<table>
<thead>
<tr>
<th></th>
<th>Einleitung ... 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Hersteller ... 9</td>
</tr>
<tr>
<td>1.2</td>
<td>Änderungsvorbehalte .. 9</td>
</tr>
<tr>
<td>1.3</td>
<td>Vollständigkeit ... 9</td>
</tr>
<tr>
<td>1.4</td>
<td>Mitgeltende Dokumente ... 9</td>
</tr>
<tr>
<td>1.5</td>
<td>Aufbewahrungsort ... 10</td>
</tr>
<tr>
<td>1.6</td>
<td>Darstellungskonventionen ... 10</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Warnkonzept ... 10</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Informationskonzept .. 11</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Handlungskonzept ... 11</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Schreibweisen ... 12</td>
</tr>
<tr>
<td>2</td>
<td>Sicherheit ... 13</td>
</tr>
<tr>
<td>2.1</td>
<td>Allgemeine Sicherheitsinformationen .. 13</td>
</tr>
<tr>
<td>2.2</td>
<td>Bestimmungsgemäße Verwendung .. 13</td>
</tr>
<tr>
<td>2.3</td>
<td>Bestimmungswidrige Verwendung .. 13</td>
</tr>
<tr>
<td>2.4</td>
<td>Qualifikation des Personals ... 14</td>
</tr>
<tr>
<td>2.5</td>
<td>Sorgfaltpflicht des Betreibers ... 14</td>
</tr>
<tr>
<td>3</td>
<td>Produktbeschreibung .. 15</td>
</tr>
<tr>
<td>3.1</td>
<td>Lieferumfang .. 15</td>
</tr>
<tr>
<td>3.2</td>
<td>Funktionsbeschreibung der Spannungsregelung .. 15</td>
</tr>
<tr>
<td>3.3</td>
<td>Leistungsmerkmale ... 16</td>
</tr>
<tr>
<td>3.4</td>
<td>Betriebsarten ... 17</td>
</tr>
<tr>
<td>3.5</td>
<td>Hardware ... 18</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Bedienelemente .. 18</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Anzeigeelemente ... 20</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Serielle Schnittstelle .. 21</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Baugruppen ... 21</td>
</tr>
<tr>
<td>4</td>
<td>Verpackung, Transport und Lagerung .. 30</td>
</tr>
<tr>
<td>4.1</td>
<td>Verpackung ... 30</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Eignung, Aufbau und Herstellung ... 30</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Markierungen ... 30</td>
</tr>
<tr>
<td>4.2</td>
<td>Transport, Empfang und Behandlung von Sendungen .. 30</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

5 Montage ... 32
 5.1 Vorbereitung .. 32
 5.2 Gerät montieren ... 32
 5.3 Gerät anschließen .. 33
 5.3.1 Kabelempfehlung ... 33
 5.3.2 Verlegehinweise für Lichtwellenleiter .. 35
 5.3.3 Elektromagnetische Verträglichkeit ... 35
 5.3.4 Leitungen an die Anlagenperipherie anschließen ... 35
 5.3.5 Gerät verdrahten .. 35
 5.3.6 Funktionstüchtigkeit überprüfen ... 36

6 Inbetriebnahme .. 37
 6.1 Kontrast des Displays einstellen .. 37
 6.2 Parameter einstellen .. 38
 6.2.1 Sprache einstellen .. 38
 6.2.2 Datum und Uhrzeit einstellen .. 38
 6.2.3 Weitere Parameter einstellen ... 39
 6.3 Funktionsprüfungen .. 41

7 Funktionen und Einstellungen .. 42
 7.1 Tastensperre ... 42
 7.2 Allgemeines .. 42
 7.2.1 Gerätekennung einstellen .. 42
 7.2.2 Baudrate einstellen ... 43
 7.2.3 Spannungsanzeige kV/V einstellen ... 43
 7.2.4 Einheit der Stromanzeige einstellen .. 44
 7.2.5 Schaltimpulsdauer einstellen ... 44
 7.2.6 Steuereingänge IO1-X1:33/31 konfigurieren ... 46
 7.2.7 Ausgangsrelais IO1-X1:25/26 und IO1-X1:23/24 konfigurieren .. 48
 7.2.8 Anzeige verdunkeln ... 48
 7.2.9 Motorlaufzeitüberwachung einstellen ... 49
 7.2.10 Stufennrichtung drehen .. 51
 7.3 NORMset ... 51
 7.4 Regelparameter ... 53
 7.4.1 Sollwert 1...3 einstellen .. 56
 7.4.2 Bandbreite .. 56
Inhaltsverzeichnis

7.4.3 Verzögerungszeit T1 einstellen.. 57
7.4.4 Regelverhalten T1 einstellen ... 57
7.4.5 Verzögerungszeit T2 einstellen.. 58
7.5 Grenzwerte ... 59
7.5.1 Absolute oder relative Grenzwerte aktivieren/deaktivieren ... 59
7.5.2 Unterspannungssüberwachung U< einstellen .. 60
7.5.3 Überspannungsüberwachung U> einstellen ... 64
7.5.4 Überstromüberwachung I> einstellen ... 66
7.5.5 Funktionsüberwachung aktivieren/deaktivieren .. 67
7.5.6 Schaltintervallüberwachung .. 67
7.6 Kompensation .. 70
7.6.1 R-X-Kompensation .. 70
7.6.2 Z-Kompensation ... 73
7.7 Kreuzüberwachung ... 74
7.7.1 Sollwert für den Regler 2 einstellen.. 75
7.7.2 Unterspannungsgrenzwert U< für den Regler 2 einstellen ... 76
7.7.3 Überspannungsgrenzwert U> für den Regler 2 einstellen ... 77
7.7.4 Verzögerungszeit für Fehlermeldung einstellen .. 78
7.7.5 Wandler für Regler 2 einstellen ... 78
7.8 Wandlerdaten ... 79
7.8.1 Wandlerprimärspannung einstellen ... 80
7.8.2 Wandlersekundärspannung einstellen ... 81
7.8.3 Wandlerprimärstrom einstellen .. 81
7.8.4 Stromwandlereinschluss einstellen .. 82
7.8.5 Phasenlage von Stromwandler/Spannungswandler einstellen ... 82
7.9 Parallellauf ... 86
7.9.1 CAN-Bus-Adresse zuweisen .. 87
7.9.2 Parallellaufmethode auswählen .. 87
7.9.3 Verzögerungszeit für Parallellauffehlermeldungen einstellen .. 90
7.9.4 Parallellauf deaktivieren ... 90
7.10 Analogale Stufenstellungserfassung (optional) .. 91
7.10.1 Unterer Grenzwert einstellen .. 91
7.10.2 Oberer Grenzwert einstellen .. 92
7.11 LED-Auswahl ... 93
7.12 Kommunikationsschnittstelle SID (optional) .. 94
7.12.1 Netzwerkmaske zuweisen ... 95
7.12.2 Netzwerkadresse zuweisen.. 95
7.12.3 Zeitserveradresse eingeben.. 95
7.12.4 Gateway eingeben .. 96
7.12.5 IED Name eingeben .. 97
7.13 Kommunikationsschnittstelle CIC2 (optional) ... 97
7.13.1 Kommunikationsanschluss auswählen ... 97
7.13.2 Baudrate Kommunikation auswählen ... 98
7.13.3 Netzwerkadresse zuweisen ... 98
7.13.4 TCP Port zuweisen .. 99
7.13.5 Sendeverzögerung bei RS485-Schnittstelle einstellen ... 99
7.14 Messumformerfunktion .. 100
7.14.1 Messwert mit Ausgang verknüpfen .. 100
7.14.2 Minimale physikalische Größe zuweisen ... 101
7.14.3 Maximale physikalische Größe zuweisen ... 101
7.14.4 Minimalen Absolutwert zuweisen .. 102
7.14.5 Maximalen Absolutwert zuweisen .. 102
7.15 Speicher (optional) ... 102
7.15.1 Unterspannungsschwelle einstellen ... 104
7.15.2 Überspannungsschwelle einstellen ... 105
7.15.3 Zeitdifferenz des Mittelwertintervalls einstellen ... 106
7.15.4 Ereignispeichergöße einstellen ... 106
7.15.5 Zeitschreiber ... 109
7.16 Informationen zum Gerät anzeigen ... 115
7.16.1 Info-Bildschirm anzeigen .. 115
7.16.2 Messwerte anzeigen .. 116
7.16.3 LED-Test durchführen .. 116
7.16.4 Input-/Output-Status anzeigen .. 117
7.16.5 UC-Karten-Status anzeigen .. 117
7.16.6 Parameter zurücksetzen ... 118
7.16.7 Echtzeituhr anzeigen ... 118
7.16.8 Parallelbetrieb anzeigen .. 119
7.16.9 Daten auf CAN-Bus anzeigen ... 119
7.16.10 Messwertspeicher anzeigen ... 120
7.16.11 Peakspeicher anzeigen .. 121
7.16.12 CIC-Karte SCADA Information anzeigen ... 122
7.16.13 Anstehende Meldungen anzeigen .. 122
Inhaltsverzeichnis

14.7 Zentrale Recheneinheit ... 150
14.8 Systemvernetzung ... 150
14.9 Abmessungen und Gewicht .. 151
14.10 Umgebungsbedingungen .. 152
14.11 Prüfungen .. 153
14.11.1 Elektrische Sicherheit .. 153
14.11.2 EMV-Prüfungen .. 153
14.11.3 Beständigkeitsprüfungen Umwelt .. 153

Glossar .. 155

Stichwortverzeichnis ... 156
1 Einleitung

Diese technische Unterlage enthält detaillierte Beschreibungen, um das Produkt sicher und sachgerecht einzubauen, anzuschließen, in Betrieb zu nehmen und zu überwachen.

Daneben enthält sie Sicherheitshinweise sowie allgemeine Hinweise zum Produkt.

Zielgruppe dieser technischen Unterlage ist ausschließlich speziell geschultes und autorisiertes Fachpersonal.

1.1 Hersteller

Hersteller des Produkts ist:

Maschinenfabrik Reinhausen GmbH
Falkensteinstraße 8
93059 Regensburg
Tel.: (+49) 9 41/40 90-0
Fax: (+49) 9 41/40 90-7001
E-Mail: sales@reinhausen.com

Bei Bedarf erhalten Sie unter dieser Adresse weitere Informationen zum Produkt und Ausgaben dieser technischen Unterlage.

1.2 Änderungsvorbehalte

Die Dokumentnummer und die Versionsnummer dieser technischen Unterlage sind in der Fußzeile enthalten.

1.3 Vollständigkeit

Diese technische Unterlage ist nur zusammen mit den mitgeltenden Dokumenten vollständig.

1.4 Mitgeltende Dokumente

Zu diesem Produkt gelten folgende Dokumente:

- Betriebsanleitung
- Anschlussschaltbilder

Beachten Sie außerdem die allgemein gültigen Gesetze, Normen und Richtlinien sowie die Vorschriften zur Unfallverhütung und zum Umweltschutz des jeweiligen Verwenderlandes.
1.5 Aufbewahrungsort

Diese technische Unterlage sowie sämtliche mitgeltenden Dokumente müssen griffbereit und jederzeit zugänglich für den späteren Gebrauch aufbewahrt werden.

1.6 Darstellungskonventionen

Dieser Abschnitt enthält eine Übersicht der verwendeten Symbole und textlichen Hervorhebungen.

1.6.1 Warnkonzept

In dieser technischen Unterlage werden Warnhinweise wie folgt dargestellt.

1.6.1.1 Abschnittsbezogener Warnhinweis

Abschnittsbezogene Warnhinweise beziehen sich auf ganze Kapitel oder Abschnitte, Unterabschnitte oder mehrere Absätze innerhalb dieser technischen Unterlage. Abschnittsbezogene Warnhinweise sind nach folgendem Muster aufgebaut:

WARNUNG

Art und Quelle der Gefahr

Folgen

► Maßnahme

► Maßnahme

1.6.1.2 Eingebetteter Warnhinweis

Eingebettete Warnhinweise beziehen sich auf einen bestimmten Teil innerhalb eines Abschnitts. Diese Warnhinweise gelten für kleinere Informationseinheiten als die abschnittsbezogenen Warnhinweise. Eingebettete Warnhinweise sind nach folgendem Muster aufgebaut:

GEFAHR! Handlungsanweisung zur Vermeidung einer gefährlichen Situation.

1.6.1.3 Signalwörter und Piktogramme

Folgende Signalwörter werden verwendet:

<table>
<thead>
<tr>
<th>Signalwort</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEFAHR</td>
<td>Kennzeichnet eine gefährliche Situation, die zu Tod oder schwerer Verletzung führt, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td>WARNUNG</td>
<td>Kennzeichnet eine gefährliche Situation, die zu Tod oder schwerer Verletzung führen kann, wenn sie nicht vermieden wird.</td>
</tr>
</tbody>
</table>
1 Einleitung

<table>
<thead>
<tr>
<th>Signalwort</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>VORSICHT</td>
<td>Kennzeichnet eine gefährliche Situation, die zu Verletzungen führen kann, wenn sie nicht vermieden wird.</td>
</tr>
<tr>
<td>ACHTUNG</td>
<td>Kennzeichnet Maßnahmen zur Vermeidung von Sachschäden.</td>
</tr>
</tbody>
</table>

Tabelle 1: Signalwörter in Warnhinweisen

Vor Gefahren wird mit Piktogrammen gewarnt:

<table>
<thead>
<tr>
<th>Piktogramm</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warnung vor einer Gefahrenstelle</td>
</tr>
<tr>
<td></td>
<td>Warnung vor gefährlicher elektrischer Spannung</td>
</tr>
<tr>
<td></td>
<td>Warnung vor feuergefährlichen Stoffen</td>
</tr>
<tr>
<td></td>
<td>Warnung vor Kippgefahr</td>
</tr>
</tbody>
</table>

Tabelle 2: Piktogramme in Warnhinweisen

1.6.2 Informationskonzept

Informationen dienen zur Vereinfachung und zum besseren Verständnis bestimmter Abläufe. In dieser technischen Unterlage sind sie nach folgendem Muster aufgebaut:

Wichtige Informationen.

1.6.3 Handlungskonzept

In dieser technischen Unterlage finden Sie einschrittige und mehrschrittige Handlungsanweisungen.
Einschrittige Handlungsanweisungen

Handlungsanweisungen, die nur einen einzigen Arbeitsschritt umfassen, sind nach folgendem Muster aufgebaut:

Handlungsziel
✓ Voraussetzungen (optional).
► Schritt 1 von 1.
 ⇒ Ergebnis des Handlungsschritts (optional).
 ⇒ Handlungsergebnis (optional).

Mehrschrittige Handlungsanweisungen

Handlungsanweisungen, die mehrere Arbeitsschritte umfassen, sind nach folgendem Muster aufgebaut:

Handlungsziel
✓ Voraussetzungen (optional).
1. Schritt 1.
 ⇒ Ergebnis des Handlungsschritts (optional).
2. Schritt 2.
 ⇒ Ergebnis des Handlungsschritts (optional).
 ⇒ Handlungsergebnis (optional).

1.6.4 Schreibweisen

In dieser technischen Unterlage werden folgende Schreibweisen verwendet:

<table>
<thead>
<tr>
<th>Schreibweise</th>
<th>Verwendung</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERSALIEN</td>
<td>Bedienelemente, Schalter</td>
<td>ON/OFF</td>
</tr>
<tr>
<td>[Klammern]</td>
<td>PC-Tastatur</td>
<td>[Strg] + [Alt]</td>
</tr>
<tr>
<td>Fett</td>
<td>Bedienelemente Software</td>
<td>Schaltfläche Weiter drücken</td>
</tr>
<tr>
<td>...>...>...</td>
<td>Menüpfade</td>
<td>Parameter > Regelparameter</td>
</tr>
<tr>
<td>Kursiv</td>
<td>Systemmeldungen, Fehlermeldungen, Signale</td>
<td>Alarm Funktionsüberwachung ausgelöst</td>
</tr>
<tr>
<td>[► Seitenzahl].</td>
<td>Querverweis</td>
<td>[► 41].</td>
</tr>
</tbody>
</table>

Tabelle 3: Schreibweisen
2 Sicherheit

2.1 Allgemeine Sicherheitsinformationen

Die technische Unterlage enthält detaillierte Beschreibungen, um das Produkt sicher und sachgerecht einzubauen, anzuschließen, in Betrieb zu nehmen und zu überwachen.

▪ Lesen Sie diese technische Unterlage aufmerksam durch, um sich mit dem Produkt vertraut zu machen.

▪ Beachten Sie besonders die Informationen in diesem Kapitel.

2.2 Bestimmungsgemäße Verwendung

Das Produkt sowie die mitgelieferten Vorrichtungen und Spezialwerkzeuge entsprechen den zum Zeitpunkt der Auslieferung geltenden Gesetzen, Vorschriften und Normen, insbesondere den einschlägigen Sicherheitsanforderungen und Gesundheitsanforderungen.

Bei bestimmungsgemäßer Verwendung und Einhaltung der in dieser technischen Unterlage genannten Voraussetzungen und Bedingungen sowie der in dieser technischen Unterlage und am Produkt angebrachten Warnhinweise gehen vom Produkt keine Gefahren für Personen, Sachwerte und die Umwelt aus. Dies gilt über die gesamte Lebensdauer, von der Lieferung über die Montage und den Betrieb bis zur Demontage und Entsorgung.

Das betriebliche Qualitätssicherungssystem gewährleistet einen durchgängig hohen Qualitätsstandard insbesondere auch im Hinblick auf die Einhaltung der Sicherheitsanforderungen und Gesundheitsanforderungen.

Als bestimmungsgemäße Verwendung gilt Folgendes:

▪ Das Produkt muss gemäß dieser technischen Unterlage und gemäß den vereinbarten Lieferbedingungen und technischen Daten betrieben werden

▪ Die mitgelieferten Vorrichtungen und Spezialwerkzeuge müssen ausschließlich für den vorgesehenen Zweck und entsprechend den Festlegungen dieser technischen Unterlage eingesetzt werden

2.3 Bestimmungswidrige Verwendung

Als bestimmungswidrige Verwendung gilt, wenn das Produkt anders verwendet wird, als es im Abschnitt Bestimmungsgemäße Verwendung beschrieben ist. Beachten Sie zudem Folgendes:

▪ Unerlaubte oder nicht sachgerechte Veränderungen des Produkts können zu Personenschäden, Sachschäden sowie Funktionsstörungen führen. Produkt ausschließlich nach Rücksprache mit der Maschinenfabrik Reinhausen GmbH verändern.
2.4 Qualifikation des Personals

Das Produkt ist ausschließlich für den Einsatz in Anlagen und Einrichtungen der elektrischen Energietechnik vorgesehen, in denen geschulte Fachkräfte die erforderlichen Arbeiten durchführen. Fachkräfte sind Personen, die mit der Aufstellung, Montage, Inbetriebnahme und dem Betrieb derartiger Produkte vertraut sind.

2.5 Sorgfaltspflicht des Betreibers

Zur Vermeidung von Unfällen, Störungen und Havarien sowie unzulässigen Beeinträchtigungen der Umwelt muss der jeweils Verantwortliche für Transport, Montage, Betrieb, Instandhaltung und Entsorgung des Produkts oder von Teilen des Produkts Folgendes sicherstellen:

- Alle Warnhinweise und Gefahrenhinweise beachten
- Das Personal regelmäßig in allen zutreffenden Fragen der Arbeitssicherheit, der Betriebsanleitung und insbesondere der darin enthaltenen Sicherheitshinweise unterweisen
- Vorschriften und Betriebsanweisungen für sicheres Arbeiten sowie die entsprechenden Hinweise für das Verhalten bei Unfällen und Bränden durch das Personal jederzeit griffbereit aufbewahren und gegebenenfalls in der Betriebsstätte aushängen
- Das Produkt nur in einwandfreiem, funktionstüchtigen Zustand betreiben und besonders die Sicherheitseinrichtungen regelmäßig auf ihre Funktionsfähigkeit überprüfen
- Ausschließlich die vom Hersteller zugelassenen Ersatzteile sowie Schmierstoffe und Hilfsstoffe verwenden
- Angegebene Betriebsbedingungen und Anforderungen an den Aufstellort beachten
- Alle notwendigen Geräte sowie die für die jeweilige Tätigkeit erforderlichen persönlichen Schutzausrüstungen zur Verfügung stellen
- Die vorgeschriebenen Wartungszyklen und die entsprechenden Vorschriften einhalten
- Einbau, elektrischen Anschluss und Inbetriebnahme des Produkts ausschließlich von qualifiziertem, ausgebildetem Personal gemäß dieser technischen Unterlage durchführen lassen
- Der Betreiber hat für die bestimmungsgemäße Verwendung des Produkts Sorge zu tragen
3 Produktbeschreibung

In diesem Kapitel finden Sie eine Übersicht zu Aufbau und Funktionsweise des Produkts.

