen. Wenn die Unterstromblockierung deaktiviert ist, leuchtet nur die LED I< auf und das zugehörige Melderelais zieht an. Die Regelung läuft weiter.

Um die I< Unterstromblockierung zu aktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte > 9x WEITER
 ←<09> Blockierung Unterstr. I<

2. F1-Taste oder F5-Taste drücken, um die Blockierung zu aktivieren (Ein) / deaktivieren (Aus).

3. ENTER-Taste drücken.
 Die I< Unterstromblockierung ist aktiviert/deaktiviert.

5.2.2.11 Reglerblockierung bei negativer Wirkleistung aktivieren/deaktivieren

Wenn Sie die Reglerblockierung aktivieren, wird bei Erkennung eines negativen Wirkleistungsflusses die Regelung blockiert. Dies ist jedoch nur möglich, wenn der Stromwandleranschluss angeschlossen und korrekt eingestellt ist. Wenn Sie die Reglerblockierung deaktivieren, hat das Vorzeichen der Wirkleistung keinen Einfluss auf die Regelung.

Um die Reglerblockierung zu aktivieren/deaktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Regelparameter > Grenzwerte > 10x WEITER
 ←<10> Neg. Wirkleistungsblock.

2. F1-Taste oder F5-Taste drücken, um die Blockierung zu aktivieren (EIN) / deaktivieren (AUS).

3. ENTER-Taste drücken.
 Die Blockierung des Reglers bei negativer Wirkleistung ist aktiviert/deaktiviert.
5.3 Konfiguration

In diesem Abschnitt werden alle Einstellungen zur Konfiguration anlagenspezi-
fischer Daten vorgenommen. Zum leichteren Auffinden bestimmter Parameter
werden Untergruppen mit funktionell zusammengehörigen Einzelparametern
beschrieben.

5.3.1 Allgemeines

In diesem Untermenü können Sie allgemeine Einstellungen am Gerät vorneh-
men. Einige Einstellungen, wie z.B. die Sprache, haben Sie bereits bei der Inbe-
triebnahme festgelegt. Folgende Einstellungen können geändert werden:

- Sprache
- Reglerkennung
- Baudrate
- H / T-Impulsdauer
- Schaltungszähler
- Display Verdunkelung
- Tastensperre
- Funktionsüberwachung
- Motorlaufzeit
- Hand- und Automatikbetrieb
- Local und Remote

MENU-Taste > Konfiguration > Allgemeines

In den kommenden Abätzen werden die jeweiligen Einstellungen näher
beschrieben.
5 Funktionen und Einstellungen

5.3.1.1 Sprache einstellen

Auf Wunsch können Sie die gewünschte Anzeigesprache einstellen bzw. ändern. Folgende Sprachen stehen Ihnen zur Verfügung:

- Englisch
- Deutsch

Um die gewünschte Sprache einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Allgemeines <00> Sprache
2. F1-Taste oder F5-Taste drücken, um die gewünschte Sprache auszuwählen.
3. ENTER-Taste drücken.

Die gewünschte Anzeigesprache ist eingestellt.

5.3.1.2 Reglerkennung einstellen

Die Reglerkennung besteht aus einer vierstelligen Ziffernfolge und dient als zusätzliches Identifikationsmerkmal eines TAPCON® 230 AVT-Spannungsreglers. Die Identifikation dient nur für die Visualisierung (TAPCON-trol - Software). Falls Sie die Reglerkennung nicht einstellen möchten, sind die Seriennummer und die Firmware-Version die alleinigen Merkmale.

Mit der Hilfe der Reglerkennung kann sichergestellt werden, dass die Verbindung zwischen Visualisierungssoftware und einem genau definierten Spannungsregler erfolgt.

Um die Reglerkennung einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Allgemeines > 1x WEITER
 ←<01> Regler ID

2. F1-Taste drücken, um die erste Ziffer zu ändern.
 Wenn Sie eine mehrstellige Ziffernfolge eingeben möchten, fahren Sie bitte mit Schritt 3 fort. Wenn Sie keine weiteren Ziffern eingeben möchten, fahren Sie bitte mit Schritt 7 fort:

3. F1-Taste so oft drücken (> 9), bis eine weitere Ziffernstelle erscheint.

4. F4-Taste drücken, um eine Ziffernstelle zu markieren, die geändert werden soll.
 ←Die gewünschte Ziffer ist markiert und kann geändert werden.

5. F1-Taste oder F5-Taste drücken, um die Ziffer zu ändern.

6. Schritt 3 bis 5 so oft wiederholen, bis alle gewünschten Ziffern eingegeben sind.

7. ENTER-Taste drücken.
 Die Reglerkennung ist eingestellt.
5 Funktionen und Einstellungen

5.3.1.3 Baudrate einstellen

In diesem Untermenü können Sie die Baudrate der COM1-Schnittstelle (Kommunikation zur TAPCON-trol®-Software) festlegen. Folgende Werte sind einstellbar:

- 9.6 kBaud
- 19.2 kBaud
- 38.4 kBaud
- 57.6 kBaud

Um die Baudrate einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Allgemeines > 2x WEITER
 ←<02> Baudrate

2. F1-Taste oder F5-Taste drücken, um die gewünschte Baudrate einzustellen.

3. ENTER-Taste drücken.

Die Baudrate ist eingestellt.
5.3.1.4 Höher/Tiefer-Schaltimpulsdauer einstellen

In diesem Untermenü können Sie die Dauer des Steuerimpulses für den Motorantrieb einstellen.

Wenn Sie die H/T-Schaltimpulsdauer auf beispielsweise 1,5 Sekunden einstellen, erfolgt - nach Ablauf von Wartezeit - 1,5 Sekunden lang ein Schaltimpuls (siehe Abbildung 11).

Die Wartezeit zwischen zwei aufeinander folgenden Schaltungsimpulsen entspricht der eingestellten Verzögerungszeit T_1, mindestens aber 60 s. Im Schnellschaltmodus erfolgt die nächste Schaltung stets nach 60 s.

Liegt auch nach Ablauf der Wartezeit das Signal "Motor läuft" am Spannungsregler an, so wird die Wartezeit so lang verlängert, bis kein Signal mehr anliegt.

Abbildung 11 Schaltimpuls im Standardbetrieb

1. Beginn des ersten H/T-Schaltimpuls
2. T_1 = Schaltimpulsdauer (1,5 Sekunden)
3. Wartezeit zwischen zwei aufeinander folgenden Schaltungsimpulsen
4. Beginn des zweiten H/T-Schaltimpuls

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1 s...10 s</td>
<td>0,1 s</td>
<td>1,5 s</td>
</tr>
</tbody>
</table>

Tabelle 19 Einstellbereich H/T-Schaltimpulsdauer

Sollte der Motorantrieb mit der Standardeinstellung (1,5 Sekunden) nicht anlaufen, verlängern Sie bitte die Impulszeit.
Um die Impulsdauer einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Allgemeines > 3x WEITER

\(<03> H / T-Impulsdauer\)

2. F1-Taste oder F5-Taste drücken, um die gewünschte Impulsdauer einzustellen.

3. ENTER-Taste drücken.

Die H / T-Impulsdauer ist eingestellt.

5.3.1.5 Schaltungszähler

Sobald eine Schalthandlung vom Spannungsregler initiiert wird, bekommt der Spannungsregler eine Rückmeldung über das Signal "Motor läuft". So wird festgestellt, ob der Motor aktiv ist. Der Schaltungszähler zählt die Anzahl der Impulse des Motorantriebs, wenn Sie einen GPI auf "Motor läuft" parametriert haben.

Um diese Anzeige aufzurufen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Allgemeines > 4x WEITER

\(<04> Schaltungszähler\)

2. F1-Taste oder F5-Taste drücken, um den Wert zu erhöhen oder zu senken.

3. ENTER-Taste drücken.

Der Schaltungszähler ist eingestellt.

5.3.1.6 Hintergrundbeleuchtung der Anzeige einschalten/ausschalten

5 Funktionen und Einstellungen

1. MENU-Taste > Konfiguration > Allgemeines > 5x WEITER
 ←<05> Display Verdunkelung

2. F1-Taste oder F5-Taste drücken, um die Verdunkelung des Displays einzuschalten (EIN) / auszuschalten (AUS).

3. ENTER-Taste drücken.
 Die Hintergrundbeleuchtung der Anzeige ist aktiviert/deaktiviert.

5.3.1.7 Automatische Tastensperre aktivieren/deaktivieren

Wenn die automatische Tastensperre aktiviert ist, wird vom Gerät die Sperrung vorgenommen, nachdem Sie 15 Minuten lang keine Taste gedrückt haben. Wenn Sie es wünschen, können Sie diese Funktion aktivieren oder deaktivieren.

Um die Tastensperre zu aktivieren/deaktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Allgemeines > 6x WEITER
 ←<06> Tastensperre

2. F1-Taste oder F5-Taste drücken, um die automatische Tastensperre zu aktivieren (Ein)/ deaktivieren (Aus).

3. ENTER-Taste drücken.
 Die Tastensperre ist aktiviert/deaktiviert.

5.3.1.8 Funktionsüberwachung unterdrücken

Wenn der Messwert länger als 15 Minuten die aktuelle Bandbreite (Sollwert ± Bandbreite) verlässt, zieht das Funktionsüberwachungsrelais an. Folglich erscheint eine Alarmsmeldung in der Anzeige, die erst zurückgesetzt wird, sobald der Messwert in die aktuelle Bandbreite zurückkehrt.

Liegt keine Messspannung (also <30 V) an, befindet sich der Messwert außerhalb der Bandbreite und das entsprechende Relais zieht nach 15 Minuten ebenfalls an. Sie können auf Wunsch diese Funktion deaktivieren, um eine Funktionsüberwachungsmeldung bei abgeschaltetem Transformator zu vermeiden:
5 Funktionen und Einstellungen

1. MENU-Taste > Konfiguration > Allgemeines > 7x WEITER
 ↦<07> Funktionsüberwachung

2. F1-Taste oder F5-Taste drücken, um die Funktionsüberwachung einzuschalten (Ein) / ausschalten (Aus).

3. ENTER-Taste drücken.
 Die Funktionsüberwachung bei Spannungen <30 V ist aktiviert/deaktiviert.

5.3.1.9 Motorlaufzeit überwachen

Um die Laufzeitüberwachung zu nutzen, muss der entsprechende GPI korrekt verdrahtet und auf "Motor läuft" parametriert sein. Zudem muss die Motorlaufzeit eingestellt werden.

5.3.1.9.1 Funktionsweise

Der Motorantrieb liefert während des Schaltvorgangs das Signal "Motorantrieb läuft". Dieses Signal liegt so lange an, bis der Schaltvorgang abgeschlossen ist.

Der Spannungsregler vergleicht die Dauer dieses Signals mit der eingestellten Motorlaufzeit. Wird die eingestellte Motorlaufzeit überschritten, werden vom Spannungsregler verschiedene Aktionen ausgelöst:

1. Meldung "Motorlaufzeit Laufzeitüberwachung"
2. Dauersignal über GPO "Motorantrieb Laufzeitüberschreitung" (optional)
3. Impulssignal über GPO "Motorschutzschatzer auslösen" (optional)
5.3.1.9.2 GPI/GPO verdrahten und parametrieren

Möchten Sie die Motorlaufzeit überwachen, müssen Spannungsregler und Motorantrieb wie folgt angeschlossen und parametriert werden. Wie Sie die GPIs und GPOs parametrieren können, finden Sie in Abschnitt 5.5.1 und Abschnitt 5.5.2.

Abbildung 12 Verdrahtung der Motorlaufzeitüberwachung

1. GPI "Motor läuft"
2. GPI "Motorschutzschalter ausgelöst" (optional)
3. GPO "Motorschutzschalter auslösen" (optional)
4. GPO "Motorantrieb Laufzeitüberschreitung" (optional)

Möchten Sie die GPOs verwenden, muss zudem die Rückmeldung vom Motorantrieb "Motorschutzschalter ausgelöst" auf einen GPI verdrahtet und parametriert werden. Diese Meldung setzt bei wiedereinschalten des Motorschutzschalters den GPO "Motorlaufzeit überschritten" zurück und aktiviert die Meldung "Motorschutz".
5 Funktionen und Einstellungen

5.3.1.9.3 Motorlaufzeit einstellen

Um die Motorlaufzeit einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Allgemeines > 8x WEITER

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.

3. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

4. ENTER-Taste drücken.

Die Motorlaufzeit ist eingestellt.

Wenn Sie die Laufzeitüberwachung auf "0.0 s" einstellen, gilt sie als ausgeschaltet.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 s...30 s</td>
<td>0,1 s</td>
<td>0 s</td>
</tr>
</tbody>
</table>

Tabelle 21 Einstellbereich Motorlaufzeit

Wenn Sie die Motorlaufzeit einstellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Allgemeines > 8x WEITER

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.

3. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

4. ENTER-Taste drücken.

Die Motorlaufzeit ist eingestellt.
5 Funktionen und Einstellungen

5.3.1.10 Hand-/Automatikbetrieb aktivieren

Um den Hand- oder Automatikbetrieb zu aktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Allgemeines > 9x WEITER
 ↪<09> Hand / Automatik
2. F1-Taste oder F5-Taste drücken, um den Handbetrieb (Manual) oder Automatikbetrieb (Auto) zu aktivieren.
3. ENTER-Taste drücken.
 Der Hand- oder Automatikbetrieb ist eingestellt.