3.1 Lieferumfang

Folgende Komponenten sind im Lieferumfang enthalten:
- TAPCON® 260
- CD MR-Suite (enthält das Programm TAPCON®-trol)
- Technische Unterlagen
- Serielles Kabel RS232
- USB-Adapter mit Installations-CD (optional)

Beachten Sie Folgendes:
- Lieferung anhand der Versandpapiere auf Vollständigkeit prüfen.
- Teile bis zum Einbau trocken lagern.

3.2 Funktionsbeschreibung der Spannungsregelung

Der TAPCON® dient dazu, die Ausgangsspannung eines Transformators mit Laststufenschalter konstant zu halten.

Der TAPCON® vergleicht die Messspannung des Transformators U_{ist} mit einer definierten Sollspannung U_{Soll}. Die Differenz von U_{ist} zu U_{Soll} stellt die Regelabweichung dU dar.

Die Parameter des TAPCON® können dem Verhalten der Netzspannung optimal angepasst werden, so dass ein ausgewogenes Regelverhalten bei geringer Schaltzahl des Laststufenschalters erreicht wird.

Eine Übersicht zur Spannungsregelung finden Sie in nachfolgender Abbildung.
3.3 Leistungsmerkmale

Der TAPCON® übernimmt die Regelung von Stufentransformatoren. Neben den Regelaufgaben bietet der TAPCON® zusätzliche Funktionen wie:

- Integrierte Schutzfunktionen:
 - Unterspannungsblockierung und Überspannungsblockierung
 - Schnellrückschaltung bei Überspannung
- Kompensation der Spannungsabfälle auf der Leitung (Leistungskompensation)
- Kompensation der Spannungsschwankungen im vermaschten Netz (Z-Kompensation)
- Digitale Eingänge und Ausgänge kundenseitig vor Ort individuell programierbar
- Zusatzanzeigen durch LEDs außerhalb des Displays für frei wählbare Funktionen
- Anzeige aller Messwerte wie Spannung, Strom, Wirkleistung, Scheinleistung oder Blindleistung, Leistungsfaktor (cos φ)
- 3 verschiedene Sollwerte auswählbar
3 Produktbeschreibung

- Leistungsabhängige Sollwertanpassung
- Stufenstellungserfassung bei Bestellung wählbar:
 - Per analogem Signal 4…20 mA
 - Per analogem Signal über Widerstands kontaktreihe
 - Per digitalem Signal via BCD-Code
- Zusätzliche digitale Eingänge und Ausgänge zur freien Parametrierung durch den Kunden
- Parallel lauf von bis zu 16 Transformatoren in 2 Gruppen mittels folgender Methoden:
 - Master/Follower
 - Kreisblindstromminimierung

3.4 Betriebsarten

Das Gerät kann in folgenden Betriebsarten betrieben werden:

Automatikbetrieb (AUTO)

Im Automatikbetrieb wird die Spannung automatisch gemäß der eingestellten Parameter geregelt. Weitere Einstellungen des Geräts können Sie im Automatikbetrieb nicht verändern. In dieser Betriebsart besteht keine aktive Führung durch ein übergeordnetes Leitsystem.

Handbetrieb (MANUAL)

Im Handbetrieb wird nicht automatisch geregelt. Der Motorantrieb kann über das Bedienfeld des Geräts angesteuert werden. Sie können die Einstellungen des Geräts verändern.

Local-Betrieb (LOCAL)

In dieser Betriebsart besteht keine aktive Führung durch ein übergeordnetes Leitsystem.

Remote-Betrieb (REMOTE)

Im Remote-Betrieb können Sie Befehle über eine externe Steuerebene ausführen. In diesem Fall ist die manuelle Bedienung der Tasten und außer Funktion.

<table>
<thead>
<tr>
<th></th>
<th>AUTO + LOCAL</th>
<th>AUTO + REMOTE</th>
<th>LOCAL +</th>
<th>REMOTE +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatische Regelung</td>
<td>Ja</td>
<td>Ja</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Schaltung über Bedienelemente</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
<td>Nein</td>
</tr>
<tr>
<td>Schaltung über Eingänge</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
<td>Ja</td>
</tr>
</tbody>
</table>
3 Produktbeschreibung

<table>
<thead>
<tr>
<th>AUTO + LOCAL</th>
<th>AUTO + REMOTE</th>
<th>LOCAL +</th>
<th>REMOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltung über SCADA*</td>
<td>Nein</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Werteinstellung über SCADA*</td>
<td>Nein</td>
<td>Ja</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Tabelle 4: Übersicht der Betriebsarten

*) Optional bei Anbindung des TAPCON® an ein Leitsystem (SCADA)

3.5 Hardware

Die Baugruppen sind untereinander über einen Datenbus und eine Gleichstromversorgung (DC) verbunden. Dadurch ist eine Aufrüstung mit zusätzlichen Einschüben und Erweiterungskarten zu einem späteren Zeitpunkt möglich.

Abbildung 2: Frontansicht

| 1 | Bedienfeld mit Display und LEDs | 2 | Baugruppenträger für optionale Erweiterungen | 3 | 19-Zoll Einschubgehäuse (nach DIN 41494 Teil 5) | 4 | Typenschild |

3.5.1 Bedienelemente

Das Gerät verfügt über 15 Drucktasten. Die nachfolgende Abbildung zeigt eine Übersicht aller Bedienelemente des Geräts.
Abbildung 3: Bedienelemente

- Taste HÖHER: Im Handbetrieb Steuerbefehl zur Höherschaltung an den Motorantrieb senden.
- Taste TIEFER: Im Handbetrieb Steuerbefehl zur Tieferschaltung an den Motorantrieb senden.
- Taste MANUAL: Betriebsart „Handbetrieb“ aktivieren.
- Taste AUTO: Betriebsart „Automatikbetrieb“ aktivieren.
- Taste ZURÜCK: Messwertanzeige wechseln und zu den vorherigen Parametern wechseln.
- Taste WEITER: Messwertanzeige wechseln und zu den nachfolgenden Parametern wechseln.
- Taste ENTER: Auswahl bestätigen und veränderte Parameter speichern.
- Taste ESC: Aktuelles Menü verlassen und die vorherigen Menüebenen aufrufen.
- Taste MENU: Hauptmenü aufrufen.
- Funktionstasten F1…F5: Auf dem Bildschirm angezeigte Funktionen auswählen.
3.5.2 Anzeigeelemente

Das Gerät verfügt über ein grafisches Display und 15 LEDs, die verschiedene Betriebszustände oder Ereignisse signalisieren.

![Anzeigeelemente](image)

<table>
<thead>
<tr>
<th></th>
<th>LED Betriebsanzeige, grün</th>
<th>9</th>
<th>LED 3 Funktion frei belegbar, gelb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LED Überstromblockierung, rot</td>
<td>10</td>
<td>LED 4 Funktion frei belegbar, grün/gelb/rot</td>
</tr>
<tr>
<td>2</td>
<td>LED Unterspannungsblockierung, rot</td>
<td>11</td>
<td>Grafisches Display</td>
</tr>
<tr>
<td>3</td>
<td>LED Überspannungsblockierung, rot</td>
<td>12</td>
<td>LED Automatikbetrieb aktiv</td>
</tr>
<tr>
<td>4</td>
<td>LED Parallelbetrieb aktiv, grün</td>
<td>13</td>
<td>LED Handbetrieb aktiv</td>
</tr>
<tr>
<td>5</td>
<td>LED NORMset aktiv, grün</td>
<td>14</td>
<td>LED Betriebsart Remote aktiv</td>
</tr>
<tr>
<td>6</td>
<td>LED 1 Funktion frei belegbar, gelb</td>
<td>15</td>
<td>LED Tieferschaltung aktiv</td>
</tr>
<tr>
<td>7</td>
<td>LED 2 Funktion frei belegbar, gelb</td>
<td>16</td>
<td>LED Höherschaltung aktiv</td>
</tr>
</tbody>
</table>

Abbildung 4: Anzeigeelemente
3.5.3 **Seriente Schnittstelle**

Das Gerät kann mit Hilfe eines PCs parametriert werden. Dazu steht die serielle Schnittstelle COM 1 (RS232) auf der Frontplatte zur Verfügung. Mit dem mitgelieferten Verbindungskabel können Sie eine Verbindung zu Ihrem PC über die Schnittstelle RS232 oder USB (mittels optionalem USB-Adapter) herstellen.

Zur Parametrierung über die serielle Schnittstelle wird die Software TAPCON®-trol benötigt. Die Software und die zugehörige Bedienungsanleitung sind auf der mitgelieferten CD enthalten.

Abbildung 5: Anschluss des Geräts an einen PC

3.5.4 **Baugruppen**

Das Gerät kann je nach Konfiguration über verschiedene Baugruppen verfügen, die die geforderten Funktionen umsetzen. Je nach Konfiguration kann das Gerät mit folgenden Baugruppen ausgerüstet sein:

<table>
<thead>
<tr>
<th>Karte</th>
<th>Standard/Option</th>
<th>Max. Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>Option</td>
<td>1</td>
</tr>
<tr>
<td>AC</td>
<td>Option</td>
<td>1</td>
</tr>
<tr>
<td>AD8</td>
<td>Option</td>
<td>1</td>
</tr>
<tr>
<td>AD</td>
<td>Option</td>
<td>1, optional mit Erweiterungsmodul</td>
</tr>
<tr>
<td>CIC</td>
<td>Option</td>
<td>2</td>
</tr>
<tr>
<td>CPU</td>
<td>Standard</td>
<td>1</td>
</tr>
<tr>
<td>IO</td>
<td>Standard</td>
<td>1</td>
</tr>
<tr>
<td>MI</td>
<td>Standard</td>
<td>1</td>
</tr>
</tbody>
</table>
3 Produktbeschreibung

<table>
<thead>
<tr>
<th>Karte</th>
<th>Standard/Option</th>
<th>Max. Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU</td>
<td>Standard</td>
<td>1</td>
</tr>
<tr>
<td>UC</td>
<td>Standard</td>
<td>1 UC-Karte im Standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bis zu 5 weitere UC-Karten möglich</td>
</tr>
</tbody>
</table>

Tabelle 5: Baugruppen

In den folgenden Abschnitten sind die Funktionen der Baugruppen beschrieben. Weitere Informationen zu den Baugruppen und eine Beschreibung der Schnittstellen finden Sie im Abschnitt Technische Daten [► 144].

3.5.4.1 Spannungsversorgung

Über das Weitbereichsnetzteil (SU-Karte) wird das Gerät versorgt. Je nach Konfiguration ist das Gerät mit einer der folgenden Varianten ausgestattet:

- SUH-P: Nenneingangsspannung 100...240 VAC oder 88...353 VDC (Eingangsspannungsbereich 88...264 VAC, 88...353 VDC)
- SUM-P: Eingangsspannung 36...72 VDC
- SUL-P: Eingangsspannung 18...36 VDC

Abbildung 6: SUH-P-Karte

Abbildung 7: SUM-P-Karte

3 Produktbeschreibung

Abbildung 8: SUL-P-Karte

3.5.4.2 Spannungsmessung und Strommessung

Zur Messung von Spannung und Strom kann das Gerät mit der Baugruppe MI oder MI3-G ausgerüstet sein:

- MI: 1-phasige Messung von Spannung und Strom
- MI3-G: 3-phasige Messung von Spannung und Strom

Schließen Sie an die MI-Karte nur einen Stromwandler an. Andernfalls ist die Strommessung außer Funktion.

Abbildung 9: MI-1-Karte
3.5.4.3 Digitale Eingänge und Ausgänge

Zur Erfassung und Ausgabe von digitalen Signalen kann das Gerät mit folgenden Baugruppen ausgerüstet sein:

- IO-Karte
- UC-Karte

IO-Karte

Die IO-Karte enthält 9 digitale Eingänge und 8 digitale potenzialfreie Ausgänge. 5 Ausgänge sind als Wechselkontakte ausgeführt.

UC-Karte

Die UC-Karte enthält 10 digitale Eingänge und 10 digitale potenzialfreie Ausgänge. Das Gerät kann mit mehreren UC-Karten ausgestattet sein (UC1, UC2...).
3 Produktbeschreibung

Abbildung 12: UC1-Karte

3.5.4.4 Analog Eingänge und Ausgänge

Zur Erfassung und Ausgabe von analogen Signalen kann das Gerät mit folgenden Baugruppen ausgerüstet sein:

- AD-Karte
- AD8-Karte
- AN-Karte

AD-Karte

Die Analogeingangskarte besitzt 1 Eingang oder mit Erweiterungskarte 2 Eingänge, über die folgende analoge Signale erfasst werden können:

- 0...±10 V
- 0...±10 mA
- 0...±20 mA
- Widerstandsmessung (50...2000 Ω)

Abbildung 13: AD-Karte

Verwenden Sie die Drehpotentiometer R8/R12 und R42/R46 ausschließlich zum Abgleich der Widerstandsmessung.
AD8-Karte
Die Analogeingangskarte besitzt 8 Eingänge, über die analoge Signale (4...20 mA) erfasst werden können.

Abbildung 14: AD8-Karte

AN-Karte
Die AN-Karte stellt Ihnen je nach Konfiguration 2 Analogausgänge oder mit Erweiterungsmodul AN1 insgesamt 4 Analogausgänge zur Verfügung. Folgende Signaltypen werden unterstützt:
- 0...±20mA
- 0...±10mA
- 0...±1mA
- 0...±10V

Abbildung 15: AN-Karte
3.5.4.5 Steuerspannungsversorgung

Mit der AC-Karte kann eine zusätzliche ungeregelte Steuerspannung von 60 VDC erzeugt werden, wenn in Ihrer Anlage keine externe Gleichspannung als Signalspannung für die digitalen Eingänge des Geräts vorhanden ist. Je nach Gerätekonfiguration kann eine der beiden folgenden Varianten verbaut sein:

- AC230: Eingangssspannung 230 VAC
- AC115: Eingangssspannung 115 VAC

VORSICHT

Verletzungsgefahr durch erhöhte Ausgangsspannung

Eine geringe Belastung der AC-Karte kann zur Erhöhung der Ausgangsspannung auf bis zu 85 VDC führen.

► Karte nur im spannungsfreien Zustand verdrahten.

Die Ausgangsleistung der AC-Karte ist begrenzt. Die erzeugte Gleichspannung kann ausschließlich für die Steuereingänge des Geräts verwendet werden.

Abbildung 16: AC230-Karte

Abbildung 17: AC115-Karte
3.5.4.6 Zentrale Recheneinheit

Die CPU-Karte ist die zentrale Recheneinheit des Geräts. Alle internen Gerätefunktionen und die Anwendungsfunktionen, wie Messwertverarbeitung, werden durch die CPU-Karte gesteuert und überwacht.

Die CPU-Karte enthält einen Flashspeicher (optionaler Messwertspeicher) als nicht flüchtigen Datenspeicher, in dem die Betriebsdaten wie Messwerte oder Ereignisse gespeichert sind. Es befinden sich ein EEPROM zur Speicherung von Parametern und eine Echtzeituhr (RTC) zur Zeitmessung auf der CPU-Karte.

Die CPU-Karte enthält folgende Schnittstellen:
- Systemschnittstelle RS232
- CAN-Bus

Abbildung 18: CPU-Karte

3.5.4.7 Systemvernetzung

Das Gerät ist mit folgenden Baugruppen ausgestattet:

CIC-Karte

Das Gerät kann optional mit bis zu 2 CIC-Karten ausgestattet werden. Die CIC-Karten dienen zur Kommunikation mittels Leitstellenprotokoll oder TAPCON®-trol-Software (CIC2).
3 Produktbeschreibung

Abbildung 19: CIC-Karte

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>RS232</td>
</tr>
<tr>
<td>2.</td>
<td>RS485</td>
</tr>
<tr>
<td>3.</td>
<td>RJ45 (Ethernet), optional</td>
</tr>
<tr>
<td>4.</td>
<td>Lichtwellenleiter, optional</td>
</tr>
<tr>
<td>5.</td>
<td>Reset-Taste</td>
</tr>
<tr>
<td>6.</td>
<td>TxD-LED für Sendesignal</td>
</tr>
<tr>
<td>7.</td>
<td>RxD-LED für Empfangssignal</td>
</tr>
<tr>
<td>8.</td>
<td>Clk-LED für Betriebszustand (Blinkperiode 2 Sekunden)</td>
</tr>
<tr>
<td>9.</td>
<td>Schelle zur Verbindung des Kabelschirms</td>
</tr>
</tbody>
</table>

SID-Karte

Die Schnittstellenkarte SID dient zur Anbindung des Geräts an das Leitstellensystem (SCADA). Die Datenübertragung erfolgt dabei über das Protokoll IEC 61850 über Ethernet.

Abbildung 20: SID-Karte

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Reset-Taste</td>
</tr>
<tr>
<td>2.</td>
<td>LED für Betriebszustand</td>
</tr>
<tr>
<td>3.</td>
<td>Systemschnittstelle RS232</td>
</tr>
<tr>
<td>4.</td>
<td>RJ45 (Ethernet)</td>
</tr>
</tbody>
</table>
4 Verpackung, Transport und Lagerung

4.1 Verpackung

4.1.1 Eignung, Aufbau und Herstellung

Die Verpackung des Packgutes erfolgt in einem stabilen Pappkarton. Dieser gewährleistet, dass die Sendung in der vorgesehenen Transportlage sicher steht und keines ihrer Teile die Ladefläche des Transportmittels oder nach dem Abladen den Boden berühren.

Der Karton ist belastbar bis maximal 10 kg.

Das Packgut wird innerhalb des Kartons durch Inlays gegen unzulässige Lageveränderungen stabilisiert und vor Erschütterungen geschützt.

4.1.2 Markierungen

<table>
<thead>
<tr>
<th>Vor Nässe schützen</th>
<th>Oben</th>
<th>Zerbrechlich</th>
<th>Hier anschlagen</th>
<th>Schwerpunkt</th>
</tr>
</thead>
</table>

Tabelle 6: Geltende Bildzeichen für den Versand

4.2 Transport, Empfang und Behandlung von Sendungen

Neben Schwingbeanspruchungen und Schockbeanspruchungen ist beim Transport auch mit Stoßbeanspruchungen zu rechnen. Um mögliche Beschädigungen auszuschließen, muss ein Fallen, Kippen, Umstürzen und Prellen vermieden werden.

Sollte eine Kiste umkippen, aus einer bestimmten Höhe fallen (z. B. durch Reißren eines Anschlagmittels) oder ungebremst durchfallen, so ist unabhängig vom Gewicht mit einer Beschädigung zu rechnen.

Jede angelieferte Sendung muss vom Empfänger vor der Abnahme (Empfangssquittierung) auf folgendes kontrolliert werden:

- Vollständigkeit anhand des Lieferscheins
- äußere Beschädigungen aller Art.

Die Kontrollen sind nach dem Abladen vorzunehmen, wenn die Kiste oder der Transportbehälter von allen Seiten zugänglich ist.
Sichtbare Schäden
Stellen Sie beim Empfang der Sendung äußerlich sichtbare Transportschäden fest, verfahren Sie wie folgt:

▪ Tragen Sie den festgestellten Transportschaden sofort in die Frachtspapiere ein und lassen Sie vom Abliefernden gegenzeichnen.

▪ Verständigen Sie bei schweren Schäden, Totalverlust und bei hohen Schadenskosten unverzüglich den Vertrieb der Maschinenfabrik Reinhausen und die zuständige Versicherung.

▪ Verändern Sie den Schadenszustand nach seiner Feststellung nicht weiter und bewahren Sie auch das Verpackungsmaterial auf, bis über eine Besichtigung durch das Transportunternehmen oder den Transportversicherer entschieden worden ist.

▪ Protokollieren Sie mit den beteiligten Transportunternehmen den Schadensfall an Ort und Stelle. Dies ist für eine Schadensersatzforderung unentbehrlich!

▪ Fotografieren Sie nach Möglichkeit Schäden an Verpackung und Packgut. Das gilt auch für Korrosionserscheinungen am Packgut durch eingedrungene Feuchtigkeit (Regen, Schnee, Kondenswasser).

▪ Kontrollieren Sie unbedingt auch die Dichtverpackung.

Verdeckte Schäden
Bei Schäden, die erst nach Empfang der Sendung beim Auspacken festgestellt werden (verdeckte Schäden), gehen Sie wie folgt vor:

▪ Machen Sie den möglichen Schadensverursacher schnellstens telefonisch und schriftlich haftbar und fertigen Sie ein Schadensprotokoll an.

▪ Beachten Sie hierfür die im jeweiligen Land gültigen Fristen. Erkundigen Sie sich rechtzeitig danach.

Bei verdeckten Schäden ist ein Rückgriff auf das Transportunternehmen (oder andere Schadensverursacher) nur schwer möglich. Versicherungs-technisch kann ein derartiger Schadensfall mit Aussicht auf Erfolg nur abgewickelt werden, wenn dies in den Versicherungsbedingungen ausdrücklich festgelegt ist.

4.3 Sendungen einlagern
Stellen Sie bei der Auswahl und Einrichtung des Lagerplatzes Folgendes sicher:

▪ Lagergut gegen Feuchtigkeit (Überschwemmung, Schmelzwasser von Schnee und Eis), Schmutz, Schädlinge wie Ratten, Mäuse, Termiten usw. und gegen unbefugten Zugang schützen.

▪ Kisten zum Schutz gegen Bodenfeuchtigkeit und zur besseren Belüftung auf Bohlen und Kanthölzern abstellen.

▪ Ausreichende Tragfähigkeit des Untergrundes sicherstellen.

▪ Anfahrtswege freihalten.

▪ Lagergut in regelmäßigen Abständen kontrollieren, zusätzlich noch nach Sturm, starken Regenfällen, reichlichem Schneefall usw. geeignete Maßnahme treffen.
5 Montage

In diesem Kapitel wird beschrieben, wie Sie das Gerät sachgerecht montieren und anschließen. Beachten Sie die mitgeltenden Schaltbilder.

WARNUNG

Stromschlag
Lebensgefahr durch elektrische Spannung.
► Gerät und Anlagenperipherie spannungsfrei schalten und gegen Wiedereinschalten sichern.
► Stromwandler nicht im Leerlauf betreiben, dazu Stromwandler kurzschließen.

ACHTUNG

Elektrostatische Entladung
Beschädigung des Geräts durch elektrostatische Entladung.
► Vorkehrungen treffen, um die elektrostatische Aufladung von Arbeitsflächen und Personal zu vermeiden.

5.1 Vorbereitung

Zur Montage benötigen Sie folgendes Werkzeug:
- Schraubendreher für die Befestigungsschrauben (M6)
- Kleiner Schraubendreher für den Anschluss der Signalleitungen und Versorgungsleitungen

Je nach Einbauort und Montagevariante benötigen Sie gegebenenfalls noch weiteres Werkzeug sowie entsprechendes Befestigungsmaterial (Schrauben, Muttern, Unterlegscheiben), welches nicht Teil des Lieferumfangs ist.

5.2 Gerät montieren

Entsprechend Ihrer Bestellung können Sie das Gerät in einer der folgenden Varianten montieren:
- 19“-Rahmen (gemäß DIN 41494 Teil 5)
- 19“-Schalttafeleinbaurahmen
- ½-19“-Aufbaugehäuse für Wandmontage

Nachfolgend wird beschrieben, wie Sie das Gerät in einen 19“-Rahmen montieren. Beachten Sie zu Schalttafeleinbau oder Wandmontage die zusätzlichen mitgelieferten technischen Unterlagen.

Um das Gerät in einen 19“-Rahmen zu montieren, gehen Sie wie folgt vor:
2. Gerät in den 19"-Rahmen setzen und verschrauben.

Abbildung 21: Beispielhafte Montage des Geräts in einen 19"-Rahmen

5.3 Gerät anschließen

Im folgenden Abschnitt wird der elektrische Anschluss des Geräts beschrieben.

WARNUNG

Stromschlag

Lebensgefahr durch Anschlussfehler

- Gerät über die am Gehäuse angebrachte Erdungsschraube mit einem Schutzleiter erden.
- Phasenlage der Sekundäranschlüsse vom Stromwandler und Spannungswandler beachten.
- Ausgangsrelais an den Motorantrieb korrekt anschließen.

5.3.1 Kabelempfehlung

Beachten Sie bei der Verdrahtung des Geräts folgende Empfehlung der Maschinenfabrik Reinhausen.

Zu hohe Leitungskapazitäten können verhindern, dass die Relaiskontakte den Kontaktstrom unterbrechen. Berücksichtigen Sie in wechselstrombetätigte Steuerstromkreisen den Einfluss der Leitungskapazität von langen Steuerleitungen auf die Funktion der Relaiskontakte.
<table>
<thead>
<tr>
<th>Kabel</th>
<th>Karte</th>
<th>Klemme</th>
<th>Kabeltyp</th>
<th>Leiterquerschnitt</th>
<th>Max. Länge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromversorgung</td>
<td>SU</td>
<td>X1:1/2</td>
<td>ungeschirmt</td>
<td>1,5 mm²</td>
<td>-</td>
</tr>
<tr>
<td>Spannungsmessung</td>
<td>MI/MI1</td>
<td>1/2</td>
<td>geschirmt</td>
<td>1,5 mm²</td>
<td>-</td>
</tr>
<tr>
<td>Strommessung</td>
<td>MI/MI1</td>
<td>5/6/9/10</td>
<td>ungeschirmt</td>
<td>4 mm²</td>
<td>-</td>
</tr>
<tr>
<td>Relais*</td>
<td>IO</td>
<td>X1:1...10</td>
<td>ungeschirmt</td>
<td>1,5 mm²</td>
<td>-</td>
</tr>
<tr>
<td>Relais*</td>
<td>UC</td>
<td>X1:1...10</td>
<td>ungeschirmt</td>
<td>1,5 mm²</td>
<td>-</td>
</tr>
<tr>
<td>Signaleingänge</td>
<td>IO</td>
<td>X1:11...17</td>
<td>geschirmt</td>
<td>1,0 mm²</td>
<td>-</td>
</tr>
<tr>
<td>Signaleingänge</td>
<td>UC</td>
<td>X1:11...17</td>
<td>geschirmt</td>
<td>1,0 mm²</td>
<td>-</td>
</tr>
<tr>
<td>CAN-Bus</td>
<td>CPU</td>
<td>1...5</td>
<td>geschirmt</td>
<td>1,0 mm²</td>
<td>2000 m</td>
</tr>
</tbody>
</table>

Tabelle 7: Empfehlung für Anschlusskabel (Standardanschlüsse)

*) Leitungskapazität beachten, siehe Hinweis oben.

<table>
<thead>
<tr>
<th>Kabel</th>
<th>Karte</th>
<th>Klemme</th>
<th>Kabeltyp</th>
<th>Leiterquerschnitt</th>
<th>Max. Länge</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>AC</td>
<td>X1/2:1/2</td>
<td>ungeschirmt</td>
<td>1,5 mm²</td>
<td>-</td>
</tr>
<tr>
<td>Analogeingänge</td>
<td>AD8</td>
<td>X1:1...3</td>
<td>geschirmt</td>
<td>1,5 mm²</td>
<td>400 m (< 25 Ω/km)</td>
</tr>
<tr>
<td>Analogausgänge</td>
<td>AN/AN1</td>
<td>X1</td>
<td>geschirmt</td>
<td>1mm²</td>
<td>-</td>
</tr>
<tr>
<td>RS-232</td>
<td>CIC</td>
<td>X8</td>
<td>geschirmt</td>
<td>0,25 mm²</td>
<td>25 m</td>
</tr>
<tr>
<td>RS-485</td>
<td>CIC</td>
<td>X9</td>
<td>geschirmt</td>
<td>0,75 mm²</td>
<td>1000 m (< 50 Ω/km)</td>
</tr>
<tr>
<td>Ethernet</td>
<td>SID</td>
<td>RJ45</td>
<td>geschirmt, CAT7</td>
<td>-</td>
<td>100 m</td>
</tr>
<tr>
<td>Medienkonverter</td>
<td>MC1</td>
<td>-</td>
<td>LWL mit MTRJ-ST Duplex Patchkabel</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Medienkonverter</td>
<td>MC2</td>
<td>-</td>
<td>LWL, Steckertyp: F-ST; Fasertyp: Multimode/Singlemode; Wellenlänge: 1310 nm</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 8: Empfehlung für Anschlusskabel (Optionale Anschlüsse)
5.3.2 Verlegehinweise für Lichtwellenleiter

Um eine fehlerfreie Datenübertragung über den Lichtwellenleiter sicherzustellen, müssen Sie darauf achten, dass bereits beim Verlegen des Lichtwellenleiters und auch später während des Betriebs mechanische Belastungen vermieden werden.

Beachten Sie Folgendes:

▪ Die minimal zulässigen Biegeradien dürfen nicht unterschritten werden (Lichtwellenleiter nicht knicken).
▪ Die Lichtwellenleiterfasern dürfen weder überdehnt noch gestaucht werden. Beachten Sie die jeweils zulässigen Belastungswerte.
▪ Die Lichtwellenleiterfasern dürfen nicht verdreht oder verdrillt werden.
▪ Achten Sie auf scharfe Kanten, die beim Verlegen die Ummantelung des Lichtwellenleiterkabels beschädigen könnten oder später die Ummantelung mechanisch belasten könnten.
▪ Sehen Sie zum Beispiel im Bereich von Verteilerschränken eine entsprechende Kabelreserve vor. Verlegen Sie die Reserve so, dass das Lichtwellenleiterkabel beim Nachziehen weder geknickt noch verdreht wird.

5.3.3 Elektromagnetische Verträglichkeit

Das Gerät ist nach den einschlägigen EMV-Standards entwickelt. Damit die EMV-Standards erhalten bleiben, sind die nachfolgenden Punkte zu beachten.

5.3.4 Leitungen an die Anlagenperipherie anschließen

Für eine bessere Übersicht beim Anschluss nur so viele Leitungen verdrahten, wie nötig.

Um die Leitungen an der Anlagenperipherie anzuschließen, gehen Sie wie folgt vor:

✓ Verwenden Sie zum Verdrahten ausschließlich spezifizierte Kabel. Beachten Sie die Kabelempfehlung. [► 33]

► Die Leitungen, die mit dem Gerät verdrahtet werden sollen, gemäß den mitgelieferten Anschlussschaltbildern an die Anlagenperipherie anschließen.

5.3.5 Gerät verdrahten

Für eine bessere Übersicht beim Anschluss nur so viele Leitungen verdrahten, wie nötig.
Um das Gerät zu verdrahten, gehen Sie wie folgt vor:

✓ Beachten Sie das Anschlusschaltbild.
✓ Verwenden Sie zum Verdrahten ausschließlich spezifizierte Kabel. Beachten Sie die Kabelempfehlung [► 33].
✓ Verdrahten Sie die Leitungen an der Anlagenperipherie [► 35].
1. Leitungen und Adern abisolieren.
2. Litzendrähte mit Aderendhülsen crimpen.
3. Adern in die entsprechenden Klemmen der Stecker führen.
4. Schrauben der entsprechenden Klemmen mit Hilfe eines Schraubendrehs befestigen.
5. Stecker in die zugehörigen Steckplätze stecken.

5.3.6 Funktionstüchtigkeit überprüfen

Um die korrekte Verdrahtung des Geräts sicherzustellen, überprüfen Sie die Funktionstüchtigkeit des Geräts.

ACHTUNG

Schäden an Gerät und Anlagenperipherie

Ein unsachgemäß angeschlossenes Gerät kann zu Schäden an Gerät und Anlagenperipherie führen.

► Vor Inbetriebnahme die Gesamtschaltung prüfen.
► Vor Inbetriebnahme die Istspannung und Betriebsspannung prüfen.

Prüfen Sie folgende Punkte:

▪ Nachdem Sie das Gerät an das Stromnetz angeschlossen haben, zeigt der Bildschirm das MR-Logo und anschließend den Betriebsbildschirm an.
▪ Die grüne LED Betriebsanzeige oben links auf der Frontplatte des Geräts leuchtet.

Das Gerät ist fertig montiert und kann konfiguriert werden. Die dazu notwendigen Schritte werden im nachfolgenden Kapitel beschrieben.
6 Inbetriebnahme

Bevor Sie das Gerät in Betrieb nehmen, müssen Sie einige Parameter einstellen und Funktionsprüfungen durchführen. Diese werden in den nachfolgenden Abschnitten beschrieben.

ACHTUNG

Schäden an Gerät und Anlagenperipherie

Ein unsachgemäß angeschlossenes Gerät kann zu Schäden an Gerät und Anlagenperipherie führen.

► Vor Inbetriebnahme die Gesamtschaltung prüfen.
► Vor Inbetriebnahme die Istspannung und Betriebsspannung prüfen.

Zur Beurteilung der Arbeitsweise des Geräts wird der Einsatz eines Betriebsmessgeräts zur Aufzeichnung des Istwerts der Wandlerspannung empfohlen.

6.1 Kontrast des Displays einstellen

Den Kontrast des Displays können Sie über eine Stellschraube an der Vorderseite des Geräts einstellen. Um den Kontrast einzustellen, gehen Sie wie folgt vor:

► Stellschraube an der Vorderseite des Geräts mit einem Schraubendreher drehen, bis der Kontrast wie gewünscht eingestellt ist.

Abbildung 22: Kontrast des Displays einstellen
6.2 Parameter einstellen

Für die Inbetriebnahme des Geräts müssen Sie die folgenden Parameter einstellen. Genauere Informationen über die Parameter finden Sie in den jeweiligen Abschnitten.

6.2.1 Sprache einstellen

Mit diesem Parameter können Sie die Anzeigesprache des Geräts einstellen. Folgende Sprachen stehen Ihnen zur Verfügung:

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englisch</td>
<td>Italienisch</td>
</tr>
<tr>
<td>Deutsch</td>
<td>Portugiesisch</td>
</tr>
<tr>
<td>Französisch</td>
<td>Russisch</td>
</tr>
<tr>
<td>Spanisch</td>
<td></td>
</tr>
</tbody>
</table>

Um die Sprache einzustellen, gehen Sie wie folgt vor:

 ⇒ Sprache
2. F1 oder F5 drücken, um die gewünschte Sprache auszuwählen.
3. F3 drücken.
 ⇒ Die Sprache ist eingestellt.

6.2.2 Datum und Uhrzeit einstellen

Sie müssen am Gerät das Systemdatum und die Systemuhrzeit einstellen. Das Datum und die Uhrzeit müssen Sie in den folgenden Formaten einstellen:

<table>
<thead>
<tr>
<th>Datum</th>
<th>Uhrzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD.MM.YY</td>
<td>HH:MM:SS</td>
</tr>
</tbody>
</table>

Tabelle 9: Formate

Die Umstellung der Uhrzeit von Sommerzeit auf Winterzeit und umgekehrt, erfolgt nicht automatisch. Die Uhrzeit müssen Sie manuell ändern.
Uhrzeit
Um die Uhrzeit einzustellen, gehen Sie wie folgt vor:

1. **F4** drücken, um eine Ziffer zu markieren.
 ⇒ Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
2. **F1** drücken, um den Wert zu erhöhen oder **F5** drücken, um den Wert zu senken.
3. **F4** drücken.
 ⇒ Die Uhrzeit ist eingestellt.

Datum
Um das Datum einzustellen, gehen Sie wie folgt vor:

1. **F5** Konfiguration > **F5** Weiterspeichern > **F5** Drücken, bis die gewünschte Anzeige erscheint.
 ⇒ Datum
2. **F4** drücken, um eine Ziffer zu markieren.
 ⇒ Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
3. **F1** drücken, um den Wert zu erhöhen oder **F5** drücken, um den Wert zu senken.
4. **F4** drücken.
 ⇒ Das Datum ist eingestellt.

6.2.3 Weitere Parameter einstellen
Stellen Sie weitere Parameter für die Inbetriebnahme des Geräts ein. Genauere Informationen über die jeweiligen Parameter finden Sie in Kapitel Funktionen und Einstellungen [► 42].

Wandlerdaten einstellen
Stellen Sie die Wandlerdaten und die Phasenlage von Stromwandler und Spannungswandler ein:

1. Wandlerprimärspannung einstellen [► 80].
2. Wandlersekundärspannung einstellen [► 81].
3. Wandlerprimärstrom einstellen [► 81].
4. Stromwandleranschluss auswählen [► 82].
5. Wandlerschaltung auswählen [▶ 82].

NORMset einstellen

Wenn Sie eine schnelle Inbetriebnahme der Spannungsregelung durchführen möchten, können Sie den NORMset-Modus aktivieren. Wenn Sie die Parameter selber einstellen möchten, fahren Sie mit den nächsten Abschnitten fort.

► NORMset aktivieren und die zugehörigen Parameter einstellen [▶ 51].

Regelparameter einstellen

Stellen Sie folgende Regelparameter ein:
1. Sollwert 1 einstellen [▶ 56].
2. Bandbreite einstellen [▶ 56].
3. Verzögerungszeit T1 einstellen [▶ 57].

Leitungskompensation einstellen (optional)

Wenn Sie die Leitungskompensation benötigen, müssen Sie dafür alle wichtigen Parameter einstellen:
1. Kompensationsmethode LDC auswählen [▶ 70].
2. Leitungsdaten für den ohmschen Spannungsabfall Ur einstellen [▶ 71].
3. Leitungsdaten für den induktiven Spannungsabfall Ux einstellen [▶ 72].

Parallellauf einstellen (optional)

Wenn Sie den Parallellauf benötigen, müssen Sie dafür alle wichtigen Parameter einstellen:
1. Parallellaufmethode auf Kreisblindstrommethode einstellen [▶ 87].
2. CAN-Bus-Adresse zuweisen [▶ 87].
3. Kreisblindstromempfindlichkeit einstellen [▶ 88].
4. Kreisblindstromblockierung einstellen [▶ 88].

Leitstellenprotokoll einstellen (optional)

Wenn Sie ein Leitstellenprotokoll benötigen, müssen Sie dafür alle wichtigen Parameter einstellen. Genauere Informationen hierzu, finden Sie in der Beschreibung des Leitstellenprotokolls.
Stufenstellungserfassung über Analogeingang einstellen (optional)

Wenn Sie die Stufenstellung über den Analogeingang erfassen möchten, müssen Sie die dazu notwendigen Parameter einstellen:

► Stufenstellungen über den Analogeingang (Eingang 1 oder Eingang 2) erfassen [► 91].

Alle für die Inbetriebnahme relevanten Parameter sind eingegeben. Fahren Sie mit den Funktionsprüfungen fort.

6.3 Funktionsprüfungen

Bevor Sie von Handbetrieb auf Automatikbetrieb umschalten, empfiehlt die Maschinenfabrik Reinhausen die Durchführung von Funktionsprüfungen. Diese Funktionsprüfungen werden in den nachfolgenden Abschnitten beschrieben. Beachten Sie für alle Funktionsprüfungen folgende Punkte:

• Sie müssen sicherstellen, dass die Betriebsart REMOTE deaktiviert ist, um den Laststufenschalter manuell im Handbetrieb steuern zu können.
• Sie können den Laststufenschalter ausschließlich im Handbetrieb manuell über die Tasten [] und [] betätigen.
• Während der Funktionsprüfung, müssen Sie die wichtigsten Parameter einstellen. Details zu den aufgeführten Parametern finden Sie in Kapitel Funktionen und Einstellungen [► 42].
7 Funktionen und Einstellungen

In diesem Kapitel werden alle Funktionen und Einstellungen des Geräts beschrieben.