5.3.1.11 Local/Remote aktivieren

Dieser Parameter hat dieselbe Funktion wie die REMOTE-Taste auf der Frontplatte des Geräts. Sie können die Funktion REMOTE mit der entsprechenden Taste oder in der Anzeige einstellen.

Wenn Sie "Local" aktivieren, können Sie die Bedienung direkt auf der Frontplatte des Geräts durchführen, während bei "Remote" nur die Fernsteuerung über die Eingänge bzw. Leittechnik möglich ist. Wenn Sie über den Spannungsregler TAPCON® 230 AVT verfügen, ist die Fernsteuerung zusätzlich über die Kommunikationschnittstelle möglich.

Um "Local" oder "Remote" zu aktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Allgemeines > 10x WEITER
 ↪<10> Local / Remote
2. F1-Taste oder F5-Taste drücken, um "Local" oder "Remote" zu aktivieren.
3. ENTER-Taste drücken.
 Local/Remote ist eingestellt.
5 Funktionen und Einstellungen

5.4 Parallellauf

MENU-Taste > Konfiguration > Parallellauf

Beim Netzbetrieb bestehen zum Teil Anforderungen, die Kurzschlussleistung oder die Durchgangsleistung an einem Standort zu erhöhen. Dazu werden Stufentransformatoren parallel geschaltet.

Ein sicherer und wirtschaftlicher Parallelbetrieb ist dann gegeben, wenn die Summenleistung der parallelgeschalteten Transformatoren ohne Überlast einzelner Transformatoren ausgenutzt wird.

Für den Parallelbetrieb von Transformatoren wird empfohlen, folgende allgemeingültige Randbedingungen einzuhalten:

- gleiche Bemessungsspannungen
- Verhältnis der Transformatorenleistungen (< 3:1)
- maximale Abweichung der Kurzschlussspannungen (Uk) der parallelgeschalteten Transformatoren ≤10 %
- gleiche Schaltgruppenkennzahl

Es gibt 2 Gründe, um einen Parallelbetrieb durchzuführen:

1. Erhöhung der Kurzschlussleistung
2. Erhöhung der Durchgangsleistung
5 Funktionen und Einstellungen

5.4.1 Parallellauf aktivieren

Bevor Sie den Parallellauf aktivieren, müssen zusätzlich weitere Voraussetzungen erfüllt sein:

- Korrekte und individuelle CAN-Bus Adresse müssen eingestellt sein (ungleich 0) (siehe Abschnitt 5.4.5)
- Parallellaufgruppe 1 oder 2 müssen ausgewählt bzw. über einen vorbelegten GPI aktiviert sein (siehe Abschnitt 5.5.1).

1. MENU-Taste > Konfiguration > Parallellauf

 Ein: Parallelaufaktivierung
 Aus: Parallelaufdeaktivierung

 1. Parallellauf Aktivierung

 2. F1-Taste oder F5-Taste drücken, um den Parallellauf zu aktivieren.

 3. ENTER-Taste drücken.
 Der Parallellauf ist aktiviert.

 Es können weitere Einstellungen zum Parallellauf vorgenommen werden.

5.4.2 Parallellauf deaktivieren

Um den Parallellauf zu deaktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallellauf

 1. Parallellauf Aktivierung

 2. F1-Taste oder F5-Taste drücken, um den Parallellauf zu deaktivieren.

 3. ENTER-Taste drücken.
 Der Parallellauf ist deaktiviert.
5 Funktionen und Einstellungen

5.4.3 Parallellaufmethode

In den nachfolgenden Abschnitten wird beschrieben, welche Parallellaufmethoden Sie wählen und einstellen können. Sie können dem Spannungsregler 4 verschiedene Methoden zuweisen:

Kreisblindstrom
- Transformatorendaten gemäß Empfehlung
- keine Stufenstellungserfassung erforderlich

Stufengleichlauf (Master/Follower/Auto)
- Transformatoren mit gleichen Kenndaten
- Stufenstellungserfassung erforderlich

5.4.3.1 Parallellaufmethode "Kreisblindstrom" auswählen

Wenn Sie den Kreisblindstrom auswählen, wird der Parallelbetrieb nach der Methode der Kreisblindstromminimierung durchgeführt.

Diese Methode eignet sich für Transformatoren mit vergleichbarer Nennleistung, Nennspannung \(U_n \) und Schaltgruppe mit gleicher und ungleicher Stufenspannung. Dabei ist keine Information über die Stufenstellung erforderlich.
Um die Parallellaufmethode "Kreisblindstrom" auszuwählen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallellauf > 1x Weiter
 ←01> Parallellaufmethode

2. F1-Taste oder F5-Taste so oft drücken, bis "Kreisblindst." in der Anzeige erscheint.

3. ENTER-Taste drücken.

Die Parallellaufmethode "Kreisblindstrom" ist ausgewählt.
5 Funktionen und Einstellungen

5.4.3.2 Parallellaufmethode "Stufengleichlauf Master" festlegen

Bei diesem Verfahren wird der Spannungsregler zum Master bestimmt. Dieser Regler übernimmt bei diesem Verfahren die Führung, während alle anderen Regler als Follower die Stellbefehle des Masters befolgen.

Über den CAN-Bus vergleicht der Master die Stufenstellungen der Follower mit seiner eigenen Stufenstellung. Besteht eine Stufendifferenz veranlasst der Master, dass die Follower auf die gleiche Stufenstellung nachgeführt werden.

Wenn der festgelegte Master ausfällt, erscheint eine Fehlermeldung "Fehler Parallellauf: Kein Master vorhanden". Zusätzlich werden je nach Konfiguration des Parameters "Einzelbetrieb Blockierung" (siehe Abschnitt 5.4.9) die entsprechend eingestellten Regler blockiert oder sie fahren im Einzelbetrieb fort.

Bitte beachten Sie, dass jedem Spannungsregler über das Untermenü "CAN Adresse" eine Adresse zugewiesen werden muss. Jede Adresse darf nur einmal verwendet werden.

Erst wenn alle Spannungsregler erfasst wurden, können Sie über den CAN-Bus miteinander kommunizieren und die Methode "Master/Follower" benutzen.

Um die Parallellaufmethode "Master" festzulegen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallellauf > 1x WEITER
 ⇩<01> Parallellaufmethode

2. F1-Taste oder F5-Taste so oft drücken, bis "Master" in der Anzeige erscheint.

3. ENTER-Taste drücken.

 Die Parallellaufmethode "Master" ist festgelegt.
5.4.3.3 Parallellaufmethode "Stufengleichlauf Follower" festlegen

Bei diesem Verfahren wird der Spannungsregler zum Follower bestimmt. Dieser Regler erhält von dem Regler, der zum Master bestimmt wurde die Stellbefehle, die er als Follower befolgen muss (siehe Abschnitt 5.4.3.2).

Um die Parallellaufmethode "Follower" festzulegen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallellauf > 1x WEITER

2. F1-Taste oder F5-Taste so oft drücken, bis "Follower" in der Anzeige erscheint.

3. ENTER-Taste drücken.

 Die Parallellaufmethode "Follower" ist festgelegt.

5.4.3.4 Parallellaufmethode "Automatischer Stufengleichlauf" auswählen

Bei dieser Master-Follower-Methode wird automatisch der Spannungsregler mit der niedrigsten CAN-Adresse aller Spannungsregler am CAN-Bus mit der gleichen Parallellaufgruppe mit dieser Einstellung zum Master gewählt. Dieser Regler übernimmt die Messung und verstellt den Laststufenschalter, um die Spannung bei einer Abweichung auszuregeln.

Wie bei der Master-Methode vergleicht der Spannungsregler über den CAN-Bus die Stufenstellung der Follower mit seiner eigenen. Besteht eine Stufendifferenz veranlasst der Spannungsregler, dass die Follower auf die gleiche Stufensstellung nachgeführt werden.

Besteht eine Stufenstellungsdifferenz zwischen Master und Follower, welche größer als die eingestellte maximale Stufendifferenz ist (Abschnitt 5.4.12), wird die Meldung "Fehler Parallellauf" abgesetzt und die automatische Regelung blockiert.
Um die Parallellaufmethode "automatischer Stufengleichlauf" auszuwählen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallellauf > 1x WEITER
2. F1-Taste oder F5-Taste so oft drücken, bis "Gleichl.Auto" in der Anzeige erscheint.
3. ENTER-Taste drücken.

Die Parallellaufmethode automatischer Gleichlauf ist ausgewählt.

Bitte beachten Sie, dass jedem Spannungsregler über das Untermenü "CAN Adresse" eine Adresse zugewiesen werden muss. Jede Adresse darf nur einmal verwendet werden.

Erst wenn alle Spannungsregler erfasst wurden, können Sie über den CAN-Bus miteinander kommunizieren und die Methode "Master/Follower" benutzen.
5.4.4 Parallellaufgruppe zuweisen

In der Anzeige "Parallellaufgruppe" können Sie den Spannungsregler einer Transformatorengruppe zuweisen. Mit der Einstellung "Gruppe 1 und Gruppe 2" besteht die Möglichkeit, den Spannungsregler auf 2 Gruppen gleichzeitig zuzuweisen. Folgende Gruppierungen sind möglich:

<table>
<thead>
<tr>
<th>Einstellung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td>Spannungsregler wird keiner Gruppe zugewiesen</td>
</tr>
<tr>
<td>Gruppe 1</td>
<td>Spannungsregler wird Gruppe 1 zugewiesen</td>
</tr>
<tr>
<td>Gruppe 2</td>
<td>Spannungsregler wird Gruppe 2 zugewiesen</td>
</tr>
<tr>
<td>Gruppe 1 und Gruppe 2</td>
<td>Spannungsregler wird Gruppe 1 und Gruppe 2 zugewiesen</td>
</tr>
</tbody>
</table>

Die Auswahl der Parallellaufgruppe über das Menü ist nur möglich, wenn Sie keine Zuweisung durch ein GPI vorgenommen haben.

Um die Parallellaufgruppe zuzuweisen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallelauf > 2x WEITER
 ←<02> Parallellaufgruppe
2. F1-Taste oder F5-Taste so oft drücken, bis die gewünschte Funktion in der Anzeige erscheint.
3. ENTER-Taste drücken.

Die Parallellaufgruppe ist eingestellt.
5 Funktionen und Einstellungen

5.4.5 CAN Adresse eingeben

Damit alle Spannungsregler über den CAN-Bus kommunizieren können, ist eine individuelle Kennung jedes einzelnen Spannungsreglers notwendig. Es können Adressen von 1 bis 16 eingestellt werden. Wenn Sie den Wert auf 0 stellen, dann erfolgt keine Kommunikation.

Um die CAN Adresse einzugeben, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallelauf > 3x WEITER
 ↪<03> CAN Adresse
2. F1-Taste für Anzahl der CAN Adressen erhöhen oder F5-Taste für Anzahl senken.
3. ENTER-Taste drücken.

Die CAN Adresse ist eingegeben.

5.4.6 Einzelbetrieb Blockierung aktivieren/deaktivieren

Wenn Sie eine Parallelgruppe mit mehreren Spannungsreglern definiert haben, steht Ihnen die Funktion der Blockierung zur Verfügung. Diese Funktion wird am Spannungsregler dann aktiviert, wenn kein weiterer Spannungsregler in der Gruppe über den CAN Bus erkannt wird.

Sie können die "Einzelbetrieb Blockierung" aktivieren, wenn eine alleinige Regelung des Spannungsreglers vermieden werden soll. Dadurch wird in Anlagen mit zwei parallellaufenden Trafos vermieden, dass die Regler bei unterbrochener CAN-Verbindung einzeln regeln obwohl die Trafos noch parallel geschaltet sind.

Um die Blockierung zu aktivieren/deaktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallelauf > 4x WEITER
 ↪<04> Einzelbetrieb Blockierung
2. F1-Taste oder F5-Taste drücken, um die Blockierung zu aktivieren (Ein) oder deaktivieren (Aus).
3. ENTER-Taste drücken.

Die Blockierung ist aktiviert/deaktiviert.
5.4.7 Kreisblindstromempfindlichkeit einstellen

Um die Kreisblindstromempfindlichkeit einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallelauf > 5x WEITER
2. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.
3. F4-Taste drücken, um die Kommastelle auszuwählen.
4. ENTER-Taste drücken.

Die Kreisblindstromempfindlichkeit ist eingestellt.

Einstellbereich

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %...100 %</td>
<td>0,1 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Tabelle 23: Einstellbereich Kreisblindstromempfindlichkeit
5 Funktionen und Einstellungen

5.4.8 Blockiergrenze für maximal zulässigen Kreisblindstrom einstellen

Um die Blockiergrenze für den maximal zulässigen Kreisblindstrom einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallellauf > 6x WEITER
 \(^{<06}\) Kreisblindstr. Blockierung

2. F1-Taste drücken, um den Wert erhöhen oder
 F5-Taste drücken, um den Wert zu senken.

3. F4-Taste drücken, um eine Dezimalstelle zu markieren.
 \(^{<06}\) Die Dezimalstelle ist markiert und der Wert kann geändert werden.

4. ENTER-Taste drücken.

Die Blockiergrenze für den maximal zulässigen Kreisblindstrom ist eingestellt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5 %...40 %</td>
<td>0,1 %</td>
<td>20 %</td>
</tr>
</tbody>
</table>

Tabelle 24 Einstellbereich Kreisblindstromblockierung
5.4.9 Master/Follower Stromblockierung aktivieren/deaktivieren

Diese Überwachungsfunktion steht bei der Parallellaufmethode "Stufengleichlauf Master/Follower" in Verbindung mit einer Strommessung zur Verfügung. Erreicht der Kreisblindstrom die unter Abschnitt 5.4.8 eingestellte Grenze, wird der Spannungsregler blockiert.

Um die Stromblockierung zu aktivieren/deaktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallellauf > 7x WEITER
 ↵<07> Master/Foll. Stromblock.

2. F1-Taste oder F5-Taste drücken, um die Blockierung zu aktivieren (Blockierung)/deaktivieren (Aus).

3. ENTER-Taste drücken.

Die Master/Follower Stromblockierung ist aktiviert/deaktiviert.
5 Funktionen und Einstellungen

5.4.10 Verzögerungszeit für Parallellauffehlermeldung einstellen

Erkennt der Spannungsregler einen Fehler während des Parallellaufs, wird die Meldung "Fehler Parallellauf" ausgegeben.

Tritt ein Parallellauffehler ein, leuchtet die entsprechende LED sofort auf. Die Meldung wird erst nach Ablauf der eingestellten Verzögerungszeit am GPO4 ausgegeben.

Um die Verzögerungszeit für die Parallellauffehlermeldung einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallellauf > 8x
 → <08> Verzögerung Parallelfehler

2. F1-Taste, um den Wert zu erhöhen oder F5-Taste, um den Wert zu senken drücken.

3. ENTER-Taste drücken.

Die Verzögerungszeit für die Parallellauffehlermeldung ist eingestellt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 s...99 s</td>
<td>1 s</td>
<td>30 s</td>
</tr>
</tbody>
</table>

Tabelle 25 Einstellbereich Verzögerungszeit Parallellauffehlermeldung
5.4.11 Follower Stufenrichtung auswählen

Da beim Parallelbetrieb nach der Methode "Stufengleichlauf Master/Follower" die Stufenstellungen der miteinander parallellaufenden Transformatoren verglichen werden, ist es unbedingt notwendig, dass diese Transformatoren die gleiche Stellungsbezeichnung haben und die Signale „Höher“ bzw. „Tiefer“ in allen Transformatoren die gleiche Spannungsänderung bewirken.

Tritt das Phänomen auf, dass die/des Follower-Regler in Gegenrichtung der Stufung des Master-Reglers schaltet, ändern Sie die Einstellung dieses Parameters von „Standard“ auf „gedreht“.

Um die Stufenrichtung auszuwählen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallellauf > 9x WEITER
2. F1-Taste oder F5-Taste drücken, um die gewünschte Stufenrichtung zu wählen.
3. ENTER-Taste drücken.

Die Follower Stufenrichtung ist ausgewählt.

Bitte beachten Sie bei der Einstellung der Stufenrichtung, ob der Spannungsregler als Master oder als Follower bestimmt wurde. Die Einstellung der Stufenrichtung auf "gedreht" wirkt sich nur auf das Verhalten des Followers aus, da nur dieser die Stufenstellung als Zielgröße für die Regelung hat. Der Master regelt weiterhin nach gemessener Spannung.

1. MENU-Taste > Konfiguration > Parallellauf > 9x WEITER
 ←<09> Follower Stufenrichtung

2. F1-Taste oder F5-Taste drücken, um die gewünschte Stufenrichtung zu wählen.

3. ENTER-Taste drücken.

Die Follower Stufenrichtung ist ausgewählt.
5 Funktionen und Einstellungen

5.4.12 Maximale Stufendifferenz einstellen

Ziel des Stufengleichlaufverfahrens ist es, bei allen parallelgeschalteten Transformatoren stets die gleiche Stufenstellung einzustellen. Dabei folgt der Follower stets den Stellbefehlen des Masters.

Mit der Funktion "Max. Stufendifferenz" können Sie die maximal zulässige Stufendifferenz festlegen. Wird im Betrieb diese Grenze überschritten, löst der Follower die Meldung "Parallellauf Fehler" aus und blockiert.

Es kann eine Differenz von bis zu 4 Stufen eingestellt werden.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 26 Einstellbereich erlaubte Stufendifferenz

Um die maximale Stufendifferenz einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallellauf > 10x
 <10> Max. Stufendifferenz

2. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

3. ENTER-Taste drücken.

Die maximale Stufendifferenz ist eingestellt.
5.4.13 Follower ohne Messspannung schalten aktivieren/deaktivieren

Für den Fall, dass der Follower keine eigene Spannungsmessung hat bzw. eine vorhandene Spannungsmessung funktionslos ist, können Sie mit dieser Funktion definieren, ob der Spannungsregler für diese Situation blockieren oder weiterhin die Steuerbefehle des Masters befolgen soll.

Um diese Funktion zu aktivieren/deaktivieren, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Parallellauf > 11x WEITER
 ←<11> Foll.ohne Umess schalten

2. F1-Taste oder F5-Taste drücken, um die Funktion zu aktivieren (Ein) oder deaktivieren (Aus).

3. ENTER-Taste drücken.
Die Funktion ist aktiviert/deaktiviert.
5.5 Frei konfigurierbare Eingänge/Ausgänge zuweisen

In diesem Abschnitt werden die Kunden-Ein- und Ausgänge beschrieben. Bei Bedarf können Sie den GPIs und GPOs die Funktionen, gemäß der Tabelle 27 auf Seite 96 zuweisen.

MENU-Taste > Konfiguration > Weiter > KundenEin/Ausgänge
5.5.1 Eingänge (GPIs) zuweisen

Für die GPIs stehen Ihnen folgende Funktionen zur Verfügung:

<table>
<thead>
<tr>
<th>Mögliche Funktion</th>
<th>Funktionsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aus</td>
<td>keine Funktion ausgewählt</td>
</tr>
<tr>
<td>2. Master/Follower</td>
<td>Master-Modus aktiv bei Signal an; Follower-Modus aktiv bei Signal aus</td>
</tr>
<tr>
<td>3. Remote/Loc.</td>
<td>Betriebsart "Fern" aktiv bei Signal an; Betriebsart "Ort" bei Signal aus</td>
</tr>
<tr>
<td>4. Blockierung</td>
<td>Automatische Regelung blockiert</td>
</tr>
<tr>
<td>5. SchnellSchalt</td>
<td>T1 deaktiviert. Höher-/Tieferimpuls bei über-/unterschreiten der Bandbreite direkt nach Ablauf der Wartezeit von 60 s.</td>
</tr>
<tr>
<td>6. MSS ausgelöst</td>
<td>Meldung: Motorschutzschalter wurde ausgelöst</td>
</tr>
<tr>
<td>7. Motor läuft</td>
<td>Meldung: Motor läuft</td>
</tr>
<tr>
<td>8. Sollwert 2</td>
<td>Aktivierung von Sollwert 2</td>
</tr>
<tr>
<td>9. Sollwert 3</td>
<td>Aktivierung von Sollwert 3</td>
</tr>
<tr>
<td>10. Sollwertfern.</td>
<td>Aktivierung von Sollwertferneinstellung</td>
</tr>
<tr>
<td>11. ParGruppe1</td>
<td>Regler in Gruppe 1 bei Parallellauf</td>
</tr>
<tr>
<td>12. ParGruppe 2</td>
<td>Regler in Gruppe 2 bei Parallellauf</td>
</tr>
<tr>
<td>14. Blk U tiefer.</td>
<td>Tieferimpulse blockiert</td>
</tr>
</tbody>
</table>

Tabelle 27 Mögliche Funktionen für GPIs

Wie Sie die Funktionen zuweisen, wird in den folgenden Abschnitten beschrieben.

Um Funktionen den GPIs zuzuweisen, gehen Sie wie folgt vor (Beispiel GPI 1 - X4:13):

1. MENü-Taste > Konfiguration > Weiter KundenEin/Ausgänge
 ←<00> GPI 1 - X4:13

2. F1-Taste oder F5-Taste so oft drücken, bis die gewünschte Funktion in der Anzeige erscheint.

3. ENTER-Taste drücken.
 Die Funktion ist zugewiesen.
Alle weiteren GPIs können Sie wie auf Seite 96 beschrieben zuweisen. Folgende GPIs stehen Ihnen zur Verfügung:

<table>
<thead>
<tr>
<th>GPI</th>
<th>WEITER-Taste drücken</th>
<th>Seitenzahl in der Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPI 1 - X4:13</td>
<td>-</td>
<td><00></td>
</tr>
<tr>
<td>GPI 1 - X4:14</td>
<td>1x</td>
<td><01></td>
</tr>
<tr>
<td>GPI 1 - X4:15</td>
<td>2x</td>
<td><02></td>
</tr>
<tr>
<td>GPI 1 - X4:16</td>
<td>3x</td>
<td><03></td>
</tr>
<tr>
<td>GPI 1 - X4:17</td>
<td>4x</td>
<td><04></td>
</tr>
<tr>
<td>GPI 1 - X4:18</td>
<td>5x</td>
<td><05></td>
</tr>
<tr>
<td>GPI 1 - X6:1</td>
<td>6x</td>
<td><06></td>
</tr>
<tr>
<td>GPI 1 - X6:2</td>
<td>7x</td>
<td><07></td>
</tr>
</tbody>
</table>

Tabelle 28 Freikonfigurierbare GPIs

5.5.2 Ausgänge (GPOs) zuweisen

Bei den GPOs können Sie einem Relais eine Funktion zuweisen. Wenn das zugewiesene Ereignis eintreten sollte, erscheint auf dem Bildschirm die entsprechende Meldung. Diese Meldungen dienen nur zur Information. Für die GPOs stehen Ihnen folgende Funktionen zur Verfügung:

<table>
<thead>
<tr>
<th>Mögliche Funktion</th>
<th>Funktionsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aus, keine Funktion ausgewählt</td>
</tr>
<tr>
<td>2</td>
<td>Master, Master zuweisen</td>
</tr>
<tr>
<td>3</td>
<td>Follower, Follower zuweisen</td>
</tr>
<tr>
<td>4</td>
<td>ParStatus, Parallellaufstatus zuweisen</td>
</tr>
<tr>
<td>5</td>
<td>ParFehler, Parallelauflauffehler zuweisen</td>
</tr>
<tr>
<td>6</td>
<td>Local/Remote, Meldung: vor Ort bedienen/fernbedienen</td>
</tr>
<tr>
<td>7</td>
<td>Unterspannung, Meldung: Unterspannungsblockierung</td>
</tr>
<tr>
<td>8</td>
<td>Überspannung, Meldung: Überspannungsblockierung</td>
</tr>
<tr>
<td>9</td>
<td>Unterstrom, Meldung: Unterstromblockierung</td>
</tr>
<tr>
<td>10</td>
<td>Überstrom, Meldung: Überstromblockierung</td>
</tr>
<tr>
<td>11</td>
<td>Sollwert1, Meldung: Sollwert 1</td>
</tr>
<tr>
<td>12</td>
<td>Sollwert2, Meldung: Sollwert 2</td>
</tr>
<tr>
<td>13</td>
<td>Sollwert3, Meldung: Sollwert 3</td>
</tr>
<tr>
<td>14</td>
<td>MSS ausgel., Meldung: Motorschutzschalter wurde ausgelöst</td>
</tr>
<tr>
<td>15</td>
<td>Motorlaufzeit>, Meldung: Überschreitung Motorlaufzeit</td>
</tr>
<tr>
<td>16</td>
<td>Motor läuft, Meldung: Motor läuft</td>
</tr>
<tr>
<td>17</td>
<td>Bandbreite <, Meldung: Bandbreite unterschritten</td>
</tr>
<tr>
<td>18</td>
<td>Bandbreite >, Meldung: Bandbreite überschritten</td>
</tr>
</tbody>
</table>

Tabelle 29 Mögliche Funktionen für GPOs
Wie Sie die Funktionen zuweisen, wird in den folgenden Abschnitten beschrieben.

<table>
<thead>
<tr>
<th>Mögliche Funktion</th>
<th>Funktionsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 GPI 1</td>
<td>Meldung: GPI 1 aktiv</td>
</tr>
<tr>
<td>20 GPI 2</td>
<td>Meldung: GPI 2 aktiv</td>
</tr>
<tr>
<td>21 GPI 3</td>
<td>Meldung: GPI 3 aktiv</td>
</tr>
<tr>
<td>22 GPI 4</td>
<td>Meldung: GPI 4 aktiv</td>
</tr>
<tr>
<td>23 GPI 5</td>
<td>Meldung: GPI 5 aktiv</td>
</tr>
<tr>
<td>24 GPI 6</td>
<td>Meldung: GPI 6 aktiv</td>
</tr>
<tr>
<td>25 GPI 7</td>
<td>Meldung: GPI 7 aktiv</td>
</tr>
<tr>
<td>26 GPI 8</td>
<td>Meldung: GPI 8 aktiv</td>
</tr>
<tr>
<td>27 Ereignis</td>
<td>Meldung: Ereignis aktiv</td>
</tr>
</tbody>
</table>

Tabelle 29 Mögliche Funktionen für GPOs
5 Funktionen und Einstellungen

Um Funktionen den GPOs zuzuweisen, gehen Sie wie folgt vor
(Beispiel GPO 1 - X4:9):

1. MENU-Taste > Konfiguration > Weiter
 KundenEin/Ausgänge > 8x WEITER
 ⇧<08> GPO 1 - X4:9

2. F1-Taste oder F5-Taste so oft drücken, bis die gewünschte Funktion in der Anzeige erscheint.

3. ENTER-Taste drücken.
 Die Funktion ist zugewiesen.

Alle weiteren GPOs können Sie wie oben beschrieben zuweisen. Folgende GPOs stehen Ihnen zur Verfügung:

<table>
<thead>
<tr>
<th>GPO</th>
<th>WEITER-Taste drücken</th>
<th>Seitenzahl in der Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPO 1 - X4:9</td>
<td>8x</td>
<td><08></td>
</tr>
<tr>
<td>GPO 2 - X4:12</td>
<td>9x</td>
<td><09></td>
</tr>
<tr>
<td>GPO 3 - X5:9</td>
<td>10x</td>
<td><10></td>
</tr>
<tr>
<td>GPO 4 - X5:12</td>
<td>11x</td>
<td><11></td>
</tr>
<tr>
<td>GPO 5 - X5:18</td>
<td>12x</td>
<td><12></td>
</tr>
<tr>
<td>GPO 6 - X5:21</td>
<td>13x</td>
<td><13></td>
</tr>
<tr>
<td>GPO 7 - X5:24</td>
<td>14x</td>
<td><14></td>
</tr>
</tbody>
</table>

Tabelle 30 Freikonfigurierbare GPOs
5.5.3 LEDs einstellen

Mit den Einstellungen in dieser Untergruppe können Sie den freien LEDs einen Eingang oder eine Funktion zuweisen. Bei einem Ereignis leuchtet die LED, vorausgesetzt Sie haben die jeweilige Funktion eingestellt.