7.1 Tastensperre

Das Gerät ist mit einer Tastensperre gegen unbeabsichtigte Bedienung ausgestattet. Die Parameter können Sie nur bei deaktivierter Tastensperre im Handbetrieb einstellen oder verändern.

Tastensperre aktivieren

Um die Tastensperre zu aktivieren, gehen Sie wie folgt vor:

⇒ In der Anzeige erscheint für kurze Zeit eine Bestätigung. Die Tastensperre ist aktiviert. Die Parameter können nicht mehr eingegeben werden.

Tastensperre deaktivieren

Um die Tastensperre zu deaktivieren, gehen Sie wie folgt vor:

⇒ Die Tastensperre ist deaktiviert. Die Parameter können eingegeben werden.

7.2 Allgemeines

Im Menüpunkt Allgemeines können Sie allgemeine Einstellungen am Gerät vornehmen.

7.2.1 Gerätekennung einstellen

Um die Gerätekennung einzustellen, gehen Sie wie folgt vor:

⇒ Reglerkennung.

2. [F1] drücken, um die erste Ziffer zu ändern.

⇒ Wenn Sie eine mehrstellige Zifferfolge eingeben möchten, fahren Sie bitte mit Schritt 3 fort. Wenn Sie keine weiteren Ziffern eingeben möchten, fahren Sie bitte mit Schritt 7 fort.
3. F_1 so oft drücken (Ziffer >9), bis eine weitere Ziffernstell erscheint.

4. Gegebenenfalls F_4 drücken, um eine Ziffernstellung zu markieren.
 ➔ Die gewünschte Ziffer ist markiert und kann geändert werden.

5. F_1 oder F_5 drücken, um die Ziffer zu ändern.

6. Schritt 3 bis 5 so oft wiederholen, bis alle gewünschten Ziffern eingegeben sind.

7. \leftarrow drücken.
 ➔ Die Gerätekennung ist eingestellt.

7.2.2 Baudrate einstellen

Mit diesem Parameter können Sie die Baudrate der COM1-Schnittstelle einstellen. Sie können folgende Optionen auswählen:

- 9,6 kBaud
- 19,2 kBaud
- 38,4 kBaud
- 57,6 kBaud

Um die Baudrate einzustellen, gehen Sie wie folgt vor:

1. $\text{MENU} \rightarrow F_4 \text{Konfiguration} \rightarrow F_3 \text{Allgemeines} \rightarrow$ so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ➔ COM1 Einstellung.

2. F_1 oder F_5 drücken, um die gewünschte Baudrate auszuwählen.

3. \leftarrow drücken.
 ➔ Die Baudrate ist eingestellt.

7.2.3 Spannungsanzeige kV/V einstellen

Mit diesem Parameter wird die Anzeige und Verwendung der Messspannung eingestellt. Sie können folgende Optionen wählen:

- V: Die Sekundärspannung des anlagenseitigen Spannungswandlers in V wird angezeigt und ist die Bezugsgröße der Regelparameter.
- kV: Die Primärspannung des anlagenseitigen Spannungswandlers in kV wird angezeigt und ist die Bezugsgröße der Regelparameter.

Die Primärspannung des Spannungswandlers wird durch das Gerät berechnet. Für die korrekte Funktion müssen Sie die Wandlerdaten [► 79] einstellen.

Um die gewünschte Einheit für die Spannungsanzeige einzustellen, gehen Sie wie folgt vor:
7 Funktionen und Einstellungen

1. **Konfiguration > Allgemeines >** so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - Anzeige kV/V.

2. **F1** oder **F5** drücken, um die Einheit kV oder V auszuwählen.

3. **rückwärts** drücken.
 - Die gewünschte Einheit für die Spannungsanzeige ist eingestellt.

7.2.4 Einheit der Stromanzeige einstellen

In dieser Anzeige können Sie die Einheit für die angezeigten Grenzwerte für Überstrom und Unterstrom als Prozentwert ("%") oder als Absolutwert ("A") einstellen.

Um die gewünschte Einheit für die Stromanzeige einzustellen, gehen Sie wie folgt vor:

1. **Konfiguration > Allgemeines >** so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - Anzeige %/A

2. **F1** oder **F5** drücken, um die Einheit % oder A auszuwählen.

3. **rückwärts** drücken.
 - Die gewünschte Einheit für die Stromanzeige ist eingestellt.

7.2.5 Schaltimpulsdauer einstellen

Mit diesem Parameter können Sie die Dauer des Steuerimpulses für den Motorantrieb einstellen.

Wenn Sie die Schaltimpulsdauer auf 0 s einstellen, wird der Motorantrieb mit einem Dauersignal angesteuert. Das Signal liegt in diesem Fall an, solange Sie die Tasten **rückwärts** oder **vorne** gedrückt halten.

Schaltimpuls im Normalbetrieb

Wenn Sie die Schaltimpulsdauer auf beispielsweise 1,5 Sekunden einstellen, erfolgt nach Ablauf der eingestellten **Verzögerungszeit T1** oder **Verzögerungszeit T2** 1,5 Sekunden lang ein Schaltimpuls 2.

Die Wartezeit zwischen 2 aufeinander folgenden Schaltimpulsen entspricht der eingestellten **Verzögerungszeit T1** oder **Verzögerungszeit T2** 3.
Abbildung 29: Schaltimpulsdauer im Normalbetrieb

<table>
<thead>
<tr>
<th></th>
<th>Eingestellte Verzögerungszeit T1 oder T2</th>
<th>Eingestellte Schaltimpulsdauer (zum Beispiel 1,5 Sekunden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wenn der Motorantrieb mit der Werkseinstellung (1,5 Sekunden) nicht anläuft, müssen Sie die Höherschaltimpulsdauer/Tieferschaltimpulsdauer verlängern.

Schaltimpuls bei Schnellrückschaltung

Wenn Sie die Höherschaltimpulsdauer oder Tieferschaltimpulsdauer auf beispielsweise 1,5 Sekunden einstellen, erfolgt im Modus Schnellrückschaltung der nächste früheste Schaltimpuls 1,5 Sekunden nach Ablauf des vorhergehenden Schaltimpulses.
Um die Impulsdauer einzustellen, gehen Sie wie folgt vor:

1. **[Menu]** > **[F4]** Konfiguration > **[F3]** Allgemeines > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - H/T-Impulsdauer.
2. F1 oder F5 drücken, um die gewünschte Impulsdauer auszuwählen.
3. **[Enter]** drücken.
 - Die H/T-Impulsdauer ist eingestellt.

7.2.6 Steuereingänge IO1-X1:33/31 konfigurieren

Mit diesem Parameter können Sie den frei konfigurierbaren Steuereingängen Funktionen zuweisen. Folgende Funktionen können Sie zuweisen:
7 Funktionen und Einstellungen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Funktionsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus</td>
<td>Keine Funktion ausgewählt</td>
</tr>
<tr>
<td>Master/Follower</td>
<td>Master-Modus wird aktiviert, wenn Signal anliegt. Follower-Modus wird aktiviert, wenn kein Signal anliegt.</td>
</tr>
<tr>
<td>Blockierung</td>
<td>Automatische Regelung wird blockiert.</td>
</tr>
<tr>
<td>MSS ausgelöst</td>
<td>Die Meldung Motorschutzschalter wurde ausgelöst wird dem Steuereingang zugewiesen.</td>
</tr>
<tr>
<td>Remote/Local</td>
<td>Betriebsart Remote wird aktiviert, wenn Signal anliegt. Betriebsart Local wird aktiviert, wenn kein Signal anliegt.</td>
</tr>
</tbody>
</table>

Tabelle 10: Mögliche Funktionen für Steuereingänge

Wenn Sie beide Steuereingänge auf Local/Remote einstellen und an einem Eingang ein Signal (1) anliegt, jedoch auf dem anderen Steuereingang kein Signal (0) anliegt, können Sie die Bedienung des Geräts verhindern. Das bedeutet, dass die Funktionen Manual/Auto und Höher/Tiefer weder mit den Tasten an der Frontplatte, noch über Eingänge für Fernmeldungen oder serielle Schnittstelle möglich sind.

Um den Steuereingängen Funktionen zuzuweisen, gehen Sie wie folgt vor:

2. [F1] oder [F5] so oft drücken, bis die gewünschte Funktion in der Anzeige erscheint.
3. [EXIT] drücken.
 ⇒ Die Funktion ist zugewiesen.
7 Funktionen und Einstellungen

7.2.7 Ausgangsrelais IO1-X1:25/26 und IO1-X1:23/24 konfigurieren

Mit diesem Parameter können Sie den frei konfigurierbaren Ausgangsrelais Meldungen, die abgesetzt werden sollen zuweisen. Folgende Meldungen können Sie zuweisen:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meldungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus</td>
<td>Keine Funktion ausgewählt</td>
</tr>
<tr>
<td>Master/Follower</td>
<td>Meldung Master/Follower zuweisen.</td>
</tr>
<tr>
<td>Local/Remote</td>
<td>Meldung Local/Remote zuweisen.</td>
</tr>
<tr>
<td>Unterspannung</td>
<td>Meldung Unterspannungsblockierung zuweisen.</td>
</tr>
<tr>
<td>Überspannungsblockierung</td>
<td>Meldung Überspannungsblockierung zuweisen.</td>
</tr>
<tr>
<td>Sollwert 2</td>
<td>Meldung Sollwert 2 zuweisen.</td>
</tr>
<tr>
<td>Sollwert 3</td>
<td>Meldung Sollwert 3 zuweisen.</td>
</tr>
<tr>
<td>MA Laufzeit I></td>
<td>Meldung Impuls ausgelöst. Motorlaufzeit überschritten zuweisen.</td>
</tr>
<tr>
<td>MA Laufzeit D></td>
<td>Meldung Dauersignal liegt an. Motorlaufzeit überschritten zuweisen.</td>
</tr>
<tr>
<td>Bandbreite <</td>
<td>Meldung Bandbreite unterschritten zuweisen.</td>
</tr>
<tr>
<td>Bandbreite ></td>
<td>Meldung Bandbreite überschritten zuweisen.</td>
</tr>
</tbody>
</table>

| Tabelle 11: Mögliche Meldungen für Ausgangsrelais |

Um den Ausgangsrelais Funktionen zuzuweisen, gehen Sie wie folgt vor:

1. Konfiguration > F4 Allgemeines > so oft drücken, bis der gewünschte Parameter angezeigt wird.
2. F1 oder F5 so oft drücken, bis die gewünschte Funktion in der Anzeige erscheint.
3. Drücken.

Die Funktion ist zugewiesen.

7.2.8 Anzeige verdunkeln

Mit diesem Parameter können Sie die automatische Display-Verdunkelung einschalten oder ausschalten. Sie können folgende Optionen wählen:

- Aus: Die automatische Display-Verdunklung ist ausgeschaltet.
Wenn Sie diese Funktion aktivieren erhöht sich die Lebensdauer der Anzeige.

Um die automatische Anzeigenverdunkelung zu aktivieren/deaktivieren, gehen Sie wie folgt vor:

1. > Konfiguration > Allgemeines > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - Anzeige dunkel.
2. oder drücken, um die automatische Verdunkelung zu aktivieren/deaktivieren.
3. drücken.
 - Die automatische Verdunkelung ist eingestellt.

7.2.9 Motorlaufzeitüberwachung einstellen

Verhalten Der Motorantrieb gibt während des Schaltvorgangs das Signal Motorantrieb läuft aus. Dieses Signal liegt so lange an, bis der Schaltvorgang abgeschlossen ist. Das Gerät vergleicht die Dauer dieses Signals mit der eingestellten Motorlaufzeit. Ist die eingestellte Motorlaufzeit überschritten, werden vom Gerät folgende Aktionen ausgelöst:

1. Meldung Motorlaufzeit Laufzeitüberwachung wird abgesetzt
2. Dauersignal über Ausgangsrelais Motorantrieb Laufzeiteinschränkung (optional)
3. Impulssignal über Ausgangsrelais Motorschutzschalter auslösen (optional)

Steuereingang parametrieren Um die Laufzeitüberwachung zu nutzen, müssen Sie den entsprechenden Steuereingang korrekt verdrahten und auf Motor läuft parametrieren. Zudem muss die Motorlaufzeit eingestellt werden.

Steuereingang/ Ausgangsrelais verdrahten Möchten Sie die Motorlaufzeit überwachen, müssen Gerät und Motorantrieb wie in der folgenden Abbildung angeschlossen und parametriert werden.
Abbildung 34: Verdrahtung für die Motorlaufzeitüberwachung

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Steuereingang IO Motor läuft</td>
<td>3</td>
<td>Ausgangsrelais IO Motorschutzschalter (optional)</td>
</tr>
<tr>
<td>2</td>
<td>Steuereingang IO Motorschutzschalter ausgelöst (optional)</td>
<td>4</td>
<td>Ausgangsrelais IO Motorantrieb Laufzeitüberschreitung (optional)</td>
</tr>
</tbody>
</table>

Möchten Sie das Ausgangsrelais verwenden, muss zudem die Rückmeldung vom Motorantrieb Motorschutzschalter ausgelöst auf einen Steuereingang verdrahtet und parametriert werden. Diese Meldung setzt bei Wiedereinschalten des Motorschutzschalters den Ausgangsrelais Motorlaufzeit über- schritten zurück und aktiviert die Meldung Motorschutzschalter ausgelöst.

Wenn Sie die Motorlaufzeitüberwachung auf 0.0 Sekunden einstellen, gilt sie als ausgeschaltet.

Um die Motorlaufzeit einzustellen, gehen Sie wie folgt vor:

2. [F4] drücken, um eine Dezimalstelle zu markieren.

Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
7 Funktionen und Einstellungen

3. **F1** drücken, um den Wert zu erhöhen oder **F5** drücken, um den Wert zu senken.

4. **→** drücken.
 ☑ Die Motorlaufzeit ist eingestellt.

7.2.10 Stufenrichtung drehen

Sie können folgende Optionen wählen:

<table>
<thead>
<tr>
<th>Option</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Signal an Relais Höher: Schaltung in höhere Stufe, um die Spannung zu erhöhen.</td>
</tr>
<tr>
<td></td>
<td>Signal an Relais Tiefer: Schaltung in tiefere Stufe, um die Spannung zu verringern.</td>
</tr>
<tr>
<td>Gedreht</td>
<td>Signal an Relais Höher: Schaltung in tiefere Stufe, um die Spannung zu erhöhen.</td>
</tr>
<tr>
<td></td>
<td>Signal an Relais Tiefer: Schaltung in höhere Stufe, um die Spannung zu verringern.</td>
</tr>
</tbody>
</table>

Tabelle 12: Verhalten des Geräts

Um die Stufenrichtung auszuwählen, gehen Sie wie folgt vor:

1. **MENU > F4 Konfiguration > F3 Allgemeines > →** so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ☑ Stufenrichtung gedreht.

2. **F1** oder **F5** drücken, um die gewünschte Option zu wählen.

3. **→** drücken.
 ☑ Die Stufenrichtung ist ausgewählt.

7.3 NORMset

Der NORMset-Modus dient zur schnellen Inbetriebnahme der Spannungsregelung. Im NORMset-Modus werden die Parameter Bandbreite und Verzögerungszeit automatisch den Anforderungen des Netzes angepasst.

Zur Inbetriebnahme des NORMset-Modus müssen Sie folgende Parameter einstellen:

- Normset Aktivierung
- Sollwert 1
- Primärspannung
7 Funktionen und Einstellungen

- Sekundärspannung

Im Modus NORMset kann keine Leitungskompensation durchgeführt werden.

Stellen Sie die nachfolgenden Parameter ein, um das Gerät im NORMset-Modus zu betreiben.

Normset aktivieren/deaktivieren

Mit diesem Parameter können Sie den NORMset-Modus aktivieren.

Wenn Sie NORMset aktivieren, ist eine manuelle Stufenschaltung notwendig. Dadurch bestimmt der Spannungsregler die benötigte Bandbreite. Wird der Transformator abgeschaltet, ist erneut eine manuelle Stufenschaltung notwendig.

Um den NORMset-Modus zu aktivieren/deaktivieren, gehen Sie wie folgt vor:

1. [NORMset] drücken.
 - NORMset Aktivierung.
 - NORMset ist aktiviert/deaktiviert.

Primärspannung einstellen

Mit diesem Parameter können Sie die Primärspannung des Spannungswandlers einstellen.

Um die Primärspannung einzustellen, gehen Sie wie folgt vor:

1. [MENU] > [F2] NORMset > [→] so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - Primärspannung.
3. [→] drücken.
 - Die Primärspannung ist eingestellt.

Sekundärspannung einstellen

Mit diesem Parameter können Sie die Sekundärspannung des Spannungswandlers einstellen.
Um die Sekundärspannung einzustellen, gehen Sie wie folgt vor:

1. **F2** NORMset > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - Sekundärspannung.

2. F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.

3. drücken.
 - Die Sekundärspannung ist eingestellt.

Sollwert 1 einstellen

Mit diesem Parameter können Sie den Sollwert für die automatische Spannungsregelung einstellen. Sie können den Sollwert in V oder in kV eingeben. Wenn Sie den Sollwert in V eingeben, bezieht sich der Wert auf die Sekundärspannung des Spannungswandlers. Wenn Sie den Sollwert in kV einstellen, bezieht sich der Wert auf die Primärspannung des Spannungswandlers.

Die Einstellung in kV ist nur möglich, wenn Sie zuvor die Parameter für die Primärspannung und Sekundärspannung eingegeben haben.

Um den Sollwert einzustellen, gehen Sie wie folgt vor:

1. **F2** NORMset > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - Sollwert 1.

2. F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.

3. drücken.
 - Der Sollwert ist eingestellt.

7.4 Regelparameter

In diesem Abschnitt werden alle für die Regelfunktion benötigten Parameter beschrieben. Für die Spannungsregelung können Sie folgende Parameter einstellen:

- Sollwerte 1…3
- Bandbreite
- Verzögerungszeit T1
- Regelverhalten T1
- Verzögerungszeit T2
Für die Spannungsregelung können Sie die Verzögerungszeit T1 und zusätzlich die Verzögerungszeit T2 einstellen. In den folgenden Abschnitten wird beschrieben, wie sich die Regelfunktion in beiden Fällen verhält:

Verhalten nur mit Verzögerungszeit T1

Liegt die Messspannung U_{Ist} innerhalb der eingestellten Bandbreite $B\%$, werden keine Steuerbefehle an den Motorantrieb für den Schaltvorgang ausgegeben. Es werden auch dann keine Steuerbefehle an den Motorantrieb ausgegeben, wenn die Messspannung noch innerhalb der eingestellten Verzögerungszeit $T1$ in den Bereich der Bandbreite zurückkehrt. Verlässt jedoch die Messspannung die eingestellte Bandbreite über einen längeren Zeitraum C, erfolgt nach Ablauf der eingestellten Verzögerungszeit $T1$ ein Schaltbefehl D. Der Laststufenschalter führt eine Schaltung in Richtung Stufe höher oder in Richtung Stufe tiefer durch, um in den Bereich der Bandbreite zurückzukehren.

Abbildung 35: Verhalten der Regelfunktion mit Verzögerungszeit T1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>+ B %: Obere Grenze</th>
<th>2</th>
<th>U_{Soll}: Sollwert</th>
<th>3</th>
<th>- B %: Untere Grenze</th>
<th>4</th>
<th>Eingestellte Verzögerungszeit T1</th>
<th>5</th>
<th>U_{Ist}: Messspannung</th>
<th>6</th>
<th>B %: Bereich der Bandbreite</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>U_{Ist} ist außerhalb der Bandbreite. Verzögerungszeit T1 beginnt abzulaufen.</td>
<td>B</td>
<td>U_{Ist} ist vor Ablauf der Verzögerungszeit T1 in der Bandbreite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>U_{Ist} ist außerhalb der Bandbreite. Verzögerungszeit T1 beginnt abzulaufen.</td>
<td>D</td>
<td>U_{Ist} bis zum Ablauf der Verzögerungszeit T1 noch außerhalb der Bandbreite. Schaltvorgang wird eingeleitet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Verhalten mit Verzögerungszeit T1 und T2

Mit der Verzögerungszeit T2 können Sie starke Regelabweichungen schneller ausregeln lassen. Stellen Sie sicher, dass Sie im Parameter „Verzögerungszeit T2“ einen kleineren Wert einstellen, als im Parameter „Verzögerungszeit T1“.

Verlässt die Messspannung U_{Ist} die eingestellte Bandbreite über einen längeren Zeitraum, wird ein Steuereimpuls nach Ablauf der eingestellten Verzögerungszeit T1 an den Motorantrieb ausgegeben. Befindet sich die Messspannung U_{Ist} weiterhin außerhalb der Bandbreite, beginnt nach Ablauf der Verzögerungszeit T1 die Verzögerungszeit T2 abzulaufen. Nach Ablauf der Verzögerungszeit T2 wird erneut ein Steuereimpuls für den Schaltvorgang an den Motorantrieb ausgegeben, um in den Bereich der Bandbreite zurückzukehren.

Abbildung 36: Verhalten der Regelfunktion mit Verzögerungszeit T1 und T2

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$+ B %$: Obere Grenze</td>
<td>4</td>
<td>Eingestellte Verzögerungszeit T1 und Verzögerungszeit T2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>U_{Soll}: Sollwert</td>
<td>5</td>
<td>U_{Ist}: Messspannung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-$ B %$: Untere Grenze</td>
<td>6</td>
<td>$B%$: Bereich der Bandbreite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>U_{Ist} ist außerhalb der Bandbreite. Verzögerungszeit T1 beginnt abzulaufen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Verzögerungszeit T1 abgelassen. Schaltvorgang ausgelöst.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Verzögerungszeit T2 abgelassen. Schaltvorgang ausgelöst.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In den folgenden Abschnitten wird beschrieben, wie Sie die jeweiligen Regelparameter einstellen.
7.4.1 Sollwert 1...3 einstellen

Mit diesem Parameter können Sie bis zu 3 Spannungssollwerte \(U_{\text{soll}} \) einstellen. Der Spannungssollwert wird dann als feste Größe vorgegeben. Der Sollwert 1 ist der Standardsollwert. Die Sollwerte 2 und 3 werden aktiviert, wenn ein Dauersignal an den werkseitig vorbelegten Steuereingängen IO-X1:31 oder IO-X1:33 anliegt, sofern diese zuvor von Ihnen programmiert wurden. Sollte an mehreren Steuereingängen gleichzeitig ein Signal anliegen, wird der Sollwert 2 aktiviert.

Möglichkeiten zur Einstellung der Sollwerte

Das Gerät bietet folgende Möglichkeiten an, den Spannungssollwert während des Betriebs zu ändern:

- Im Menüpunkt Regelparameter über den Betriebsbildschirm
- Über Binäreingänge
- Über Leitstellenprotokolle, falls eine Kommunikationskarte betriebsbereit ist

Bezug von kV und V beim Spannungswandler

Um den Sollwert einzustellen, gehen Sie wie folgt vor:

1. \(\text{Parameter } \rightarrow \text{F3 Parameter } \rightarrow \text{F2 Regelparameter } \rightarrow \rightarrow \) so oft drücken, bis der gewünschte Parameter angezeigt wird.
2. Sofern Sie die Wandlerdaten bereits eingegeben haben [F3] drücken, um die gewünschte Einheit V oder kV auszuwählen.
3. [F4] drücken, um eine Dezimalstelle zu markieren.
 - Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
5. \(\leftrightarrow \) drücken.
 - Der Sollwert ist eingestellt.

7.4.2 Bandbreite

Mit diesem Parameter können Sie die maximal zulässige Abweichung der Messspannung \(U_{\text{Ist}} \) einstellen. Die Abweichung bezieht sich auf den aktivierten Sollwert. In den folgenden Abschnitten wird beschrieben, wie Sie die benötigte Bandbreite bestimmen und einstellen.
7.4.3 Verzögerungszeit T1 einstellen

Mit diesem Parameter stellen Sie die Verzögerungszeit T1 ein. Diese Funktion verzögert das Absetzen eines Schaltbefehls für einen definierten Zeitraum. So werden unnötige Schaltvorgänge vermieden, wenn der Bereich der Bandbreite verlassen wird.

Um die Verzögerungszeit T1 einzustellen, gehen Sie wie folgt vor:

1. ▶ > F3 Parameter > F2 Regelparameter > → so oft drücken, bis der gewünschte Parameter angezeigt wird.
2. ▶ drücken, um eine Dezimalstelle zu markieren. Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
3. ▶ drücken, um die Zeit zu erhöhen oder ▼ drücken, um die Zeit zu senken.
4. ▶ drücken. Die Verzögerungszeit T1 ist eingestellt.

7.4.4 Regelverhalten T1 einstellen

Das Regelverhalten T1 kann linear oder integral eingestellt werden:

- **Lineares Regelverhalten T1**: Bei linearer Regelverhalten reagiert das Gerät unabhängig von der Regelabweichung mit einer konstanten Verzögerungszeit.
- **Integrales Regelverhalten T1**: Bei integralem Regelverhalten reagiert das Gerät abhängig von der Regelabweichung mit einer variablen Verzögerungszeit. Je größer die Regelabweichung (ΔU) bezogen auf die eingestellte Bandbreite (B) ist, desto kürzer ist die Verzögerungszeit. Die Verzögerungszeit kann sich so bis auf 1 Sekunde verkürzen. Das Gerät reagiert dadurch schneller auf große Spannungsänderungen im Netz. Dadurch steigt die Regelgenauigkeit, die Schalthäufigkeit nimmt jedoch zu.
18.01.003/06 DE
Maschinenfabrik Reinhausen 2014

7 Funktionen und Einstellungen

Abbildung 37: Diagramm für integrales Regelverhalten

<table>
<thead>
<tr>
<th>ΔU/B</th>
<th>Regelabweichung "ΔU" in % des Sollwerts im Verhältnis zur eingestellten Bandbreite "B" in % des Sollwerts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parameter "Verzögerungszeit T1"</td>
</tr>
</tbody>
</table>

Um das Regelverhalten T1 einzustellen, gehen Sie wie folgt vor:

1. **Parameter** > **Regelparameter** > **so oft drücken, bis der gewünschte Parameter angezeigt wird.**
2. **oder** drücken, um das gewünschte Verhalten einzustellen.
3. drücken.
 ⇒ Das Regelverhalten T1 ist eingestellt.

7.4.5 **Verzögerungszeit T2 einstellen**

Mit diesem Parameter können Sie die Verzögerungszeit T2 einstellen. Die Verzögerungszeit T2 dient dazu, große Regelabweichungen schneller auszugleichen.

Die Verzögerungszeit T2 wird nur wirksam, wenn mehr als eine Stufenschaltung erforderlich ist, damit die Spannung wieder innerhalb der eingestellten Bandbreite liegt. Der erste Ausgangsimpuls erfolgt nach der eingestellten Verzögerungszeit T1. Nach Ablauf der eingestellten Schaltverzögerung T2 erfolgen weitere Impulse um die bestehende Regelabweichung auszuregeln.

Für die Einstellung der Verzögerungszeit T2 müssen Sie folgende Voraussetzungen beachten:

- Der Wert der Verzögerungszeit T2 muss größer sein als die Schaltimpulsdauer.
- Der Wert der Verzögerungszeit T2 muss größer sein als die maximale Laufzeit des Motorantriebs.
7 Funktionen und Einstellungen

- Der Wert der Verzögerungszeit T2 muss kleiner sein als der eingestellte Wert der Verzögerungszeit T1.

Um die Verzögerungszeit T2 einzustellen, gehen Sie wie folgt vor:

1. \(\text{Parameter} > \text{Regelparameter} \) so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - Verzögerungszeit T2.
2. \(\text{F1} \) drücken, um die Zeit zu erhöhen oder \(\text{F5} \) drücken, um die Zeit zu senken.
3. \(\text{Enter} \) drücken.
 - Die T2 Verzögerungszeit ist eingestellt.

Verzögerungszeit T2 aktivieren/deaktivieren

Um die Verzögerungszeit T2 zu aktivieren/deaktivieren, gehen Sie wie folgt vor:

1. \(\text{Parameter} > \text{Regelparameter} \) so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - T2 Aktivierung.
2. \(\text{F5} \) oder \(\text{F1} \) drücken, um T2 zu aktivieren/deaktivieren.
3. \(\text{Enter} \) drücken.
 - Die Verzögerungszeit T2 ist aktiviert/deaktiviert.

7.5 Grenzwerte

Im Menüpunkt Grenzwerte können Sie alle für die Grenzwertüberwachung notwendigen Parameter als relative oder absolute Werte einstellen. Sie können 3 Grenzwerte einstellen:

- Unterspannung U<
- Überspannung U>
- Überstrom I>

Die Grenzwertüberwachung dient dazu, um Schäden an der Anlagenperipherie zu reduzieren. In den folgenden Abschnitten wird beschrieben, wie Sie die Parameter einstellen können.

7.5.1 Absolute oder relative Grenzwerte aktivieren/deaktivieren

Mit diesem Parameter können Sie wahlweise die eingestellten relativen oder absoluten Grenzwerte auswählen. Folgende Einstellungen sind möglich:
7 Funktionen und Einstellungen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus</td>
<td>Das Gerät verwendet die von Ihnen eingegebenen relativen Grenzwerte [%]</td>
</tr>
<tr>
<td>Ein</td>
<td>Das Gerät verwendet die von Ihnen eingegebenen absoluten Grenzwerte [V]</td>
</tr>
</tbody>
</table>

Tabelle 13: Auswahl zwischen Relativwert und Absolutwert

Um die absoluten Grenzwerte zu aktivieren/deaktivieren, gehen Sie wie folgt vor:

1. **Parameter >** Grenzwerte.
 ⇒ Grenzwerte Absolut.
2. **F1** für die Einstellung **Ein** oder **F5** für die Einstellung **Aus** drücken.
3. **F3** drücken.
 ⇒ Der absolute Grenzwert ist aktiviert/deaktiviert.

7.5.2 Unterspannungsüberwachung U< einstellen

Mit diesen Parametern können Sie die Grenzwerte für eine Unterspannung einstellen. Diese Unterspannungsüberwachung verhindert Stufenschaltungen bei einem Netzzusammenbruch.

Verhalten

Wenn die Messspannung U_{ist} unter den eingestellten Grenzwert A fällt, leuchtet die rote LED $U<$. Gleichzeitig werden die Schaltimpulse an den Motorantrieb blockiert, sofern Sie den Parameter „Blockierung Unterspannung U<“ aktiviert haben. Wenn die eingestellte Meldeverzögerungszeit [62] abgelaufen ist, zieht das Melderelais an. Im Display wird die Meldung Unterspannung $U<$ angezeigt. Die Meldung wird zurückgesetzt, sobald die Messspannung U_{ist} den Grenzwert für die Unterspannung E wieder über- schreitet. Falls die Messspannung U_{ist} unter 30 V fällt C (zum Beispiel bei einer Abschaltung des Transformators), die Meldung Unterspannung ebenfalls angezeigt. Diese Meldung können Sie jedoch unterdrücken [63].
7 Funktionen und Einstellungen

Abbildung 38: Verhalten bei Unterschreitung des Grenzwerts

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+ B %: Obere Grenze</td>
<td>7</td>
<td>U_{ist}: Messspannung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>U_{Soll}: Sollwert</td>
<td>A</td>
<td>Unterschreitung des Grenzwerts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- B %: Untere Grenze</td>
<td>B</td>
<td>Meldung $\text{Unterspannung } U_{<}$ wird angezeigt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Eingestellter Grenzwert Unterspannung $U_{<}$</td>
<td>C</td>
<td>Spannung fällt unter 30 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Grenzwert Meldungsunterdrückung unter 30 V</td>
<td>D</td>
<td>Spannung wieder über 30 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Eingestellte Meldeverzögerungszeit für den Grenzwert Unterspannung $U_{<}$</td>
<td>E</td>
<td>Überschreitung des Grenzwerts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unterspannung $U_{<}$ in % einstellen

Mit diesem Parameter können Sie den Grenzwert als Relativwert (%) einstellen. Dieser Grenzwert bezieht sich auf den von Ihnen eingestellten Sollwert. Wenn Sie den eingestellten Relativwert als Grenzwert verwenden möchten, müssen Sie unter Grenzwerte Absolut die Auswahl Aus aktivieren.

Um den Grenzwert für die Unterspannung $U_{<}$ einzustellen, gehen Sie wie folgt vor:
7 Funktionen und Einstellungen

1. **Parameter >** so oft drücken, bis der gewünschte Parameter angezeigt wird.
2. **F3 drücken**, um den Wert zu erhöhen oder **F5 drücken**, um den Wert zu senken.
3. **drücken.**

Der Grenzwert ist eingestellt.

Unterspannung U< in V/kV einstellen

Mit diesem Parameter können Sie den Grenzwert als Absolutwert in der Einheit V oder kV einstellen. Wenn Sie die Anzeige mit Hilfe der Taste **F3 auf kV umstellen**, bezieht sich dieser Wert auf die Wandlerprimärspannung. Wenn Sie die Anzeige auf **V umstellen**, bezieht sich diese auf die Sekundärspannung.

Wenn Sie die eingestellten Absolutwerte als Grenzwert verwenden möchten, müssen Sie unter dem Menüpunkt **Grenzwerte Absolut** die Auswahl **Ein** aktivieren.

Um den absoluten Grenzwert für die Unterspannung U< einzustellen, gehen Sie wie folgt vor:

1. **Parameter >** so oft drücken, bis der gewünschte Parameter angezeigt wird.
3. **drücken**, um den Wert zu erhöhen oder **drücken**, um den Wert zu senken.
4. **drücken.**

Der Grenzwert ist eingestellt.

Meldeverzögerungszeit für Unterspannung U< einstellen

Um die Verzögerungszeit für diese Meldung einzustellen, gehen Sie wie folgt vor:
1. **F3** Parameter > **F3** Grenzwerte > so oft drücken, bis der gewünschte Parameter angezeigt wird.

2. **F4** drücken, um eine Dezimalstelle zu markieren.
 - Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. **F1** drücken, um die Zeit zu erhöhen oder **F5** drücken, um die Zeit zu senken.

4. drücken.
 - Die Meldeverzögerungszeit für die Unterspannung U< ist eingestellt.

Unterspannungsblockierung aktivieren/deaktivieren

Mit diesem Parameter können Sie das Verhalten des Geräts bei unterschreiten der Unterspannungsgrenze einstellen. Sie können folgende Optionen wählen:

<table>
<thead>
<tr>
<th>Einstellung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ein</td>
<td>Die automatische Regelung ist blockiert.</td>
</tr>
</tbody>
</table>
| Aus | Die automatische Regelung ist weiterhin aktiv.

Tabelle 14: Verhalten

Um die Unterspannungsblockierung zu aktivieren/deaktivieren, gehen Sie wie folgt vor:

1. **F3** Parameter > **F3** Grenzwerte > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - U< Blockierung.

2. **F1** für die Einstellung Ein oder **F5** für die Einstellung Aus drücken.

3. drücken.
 - Die Unterspannungsblockierung ist aktiviert/deaktiviert.

Meldung für Spannungen unter 30 V aktivieren/deaktivieren

Mit diesem Parameter können Sie einstellen, ob die Meldung Unterspannung bei einem Messwert kleiner 30 V unterdrückt werden soll. Diese Einstellung dient dazu, dass bei abgeschaltetem Transformator keine Ereignismeldung erscheint. Sie können folgende Optionen wählen:

<table>
<thead>
<tr>
<th>Einstellung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ein</td>
<td>Die Meldung Unterspannung wird auch bei einem Messwert kleiner 30 V angezeigt.</td>
</tr>
<tr>
<td>Aus</td>
<td>Die Meldung Unterspannung wird bei einem Messwert kleiner 30 V nicht mehr angezeigt.</td>
</tr>
</tbody>
</table>

Tabelle 15: Verhalten

Um die Meldung zu aktivieren/deaktivieren, gehen Sie wie folgt vor:
1. **MENU > F3 Parameter > F3 Grenzwerte > ⬤ so oft drücken, bis der gewünschte Parameter angezeigt wird.**
 ⟷ U< auch unter 30 V.
2. **F1** für die Einstellung **Ein** oder **F5** für die Einstellung **Aus** drücken.
3. **←** drücken.
 ⟷ Die Meldung ist aktiviert/deaktiviert.

7.5.3 Überspannungsüberwachung U> einstellen

Mit diesen Parametern können Sie die Grenzwerte für eine Überspannungsüberwachung einstellen. Diese Überspannungsüberwachung veranlasst Stufenschaltungen, um wieder in den gewünschten Betriebszustand zu gelangen. Falls der Betriebszustand nicht mehr ausregelungsfähig ist, wird durch das Relais **Funktionsüberwachung** eine Meldung ausgelöst.

Wenn die Messspannung Uₘ die eingestellte Grenzwerte überschreitet, leuchtet die rote LED U> und das zugehörige Melderelais zieht. Im Display wird die Meldung **Überspannung U>** angezeigt. Gleichzeitig wird die Schnellrückrückschaltfunktion ohne die Verzögerungszeit T1 aktiviert. Hierbei wird nach Ablauf der eingestellten Schaltimpulsdauer durch das Ansteuern des Motorantrags so lange tiefergeschaltet, bis die Messspannung Uₘ den Grenzwert wieder unterschreitet. Die Meldung **Überspannung U>** wird zurückgesetzt.
Abbildung 39: Verhalten bei Überschreitung des Grenzwerts

<table>
<thead>
<tr>
<th></th>
<th>Eingestellter Grenzwert Überspannung $U_>$</th>
<th></th>
<th>U_{ist}: Messspannung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eingestellte Grenzwert Überspannung $U_>$</td>
<td>6</td>
<td>U_{ist}: Messspannung</td>
</tr>
<tr>
<td>2</td>
<td>+ B %: Obere Grenze</td>
<td>A</td>
<td>Überschreitung des Grenzwerts</td>
</tr>
<tr>
<td>3</td>
<td>U_{soll}: Sollwert</td>
<td>B</td>
<td>Unterschreitung des Grenzwerts</td>
</tr>
<tr>
<td>4</td>
<td>- B %: Untere Grenze</td>
<td>C</td>
<td>Schnellrückschaltung wird gestartet (Tieferschaltung)</td>
</tr>
<tr>
<td>5</td>
<td>Eingestellte Schaltimpulsdauer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In den folgenden Abschnitten wird beschrieben, wie Sie die Parameter für den Grenzwert Überspannungüberwachung $U_>$ einstellen können.

Überspannung $U_<$ in % einstellen

Der Grenzwert wird als relativer Wert (%) vom eingestellten Sollwert eingeben. Um den Grenzwert einzustellen, gehen Sie wie folgt vor:

3. [BACK] drücken.

Der Grenzwert ist eingestellt.
Überspannung U> in V/kV einstellen

Mit diesem Parameter können Sie den Grenzwert als Absolutwert in der Einheit V oder kV einstellen. Wenn Sie die Anzeige mit Hilfe der Taste F3 auf kV umstellen, bezieht sich dieser Wert auf die Wandlerprimärspannung. Wenn Sie die Anzeige auf V umstellen, bezieht sich diese auf die Wandlersekundärspannung.

Wenn Sie die eingestellten Absolutwerte als Grenzwert verwenden möchten, müssen Sie unter dem Menüpunkt Grenzwerte Absolut die Auswahl Ein aktivieren.

Um den absoluten Grenzwert für die Überspannung U> einzustellen, gehen Sie wie folgt vor:
1. Parameter > Grenzwerte > so oft drücken, bis der gewünschte Parameter angezeigt wird.
2. Gegebenenfalls drücken, um die gewünschte Einheit V oder kV auszuwählen.
3. drücken, um den Wert zu erhöhen oder drücken, um den Wert zu senken.
4. Der Grenzwert ist eingestellt.

Überstromüberwachung I> einstellen

Mit diesem Parameter können Sie den Grenzwert für den Überstrom einstellen, um Stufenschaltungen bei zu hohen Lastströmen zu verhindern.