Zur Beschriftung der LED kann der darunter liegende Beschriftungsstreifen herausgezogen werden und individuell beschriftet werden (z.B. mit Abreibbuchstaben).

MENU-Taste > Konfiguration > Weiter > LED-Auswahl

Auf der nächsten Seite finden Sie eine Übersicht der möglichen Funktionen, die Sie zuweisen können. Tritt das entsprechende Ereignis ein, leuchtet die zugewiesene LED auf.
Für die LEDs stehen Ihnen folgende Funktionen zur Verfügung:

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Funktionsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Aus</td>
<td>LED deaktiviert</td>
</tr>
<tr>
<td>2 GPI 1</td>
<td>Am Eingang GPI 1 liegt ein Signal an</td>
</tr>
<tr>
<td>3 GPI 2</td>
<td>Am Eingang GPI 2 liegt ein Signal an</td>
</tr>
<tr>
<td>4 GPI 3</td>
<td>Am Eingang GPI 3 liegt ein Signal an</td>
</tr>
<tr>
<td>5 GPI 4</td>
<td>Am Eingang GPI 4 liegt ein Signal an</td>
</tr>
<tr>
<td>6 GPI 5</td>
<td>Am Eingang GPI 5 liegt ein Signal an</td>
</tr>
<tr>
<td>7 GPI 6</td>
<td>Am Eingang GPI 6 liegt ein Signal an</td>
</tr>
<tr>
<td>8 GPI 7</td>
<td>Am Eingang GPI 7 liegt ein Signal an</td>
</tr>
<tr>
<td>9 GPI 8</td>
<td>Am Eingang GPI 8 liegt ein Signal an</td>
</tr>
<tr>
<td>10 GPO 1</td>
<td>Relaisausgang GPO 1 hat angezogen</td>
</tr>
<tr>
<td>11 GPO 2</td>
<td>Relaisausgang GPO 2 hat angezogen</td>
</tr>
<tr>
<td>12 GPO 3</td>
<td>Relaisausgang GPO 3 hat angezogen</td>
</tr>
<tr>
<td>13 GPO 4</td>
<td>Relaisausgang GPO 4 hat angezogen</td>
</tr>
<tr>
<td>14 GPO 5</td>
<td>Relaisausgang GPO 5 hat angezogen</td>
</tr>
<tr>
<td>15 GPO 6</td>
<td>Relaisausgang GPO 6 hat angezogen</td>
</tr>
<tr>
<td>16 GPO 7</td>
<td>Relaisausgang GPO 7 hat angezogen</td>
</tr>
<tr>
<td>17 Fehler Par.</td>
<td>Parallellauffehler liegt vor</td>
</tr>
<tr>
<td>18 Unterstrom</td>
<td>Unterstrom liegt vor</td>
</tr>
<tr>
<td>19 MSS ausgel.</td>
<td>Motorschutzschalter wurde ausgelöst</td>
</tr>
<tr>
<td>20 Blockierung</td>
<td>Regelung blockiert</td>
</tr>
<tr>
<td>21 Kreisblindstrom</td>
<td>Parallellauf mittels Kreisblindstrommethode ausgewählt</td>
</tr>
<tr>
<td>22 Master</td>
<td>Spannungsregler im Parallellauf als Follower aktiv</td>
</tr>
<tr>
<td>23 Follower</td>
<td>Spannungsregler im Parallellauf als Master aktiv</td>
</tr>
<tr>
<td>24 Bandbreite <</td>
<td>Bandbreite unterschritten</td>
</tr>
<tr>
<td>25 Bandbreite ></td>
<td>Bandbreite überschritten</td>
</tr>
<tr>
<td>26 Sollwert 1</td>
<td>Sollwert 1 aktiv</td>
</tr>
<tr>
<td>27 Sollwert 2</td>
<td>Sollwert 2 aktiv</td>
</tr>
<tr>
<td>28 Sollwert 3</td>
<td>Sollwert 3 aktiv</td>
</tr>
<tr>
<td>29 Funktionsüberwachung</td>
<td>Meldung "Funktionsüberwachung" steht an</td>
</tr>
<tr>
<td>30 Remote</td>
<td>Betriebsmodus REMOTE aktiv</td>
</tr>
<tr>
<td>31 Local</td>
<td>Betriebsmodus LOCAL aktiv</td>
</tr>
<tr>
<td>32 Auto</td>
<td>Automatikbetrieb aktiv</td>
</tr>
<tr>
<td>33 Manual</td>
<td>Handbetrieb aktiv</td>
</tr>
<tr>
<td>34 Ereignis</td>
<td>Ereignis steht an</td>
</tr>
</tbody>
</table>

Tabelle 31 Mögliche Funktionen für LEDs
Auf Wunsch können Sie einer LED eine Funktion zuweisen. Sobald das von Ihnen eingestellte Ereignis eintritt, leuchtet die gewählte LED auf. Insgesamt stehen Ihnen 4 LEDs zur Verfügung, die Sie jeweils mit einem Eingang oder einer Funktion zuweisen können. LED 3 und LED 4 sind zweifarbig ausgeführt und können mit jeweils zwei unterschiedlichen Funktionen belegt werden.

Um einer LED eine Funktion zuzuweisen, gehen Sie wie folgt vor (Beispiel: "LED 1"):

1. MENU-Taste > Konfiguration > Weiter > LED-Auswahl
2. F1-Taste oder F5-Taste so oft drücken, bis die gewünschte Funktion in der Anzeige erscheint.
3. ENTER-Taste drücken.

Die Funktion ist zugewiesen.

Alle weiteren LEDs können Sie ebenfalls wie oben beschrieben zuweisen. Folgende LEDs stehen Ihnen zur Verfügung:

<table>
<thead>
<tr>
<th>LED</th>
<th>Charakteristik</th>
<th>WEITER-Taste drücken</th>
<th>Seitenzahl in der Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 1</td>
<td>Einfarbig</td>
<td>-</td>
<td><00></td>
</tr>
<tr>
<td>LED 2</td>
<td>Einfarbig</td>
<td>1x</td>
<td><01></td>
</tr>
<tr>
<td>LED 3 gelb</td>
<td>Zweifarbig</td>
<td>2x</td>
<td><02></td>
</tr>
<tr>
<td>LED 3 grün</td>
<td>Zweifarbig</td>
<td>3x</td>
<td><03></td>
</tr>
<tr>
<td>LED 4 rot</td>
<td>Zweifarbig</td>
<td>4x</td>
<td><04></td>
</tr>
<tr>
<td>LED 4 gelb</td>
<td>Zweifarbig</td>
<td>5x</td>
<td><05></td>
</tr>
</tbody>
</table>

Tabelle 32 Freikonfigurierbare LEDs
5.6 Stufenstellungserfassung

Soll die Stufenstellung über ein analoges Signal erfasst werden, muss der Analogeingang (Klemmleiste X7) an das Signal des Stufenstellungsgebers angepasst werden.

Der Analogeingang (Klemmleiste X7) kann entweder zur Erfassung der Stufenstellung oder zur Sollwertferneinstellung verwendet werden.

Folgende Stufenstellungsgeber können verwendet werden:
- Stufenpotentionmeter (150...2000 Ohm)
- Eingeprägter Strom 0/4-20 mA

Die Anpassung an den vorhandenen Stufenstellungsgeber ist bei der Inbetriebnahme vorzunehmen.

MENU-Taste > Konfiguration > Weiter > Weiter > Stufenstellung

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th>Normsetz</th>
<th>Eingriff</th>
<th>Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wandlerdaten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allgemeines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallellauf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weiter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bezugsvariante</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rücksetz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunden-/Ausgänge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED-Auswahl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stufenstellung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sollwertferneinst.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komm. Schnittst.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5 Funktionen und Einstellungen

5.6.1 Arten der Stufenstellungserfassung

Um die Stufenerfassung einzustellen, stehen Ihnen 6 Optionen zur Verfügung:

- Aus (keine Stufenstellungserfassung)
- Strom 0/4...20 mA
- Widerstandskontaktreihe
- BCD (siehe Tabelle 33)
- Gray (siehe Tabelle 33)
- Binär (siehe Tabelle 33)

<table>
<thead>
<tr>
<th>Betriebsstellung</th>
<th>BCD</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>15</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>16</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>18</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>19</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 33 Codierung der Stufenstellung
Um die Art der Stufenerfassung auszuwählen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Stufenstellung
 0<00> Stufenerfassung

2. F1-Taste oder F5-Taste drücken, um die gewünschte Option einzustellen.

3. ENTER-Taste drücken.
 Die gewünschte Option für die Stufenerfassung ist ausgewählt.

5.6.2 Analogwert der minimalen Stufe zuweisen

Zur Konfiguration des Analogeingangs ist der untere Wert des Eingangssignals anzugeben.
Beim eingeprägtem Strom als Gebersignal ist im Fall von 0 mA der Wert 0 % bzw. im Fall von 4 mA der Wert 20 % einstellen (siehe Beispiel in Tabelle 34).

Ist der Geber für die Erfassung der Stufenstellung eine Widerstandskontaktreihe (Potentiometer), ist grundsätzlich 0 % einzustellen.

Um den Analogwert der minimalen Stufe zuzuweisen, gehen Sie wie auf der folgenden Seite beschrieben vor:
5 Funktionen und Einstellungen

1. MENU-Taste > Konfiguration > Weiter > Weiter > Stufenstellung > 1x WEITER
 \[\leftarrow\text{<01> Analogwert [%] Stufe Min}\]

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.
 \[\leftarrow\text{Die gewünschte Stelle ist markiert und der Wert kann geändert werden.}\]

3. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

4. ENTER-Taste drücken.
 Der Analogwert der minimalen Stufe ist zugewiesen.

5.6.3 Analogwert der maximalen Stufe einstellen

Zur Konfiguration des Analogeingangs ist der obere Wert des Eingangssignals anzugeben.

Bei eingeprägtem Strom als Gebersignal ist im Fall von 20 mA der Wert 100 % einzustellen (siehe Beispiel in Tabelle 36).

<table>
<thead>
<tr>
<th>Stufe</th>
<th>Strom</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximale Stufe 19</td>
<td>20 mA</td>
<td>100 % (vom Signalbereich des Analogeingangs)</td>
</tr>
</tbody>
</table>

Tabelle 36 Beispiel zur Konfiguration des Analogeingangs (max.)

Ist der Geber für die Erfassung der Stufenstellung eine Widerstandskontaktreihe (Potentiometer), ist grundsätzlich 100 % einzustellen.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %...100 %</td>
<td>0,1 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Tabelle 37 Einstellbereich Analogwert maximale Stufe

Um den Analogwert der maximalen Stufe einzustellen, gehen Sie wie auf der folgenden Seite beschrieben vor:
5.6.4 Unterste Stufenstellung einstellen

Zur Konfiguration des Analogeingangs muss dem unteren Wert des anliegenden Signals ein Absolutwert zugeordnet werden (z.B. für die niedrigste Stufenstellung der Wert "1").

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40...40</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 38 Einstellbereich unterste Stufenstellung

Um die unterste Stufenstellung einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Stufenstellung > 3x WEITER
 \(<03>\) Unterste Stufenstellung

2. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

3. ENTER-Taste drücken.
 Die unterste Stufenstellung ist eingestellt.
5.6.5 Oberste Stufenstellung einstellen

Zur Konfiguration des Analogeingangs muss dem oberen Wert des anliegenden Signals ein Absolutwert zugeordnet werden (z.B. für die höchste Stufeneinstellung der Wert "25").

Um die oberste Stufenstellung einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Stufenstellung > 4x WEITER
 ◄<04> Oberste Stufenstellung

2. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

3. ENTER-Taste drücken.

Die oberste Stufenstellung ist eingestellt.

Tabelle 39 Einstellbereich oberste Stufenstellung

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40...40</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

Die Tabelle zeigt den Einstellbereich, die Schrittweite und die Werkseinstellungen für die oberste Stufenstellung.
5 Funktionen und Einstellungen

5.6.6 Untere Stufenblockierungsgrenze festlegen

Für den Fall, dass die Anzahl der im Betrieb verfügbaren Stufenstellungen eingeschränkt werden soll, kann eine untere Stufenblockierungsgrenze definiert werden. Wenn die festgelegte minimale Stufenstellung erreicht ist, wird die Stufenblockierung aktiviert. Eine weitere Stufung nach unten wird verhindert.