Wenn der Messstrom den eingestellten Grenzwert überschreitet, leuchtet die rote LED I> und das zugehörige Melderelais zieht an. Im Display wird die Meldung Überstromblockierung angezeigt. Gleichzeitig werden die Ausgangsimpulse des Geräts blockiert.

Um den Grenzwert I> Überstrom für die Überstromblockierung einzustellen, gehen Sie wie folgt vor:
1. **F3** Parameter > **F3** Grenzwerte > so oft drücken, bis der gewünschte Parameter angezeigt wird.

2. Gegebenenfalls **F3** drücken, um die gewünschte Einheit % oder A auszuwählen.

3. **F1** drücken, um den Wert zu erhöhen oder **F5** drücken, um den Wert zu senken.

4. **→** drücken.

Der Grenzwert ist eingestellt.

7.5.5 Funktionsüberwachung aktivieren/deaktivieren

Wenn der Messwert länger als 15 Minuten die aktuelle Bandbreite (Sollwert ± Bandbreite) verlässt, ohne dass eine Stufenschaltung erfolgt, zieht das Funktionsüberwachungsrelais an. Folglich erscheint eine Meldung in der Anzeige, die erst zurückgesetzt wird, sobald der Messwert in die aktuelle Bandbreite zurückkehrt.

Liegt die Messspannung unter 30 V, befindet sich der Messwert außerhalb der Bandbreite und das entsprechende Relais zieht nach 15 Minuten ebenfalls an. Sie können auf Wunsch diese Funktion deaktivieren, um eine Funktionsüberwachungsmeldung bei abgeschaltetem Transformator zu vermeiden:

1. **F3** Parameter > **F3** Grenzwerte > so oft drücken, bis der gewünschte Parameter angezeigt wird.

2. **F1** oder **F5** drücken, um die gewünschte Option auszuwählen.

3. **→** drücken.

Die Funktionsüberwachung ist aktiviert/deaktiviert.

7.5.6 Schaltintervallüberwachung

Mit dieser Funktion können Sie das typische Schaltverhalten Ihres Transformers überwachen. Dazu können Sie die im Automatikbetrieb zulässige Anzahl der aufeinander folgenden Höherschaltungen innerhalb eines definier- ten Zeitintervalls einstellen.

Wird die maximal zulässige Anzahl an Schaltungen überschritten, blockiert das Gerät für eine einstellbare Zeit jede weitere Höherschaltung. Optional kann das Gerät durch die Maschinenfabrik Reinhausen so parametriert werden, dass während der Blockierzeit eine Meldung über ein Relais abgesetzt wird.
7 Funktionen und Einstellungen

Abbildung 40: Normales Regelverhalten (links); abnormales Regelverhalten (rechts)

1. Gerät blockiert

2. Definiertes Zeitintervall für die Überwachung der Höherschaltungen

<table>
<thead>
<tr>
<th>1</th>
<th>Gerät blockiert</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Definiertes Zeitintervall für die Überwachung der Höherschaltungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T1</th>
<th>Verzögerungszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>B%</td>
<td>Bandbreite</td>
</tr>
</tbody>
</table>

7.5.6.1 Maximale Anzahl pro Zeitintervall einstellen

Mit diesem Parameter können Sie die Anzahl der maximal zulässigen aufeinanderfolgenden Höherschaltungen festlegen.

Die Einstellung 0 deaktiviert die Funktion der Schaltüberwachung. Die maximale Anzahl an aufeinanderfolgenden Höherschaltungen ist nicht begrenzt.

Um die maximale Anzahl an zulässigen aufeinanderfolgenden Höherschaltungen einzustellen, gehen Sie wie folgt vor:

1. **Regelparameter > F3 Grenzwerte > Max. Stufenzahl in Zeit**
 - so oft drücken, bis der gewünschte Parameter angezeigt wird.
2. **F1** drücken, um den Wert zu erhöhen oder **F5** drücken, um den Wert zu senken.
3. **drücken.**
 - Die maximale Anzahl an zulässigen aufeinanderfolgenden Höherschaltungen ist eingestellt.
7 Funktionen und Einstellungen

7.5.6.2 Zeitfenster für Überwachung der Höherschaltungen einstellen
Mit diesem Parameter können Sie das Zeitintervall für die Überwachung der Anzahl aufeinanderfolgender Höherschaltungen festlegen.

Um das Zeitintervall einzustellen, gehen Sie wie folgt vor:
1. F3 Regelparameter > Grenzwerte > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ Zeitfenster für Stufen.
2. F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.
3. drücken.
 ⇒ Das Zeitintervall ist eingestellt.

7.5.6.3 Blockierzeit einstellen
Mit diesem Parameter können Sie die Blockierzeit nach Erreichen der maximal zulässigen aufeinanderfolgenden Höherschaltungen festlegen. Während dieser Blockierzeit werden weitere Höherschaltbefehle blockiert.

Um die Blockierzeit einzustellen, gehen Sie wie folgt vor:
1. F3 Regelparameter > F3 Grenzwerte > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ T block max Stufenanz.
2. F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.
3. drücken.
 ⇒ Die Blockierzeit ist eingestellt.

7.5.6.4 Zählerverhalten einstellen
Mit diesem Parameter können Sie das Zählerverhalten definieren. Standardmäßig werden alle Höherschaltungen innerhalb des definierten Zeitintervalls gezählt, auch wenn diese durch eine Tieferschaltung unterbrochen werden. Alternativ kann festgelegt werden, dass bei einer Tieferschaltung der Zähler auf 0 gesetzt werden soll.

Um das Zählerverhalten einzustellen, gehen Sie wie folgt vor:
1. **MENU > F3** Regelparameter > **F3** Grenzwerte > ... so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ Tiefer-> Höherzähler 0.

2. **F1** oder **F5** drücken, um die gewünschte Option einzustellen.

3. **rückwärts** drücken.
 ⇒ Die gewünschte Option ist ausgewählt.

7.6 Kompensation

Mit der Funktion „Kompensation“ können Sie den lastabhängigen Spannungsabfall zwischen Transformator und Verbraucher ausgleichen. Dazu stellt Ihnen das Gerät 2 Kompensationsmethoden zur Verfügung:

- R-X-Kompensation (Line Drop Compensation)
- Z-Kompensation

7.6.1 R-X-Kompensation

Die R-X-Kompensation (LDC) erfordert die genauen Leitungsdaten. Mit ihr können die Spannungsverluste in den Leitungen sehr genau kompensiert werden.

Um die R-X-Kompensation korrekt einzustellen, müssen Sie den ohmschen und den induktiven Spannungsabfall, bezogen auf die Sekundärseite des Spannungswandlers in V, berechnen. Zudem müssen Sie die verwendete Wandlerschaltung korrekt einstellen.

![Abbildung 45: Ersatzschaltung](image)

Formel zur Berechnung des ohmschen Spannungsabfalls:

\[
U_r = I_N \cdot \frac{k_{CT}}{k_{VT}} \cdot r \cdot L \cdot K \ [V]
\]

Formel zur Berechnung des induktiven Spannungsabfalls:

\[
U_x = I_N \cdot \frac{k_{CT}}{k_{VT}} \cdot x \cdot L \cdot K \ [V]
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_r)</td>
<td>Ohmscher Widerstandsbelag in (\Omega/km)</td>
</tr>
<tr>
<td>(U_x)</td>
<td>Induktiver Widerstandsbelag in (\Omega/km)</td>
</tr>
<tr>
<td>(I_N)</td>
<td>Nennstrom (Ampere) des gewählten Stromwandleranschlusses am Gerät: 0,2 A; 1 A; 5 A</td>
</tr>
<tr>
<td>(k_{CT})</td>
<td>Stromwandlerübersetzung</td>
</tr>
<tr>
<td>(k_{VT})</td>
<td>Spannungswandlerübersetzung</td>
</tr>
<tr>
<td>(r)</td>
<td>Ohmscher Widerstandsbelag in (\Omega/km) je Phase</td>
</tr>
<tr>
<td>(x)</td>
<td>Induktiver Widerstandsbelag in (\Omega/km) je Phase</td>
</tr>
<tr>
<td>(L)</td>
<td>Leitungslänge in km</td>
</tr>
<tr>
<td>(K)</td>
<td>Nennstromfaktor</td>
</tr>
</tbody>
</table>

7.6.1.1 **Ohmscher Spannungsabfall \(U_r \) einstellen**

Mit diesem Parameter können Sie den ohmschen Spannungsabfall (ohmscher Widerstandsbelag) einstellen.
Wenn Sie keine Leitungskompensation nutzen möchten, müssen Sie den Wert 0,0 V einstellen.

Um den ohmschen Spannungsabfall Ur einzustellen, gehen Sie wie folgt vor:
1. \texttt{MENU} > \texttt{F3} Parameter > \texttt{F4} Kompensation.
 ⇒ Ur-Leitungskompensation.
2. \texttt{F4} drücken, um eine Dezimalstelle zu markieren.
 ⇒ Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
3. \texttt{F1} drücken, um den Wert zu erhöhen oder \texttt{F5} drücken, um den Wert zu senken.
4. \texttt{F4} drücken.
 ⇒ Der ohmsche Spannungsabfall Ur ist eingestellt.

\subsection*{7.6.1.2 Induktiver Spannungsabfall Ux einstellen}

Mit diesem Parameter können Sie den induktiven Spannungsabfall (induktiver Widerstandsbelag) einstellen. Die Wirkung der Kompensation kann mit Hilfe des Vorzeichens um 180° in der Anzeige gedreht werden.

Wenn Sie keine Leitungskompensation nutzen möchten, müssen Sie den Wert 0,0 V einstellen.

Um den induktiven Spannungsabfall Ux einzustellen, gehen Sie wie folgt vor:
1. \texttt{MENU} > \texttt{F3} Parameter > \texttt{F4} Kompensation > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ Ux-Leitungskompensation.
2. \texttt{F4} drücken, um eine Dezimalstelle zu markieren.
 ⇒ Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
3. \texttt{F1} drücken, um den Wert zu erhöhen oder \texttt{F5} drücken, um den Wert zu senken.
4. \texttt{F4} drücken.
 ⇒ Der induktive Spannungsabfall Ux ist eingestellt.
7.6.2 **Z-Kompensation**

Um die Spannung beim Verbraucher konstant zu halten, können Sie mittels Z-Kompensation eine stromabhängige Spannungserhöhung aktivieren. Sie können zudem einen Grenzwert definieren, um zu hohe Spannungen am Transformator zu vermeiden.

Abbildung 47: Z-Kompensation

Um die Z-Kompensation zu verwenden, müssen Sie die Spannungserhöhung \(\Delta U \) unter Berücksichtigung des Stroms berechnen. Verwenden Sie dazu folgende Formel:

\[
\Delta U = 100 \cdot \frac{U_{\text{Tr}} - U_{\text{Load}}}{U_{\text{Load}}} \cdot \frac{I_N \cdot k_{\text{CT}}}{I}
\]

<table>
<thead>
<tr>
<th>(\Delta U)</th>
<th>Spannungserhöhung</th>
<th>(I)</th>
<th>Belastungsstrom in A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_{\text{Tr}})</td>
<td>Spannung des Transformers bei Strom (I)</td>
<td>(I_N)</td>
<td>Nennstrom des Stromwandlerschluss in A (0,2 A; 1 A; 5 A)</td>
</tr>
<tr>
<td>(U_{\text{Load}})</td>
<td>Spannung am Leitungsanfang bei Strom (I) und gleicher Betriebsstellung des Laststufenschalters</td>
<td>(k_{\text{CT}})</td>
<td>Übersetzung des Stromwandlers</td>
</tr>
</tbody>
</table>

Beispielrechnung: \(U_{\text{Tr}} = 100,1 \) V, \(U_{\text{Load}} = 100,0 \) V, \(I_N = 5 \) A, \(k_{\text{CT}} = 200 \) A/5 A, \(I = 100 \) A

Ergibt eine Spannungserhöhung \(\Delta U \) von 0,2%

In den folgenden Abschnitten wird beschrieben, wie Sie die Parameter einstellen, die Sie für die Z-Kompensation benötigen.

7.6.2.1 **Z-Kompensation einstellen**

Mit diesem Parameter stellen Sie die zuvor berechnete Spannungserhöhung \(\Delta U \) ein.
Wenn Sie keine Z-Kompensation nutzen möchten, müssen Sie den Wert 0,0 % einstellen.

Um die Z-Kompensation einzustellen, gehen Sie wie folgt vor:

1. Menu > F3 Parameter > F4 Kompensation > → so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ Z-Kompensation.
2. F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.
3. drücken.
 ⇒ Die Z-Kompensation ist eingestellt.

7.6.2.2 Z-Kompensation Grenzwert einstellen

Mit diesem Parameter können Sie die maximal zulässige Spannungserhöhung festlegen, um eine zu hohe Spannung am Transformator zu vermeiden.

Wenn Sie keinen Grenzwert festlegen möchten, müssen Sie den Wert 0,0 % einstellen.

Um den Grenzwert einzustellen, gehen Sie wie folgt vor:

1. Menu > F3 Parameter > F4 Kompensation > → so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ Z-Komp. Grenzwert.
2. F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.
3. drücken.
 ⇒ Der Grenzwert ist eingestellt.

7.7 Kreuzüberwachung

Fehlender Messwert oder Messkartenfehler

Überprüfung der Grenzwerte

Bei der Überprüfung der Grenzwerte übermittelt ein Gerät dem anderen über den zweiten separaten Messeingang eine Messspannung. Zu diesem Messwert können Sie folgende Grenzwerte einstellen:

- Separater Sollwert [► 75]
- Unterspannungsgrenzwert [► 76]
- Überspannungsgrenzwert [► 77]

In den folgenden Abschnitten wird beschrieben, wie Sie die jeweiligen Parameter des überwachenden Geräts einstellen.

Sehen Sie dazu auch

- Verzögerungszeit für Fehlermeldung einstellen [► 78]
- Sollwert für den Regler 2 einstellen [► 75]
- Unterspannungsgrenzwert U< für den Regler 2 einstellen [► 76]
- Überspannungsgrenzwert U> für den Regler 2 einstellen [► 77]

7.7.1 Sollwert für den Regler 2 einstellen

Mit diesem Parameter können Sie den Sollwert des zu überwachenden Geräts einstellen.

Mit der Taste F3 können Sie die Anzeige auf folgende Einheiten umstellen:
7 Funktionen und Einstellungen

<table>
<thead>
<tr>
<th>Volt (V)</th>
<th>Kilovolt (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieser Wert bezieht sich auf die Sekundärspannung des anlagenseitigen Spannungswandlers.</td>
<td>Dieser Wert bezieht sich auf die Primärspannung des anlagenseitigen Spannungswandlers.</td>
</tr>
</tbody>
</table>

Tabelle 16: Einstellbare Einheiten

Wenn Sie die Anzeige von V auf kV umschalten möchten, müssen Sie die Wandlerdaten des zu überwachenden Geräts einstellen.

Um den Sollwert des zu überwachenden Geräts einzugeben, gehen Sie wie folgt vor:

1.

2.

3.

⇒ Der Sollwert des zu überwachenden Geräts ist eingestellt.

7.7.2 Unterspannungsgrenzwert U< für den Regler 2 einstellen

Mit diesem Parameter können Sie den Unterspannungsgrenzwert U< des zu überwachenden Geräts einstellen. Sie können den Unterspannungsgrenzwert U< als Absolutwert (V oder kV) einstellen.

Absolutwert einstellen

Mit der Taste F3 können Sie die Anzeige auf folgende Einheiten umstellen:

<table>
<thead>
<tr>
<th>Volt (V)</th>
<th>Kilovolt (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieser Wert bezieht sich auf die Sekundärspannung des anlagenseitigen Spannungswandlers.</td>
<td>Dieser Wert bezieht sich auf die Primärspannung des anlagenseitigen Spannungswandlers.</td>
</tr>
</tbody>
</table>

Tabelle 17: Einstellbare Einheiten

Wenn Sie die Anzeige von V auf kV umschalten möchten, müssen Sie die Wandlerdaten des zu überwachenden Geräts einstellen.

Um den Unterspannungsgrenzwert des zu überwachenden Spannungsreglers einzustellen, gehen Sie wie folgt vor:
1. **[F3]** Parameter > **[F5]** Kreuzüberwachung > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ U\textless Regler 2.
2. **[F1]** drücken, um den Wert zu erhöhen oder **[F5]** drücken, um den Wert zu senken.
3. **[U]** drücken.
 ⇒ Der Unterspannungsgrenzwert als Absolutwert ist eingestellt.

Relativwert einstellen
Um den Unterspannungsgrenzwert des zu überwachenden Spannungsreglers einzustellen, gehen Sie wie folgt vor:

1. **[F3]** Parameter > **[F5]** Kreuzüberwachung > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ U\textless Regler 2.
2. **[F1]** drücken, um den Wert zu erhöhen oder **[F5]** drücken, um den Wert zu senken.
3. **[U]** drücken.
 ⇒ Der Unterspannungsgrenzwert als Relativwert ist eingestellt.

7.7.3 Überspannungsgrenzwert \(U> \) für den Regler 2 einstellen

Mit diesem Parameter können Sie den Überspannungsgrenzwert \(U> \) des zu überwachenden Geräts einstellen. Sie können den Unterspannungsgrenzwert \(U< \) als Absolutwert (\(V \) oder \(kV \)) einstellen.

Absolutwert einstellen
Mit der Taste **[F3]** können Sie die Anzeige auf folgende Einheiten umstellen:

<table>
<thead>
<tr>
<th>Volt (V)</th>
<th>Kilovolt (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieser Wert bezieht sich auf die Sekundärspannung des anlagenseitigen Spannungswandlers.</td>
<td>Dieser Wert bezieht sich auf die Primärspannung des anlagenseitigen Spannungswandlers.</td>
</tr>
</tbody>
</table>

Tabelle 18: Einstellbare Einheiten

Wenn Sie die Anzeige von V auf \(kV \) umschalten möchten, müssen Sie die Wandlerdaten des zu überwachenden Geräts einstellen.

Um den Überspannungsgrenzwert des zu überwachenden Spannungsreglers einzustellen, gehen Sie wie folgt vor:
1. **MENU** > F3 Parameter > F5 Kreuzüberwachung > so oft drücken, bis der gewünschte Parameter angezeigt wird.

 ⇔ U> Regler 2

2. F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.

3. drücken.

 ⇔ Der Überspannungsgrenzwert als Absolutwert ist eingestellt.

Relativwert einstellen

Um den Überspannungsgrenzwert des zu überwachten Spannungsreglers einzustellen, gehen Sie wie folgt vor:

1. **MENU** > F3 Parameter > F5 Kreuzüberwachung > so oft drücken, bis der gewünschte Parameter angezeigt wird.

 ⇔ U> Regler 2

2. F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.

3. drücken.

 ⇔ Der Überspannungsgrenzwert als Relativwert ist eingestellt.

7.7.4 Verzögerungszeit für Fehlermeldung einstellen

Mit diesem Parameter können Sie die Verzögerungszeit für die Fehlermeldung Kreuzüberwachung einstellen. Wird ein Fehler bei einem überwachten Gerät erfasst, wird die Fehlermeldung erst nach der Verzögerungszeit angezeigt.

Um die Verzögerungszeit der Fehlermeldung einzustellen, gehen Sie wie folgt vor:

1. **MENU** > F3 Parameter > F5 Kreuzüberwachung > so oft drücken, bis der gewünschte Parameter angezeigt wird.

 ⇔ Fehlermeldung.

2. F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.

3. drücken.

 ⇔ Die Verzögerungszeit ist eingestellt.

7.7.5 Wandler für Regler 2 einstellen

Mit diesen Parametern stellen Sie die Wandlerdaten des zu überwachten Geräts ein.
7 Funktionen und Einstellungen

Wandlerprimärspannung einstellen

Die Wandlerprimärspannung wird in kV eingestellt.

Um die Wandlerprimärspannung des Spannungsreglers 2 einzustellen, gehen Sie wie folgt vor:

1. \(\text{MENU} \to F3 \text{ Parameter } \to F5 \text{ Kreuzüberwachung } \to \) so oft drücken, bis der gewünschte Parameter angezeigt wird.
 \(\Rightarrow \) U prim Regler 2.

2. \(F3 \) drücken, um die Kommastelle zu markieren.
 \(\Rightarrow \) Die Kommastelle ist festgelegt und der Wert kann geändert werden.

3. \(F1 \) drücken, um den Wert zu erhöhen oder \(F5 \) drücken, um den Wert zu senken.

4. \(\leftarrow \) drücken.
 \(\Rightarrow \) Die Wandlerprimärspannung ist eingestellt.

Wandlersekundärspannung einstellen

Die Wandlersekundärspannung wird in V eingestellt.

Um die Wandlersekundärspannung des Spannungsreglers 2 einzustellen, gehen Sie wie folgt vor:

1. \(\text{MENU} \to F3 \text{ Parameter } \to F5 \text{ Kreuzüberwachung } \to \) so oft drücken, bis der gewünschte Parameter angezeigt wird.
 \(\Rightarrow \) U sek Regler 2.

2. \(F1 \) drücken, um den Wert zu erhöhen oder \(F5 \) drücken, um den Wert zu senken.

3. \(\leftarrow \) drücken.
 \(\Rightarrow \) Die Wandlersekundärspannung ist eingestellt.

7.8 Wandlerdaten

Folgende Parameter stehen Ihnen hierzu zur Verfügung:

- Primärspannung
- Sekundärspannung
- Primärstrom
- Sekundärstrom (Stromwandleranschluss)
7 Funktionen und Einstellungen

- Wandlerschaltung

Die Messwertanzeige des Geräts wird durch die Einstellung der oben genannten Parameter beeinflusst. Beachten Sie dazu nachfolgende Tabelle.

<table>
<thead>
<tr>
<th>Eingestellte Parameter</th>
<th>Messwertanzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärspannung</td>
<td>Sekundärspannung</td>
</tr>
<tr>
<td>-</td>
<td>Ja</td>
</tr>
<tr>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Ja</td>
<td>Ja</td>
</tr>
<tr>
<td>Ja</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Tabelle 19: Einfluss der Wandlernutzung auf die Messwertanzeige

7.8.1 Wandlerprimärspannung einstellen

Mit diesem Parameter können Sie die Wandlerprimärspannung in kV einstellen. Wenn Sie die Wandlerprimärspannung einstellen, zeigt das Gerät die Primärspannung anstelle der Sekundärspannung im Hauptbildschirm an und Sie können die Regelparameter ebenfalls in kV einstellen.

Die Einstellung 0 kV deaktiviert die Anzeige der Wandlerprimärspannung.

Um die Wandlerprimärspannung einzustellen, gehen Sie wie folgt vor:

1. \text{Menü} \rightarrow \text{F4 Konfiguration} \rightarrow \text{F2 Wandlernutzung}.
 - Primärspannung.
2. \text{F3} drücken, um die Kommastelle zu markieren.
 - Die Kommastelle ist festgelegt und der Wert kann geändert werden.
3. \text{F4} drücken, um eine Dezimalstelle zu markieren.
 - Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
4. \text{F1} drücken, um den Wert zu erhöhen oder \text{F5} drücken, um den Wert zu senken.
5. \text{Enter} drücken.
 - Die Wandlerprimärspannung ist eingestellt.
7 Funktionen und Einstellungen

7.8.2 Wandlersekundärspannung einstellen

Mit diesem Parameter können Sie die Wandlersekundärspannung in V einstellen.

Um die Wandlersekundärspannung einzustellen gehen Sie wie folgt vor:

1. Konfiguration > Wandlerdaten > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ Sekundärspannung.

2. F4 drücken, um eine Dezimalstelle zu markieren.
 ⇒ Die gewünschte Stelle ist markiert und der Wert kann geändert werden.

3. F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.

4. drücken.
 ⇒ Die Wandlersekundärspannung ist eingestellt.

7.8.3 Wandlerprimärstrom einstellen

Mit diesem Parameter können Sie den Wandlerprimärstrom einstellen.

- Wenn Sie den Wandlerprimärstrom einstellen, wird der Messwert im Hauptbildschirm angezeigt.
- Wenn Sie den Wert 0 einstellen wird kein Messwert im Hauptbildschirm angezeigt.

<table>
<thead>
<tr>
<th>Einstellparameter</th>
<th>Eingespeister Strom</th>
<th>Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärstrom</td>
<td>Sekundärstrom</td>
<td>Stromanschluss</td>
</tr>
<tr>
<td>Keine Parametrierung</td>
<td>Unbekannt</td>
<td>1 A</td>
</tr>
<tr>
<td>Keine Parametrierung</td>
<td>1 A</td>
<td>1 A</td>
</tr>
<tr>
<td>50 A</td>
<td>Unbekannt</td>
<td>1 A</td>
</tr>
<tr>
<td>50 A</td>
<td>1 A</td>
<td>1 A</td>
</tr>
</tbody>
</table>

Tabelle 20: Beispiel für die angezeigte Einheit %/A

Um den Wandlerprimärstrom einzustellen, gehen Sie wie folgt vor:
1. **F4** Konfiguration > **F2** Wandlerdaten > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ Primärstrom.
2. **F4** drücken, um eine Dezimalstelle zu markieren.
 ⇒ Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
3. **F1** drücken, um den Wert zu erhöhen oder **F5** drücken, um den Wert zu senken.
4. **←** drücken.
 ⇒ Der Wandlerprimärstrom ist eingestellt.

7.8.4 Stromwandleranschluss einstellen

Wenn Sie die Option „Unbekannt“ auswählen, wird im Infobildschirm der prozentuale Wert des Stroms, bezogen auf den verwendeten Stromwandleranschluss, angezeigt.

- 0,2 A
- 1 A
- 5 A

Um den Stromwandleranschluss einzustellen, gehen Sie wie folgt vor:

1. **F4** Konfiguration > **F2** Wandlerdaten > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ Stromwandleranschluss.
2. **F1** oder **F5** drücken, um die gewünschte Anschlussklemme auszuwählen.
3. **←** drücken.
 ⇒ Der Stromwandleranschluss ist eingestellt.

7.8.5 Phasenlage von Stromwandler/Spannungswandler einstellen

Mit diesem Parameter können Sie die Phasenlage von Stromwandler und Spannungswandler einstellen. Die gebräuchlichen Wandlerschaltungen können Sie wie folgt einstellen:

<table>
<thead>
<tr>
<th>Schaltung</th>
<th>Einstellung</th>
<th>Messmethode</th>
<th>Phasenlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 1PH</td>
<td>1-phasig</td>
<td>0°</td>
</tr>
<tr>
<td>B</td>
<td>0 3PHN</td>
<td>3-phasig</td>
<td>0°</td>
</tr>
<tr>
<td>C</td>
<td>0 3PH</td>
<td>3-phasig</td>
<td>0°</td>
</tr>
</tbody>
</table>
Schaltung A: 1-phasige Messung im 1-Phasennetz

Abbildung 49: Phasenlage 0 1PH

- Der Spannungswandler VT ist an dem Außenleiter und Neutralleiter angeschlossen.
- Der Stromwandler CT ist in den Außenleiter eingeschleift.
- Die Spannung U_{L1} und der Strom I_{L1} sind phasengleich.
- Der Spannungsabfall an einem Außenleiter wird durch den Strom I_{L1} bestimmt.

Schaltung B: 1-phasige Messung im 3-Phasennetz

Abbildung 50: Phasenlage 0 3PHN

- Der Spannungswandler VT ist an den Außenleitern L1 und Neutralleiter angeschlossen.
- Der Stromwandler CT ist in den Außenleiter L1 eingeschleift.
• Die Spannung U und der Strom I sind phasengleich.
• Der Spannungsabfall an einem Außenleiter wird durch den Strom I_L bestimmt.

Schaltung C:

Abbildung 51: Phasenlage 0 3PH

• Der Spannungswandler VT ist an den Außenleitern L1 und L2 angeschlossen.
• Der Stromwandler CT1 ist in den Außenleiter L1 und CT2 in den Außenleiter L2 eingeschleift.
• Die Stromwandler CT1 und CT2 sind kreuzweise parallelgeschaltet (Summenstrom $= I_{L1} + I_{L2}$).
• Der Summenstrom $I_{L1} + I_{L2}$ und die Spannung $U_{L1} - U_{L2}$ sind phasengleich.
• Der Spannungsabfall an einem Außenleiter wird durch den Strom bestimmt: $(I_{L1} + I_{L2}) / \sqrt{3}$.

Schaltung D

Abbildung 52: Phasenlage 90 3PH

• Der Spannungswandler VT ist an den Außenleitern L1 und L2 angeschlossen.
• Der Stromwandler CT ist in den Außenleiter L3 eingeschleift.
• Der Strom I_L eilt der Spannung $U_{L1} - U_{L2}$ um 90° voraus.
• Der Spannungsabfall an einem Außenleiter wird durch den Strom I\textsubscript{L3} bestimmt.

Schaltung E

Abbildung 53: Phasenlage 30 3PH

• Der Spannungswandler VT ist an den Außenleitern L1 und L2 angeschlossen.
• Der Stromwandler CT ist in den Außenleiter L2 eingeschleift.
• Der Strom I\textsubscript{L2} eilt der Spannung U\textsubscript{L2}-U\textsubscript{L1} um 30° voraus.
• Der Spannungsabfall an einem Außenleiter wird durch den Strom I\textsubscript{L2} bestimmt.

Schaltung F

Abbildung 54: Phasenlage -30 3PH

• Der Spannungswandler VT ist an den Außenleitern L1 und L2 angeschlossen.
• Der Stromwandler CT ist in den Außenleiter L1 eingeschleift.
• Der Strom I\textsubscript{L1} eilt der Spannung U\textsubscript{L1}-U\textsubscript{L2} um 30° nach. Dies entspricht einer Phasenverschiebung von -30°.
• Der Spannungsabfall an einem Außenleiter wird durch den Strom I\textsubscript{L1} bestimmt.

Um die Phasenlage für die Wandlerschaltung einzustellen, gehen Sie wie folgt vor:
1. **Wandlerschalung:**
 - Konfiguration > **F4** Wandlerdaten > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - Wandlerschalung.

2. **F1** oder **F5** drücken, um die gewünschte Phasenlage auszuwählen.
3. **drücken.**
 - Die Phasenlage ist eingestellt.

7.9 Parallellauf

Im Menüpunkt Parallellauf können Sie die notwendigen Parameter für den Parallelbetrieb von Transformatoren einstellen. Der Parallelbetrieb von Transformatoren dient dazu, die Durchgangsleistung oder die Kurzschlussleistung an einem Standort zu erhöhen.

Bedingungen für den Parallelbetrieb

Für den Parallelbetrieb von Transformatoren sind folgende allgemeingültige Bedingungen einzuhalten:

- Gleiche Bemessungsspannungen
- Verhältnis der Transformatorleistung (< 3 : 1)
- Maximale Abweichung der Kurzschlussspannungen \(U_K\) der parallelgeschalteten Transformatoren < 10 %
- Gleiche Schaltgruppenanzahl
- Bei allen parallellaufenden Geräten muss der gleiche Stromwandleranschluss verwendet werden

Parallellaufmethode

Das Gerät unterstützt den Parallellauf nach folgenden Methoden:

- Parallellauf nach dem Prinzip "Kreisblindstromminimierung"
- Parallellauf nach dem Prinzip "Stufengleichlauf" (Master-Follower)

Sie müssen bei allen parallellaufenden Spannungsreglern die gleiche Parallellaufmethode (Kreisblindstromminimierung oder Stufengleichlauf) auswählen. Andernfalls können Sie die Geräte nicht im Parallellauf betreiben.

In den folgenden Abschnitten wird beschrieben, wie Sie die Parameter einstellen können. Wenn Sie den Parallellauf aktivieren, stellen Sie sicher, dass Sie folgende Parameter eingestellt haben:

- CAN-Bus-Adresse
7.9.1 CAN-Bus-Adresse zuweisen

Um die CAN-Bus-Adresse einzugeben, gehen Sie wie folgt vor:

1. \textbf{Konfiguration > F4} Konfiguration > \textbf{F4} Parallellauf > so oft drücken, bis der gewünschte Parameter angezeigt wird.
\quad \Rightarrow \text{ CAN Adresse.}
2. \textbf{F1} drücken, um den Wert zu erhöhen oder \textbf{F5} drücken, um den Wert zu senken.
3. \textbf{F2} drücken.
\quad \Rightarrow \text{Die CAN-Bus-Adresse ist gespeichert.}

7.9.2 Parallellaufmethode auswählen

Mit diesem Parameter können Sie eine Parallellaufmethode auswählen. Sie können dem Gerät 2 verschiedene Methoden zuweisen.
- Kreisblindstromminimierung
- Stufengleichlauf (Master/Follower)

Sie müssen bei allen parallellaufenden Spannungsreglern die gleiche Parallellaufmethode auswählen.

In den folgenden Abschnitten wird beschrieben, wie Sie die Parameter für eine Parallellaufmethode einstellen.

7.9.2.1 Kreisblindstrommethode einstellen

Die Kreisblindstrommethode eignet sich für parallelgeschaltete Transformatoren mit vergleichbarer Nennleistung und Kurzschlussspannung \(U_k \) sowie für Schaltgruppen mit gleicher und ungleicher Stufenspannung. Dabei ist keine Information über die Stufenstellung erforderlich.
Um die Parallelaufmethode **Kreisblindstrom** einzustellen, gehen Sie wie folgt vor:

1. **Konfiguration > Parallelauf.**
 - Parallelaufmethode.
2. **F1** oder **F5** so oft drücken, bis **Kreisblindstrom** in der Anzeige erscheint.
3. **drücken.**
 - Die Parallelaufmethode ist eingestellt.

Wenn Sie die Parallelaufmethode **Kreisblindstrom** verwenden, müssen Sie die Parameter für die **Kreisblindstromempfindlichkeit** und **Kreisblindstromblockierung** einstellen.

Kreisblindstromempfindlichkeit einstellen

Die Kreisblindstromempfindlichkeit ist ein Maß für die Wirkung des Kreisblindstroms auf das Verhalten des Spannungsreglers. Bei einer Einstellung von 0 % ist keine Wirkung vorhanden. Wenn Sie den Wert auf beispielsweise 10 % einstellen, würde bei einem Kreisblindstrom, bezogen auf den Stromwandlerennstrom, eine Spannungskorrektur von 10 % in den Spannungsreglern verursachen. Diese Spannungskorrektur können Sie mit dieser Einstellung reduzieren oder vergrößern, um den optimalen Wert zu erreichen.

Sobald Sie den Wert der Kreisblindstromempfindlichkeit verändern, verändert sich im Hilfstext in der Anzeige der Wert für die Wirkung.

Um die Kreisblindstromempfindlichkeit einzustellen, gehen Sie wie folgt vor:

1. **Konfiguration > Parallelauf > so oft drücken, bis der gewünschte Parameter angezeigt wird.**
 - Stabilität.
2. **drücken, um den Wert zu erhöhen oder** **drücken, um den Wert zu senken.
3. **drücken, um die Kommastelle zu markieren.**
 - Die Kommastelle ist markiert und der Wert kann geändert werden.
4. **drücken.**
 - Die Kreisblindstromempfindlichkeit ist eingestellt.

Kreisblindstromblockierung einstellen

Mit diesem Parameter können Sie den Grenzwert für den maximal zulässigen Kreisblindstrom einstellen. Überschreitet der Kreisblindstrom während des Parallelbetriebes den eingestellten Grenzwert, wird folgendes Ereignis aktiviert:

- Parallelauf gestört
Alle Geräte, die sich im Parallellauf befinden werden blockiert. Je nach eingestellter Verzögerungszeit der Parallellauffehlermeldung zieht das Melderei Parallellauf gestört an.

Um die Blockiergrenze für den maximal zulässigen Kreisblindstrom einzustellen, gehen Sie wie folgt vor:

1. Konfiguration > Parallellauf > so oft drücken, bis der gewünschte Parameter angezeigt wird.
2. drücken, um den Wert zu erhöhen oder drücken, um den Wert zu senken.
3. drücken.

Die Blockiergrenze für den maximal zulässigen Kreisblindstrom ist eingestellt.

7.9.2.2 Stufengleichlauf einstellen

Bei der Stufengleichlaufmethode müssen Sie einen Spannungsregler als Master bestimmen und alle anderen Spannungsregler als Follower. Der Master übernimmt die Spannungsregelung und sendet über den CAN-Bus seine aktuelle Stufenstellungen an alle Follower. Die Follower vergleichen die empfangene Stufenstellung mit der eigenen Stufenstellung. Wenn die eingestellte zulässige Stufendifferenz zwischen der empfangenen und der eigenen Stufenstellung überschritten wird, schalten die Follower auf die vom Master empfangene Stufenstellung. Auf diese Weise befinden sich die parallellaufenden Transformatoren immer in der gleichen Stufenstellung.

Für die Stufengleichlaufmethode können Sie folgende Optionen auswählen:

<table>
<thead>
<tr>
<th>Option</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td>Der Spannungsregler wird als Master bestimmt.</td>
</tr>
<tr>
<td>Follower</td>
<td>Der Spannungsregler wird als Follower bestimmt.</td>
</tr>
<tr>
<td>Gleichl.Auto</td>
<td>Automatische Zuweisung von Master oder Follower. Wenn kein Master erkannt</td>
</tr>
<tr>
<td></td>
<td>wird, wird automatisch der Spannungsregler mit der niedrigsten CAN-Bus-Ad-</td>
</tr>
<tr>
<td></td>
<td>resse zum Master bestimmt. Alle anderen Spannungsregler werden zum Follower</td>
</tr>
<tr>
<td></td>
<td>bestimmt.</td>
</tr>
</tbody>
</table>

Tabelle 22: Stufengleichlaufmethode

Im Parallellbetrieb müssen Sie jedem Spannungsregler eine individuelle CAN-Bus-Adresse zuweisen. Es werden bis zu 16 CAN-Teilnehmer unterstellt.
Um die Stufengleichlaufmethode einzustellen, gehen Sie wie folgt vor:

1. **Konfiguration > Parallellauf.**
 - Parallellaufmethode.

2. **F1** oder **F5** so oft drücken, um die gewünschte Option auszuwählen.

3. **drücken.**
 - Die Stufengleichlaufmethode ist ausgewählt.

7.9.3 Verzögerungszeit für Parallellauffehlermeldungen einstellen

Mit diesem Parameter können Sie die Verzögerungszeit für eine Parallellauffehlermeldung einstellen, um bei unterschiedlichen Laufzeiten der am Parallellauf beteiligten Motorantriebe keine kurzzeitige Störmeldung zu erhalten. Nachdem die eingestellte Verzögerungszeit abgelaufen ist, wird am Ausgangsrelais das Ereignis ausgegeben. Die automatische Regelung wird blockiert und ein Verstellen der Stufenschalter ist nur noch im Handbetrieb möglich.

Um die Verzögerungszeit für die Parallellauffehlermeldung einzustellen, gehen Sie wie folgt vor:

1. **Konfiguration > Parallellauf > so oft drücken, bis der gewünschte Parameter angezeigt wird.**
 - Fehlermeldung.

2. **drücken, um den Wert zu erhöhen oder drücken, um den Wert zu senken.**

3. **drücken.**
 - Die Verzögerungszeit für die Parallellauffehlermeldung ist eingestellt.

7.9.4 Parallellauf deaktivieren

Um den Parallellauf zu deaktivieren, gehen Sie wie folgt vor:

1. **Konfiguration > Parallellauf.**
 - Parallellaufmethode.

2. **F1** oder **F5** drücken, um mit der Auswahl **Aus** den Parallellauf zu deaktivieren.

3. **drücken.**
 - Der Parallellauf ist deaktiviert.
7 Funktionen und Einstellungen

7.10 Analoge Stufenstellungserfassung (optional)

Für die analoge Stufenstellungserfassung müssen Sie dem Analogeingang für den minimalen Messwert die niedrigste Stufenstellung und für den maximalen Messwert die höchste Stufenstellung zuweisen.

Das Gerät ist werksseitig gemäß Auftrag konfiguriert. Sollten dennoch Anpassungen notwendig sein, beachten Sie die nachfolgenden Abschnitte.