Um die untere Stufenblockierung festzulegen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Stufenstellung > 5x WEITER

 5<05> Stufenblockierung unten

2. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

3. F4-Taste drücken, um eine Dezimalstelle (bei Wert >10) zu markieren.

 Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

4. ENTER-Taste drücken.

Die untere Stufenblockierung ist festgelegt.

Abbildung 13 Bereich der Stufenstellungen

1. Oberste Stufengrenze
2. Eingeschränkter Bereich der Stufenstellungen
3. Unterste Stufengrenze

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-128...128</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 40 Einstellbereich untere Stufenblockierungsgrenze

Um die untere Stufenblockierung festzulegen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Stufenstellung > 5x WEITER

 5<05> Stufenblockierung unten

2. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

3. F4-Taste drücken, um eine Dezimalstelle (bei Wert >10) zu markieren.

 Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

4. ENTER-Taste drücken.

Die untere Stufenblockierung ist festgelegt.
5.6.7 Obere Stufenblockierungsgrenze festlegen

Für den Fall, dass die Anzahl der im Betrieb verfügbaren Stufenstellungen eingeschränkt werden soll, kann eine obere Stufenblockierungsgrenze definiert werden. Wenn die festgelegte maximale Stufenstellung erreicht ist, wird die Stufenblockierung aktiviert. Eine weitere Stufung nach oben wird verhindert (siehe Abbildung 13).

Um die obere Stufenblockierung festzulegen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Stufenstellung > 6x WEITER
 `<06> Stufenblockierung oben

2. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

3. F4-Taste drücken, um eine Dezimalstelle (bei Wert >10) zu markieren.
 `<Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

4. ENTER-Taste drücken.

Die obere Stufenblockierung ist festgelegt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-128...128</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

Tabelle 41 Einstellung obere Stufenblockierungsgrenze
5 Funktionen und Einstellungen

5.6.8 Stufenblockierungsverhalten auswählen

Bezogen auf die untere und obere Stufenblockierungsgrenze, können Sie dementsprechend das Stufenblockierungsverhalten einstellen. Ihnen stehen dazu folgende Optionen zur Verfügung:

- Aus
- Richtungsabhängig
- Richtungsunabhängig

Bei einem richtungsabhängigen Stufenblockierungsverhalten, blockiert der Spannungsregler, sobald die festgelegte maximale oder minimale Stufengrenze erreicht wird. Der Spannungsregler stuft dann nur noch in Richtung gültiger Stufen.

Bei einem richtungsunabhängigen Stufenblockierungsverhalten, blockiert der Spannungsregler, sobald die festgelegte maximale oder minimale Stufengrenze überschritten wird. Der Spannungsregler stuft daher weder höher noch tiefer.

Wenn der Spannungsregler in den festgelegten Bereich zurückstufen soll, gehen Sie in dem Fall wie folgt vor:
- Auf Handbetrieb umschalten.
- Innerhalb der festgelegten Stufengrenzen manuell zurückstufen.

Um das Stufenblockierungsverhalten einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Stufenstellung > 7x WEITER
 -<07> Blockierverh. Stufengrenzen

2. F1-Taste oder F5-Taste drücken, um die gewünschte Option einzustellen.

3. ENTER-Taste drücken.
 Das Stufenblockierungsverhalten ist eingestellt.
5.7 Sollwertferneinstellung

Wenn Sie den Sollwert über Fernbedienung verändern wollen, muss ein GPI verdrahtet und auf die Funktion “Sollwertfern” programmiert werden (siehe Abschnitt 5.5.1). Die Sollwertferneinstellung ist nur aktiv, wenn ein Signal an diesem GPI anliegt.

Zur Sollwertvorgabe kann der Analogeingang verwendet werden. Dazu muss der Analogeingang (Klemmleiste X7) an das Signal des Sollwertgebers angepasst werden.

Folgende Geber können verwendet werden:
- Stufenpotentionmeter (150...2000 Ohm)
- eingeprägter Strom 0/4...20 mA

Die Anpassung an den vorhandenen Geber ist bei der Inbetriebnahme vorzunehmen.

MENU-Taste > Konfiguration > Weiter > Weiter > Sollwertferneinst.
5 Funktionen und Einstellungen

5.7.1 **Arten der Sollwertferneinstellung**

Für die Sollwertferneinstellung, stehen Ihnen 3 Optionen zur Verfügung:

- Aus (keine Sollwertferneinstellung)
- Strom bei 0/4...20 mA
- Widerstandskontaktreihe

Gehen Sie wie folgt vor:

1. **MENU-Taste > Konfiguration > Weiter > Weiter > Sollwertferneinst.**
 - <00> Sollwertferneinstellung

2. F1-Taste oder F5-Taste drücken, um die gewünschte Option einzustellen.

3. **ENTER-Taste drücken.**

 Die Art der Sollwertferneinstellung ist ausgewählt.

> Der Bereich von 265 V bis 380 V ist für die Eingabe des Sollwerts nicht vorgesehen und führt zur Ereignismeldung: "Remote Sollwert nicht im erlaubten Messbereich".
5.7.2 Analogwert des minimalen Sollwerts einstellen

Zur Konfiguration des Analogeingangs ist der untere Wert des Eingangssignals anzugeben.

Bei eingeprägtem Strom als Gebersignal ist im Fall von 0 mA der Wert 0% beziehungsweise im Fall von 4 mA der Wert 20 % einzustellen (siehe Beispiel in Tabelle 42).

Ist der Geber für die Erfassung der Stufenstellung eine Widerstandskontaktreihe (Potentiometer), ist grundsätzlich 0 % einzustellen.

Um den minimalen analogen Sollwert einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Sollwertferneinst. > 1x WEITER
2. F4-Taste drücken, um eine Dezimalstelle zu markieren.
3. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.
4. ENTER-Taste drücken.

Der minimale analoge Sollwert ist eingestellt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %....100 %</td>
<td>0,1 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Tabelle 42 Beispiel zur Konfiguration des Analogeingangs (min.)

Tabelle 43 Einstellbereich Analogwert für minimalen Sollwert
5 Funktionen und Einstellungen

5.7.3 Analogwert des maximalen Sollwerts einstellen

Zur Konfiguration des Analogeingangs ist der maximale Wert des Eingangssignals anzugeben.

Bei eingeprägtem Strom als Gebersignal ist im Fall von 20 mA der Wert 100 % einzustellen.

Ist der Geber für die Sollwertferneinstellung eine Widerstandskontaktreihe (Potentiometer), ist grundsätzlich 100 % einstuzustellen (siehe Tabelle 44).

Um den maximalen analogen Sollwert einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Sollwertferneinst. > 2x WEITER
 \[<02>\] Analogwert % Sollwert max

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.
 \[<\] Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

4. ENTER-Taste drücken.

Der maximale analoge Sollwert ist eingestellt.

<table>
<thead>
<tr>
<th>Sollwert</th>
<th>Strom</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. Sollwert 250 V</td>
<td>20 mA</td>
<td>100 % (vom Signalbereich des Analogeingangs)</td>
</tr>
</tbody>
</table>

Tabelle 44 Beispiel zur Konfiguration des Analogeingangs (max.)

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %....100 %</td>
<td>0,1 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Tabelle 45 Einstellbereich Analogwert für maximalen Sollwert

<table>
<thead>
<tr>
<th>Strom</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mA</td>
<td>100 % (vom Signalbereich des Analogeingangs)</td>
</tr>
</tbody>
</table>

Tabelle 44 Beispiel zur Konfiguration des Analogeingangs (max.)
5.7.4 Minimalen Sollwert einstellen

Um den minimalen Sollwert einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Sollwertferneinst. > 3x WEITER
 03 Minimaler Sollwert

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.
 Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

4. ENTER-Taste drücken.
 Der minimale Sollwert ist eingestellt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 V...440 V</td>
<td>0,1 V</td>
<td>220 V</td>
</tr>
</tbody>
</table>

Tabelle 46 Einstellbereich minimaler Sollwert
5 Funktionen und Einstellungen

5.7.5 Maximalen Sollwert einstellen

Zur Konfiguration des Analogeingangs muss dem oberen Wert des anliegenden Signals ein Absolutwert zugeordnet werden (z.B. für den maximalen Sollwert 265 V).

Um den maximalen Sollwert einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Sollwertferneinst. > 4x WEITER
 → <04> Maximaler Sollwert

2. F4-Taste drücken, um eine Dezimalstelle zu markieren.
 → Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

4. ENTER-Taste drücken.

Der maximale Sollwert ist eingestellt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>220 V...440 V</td>
<td>0,1 V</td>
<td>440 V</td>
</tr>
</tbody>
</table>

Tabelle 47 Einstellbereich maximaler Sollwert
5.8 Kommunikationsschnittstelle

Bei dem Spannungsregler TAPCON® 230 AVT gibt es zusätzliche Kommunikationsschnittstellen.

MENU-Taste > Konfiguration > Weiter > Weiter > Komm. Schnittst.

Der TAPCON® 230 AVT verfügt über verschiedene Kartenanschlüsse, um die Kommunikation mit dem Spannungsregler zu gewährleisten. Der Spannungsregler ist mit folgenden Schnittstellen ausgestattet:

- Serielle Schnittstelle RS232
- RS485
- Ethernet

Wie Sie die Kartenanschlüsse und ihre jeweiligen Funktionen einstellen, wird in den folgenden Abschnitten näher beschrieben.
5 Funktionen und Einstellungen

5.8.1 Kommunikationsprotokoll auswählen

Hierunter können Sie das gewünschte Kommunikationsprotokoll aktivieren. Folgende Optionen stehen Ihnen zur Verfügung:

- TAPCON-trol® (Visualisierungssoftware)
- Modbus ASCII
- Modbus RTU

1. MENU-Taste > Konfiguration > Weiter > Weiter > Komm. Schnittst.
 ↪ <00> Kommunikationsprotokoll

2. F1-Taste oder F5-Taste drücken, um die gewünschte Option einzustellen.

3. ENTER-Taste drücken.
 Der Kommunikationsprotokoll ist eingestellt.
5.8.2 Kommunikationsanschluss auswählen

Hierunter können Sie die physikalische Schnittstelle aktivieren. Folgende Optionen stehen Ihnen zur Verfügung:

- RS232
- RS485
- Ethernet

Um den Kommunikationsanschluss einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Komm. Schnittst. > 1x WEITER
 ←<01> Kommunikationsanschluss
2. F1-Taste oder F5-Taste drücken, um die gewünschte Option einzustellen.
3. ENTER-Taste drücken.

Der Kommunikationsanschluss ist eingestellt.
5 Funktionen und Einstellungen

5.8.3 Baudrate Kommunikation auswählen

Hierunter können Sie die gewünschte Übertragungsgeschwindigkeit der Kommunikationsschnittstelle auswählen. Folgenden Übertragungsgeschwindigkeiten stehen Ihnen zur Verfügung:

- 9.6 kBaud
- 19.2 kBaud
- 38.4 kBaud
- 57.6 kBaud

Die Baudrate 57.6 kBaud ist nur bei den Kommunikationsschnittstellen RS232, RS485 aktiv.
Für das Ethernet ist die Baudrate 57.6 kBaud nicht möglich.

Um die Baudrate Kommunikationsschnittstelle einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Komm. Schnittst. > 2x WEITER
 ←<02> Baudrate Kommunikation

2. F1-Taste oder F5-Taste drücken, um die gewünschte Baudrate einzustellen.

3. ENTER-Taste drücken.
 Die Baudrate ist eingestellt.
5.8.4 Netzwerkadresse einstellen

Falls Ihr Spannungsregler mit einem Ethernetmodul ausgerüstet ist, so müssen Sie dem TAPCON® 230 AVT eine gültige Netzwerkadresse (IPv4) zuweisen.

Um die Netzwerkadresse zuzuweisen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Komm. Schnittst. > 3x WEITER
 =><03> Netzwerkadresse

2. F4-Taste drücken, um eine Stelle zu markieren.
 =>Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

4. ENTER-Taste drücken.

Die Netzwerkadresse für den TAPCON® 230 AVT ist zugewiesen.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...255</td>
<td>1</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

Tabelle 48 Einstellbereich Netzwerkadresse
5 Funktionen und Einstellungen

5.8.5 TCP Port zuweisen

Falls Ihr Spannungsregler mit einem Ethernetmodul ausgerüstet ist, so müssen Sie dem TAPCON® 230 AVT einen gültigen TCP Port zuweisen.

Um den TCP Port einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Komm. Schnittst.> 4x WEITER
 ℜ<04> TCP Port

2. F4-Taste drücken, um eine Stelle zu markieren.
 ℜ Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

4. ENTER-Taste drücken.
 Der TCP Port ist eingestellt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...32767</td>
<td>1</td>
<td>1234</td>
</tr>
</tbody>
</table>

Tabelle 49 Einstellbereich TCP-Port
5.8.6 SCADA Adresse einstellen

Hierunter können Sie für das gewählte Leitstellenprotokoll eine gültige SCADA Adresse einstellen. Bei Anbindung an das Leitsystem muss die Kommunikationsadresse des Spannungsreglers festgelegt werden.

Um die SCADA Adresse einzugeben, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Komm. Schnittst. > 6x WEITER
 ▶<06> Eigene SCADA Adresse

2. F1-Taste drücken, um die erste Ziffer zu ändern.

Wenn Sie eine mehrstellige Ziffernfolge eingeben möchten, fahren Sie bitte mit Schritt 3 fort. Wenn Sie keine weiteren Ziffern eingeben möchten, fahren Sie bitte mit Schritt 7 fort:

3. F1-Taste so oft drücken (> 9), bis eine weitere Ziffernstelle erscheint.

4. F4-Taste drücken, um eine Ziffernstelle zu markieren.
 ▶Die gewünschte Ziffer ist markiert und kann geändert werden.

5. F1-Taste oder F5-Taste drücken, um die Ziffer zu ändern.

6. Schritt 3 bis 5 so oft wiederholen, bis alle gewünschten Ziffern eingegeben sind.

7. ENTER-Taste drücken.

Die SCADA Adresse ist eingestellt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...9999</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 50 Einstellbereich SCADA Adresse
5.8.7 Sendeverzögerung bei RS485-Schnittstelle einstellen

Wenn Sie die physikalische Schnittstelle RS485 ausgewählt haben, können Sie die Sendeverzögerung beliebig einstellen.

Um die Sendeverzögerung für die RS485-Schnittstelle einzustellen, gehen Sie wie folgt vor:

1. MENU-Taste > Konfiguration > Weiter > Weiter > Komm. Schnittst. > 11x WEITER
 ←<11> RS485 Sendeverzögerung

2. F1-Taste drücken, um den Wert zu erhöhen oder F5-Taste drücken, um den Wert zu senken.

3. ENTER-Taste drücken.

Die Sendeverzögerung für die RS485-Schnittstelle ist eingestellt.

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ms...254 ms</td>
<td>1 ms</td>
<td>5 ms</td>
</tr>
</tbody>
</table>

Tabelle 51 Einstellbereich RS485 Sendeverzögerung
5.9 Info

In diesem Menüpunkt können Sie sich allgemeine Informationen zum Spannungsregler anzeigen lassen. Desweiteren können Sie auch die Kalibrierung der angeschlossenen Widerstandskontaktreihe am Analogeingang (Klemmleiste X7) kalibrieren (siehe Abschnitt 5.10):

- Messwerte
- Berechnete Werte
- Funktionstüchtigkeit der LEDs (LED-Test)
- MIO-Karte Digitaleingänge (Klemmen X4:13...X4:24)
- MIO-Karte Digitalausgänge (Klemmen X3:3...X4:12)
- PIO-Karte Digitaleingänge (Klemmen X6:1...X6:15)
- PIO-Karte Digitalausgänge (Klemmen X5:3...X5:24)
- Parallelbetrieb
- Daten auf CAN-Bus
- Peakspeicher
- CI-Karteninformation
- Default Parameter
- Speicherübersicht
- Ereignisübersicht

Um das Auffinden zu erleichtern, sind die Untergruppen mit den zusammengehörigen Informationen gebildet.

MENU-Taste > Info

In den kommenden Absätzen werden die jeweiligen Infomationsbildschirme beschrieben.
5 Funktionen und Einstellungen

5.9.1 Info-Bildschirm anzeigen

Hier können Sie sich Informationen des Gerätes anzeigen lassen. Folgende Informationen werden angezeigt:

• Gerätetyp
• Versionsnummer der Firmware
• Seriennummer
• RAM - Arbeitsspeicher
• Zusätzliche Karten

Um die Informationen über das Gerät anzeigen zu lassen, gehen Sie wie auf der folgenden Seite beschrieben vor:

MENU-Taste > Info

<00> Info

<table>
<thead>
<tr>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAPCON230 expert</td>
</tr>
<tr>
<td>Version 708.08.07.0E.21</td>
</tr>
<tr>
<td>Seriennr. 480043</td>
</tr>
<tr>
<td>RAM: 1024 KByte</td>
</tr>
<tr>
<td>AMCarten: Pi0 0</td>
</tr>
<tr>
<td><00></td>
</tr>
</tbody>
</table>

© Maschinenfabrik Reinhausen 2010 2224197/00 DE TAPCON® 230 AVT
5 Funktionen und Einstellungen

5.9.2 Messwerte anzeigen

Hier können Sie sich die aktuellen Messwerte anzeigen lassen. Folgende Messwerte können angezeigt werden:

- Spannung U in V
- Strom I in % und A
- Phase
- PMess
- f (Frequenz)

Die Werte, die rechts (siehe untere Abbildung) von der Spannung, des Stroms und der Leistung stehen, werden nur angezeigt, wenn die Wandlerdaten zuvor von Ihnen eingegeben wurden.

Bei den Messwerten "Phase" steht links die tatsächliche gemessene Phase. Auf der rechten Seite steht die auf die Wandlerschaltung umgerechnete Phase.

Um die Messwerte anzeigen zu lassen, gehen Sie wie folgt vor:

MENU-Taste > Info > 1x WEITER
←<01> Messwerte
5 Funktionen und Einstellungen

5.9.3 Berechnete Werte anzeigen

Hier können Sie sich die berechneten Werte anzeigen lassen. Angezeigt werden:

- I Wirkleistung in A
- I Blindleistung in A
- S in kVA
- Q in kVAr
- CosPhi
- Op. Cnt. (Schaltungszähler)

Um die berechneten Messwerte anzeigen zu lassen, gehen Sie wie folgt vor:

- MENU-Taste > Info > 2x WEITER
 ←<02> Berechnete Werte

Die Werte, die rechts (siehe untere Abbildung) stehen, werden nur angezeigt, wenn die Wandlerdaten zuvor von Ihnen eingegeben wurden.
5 Funktionen und Einstellungen

5.9.4 LED-Test durchführen

Entsprechend den angezeigten Angaben kann ein Funktionstest der LEDs durchgeführt werden. So können Sie überprüfen, ob alle LEDs funktionieren.

Um den LED-Test durchzuführen, gehen Sie wie folgt vor:

1. MENU-Taste > Info > 3x WEITER
 ➔<03> LED-Test

2. Beliebige F-Taste für die gewünschte LED drücken, um den Funktionstest durchzuführen (siehe Tabelle 52).

<table>
<thead>
<tr>
<th>Taste</th>
<th>LED Nr.</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>LED 1</td>
<td>AUTO</td>
</tr>
<tr>
<td>F2</td>
<td>LED 2</td>
<td>MANUAL</td>
</tr>
<tr>
<td>F3</td>
<td>LED 3</td>
<td>TIEFER</td>
</tr>
<tr>
<td>F4</td>
<td>LED 4</td>
<td>HÖHER</td>
</tr>
<tr>
<td>F5</td>
<td>LED 5</td>
<td>> I</td>
</tr>
<tr>
<td>ENTER</td>
<td>Alle LEDs</td>
<td>Alle LEDs</td>
</tr>
</tbody>
</table>

Tabelle 52 Auswahl der LEDs für Tests
5 Funktionen und Einstellungen

5.9.5 MIO-Karte Digitaleingänge anzeigen

Unter "MIO-Karte Digitaleingänge" wird der Zustand der jeweiligen Optokopplerleingängen dargestellt. Sobald ein Dauersignal am Eingang liegt, wird es in der Anzeige mit einer "1" angezeigt. Bei "0" liegt kein Signal am Eingang an.

Um "MIO Eingänge" anzeigen zu lassen, gehen Sie wie folgt vor:

- MENU-Taste > Info > 4x WEITER
 ➔<04> MIO-Karte Digitaleingänge

5.9.6 MIO-Karte Digitalausgänge anzeigen

Unter "MIO-Karte Digitalausgänge" wird der Zustand der jeweiligen Relais dargestellt. Sobald 1 Relais angezogen ist, wird es in der Anzeige mit einer "1" angezeigt. Bei "0" ist das Relais nicht angezogen.

Um "MIO Ausgänge" anzeigen zu lassen, gehen Sie wie folgt vor:

- MENU-Taste > Info > 5x WEITER
 ➔<05> MIO-Karte Digitalausgänge
5.9.7 PIO-Karte Digitaleingänge anzeigen

Unter "PIO-Karte Digitaleingänge" wird der Zustand der jeweiligen Optokoppleingängen dargestellt. Sobald ein Dauersignal am Eingang liegt, wird es in der Anzeige mit einer "1" angezeigt. Bei "0" liegt kein Signal am Eingang an.

Um "PIO-Karte Digitaleingänge" anzeigen zu lassen, gehen Sie wie folgt vor:

- MENU-Taste > Info > 6x WEITER
- <06> PIO-Karte Digitaleingänge

5.9.8 PIO-Karte Digitalausgänge anzeigen

Unter "PIO-Karte Digitalausgänge" wird der Zustand der jeweiligen Relais dargestellt. Sobald 1 Relais angezogen ist, wird es in der Anzeige mit einer "1" angezeigt. Bei "0" ist das Relais nicht angezogen.

Um "PIO-Karte Digitalausgänge" anzeigen zu lassen, gehen Sie wie folgt vor:

- MENU-Taste > Info > 7x WEITER
- <07> PIO-Karte Digitalausgänge
5.9.9 Parallelbetrieb anzeigen

Diese Anzeige gibt die Regelnummer für den Parallelbetrieb (= CAN-Adresse) und die Anzahl der Spannungsregler, die sich aktuell im Parallelbetrieb befinden, an.

Um "Parallelbetrieb" anzeigen zu lassen, gehen Sie wie folgt vor:

MENU-Taste > Info > 9x WEITER
<09> Parallelbetrieb

5.9.10 Daten auf CAN-Bus anzeigen

Um "CAN Bus" anzeigen zu lassen, gehen Sie wie folgt vor:

MENU-Taste > Info > 10x WEITER
<10> CAN Bus
5.9.11 Peakspeicher anzeigen

In diesem Bildschirm wird angezeigt, ob die Parametersätze nach einem Neu- start des Spannungsreglers bzw. nach Aufspielen eines Parametersatzes alle Parameter korrekt gespeichert sind.

Um den "Peakspeicher" anzeigen zu lassen, gehen Sie wie folgt vor:

- MENU-Taste > Info > 11x WEITER
- <11> Peakspeicher

Auf Wunsch können Sie diese Informationen zurücksetzen:
- F3-Taste und F4-Taste etwa für 1 Sekunde gleichzeitig drücken.
 ➔ Alle Werte sind auf Standard gesetzt.

5.9.12 CI-Card SCADA Information

Um die "CI-Card SCADA Information" anzeigen zu lassen, gehen Sie wie folgt vor:

- MENU-Taste > Info > 12x WEITER
- <12> CI-Card SCADA Information

Auf Wunsch können Sie diese Informationen zurücksetzen:
- F3-Taste und F4-Taste etwa für 1 Sekunde gleichzeitig drücken.
 ➔ Alle Werte sind auf Standard gesetzt.
5 Funktionen und Einstellungen

5.9.13 Speicherübersicht anzeigen

In der Speicherübersicht können Sie sich unterschiedliche Einträge mit der jeweiligen Anzahl der Datensätze anzeigen. Sie dienen lediglich für Serviceuntersuchungen und sind für die Bedienung nicht relevant. Folgende Einträge können angezeigt werden:

- Parameter Datei
- Event Daten Bits
- Flash File
- Ereignisse
- Schaltungszähler (OpCnt)

Um die Einträge anzeigen zu lassen, gehen Sie wie folgt vor:

1. MENU-Taste > Info > 14x WEITER
 🔽<14> Speicher Übersicht

2. F1-Taste oder F5-Taste für den gewünschten Eintrag drücken.
 🔽Die jeweilige Anzahl der Datensätze wird angezeigt.

5.9.14 Ereignisübersicht

In der Ereignisübersicht können Sie sich die Anzahl aller aktuellen Rot- und Gelb-Ereignisse anzeigen lassen. Um die Ereignisübersicht anzeigen zu lassen, gehen Sie wie folgt vor:

MENU-Taste > Info > 15x WEITER
 🔽Ereignisübersicht

Eine Übersicht aller Ereignismeldungen finden Sie im Abschnitt 6.2 auf Seite 142.
5.10 Sonstige Einstellungen

5.10.1 Widerstandskontaktreihe kalibrieren

Im Menüpunkt "Info" können Sie die Widerstandskontaktreihe kalibrieren. Für den Fall, dass Sie den Analogeingang verwenden, müssen Sie diesen in der Inbetriebnahme kalibrieren. Dies dient zum Abgleich des externen Messkreises.

Die Kalibrierung können Sie jederzeit mit der F3-Taste abbrechen.

Um die Kalibrierung durchzuführen, gehen Sie wie folgt vor:

1. MENU-Taste > Info > 8x WEITER
 ➔<08> PIO X7 Analogeingang

2. F5-Taste drücken
 ➔Es erscheint die Anzeige mit Handlungsaufforderungen.

3. Potentiometer anschließen.

4. Potentiometer in Endstellung Rmax drehen.

5. F5-Taste drücken, um die Kalibrierung zu starten.
 ➔Die Kalibrierung wird gestartet

Der Vorgang kann bis zu 3 Minuten dauern. Wenn diese Zeit überschritten wird, erscheint die Fehlermeldung "Schleifkontakt überprüfen". Vergewissern Sie sich in dem Fall, dass der Potentiometer korrekt angeschlossen bzw. nicht defekt ist.
5 Funktionen und Einstellungen

5.10.2 Default Parameter zurücksetzen

Mit "Default Parameter" können Sie Ihre Einstellungen auf die Werkseinstellungen zurücksetzen.

Um die Parameter zurückzusetzen, gehen Sie wie folgt vor:

1. MENU-Taste > Info > 13x WEITER
 <-13> Default Parameter

2. F-3 Taste und ENTER-Taste gleichzeitig drücken.
 <-"Default Parameter aktiv" wird angezeigt.

Alle Parameter sind auf die Werkseinstellungen zurückgesetzt worden.

Wenn Sie die Parameter auf die Werkseinstellungen zurücksetzen, werden Ihre Parameter unwiderruflich gelöscht. Die Sprache wird auf den Ursprung (Englisch) zurückgestellt.
5.11 Zusammenfassung der Einstellbereiche

Tabelle 53 Zusammenfassung aller Einstellbereiche TAPCON® 230 AVT

<table>
<thead>
<tr>
<th>Einstellbereich</th>
<th>Schrittweite</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sollwert 1/2/3</td>
<td>220 V...440 V</td>
<td>0,1 V</td>
</tr>
<tr>
<td>Bandbreite</td>
<td>0,5 %...9 %</td>
<td>0,01 %</td>
</tr>
<tr>
<td>Verzögerungszeit Z1</td>
<td>0 s...600 s</td>
<td>1 s</td>
</tr>
<tr>
<td>U< Unterspannungsblockierung</td>
<td>60 %...100 %</td>
<td>1 %</td>
</tr>
<tr>
<td>U< Unterspannungsverzögerung</td>
<td>0 s...20 s</td>
<td>0,1 s</td>
</tr>
<tr>
<td>U> Überspannungsblockierung</td>
<td>100 %...140 %</td>
<td>1 %</td>
</tr>
<tr>
<td>I> Oberstromblockierung</td>
<td>50 %...210 %</td>
<td>1 %</td>
</tr>
<tr>
<td>I< Unterstromblockierung</td>
<td>0 %...210 %</td>
<td>1 %</td>
</tr>
<tr>
<td>H/T-Schaltimpulsdauer</td>
<td>0,1 s...10 s</td>
<td>0,1 s</td>
</tr>
<tr>
<td>Schaltungszähler</td>
<td>0...99.999.999</td>
<td>1</td>
</tr>
<tr>
<td>Motorlaufzeit</td>
<td>0 s...30 s</td>
<td>0,1 s</td>
</tr>
<tr>
<td>Kreisblindstromempfindlichkeit</td>
<td>0 %...100 %</td>
<td>1 %</td>
</tr>
<tr>
<td>Kreisblindstromblockierung</td>
<td>0,5 %...40 %</td>
<td>1 %</td>
</tr>
<tr>
<td>Verzögerungszeit Parallelaufmeldung</td>
<td>1 s...99 s</td>
<td>1 s</td>
</tr>
<tr>
<td>Stufendifferenz max.</td>
<td>0...4</td>
<td>1</td>
</tr>
<tr>
<td>Analogwert minimale Stufe</td>
<td>0 %...100 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Analogwert maximale Stufe</td>
<td>0 %...100 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Stufenstellung (unterste)</td>
<td>-40...40</td>
<td>1</td>
</tr>
<tr>
<td>Stufenstellung (oberste)</td>
<td>-40...40</td>
<td>1</td>
</tr>
<tr>
<td>Stufensignalierungsgrenze (unterste)</td>
<td>-128...128</td>
<td>1</td>
</tr>
<tr>
<td>Stufensignalierungsgrenze (oberste)</td>
<td>-128...128</td>
<td>1</td>
</tr>
<tr>
<td>Analogwert minimaler Sollwert</td>
<td>0 %...100 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Analogwert maximaler Sollwert</td>
<td>0 %...100 %</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Sollwert minimal</td>
<td>220 V...440 V</td>
<td>0,1 V</td>
</tr>
<tr>
<td>Sollwert maximal</td>
<td>220 V...440 V</td>
<td>0,1 V</td>
</tr>
<tr>
<td>Netzwerkadresse</td>
<td>0...255 (je Zahl)</td>
<td>1</td>
</tr>
<tr>
<td>TCP Port</td>
<td>0...9999</td>
<td>1</td>
</tr>
<tr>
<td>SCADA Adresse</td>
<td>0...99.999.999</td>
<td>1</td>
</tr>
<tr>
<td>RS485 Sendeverzögerung</td>
<td>0 ms...254 ms</td>
<td>1 ms</td>
</tr>
</tbody>
</table>

Tabelle 54 Zusammenfassung aller Einstellbereiche TAPCON® 230 AVT
6 Störungsbeseitigung

Das nachfolgende Kapitel beschreibt die Beseitigung von einfachen Betriebsstörungen sowie die Bedeutung der möglichen Ereignismeldungen.

6.1 Betriebsstörungen

Falls am Spannungsregler im Betriebsverlauf Störungen auftreten, können Sie sie in den meisten Fällen selber beheben. Die nachstehende Tabelle soll Ihnen eine Hilfestellung bieten, Fehler selbst zu erkennen und zu beheben.

<table>
<thead>
<tr>
<th>Fehlerbild</th>
<th>Ausprägung</th>
<th>Detail</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine Regelung bei Betriebsart AUTO</td>
<td>Steuerbefehle des Reglers haben keine Wirkung</td>
<td>H/T-LEDs leuchten periodisch</td>
<td>Local/Remote Schalter im Motorantrieb auf LOCAL geschaltet</td>
<td>Betriebsart prüfen und ggf. korrigieren</td>
</tr>
<tr>
<td>Blockierung</td>
<td>LED U< leuchtet</td>
<td>Unterspannungsblockierung aktiv</td>
<td>Leitungsbruch</td>
<td>Verdrahtung gemäß Schaltbild überprüfen</td>
</tr>
<tr>
<td>Blockierung</td>
<td>LED U> leuchtet</td>
<td>Überspannungsblockierung aktiv</td>
<td></td>
<td>Parameter überprüfen</td>
</tr>
<tr>
<td>Blockierung</td>
<td>LED I< leuchtet</td>
<td>Unterstromblockierung aktiv</td>
<td></td>
<td>Parameter überprüfen</td>
</tr>
<tr>
<td>Blockierung</td>
<td>LED I> leuchtet</td>
<td>Überstromblockierung aktiv</td>
<td></td>
<td>Parameter überprüfen</td>
</tr>
<tr>
<td>-</td>
<td>Rückleistungssperre aktiv</td>
<td></td>
<td>Parameter überprüfen</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>negativer Leistungssfluss</td>
<td>Polarität der Stromwandlern überprüfen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Kundeneingänge doppelt parametriert</td>
<td></td>
<td>Parametrierung der Kundeneingänge überprüfen</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Einer der GPIs ist mit "Blockierung" parametriert und hat ein entsprechendes Signal</td>
<td></td>
<td>Eingänge auf Parameter und Status im Infobildschirm (PIO-Karte) überprüfen</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>NORMset aktiv</td>
<td></td>
<td>manuelle Schaltung durchführen</td>
<td></td>
</tr>
</tbody>
</table>

Bandbreite zu hoch eingestellt

| MMI | Tasten | Umschaltung HAND/AUTO nicht möglich | REMOTE ausgewählt | Betriebsart LOCAL wählen |
| MMI | Tasten | HAND und AUTO leuchten nicht | Parameterfehler | Auf Werkseinstellung zurücksetzen (siehe Abschnitt 5.10.2) |

Tabelle 55 Störungsbeseitigung
<table>
<thead>
<tr>
<th>Fehlerbild</th>
<th>Ausprägung</th>
<th>Detail</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMI</td>
<td>Display</td>
<td>keine Anzeige</td>
<td>Kontrast verstellt</td>
<td>Kontrast mit Potentiometer in der Frontplatte einstellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spannungsversorgung unterbrochen</td>
<td>Spannungsversorgung überprüfen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sicherung defekt</td>
<td>Sicherung tauschen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unterschiedliche Helligkeit bei mehreren Spannungsreglern</td>
<td>Dunkelschaltung aktiviert/deaktiviert</td>
<td>Einstellung "Dunkelschaltung" prüfen</td>
</tr>
<tr>
<td>LEDs</td>
<td>frei programmierbare LED leuchtet</td>
<td>Kundenspezifische Parametrierung der LED</td>
<td>Parametrierung prüfen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LED blinkt unregelmäßig</td>
<td>Eingangssignal nicht kons</td>
<td>Eingangssignal überprüfen</td>
<td></td>
</tr>
<tr>
<td>COM 1</td>
<td>Verbindung mit PC mittels TAPCON-trol nicht möglich</td>
<td>Unterschiedliche Baudrate eingestellt</td>
<td>Baudrate überprüfen und ggf. korrigieren (Spannungsregler und TAPCON-trol)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steckklemme lässt sich nicht montieren</td>
<td>Steckklemme und Stecksockel unterschiedlich</td>
<td>Codierung und Steckklemme überprüfen</td>
</tr>
<tr>
<td>Messwerte</td>
<td>Messspannung</td>
<td>kein Messwert</td>
<td>Anschluss hat keinen Kontakt in der Klemme</td>
<td>Verdrahtung und Klemme überprüfen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Isolierung eingeklemmt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Draht nicht weit genug eingeschoben</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sicherungsautomat ausge-</td>
<td>Sicherung überprüfen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>löst</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spannungsabfall auf Messleitung</td>
<td>Messspannung an Klemme X2:1/X2.2 überprüfen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Messwert zu niedrig</td>
<td>Mögliche StöRquellen: parallel verlegte Leitungen</td>
<td>Abstand zur Störquelle vergrößern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Schaltdrehenungen</td>
<td>Ggf. Filter installieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Messwert schwankt</td>
<td>Messspannung an Klemme X2:1/X2.2 überprüfen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Messwert zu hoch</td>
<td>Übersetzungsverhältnis nicht korrekt parametriert</td>
<td>Parametrierung korrigieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Falscher Eingang angeschlossen</td>
<td>Belegung der Klemmeiste X1 überprüfen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Messwert zu niedrig</td>
<td>Übersetzungs nicht korrekt parametriert</td>
<td>Parametrierung korrigieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Falscher Eingang angeschlossen</td>
<td>Belegung der Klemmeiste X1 überprüfen</td>
</tr>
</tbody>
</table>

Tabelle 55 Störungsbesetzung
### Fehlerbild	Ausprägung	Detail	Ursache	Abhilfe
Messwerte	Phasenwinkel	U/I	Fehler in externer Wandler-	Wandlerschaltung überprüfen
		Schaltung		
		Wandlerschaltung falsch	Vergleich mit Anlagenschaltbild und ggf. Parameter korrigieren	
		parametriert		
		Wandler falsch ange-	Messwerte im Infoschirm vergleichen	
	schlossen			
Generelle Störung	keine Funktion	Versorgungsspan-	Sicherung ausgelöst	Alle Sicherungen überprüfen und ggf. tauschen
	nung fehlt			
			Versorgungsspannung zu niedrig	
Relais klappern			Versorgungsspannung überprüfen	
Kundenspezifische I/Os	Erwartete Funktion entsprechen	Werkseinstellung tritt nicht ein	Parametrierung wurde manuell oder via TAPCon-	Aktive Parameter überprüfen
		trol überschrieben	Auf Werkseinstellung zurücksetzen	
Digitaleingänge	Signal nicht konstant		Pulsierende Gleichspannung	???
Kein Signal	Infoscreen zeigt 0	Signalleitung oder Leitung der Steuerspannung unterbrochen	Verdrahtung überprüfen	
	Infoscreen wechselt zwischen 0 und 1	Pulsierende Gleichspannung	Gleichspannung überprüfen	
keine Lösung	Kontaktieren Sie die Maschinenfabrik Reinhausen. Halten Sie bitte folgende Daten bereit:			
	• Seriennummer			
	Diese finden Sie:			
	- rechte Außenwand bei Frontansicht			
	- Typenschild (innere rechte Seitenwand bei Frontansicht)			
	- Infobildschirm (MENU-Taste > Info)			
	• Firmwareversion (MENU-Taste > Info)			
	Bereiten Sie sich auf folgende Fragen vor:			
	• Gab es ein Firmwareupdate?			
	• Gab es früher schon Probleme mit diesem Gerät?			
	• Gab es früher schon Kontakt zur Maschinenfabrik Reinhausen in dieser Angelegenheit? Wenn ja, zu wem?			

Tabelle 55 Störungsbeileitung
6.2 Ereignismeldungen

Der Spannungsregler gibt beim Auftreten bestimmter Ereignisse eine Ereignismeldung aus.

Folgende Ereignisse können eintreten:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Ereignismeldung</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>nicht verfügbar</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>nicht verfügbar</td>
</tr>
<tr>
<td>3</td>
<td>Unterspannung</td>
<td>Meldung wird bei Unterspannung angezeigt. Einstellung des Grenzwerts gemäß Kapitel 5.2.2.1.</td>
</tr>
<tr>
<td>4</td>
<td>Überspannung</td>
<td>Meldung wird bei Überspannung angezeigt. Einstellung des Grenzwerts gemäß Kapitel 5.2.2.5.</td>
</tr>
<tr>
<td>5</td>
<td>Überstrom</td>
<td>Meldung wird bei Überstrom angezeigt. Einstellung des Grenzwerts gemäß Kapitel 5.2.2.7.</td>
</tr>
<tr>
<td>6</td>
<td>Fehler Parallellauf: Unterschiedliche Parallellaufmethoden</td>
<td>Meldung wird angezeigt, wenn bei 2 oder mehreren Reglern in der selben Parallellaufgruppe unterschiedliche Parallellaufmethoden eingestellt sind. Einstellung der Parallellaufmethode gemäß Kapitel 5.4.3.</td>
</tr>
<tr>
<td>7</td>
<td>Motorschutz</td>
<td>Wird durch Eingang Motorschutzschalter ausgelöst</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>nicht verfügbar</td>
</tr>
<tr>
<td>9</td>
<td>Unterstrom</td>
<td>Meldung wird bei Unterstrom angezeigt. Einstellung des Grenzwerts gemäß Kapitel 5.2.2.9.</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>nicht verfügbar</td>
</tr>
<tr>
<td>12</td>
<td>Funktionsüberwachung (keine Ausregelung der Spannung innerhalb 15 min)</td>
<td>Meldung wird angezeigt, falls keine Ausregelung der Spannung innerhalb 15 min durchgeführt wurde.</td>
</tr>
<tr>
<td>13</td>
<td>Motorantrieb Laufzeitüberwachung</td>
<td>Meldung wird bei Überschreitung der eingestellten Motorlaufzeit angezeigt. Einstellung des Motorlaufzeit gemäß Kapitel 5.3.1.9.</td>
</tr>
<tr>
<td>14</td>
<td>Analogeingangswert zu hoch Kontrollieren Sie Ihren Anschluss an Klemme X7!</td>
<td>Meldung wird bei Überschreitung des maximal zulässigen Stroms von 20 mA für den Anschluss X7 angezeigt.</td>
</tr>
<tr>
<td>15</td>
<td>Analogeingangswert negativ Kontrollieren Sie Ihren Anschluss an Klemme X7!</td>
<td>Meldung wird bei Verpolung oder falsch angeschlossenen X7 Anschluss angezeigt.</td>
</tr>
<tr>
<td>16</td>
<td>Parameter reloaded! Confirm with F3 & Enter</td>
<td>Meldung wird angezeigt, falls der aktuelle Parametersatz beschädigt und deswegen auf den Standardparametersatz gesprungen wurde.</td>
</tr>
</tbody>
</table>

Tabelle 56 Mögliche Ereignisse des TAPCON® 230 AVT
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Ereignismeldung</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Schleifkontakt überprüfen!</td>
<td>Meldung wird bei falsch angeschlossenem Stufenpotentiometer oder bei Wackelkontakt am Stufenpotentiometer angezeigt.</td>
</tr>
<tr>
<td>18</td>
<td>Kein weiterer CAN Bus Teilnehmer vorhanden</td>
<td>Meldung wird angezeigt, falls Parallellauf eingestellt wurde aber kein Regler in der gleichen Parallellaufgruppe ist oder tatsächlich der CAN-Bus unterbrochen ist.</td>
</tr>
<tr>
<td>19</td>
<td>Fehler Parallellauf: Kreisblindstromblockiergrenze überschritten</td>
<td>Meldung wird angezeigt, falls die Parallellaufmethode Kreisblindstrom oder Master/Follower und die Blockiergrenze eingeschaltet ist. Zusätzlich muss die Kreisblindstromgrenze überschritten werden.</td>
</tr>
<tr>
<td>20</td>
<td>Fehler Parallellauf: Ungültige Stufe bei parallelen Reglern vorhanden</td>
<td>Meldung wird angezeigt, falls eine Stufe bei einem parallelen Regler ungültig ist.</td>
</tr>
<tr>
<td>21</td>
<td>Fehler Parallellauf: Stufendifferenz zum Follower</td>
<td>Meldung wird beim Master angezeigt, falls ein Follower nach der eingestellten Verzögerungszeit noch nicht die gleiche Stufe wie der Master hat. Einstellung der Grenzwerte gemäß Kapitel 5.4.10 und Kapitel 5.4.12</td>
</tr>
<tr>
<td>22</td>
<td>Fehler Parallellauf: Erlaubte Stufendifferenz zum Master überschritten</td>
<td>Meldung wird beim Follower angezeigt, falls ein Follower nach der eingestellten Verzögerungszeit noch nicht innerhalb der erlaubten Stufendifferenz zur Stufe des Master ist. Einstellung der Grenzwerte gemäß Kapitel 5.4.10 und Kapitel 5.4.12</td>
</tr>
<tr>
<td>23</td>
<td>Fehler Parallellauf: Anzahl der Master am CAN Bus >1</td>
<td>Meldung wird angezeigt, falls mehrere Regler einer Parallellaufgruppe als Master eingestellt wurden.</td>
</tr>
<tr>
<td>24</td>
<td>Fehler Parallellauf: Kein Master vorhanden oder Master Stufe ungültig</td>
<td>Meldung wird angezeigt, falls kein Regler als Master eingestellt wurde oder der Master eine ungültige Stufe meldet.</td>
</tr>
<tr>
<td>25</td>
<td>Fehler Parallellauf: Gewählte CAN Adresse bereits benutzt</td>
<td>Meldung wird angezeigt, falls die eingestellte CAN-Adresse bereits benutzt wird.</td>
</tr>
<tr>
<td>26</td>
<td>Fehler Parallellauf: Kreisblindstrom ungültig</td>
<td>Meldung wird angezeigt, wenn bei aktivierter Kreisblindstrom-Parallellaufmethode die Strommessung bei mindestens einem Regler nicht gültig ist und somit der zu ermittelnde Kreisblindstrom ungültig ist.</td>
</tr>
<tr>
<td>27</td>
<td>Fehler Parallellauf: Blockierung durch anderen Regler initiiert</td>
<td>Meldung wird angezeigt, falls eine Blockierung durch einen anderen Regler initiiert wird.</td>
</tr>
<tr>
<td>28</td>
<td>Fehler Parallellauf: Kein weiterer Regler in der Parallellaufgruppe</td>
<td>Meldung wird angezeigt, falls kein weiterer Regler in der Parallellaufgruppe ist.</td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>nicht verfügbar</td>
</tr>
<tr>
<td>30</td>
<td>Blockierung: Kundeneingang Blockierung liegt an</td>
<td>Meldung wird angezeigt, falls an dem eingestellten Kundeneingang 'Automatische Regelung blockiert' (Blockierung) ein Signal anliegt.</td>
</tr>
<tr>
<td>31</td>
<td>Blockierung: Negative Wirkleistung</td>
<td>Meldung wird angezeigt, falls die Wirkleistung negativ ist und die Blockierung bei negativer Wirkleistung aktiviert ist.</td>
</tr>
</tbody>
</table>

Tabelle 56 Mögliche Ereignisse des TAPCON® 230 AVT
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Ereignismeldung</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Blockierung: Kundeneingang Tieferschaltung blockieren liegt an</td>
<td>Meldung wird angezeigt, falls an dem eingestellten Kundeneingang 'Höherimpulse blockiert' (Blk U hoeh.) ein Signal anliegt.</td>
</tr>
<tr>
<td>33</td>
<td>Blockierung: Kundeneingang Höherschaltung blockieren liegt an</td>
<td>Meldung wird angezeigt, falls an dem eingestellten Kundeneingang 'Tieferimpulse blockiert' (Blk U tiefer.) ein Signal anliegt.</td>
</tr>
<tr>
<td>34</td>
<td>Blockierung: Tieferschaltung blockiert da Stufengrenze erreicht oder überschritten</td>
<td>Meldung wird angezeigt, falls Tieferschaltungen blockiert werden da die entsprechende Stufengrenze erreicht oder überschritten wurde.</td>
</tr>
<tr>
<td>35</td>
<td>Blockierung: Höherschaltung blockiert da Stufengrenze erreicht oder überschritten</td>
<td>Meldung wird angezeigt, falls Höherschaltungen blockiert werden da die entsprechende Stufengrenze erreicht oder überschritten wurde.</td>
</tr>
<tr>
<td>36</td>
<td>Stufengrenze erreicht oder überschritten</td>
<td>Meldung wird angezeigt falls die eingestellte Stufengrenze erreicht oder überschritten wurde</td>
</tr>
<tr>
<td>37</td>
<td>Negative Wirkleistung</td>
<td>Meldung wird angezeigt, falls die Wirkleistung negativ ist</td>
</tr>
<tr>
<td>38</td>
<td>Sollwert 1 nicht im erlaubten Messbereich</td>
<td>Meldung wird angezeigt, falls der Sollwert 1 nicht im erlaubten Messbereich liegt.</td>
</tr>
<tr>
<td>39</td>
<td>Sollwert 2 nicht im erlaubten Messbereich</td>
<td>Meldung wird angezeigt, falls der Sollwert 2 nicht im erlaubten Messbereich liegt.</td>
</tr>
<tr>
<td>40</td>
<td>Sollwert 3 nicht im erlaubten Messbereich</td>
<td>Meldung wird angezeigt, falls der Sollwert 3 nicht im erlaubten Messbereich liegt.</td>
</tr>
<tr>
<td>41</td>
<td>Remote Sollwert nicht im erlaubten Messbereich</td>
<td>Meldung wird angezeigt, falls der Sollwert über Sollwertferneinstellung nicht im erlaubten Messbereich liegt.</td>
</tr>
<tr>
<td>42</td>
<td>Warte 60 Sekunden wegen Kühlungsprozess.</td>
<td>Meldung wird angezeigt, falls vor Ablauf der Mindestwartezeit von 60 s eine Schaltung durchgeführt werden soll.</td>
</tr>
</tbody>
</table>

Tabelle 56 Mögliche Ereignisse des TAPCON® 230 AVT
Technische Daten

<table>
<thead>
<tr>
<th>Elektrische Sicherheit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61010-1</td>
<td>Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte</td>
</tr>
<tr>
<td>IEC 61131-2</td>
<td>Isolationsprüfung mit Betriebsfrequenz 350 VAC - 5870 VAC (abhängig von der Arbeitsspannung des jeweiligen Stromkreises)</td>
</tr>
<tr>
<td>IEC 60255</td>
<td>Isolationsprüfung mit Stoßspannung 5 kV, 1.2 / 50 µs</td>
</tr>
<tr>
<td>VDE 0435</td>
<td>Kurzzeitstrom und Dauerbelastbarkeit der Stromwandlereingänge</td>
</tr>
<tr>
<td></td>
<td>• 100 x Iₚ / 1 s</td>
</tr>
<tr>
<td></td>
<td>• 2 x Iₚ / dauernd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMV-Prüfungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61000-4-2</td>
<td>Elektrostatische Entladungen (ESD) 8 kV / 15 kV</td>
</tr>
<tr>
<td>IEC 61000-4-3</td>
<td>Elektromagnetische Felder (HF) 10 V/m 80...3000 MHz</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td>Schnelle Transienten (Burst) 6,5 kV</td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
<td>Störfestigkeit gegen Transienten (Surge) 2 kV (line/line), 4 kV (line/earth)</td>
</tr>
<tr>
<td>IEC 61000-4-6</td>
<td>HF-Störfestigkeit (Leitungen) 10 V, 150 kHZ...80 MHz</td>
</tr>
<tr>
<td>IEC 61000-4-8</td>
<td>Störfestigkeit gegen Magnetfelder 1000 A/m</td>
</tr>
<tr>
<td>IEC 61000-6-2</td>
<td>Störfestigkeit Industrie</td>
</tr>
<tr>
<td>IEC 61000-6-4</td>
<td>Störaussendung Industrie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beständigkeitsprüfungen Umwelt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN EN 60529</td>
<td>Bestimmung der Schutzklasse Berührungs-, Fremdkörper- und Wasserschutz für elektrische Betriebsmittel Level IP54</td>
</tr>
<tr>
<td>IEC 60068-2-1</td>
<td>Trockene Kälte - 25 °C / 16 Stunden</td>
</tr>
<tr>
<td>IEC 60068-2-2</td>
<td>Trockene Wärme + 70 °C</td>
</tr>
<tr>
<td>IEC 60068-2-3</td>
<td>Feuchte Wärme konstant + 40 °C / 93 % / 21 Tage</td>
</tr>
<tr>
<td>IEC 60068-2-30</td>
<td>Feuchte Wärme zyklisch (12 + 12 Stunden) + 55 °C / 93 % und + 25 °C / 95 % / 6 Zyklen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanische Stabilität</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60068-2-31</td>
<td>Kippfallen und Umstürzen, unverpackt 100 mm Fallhöhe</td>
</tr>
<tr>
<td>IEC 60068-2-32</td>
<td>Freifallen, unverpackt 250 mm Fallhöhe</td>
</tr>
<tr>
<td>IEC 255-21-1 Class 1</td>
<td>Schwingtest</td>
</tr>
<tr>
<td>IEC 255-21-2 Class 1</td>
<td>Schocktest</td>
</tr>
<tr>
<td>IEC 255-21-3 Class 1</td>
<td>Erdbebentest</td>
</tr>
</tbody>
</table>

Tabelle 57 Technische Daten für den TAPCON® 230 AVT
8 Menüübersicht

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regelparameter - Spannungsregelung

| | | | | | |

© Maschinenfabrik Reinhausen 2010 TAPCON® 230 AVT
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelparameter - Grenzwerte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hauptgruppe: MENU-Taste
1. Untergruppe: F2...F5-Taste
2. Untergruppe: F2...F5-Taste
3. Untergruppe: F2...F5-Taste
Parameter nach 1: Taste
Parameter nach n: Taste

Konfiguration - Allgemeines
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Konfiguration - Parallellauf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram showing menu options and configurations](image-url)
Konfiguration - KundenEin/Ausgänge

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Konfiguration</td>
<td>Konfiguration</td>
<td>Konfiguration</td>
<td>Konfiguration</td>
<td>Konfiguration</td>
<td>Konfiguration</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Konfiguration - LED-Auswahl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Konfiguration - Stufenstellung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Maschinenfabrik Reinhausen 2010 2224197/00 DE TAPCON® 230 AVT
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Konfiguration - Sollwertferneinstellung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of configuration settings](image-url)
<table>
<thead>
<tr>
<th>Konfiguration - Kommunikationsschnittstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Diagramm]</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Info</td>
</tr>
<tr>
<td>Country</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Australia</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Brazil</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Germany</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Austria</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Korea</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Japan</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>South Africa</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>U.S.A.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tabelle 58 MR weltweit