Die Analogeingangskarte wird zur Erfassung der Stufenstellung von einem analogen Signalgeber verwendet. Je nach Gerätekonfiguration können Sie folgende Signale erfassen:

<table>
<thead>
<tr>
<th>AD-Karte</th>
<th>AD8-Karte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Widerstandskontaktreihe</td>
<td>50…2.000 Ohm</td>
</tr>
<tr>
<td>Eingeprägter Strom</td>
<td>0/4…20 mA</td>
</tr>
</tbody>
</table>

Tabelle 23: Analoge Stufenstellungserfassung

7.10.1 Unterer Grenzwert einstellen

Mit diesen Parametern können Sie den unteren Wert der Stufenstellung einstellen. Dazu müssen Sie den unteren Wert des Signalbereichs und die dazu gehörige niedrigste Stufenstellung einstellen.

Die Einstellungen können Sie für jeden Eingang der Analogeingangskarte separat vornehmen.

Beispiel: Um einen Stufenstellungsbereich von 1…19 über den Eingang 1 als 4…20 mA zu erfassen, müssen Sie für den Parameter „Eingang 1 Grenze unten“ den Wert 20 % einstellen und für den Parameter „Eingang 1 Wert unten“ den Wert 1,0 einstellen.

Unteren Grenzwert des Eingangssignals einstellen

Zur Konfiguration des Analogeingangs müssen Sie den unteren Grenzwert des Eingangssignals angeben. Verwenden Sie entsprechend Ihres Analogsignals folgende Einstellungen:

<table>
<thead>
<tr>
<th>Analogsignal</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingeprägter Strom: 0…20 mA</td>
<td>0 % (= 0 mA)</td>
</tr>
<tr>
<td>Eingeprägter Strom: 4…20 mA</td>
<td>20 % (= 4 mA)</td>
</tr>
<tr>
<td>Widerstandskontaktreihe</td>
<td>immer 20 %</td>
</tr>
</tbody>
</table>

Tabelle 24: Einstellungen des Parameters

Um den unteren Grenzwert des Eingangs einzustellen, gehen Sie wie folgt vor:
1. **Konfiguration > F5 Weiter > F3 Analogeingänge.**
 - Eingang 1 Grenze unten.
2. **F4 drücken, um eine Dezimalstelle zu markieren.**
 - Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
3. **F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.**
4. **drücken.**
 - Der untere Grenzwert der Stufenstellung ist zugewiesen.

Unteren Wert des Eingangssignals einstellen

Zur Konfiguration des Analogeingangs müssen Sie dem unteren Wert des anliegenden Signals einen Absolutwert zuordnen.

Um den unteren Wert des Eingangs einzustellen, gehen Sie wie folgt vor:

1. **Konfiguration > F4 Weiter > F3 Analogeingänge > so oft drücken, bis der gewünschte Parameter angezeigt wird.**
 - Eingang 1 Wert unten.
2. **F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.**
3. **drücken.**
 - Der untere Wert der Stufenstellung ist zugewiesen.

7.10.2 Oberer Grenzwert einstellen

Mit diesen Parametern können Sie den oberen Wert der Stufenstellung einstellen. Dazu müssen Sie den oberen Wert des Signalbereichs und die dazu gehörige höchste Stufenstellung einstellen.

Die Einstellungen können Sie für jeden Eingang der Analogeingangskarte separat vornehmen.

Beispiel: Um einen Stufenstellungsbereich von 1...19 über den Eingang 1 als 4...20 mA zu erfassen, müssen Sie für den Parameter „Eingang 1 Grenze oben“ den Wert 100 % einstellen und für den Parameter „Eingang 1 Wert oben“ den Wert 19,0 einstellen.

Oberen Grenzwert des Eingangssignals einstellen

Zur Konfiguration des Analogeingangs müssen Sie den oberen Grenzwert des Eingangssignals angeben. Verwenden Sie entsprechend Ihres Analogsignals folgende Einstellungen:
7 Funktionen und Einstellungen

Analogsignal

<table>
<thead>
<tr>
<th>Einstellung</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingeprägter Strom: 0/4...20 mA</td>
<td>100 % (= 20 mA)</td>
</tr>
<tr>
<td>Widerstandskontakteihe</td>
<td>immer 100 %</td>
</tr>
</tbody>
</table>

Tabelle 25: Einstellungen des Parameters

Um den oberen Grenzwert des Eingangs einzustellen, gehen Sie wie folgt vor:

1. **Konfiguration > Weiter > Analogeingänge > so oft drücken, bis der gewünschte Parameter angezeigt wird.**
 - Eingang 1 Grenze oben.
2. **drücken, um eine Dezimalstelle zu markieren.**
 - Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
3. **drücken, um den Wert zu erhöhen oder drücken, um den Wert zu senken.**
4. **drücken.**

Oberen Wert des Eingangssignals einstellen

Zur Konfiguration des Analogeingangs müssen Sie dem oberen Wert des anliegenden Signals einen Absolutwert zuordnen.

Um den oberen Wert des Eingangs einzustellen, gehen Sie wie folgt vor:

1. **Konfiguration > Weiter > Analogeingänge > so oft drücken, bis der gewünschte Parameter angezeigt wird.**
 - Eingang 1 Wert oben.
2. **drücken, um den Wert zu erhöhen oder drücken, um den Wert zu senken.**
3. **drücken.**

7.11 LED-Auswahl

Mit diesem Parameter können Sie den 4 freien LEDs [► 20] Funktionen zuweisen, die bei einem Ereignis leuchten. Sie können den Beschriftungsstrei- fen herausziehen, um ihn zu beschriften.

Verfügbare Funktionen für LEDs

Die nachfolgende Tabelle enthält eine Übersicht aller möglichen Funktionen, die Sie den LEDs zuweisen können.
7 Funktionen und Einstellungen

<table>
<thead>
<tr>
<th>Verfügbare Funktionen</th>
<th>Funktionsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus</td>
<td>LED deaktiviert</td>
</tr>
<tr>
<td>IOxx/UCxx</td>
<td>Am Steuereingang IOxx/UCxx (z. B. IO:25) liegt ein Signal an</td>
</tr>
<tr>
<td>SI:bef1</td>
<td>SI:bef1 (Befehl) wird empfangen</td>
</tr>
<tr>
<td>SI:bef2</td>
<td>SI:bef2 (Befehl) wird empfangen</td>
</tr>
<tr>
<td>Unterspg.</td>
<td>Unterspannung liegt vor</td>
</tr>
<tr>
<td>Überspg.</td>
<td>Überspannung liegt vor</td>
</tr>
<tr>
<td>Überstrom</td>
<td>Überstrom liegt vor</td>
</tr>
<tr>
<td>Fehler Par.</td>
<td>Parallellauftfehler liegt vor</td>
</tr>
<tr>
<td>Motorsch.</td>
<td>Motorschutzschalter ist ausgelöst</td>
</tr>
<tr>
<td>Blockierung</td>
<td>Regelung ist blockiert</td>
</tr>
<tr>
<td>Kreisblindst.</td>
<td>Parallellauf mittels Kreisblindstrommethode ausgewählt</td>
</tr>
<tr>
<td>Master</td>
<td>Gerät im Parallellauf als Master aktiv</td>
</tr>
<tr>
<td>Follower</td>
<td>Gerät im Parallellauf als Follower aktiv</td>
</tr>
<tr>
<td>Automatik</td>
<td>Automatikbetrieb aktiv</td>
</tr>
<tr>
<td>Bandbreite <</td>
<td>Bandbreite ist unterschritten</td>
</tr>
<tr>
<td>Bandbreite ></td>
<td>Bandbreite ist überschritten</td>
</tr>
<tr>
<td>Leist.abh.Soll.</td>
<td>Leistungsabhängige Sollwertanpassung aktiviert</td>
</tr>
</tbody>
</table>

Tabelle 26: Verfügbarer Funktionen für LEDs

Funktion zuweisen

Um einer LED eine Funktion zuzuweisen, gehen Sie wie folgt vor:

1. **Konfiguration > F4 Weiter > F5 LED Auswahl > so oft drücken, bis der gewünschte Parameter angezeigt wird.**
2. **F1** oder **F5** drücken, um die gewünschte Option auszuwählen.
3. **drücken.**

Die Funktion ist zugewiesen.

Sehen Sie dazu auch

 bankruptcy

7.12 Kommunikationsschnittstelle Sid (optional)

Im nachfolgenden Abschnitt wird die Konfiguration der Kommunikations- schnittstelle beschrieben.
7 Funktionen und Einstellungen

7.12.1 Netzwerkmaske zuweisen
Mit diesem Parameter können Sie die Netzwerkmaske einstellen.

Geben Sie unbedingt eine gültige Netzwerkmaske ungleich 0.0.0.0 ein, da Sie sonst keine Verbindung zum Gerät herstellen können.

Um eine Netzwerkmaske zuzuweisen, gehen Sie wie folgt vor:
1. \[\text{MENU} \rightarrow \text{F4 Konfiguration} \rightarrow \text{F3 Allgemeines} \rightarrow \text{so oft drücken, bis der gewünschte Parameter angezeigt wird.}\]
 \[\Rightarrow \text{Netzwerkmaske.}\]
2. \[\text{F4 drücken, um eine Stelle zu markieren.}\]
 \[\Rightarrow \text{Die gewünschte Stelle ist markiert und kann geändert werden.}\]
3. \[\text{F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.}\]
4. \[\Rightarrow \text{drücken.}\]
 \[\Rightarrow \text{Die Netzwerkmaske ist zugewiesen.}\]

7.12.2 Netzwerkadresse zuweisen
Mit diesem Parameter können Sie dem Gerät eine Netzwerkadresse zuweisen.

Um eine Netzwerkadresse zuzuweisen, gehen Sie wie folgt vor:
1. \[\text{MENU} \rightarrow \text{F4 Konfiguration} \rightarrow \text{F3 Allgemeines} \rightarrow \text{so oft drücken, bis der gewünschte Parameter angezeigt wird.}\]
 \[\Rightarrow \text{Netzwerkadresse.}\]
2. \[\text{F4 drücken, um eine Stelle zu markieren.}\]
 \[\Rightarrow \text{Die gewünschte Stelle ist markiert und der Wert kann geändert werden.}\]
3. \[\text{F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.}\]
4. \[\Rightarrow \text{drücken.}\]
 \[\Rightarrow \text{Die Netzwerkadresse ist zugewiesen.}\]

7.12.3 Zeitserveradresse eingeben
Mit diesem Parameter können Sie die IP-Adresse des SNTP-Zeitserver eingeben. Wenn Sie einen Zeitserver verwenden, übernimmt das Gerät die Zeit des Zeitserver als Systemzeit.
Geben Sie unbedingt eine gültige Zeitserveradresse ungleich 0.0.0.0 ein, da Sie sonst keine Verbindung zum Gerät herstellen können.

Um die Zeitserveradresse des SNTP-Servers einzugeben, gehen Sie wie folgt vor:

2. drücken, um eine Stelle zu markieren.
Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
3. drücken, um den Wert zu erhöhen oder drücken, um den Wert zu senken.
4. drücken.
Die IP-Adresse des Zeitserver ist eingegeben.

7.12.4 Gateway eingeben

Mit diesem Parameter können Sie die IP-Adresse des Gateways einstellen.

Wenn Sie den Wert 0.0.0.0 einstellen wird kein Gateway verwendet.

Um die Adresse des Gateway einzugeben, gehen Sie wie folgt vor:

1. Konfiguration > Allgemeines > Gateway.
2. drücken, um eine Stelle zu markieren.
Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
3. drücken, um den Wert zu erhöhen oder drücken, um den Wert zu senken.
4. drücken.
Die Adresse des Gateway ist eingegeben.
7 Funktionen und Einstellungen

7.12.5 IED Name eingeben

Mit diesem Parameter können Sie dem Gerät einen IED-Namen zur Identifikation des Geräts im IEC 61850-Netzwerk zuweisen.

Der IED-Name muss mit einem Buchstaben beginnen und kann maximal 11 Zeichen enthalten.

Um den IED Namen einzugeben, gehen Sie wie folgt vor:

1. Menü > F4 Konfiguration > F3 Allgemeines > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 ⇒ IED Name.
2. F4 drücken, um eine Stelle zu markieren.
 ⇒ Die gewünschte Stelle ist markiert und der Wert kann geändert werden.
3. F1 drücken, um den Wert zu erhöhen oder F5 drücken, um den Wert zu senken.
4. drücken.
 ⇒ Der IED Name ist eingegeben.

7.13 Kommunikationsschnittstelle CIC2 (optional)

Die Kommunikationsschnittstelle CIC2 ist optional und dient ausschließlich zur Kommunikation mit der Software TAPCON®-trol. Im nachfolgenden Abschnitt wird die Konfiguration der Kommunikationsschnittstelle beschrieben.

7.13.1 Kommunikationsanschluss auswählen

Mit diesem Parameter können Sie den verwendeten Kommunikationsanschluss der CIC-Karte auswählen. Sie können folgende Optionen wählen:

- RS232
- Ethernet
- Lichtwellenleiter

Um den Kommunikationsanschluss auszuwählen, gehen Sie wie folgt vor:
7.13.2 Baudrate Kommunikation auswählen

Mit diesem Parameter können Sie die gewünschte Baudrate der Kommunikationsschnittstelle einstellen. Sie können folgende Optionen wählen:

- 9,6 kBaud
- 19,2 kBaud
- 38,4 kBaud
- 57,6 kBaud

Die Baudrate 57,6 kBaud ist nur bei den Kommunikationsschnittstellen RS232, RS485 und LWL aktiv.
Für das Ethernet ist die Baudrate 57,6 kBaud nicht möglich.

Um die Baudrate der Kommunikationsschnittstelle einzustellen, gehen Sie wie folgt vor:

1. **F4** Konfiguration > **F5** Weiter > **F5** Weiter > **F5** Weiter > **F3** Komm Schnittst.2.
2. **F1** oder **F5** drücken, um die gewünschte Option einzustellen.
3. **F5** drücken.
 - Die Baudrate ist ausgewählt.

7.13.3 Netzwerkdresse zuweisen

Mit diesem Parameter können Sie dem Gerät eine Netzwerkdresse (IPv4) zuweisen. Wenn Sie das Gerät mittels Ethernetanschluss verbinden wollen, müssen Sie eine gültige Netzwerkdresse einstellen.

Um die Netzwerkdresse zuzuweisen, gehen Sie wie folgt vor:
7 Funktionen und Einstellungen

1. **Konfiguration > Weiter > Weiter > Weiter > Komm Schnittst.2 >** so oft drücken, bis der gewünschte Parameter angezeigt wird.

 ⇒ Netzwerkadresse CIC2.

2. **drücken, um die gewünschte Stelle zu markieren.**

 ⇒ Die Stelle ist markiert und der Wert kann geändert werden.

3. **drücken, um den Wert zu erhöhen oder drücken, um den Wert zu senken.**

4. **drücken.**

 ⇒ Die Netzwerkadresse ist zugewiesen.

7.13.4 TCP Port zuweisen

Mit diesem Parameter können Sie dem Gerät einen TCP-Port zuweisen. Wenn Sie das Gerät mittels Ethernet-Anschluss verbinden wollen, müssen Sie einen gültigen TCP-Port einstellen.

Um den TCP Port zuzuweisen, gehen Sie wie folgt vor:

1. **Konfiguration > Weiter > Weiter > Komm Schnittst.2 >** so oft drücken, bis der gewünschte Parameter angezeigt wird.

 ⇒ TCP Port CIC2.

2. **drücken, um die Stelle zu markieren.**

 ⇒ Die Stelle ist markiert und der Wert kann geändert werden.

3. **drücken, um den Wert zu erhöhen oder drücken, um den Wert zu senken.**

4. **drücken.**

 ⇒ Der TCP Port ist zugewiesen.

7.13.5 Sendeverzögerung bei RS485-Schnittstelle einstellen

Mit diesem Parameter können Sie eine Sendeverzögerung für die Schnittstelle einstellen, um beispielsweise die Reaktionszeit eines externen Umformers RS485/RS232 beim Wechsel zwischen Sende- und Empfangsbetrieb auszugleichen.

Um die Sendeverzögerung für die RS485-Schnittstelle einzustellen, gehen Sie wie folgt vor:
7 Funktionen und Einstellungen

1. **Komm Schnittst. 2** > so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - Sendeverzögerung CIC 2.

2. **drücken, um den Wert zu erhöhen oder drücken, um den Wert zu senken.**

3. **drücken.**
 - Die Sendeverzögerung für die RS485-Schnittstelle ist eingestellt.

7.14 Messumformerfunktion

Mit Hilfe des Messumformermodules ist es möglich, je nach Konfiguration und Ausführung des Messumformermoduls 2 oder 4, Messwerte als Analogwerte in den folgenden Bereichen zu erhalten:

- ± 20 mA
- ± 10 mA
- ± 10 V (nur AN2-Karte)
- ± 1 mA

Folgende Werte stehen zur Verfügung:

- U1
- U2 (optional über einen zweiten Messeingang)
- I1
- Wirkstrom
- Blindstrom
- Wirkleistung
- Blindleistung
- Scheinleistung
- Stufenstellung
- Sollwert

Wenn die Analogausgänge nicht werkseitig entsprechend Ihren Wünschen eingestellt sind, können Sie mit Hilfe der folgenden Beschreibung den Messumformer einstellen.

7.14.1 Messwert mit Ausgang verknüpfen

In dieser Anzeige können Sie dem Ausgang des Messumformers einen zu übertragenden Messwert zuweisen.
Um dem Ausgang des Messumformers einen Messwert zuzuweisen, gehen Sie wie folgt vor (Beispiel Messumformer 1/2; „Ausgang 1 Messwert“):

1. \(\text{MENU} \rightarrow F4 \text{ Konfiguration} \rightarrow F5 \text{ Weiter} \rightarrow F5 \text{ Weiter} \rightarrow F3 \text{ Messumformer 1/2.} \)
 \(\Rightarrow \) Ausgang 1 Messwert.

2. \(F1 \) oder \(F5 \) so oft drücken, bis die gewünschte Option angezeigt wird.

3. \(\ldots \) drücken.
 \(\Rightarrow \) Der gewünschte Messwert ist zugewiesen.

7.14.2 Minimale physikalische Größe zuweisen

In dieser Anzeige können Sie dem Ausgang des Messumformers eine minimale physikalische Größe zuweisen.

Um dem Messumformer die untere physikalische Größe zuzuweisen, gehen Sie wie folgt vor:

1. \(\text{MENU} \rightarrow F4 \text{ Konfiguration} \rightarrow F5 \text{ Weiter} \rightarrow F5 \text{ Weiter} \rightarrow F3 \text{ Messumformer 1/2} \rightarrow \ldots \) so oft drücken, bis der gewünschte Parameter angezeigt wird.
 \(\Rightarrow \) Ausgang 1 unten.

2. \(F1 \) oder \(F5 \) so oft drücken, bis die gewünschte physikalische Größe angezeigt wird.

3. \(\leftarrow \) drücken.
 \(\Rightarrow \) Die gewünschte physikalische Größe ist zugewiesen.

7.14.3 Maximale physikalische Größe zuweisen

In dieser Anzeige können Sie dem Ausgang des Messumformers eine maximale physikalische Größe zuweisen.

Um dem Messumformer die obere physikalische Größe zuzuweisen, gehen Sie wie folgt vor:

1. \(\text{MENU} \rightarrow F4 \text{ Konfiguration} \rightarrow F5 \text{ Weiter} \rightarrow F5 \text{ Weiter} \rightarrow F3 \text{ Messumformer 1/2} \rightarrow \ldots \) so oft drücken, bis der gewünschte Parameter angezeigt wird.
 \(\Rightarrow \) Ausgang 1 oben.

2. \(F1 \) oder \(F5 \) so oft drücken, bis die gewünschte physikalische Größe angezeigt wird.

3. \(\leftarrow \) drücken.
 \(\Rightarrow \) Die gewünschte physikalische Größe ist zugewiesen.
7.14.4 Minimalen Absolutwert zuweisen

In dieser Anzeige können Sie dem Ausgang des Messumformers einen minimalen Grenzwert als Absolutwert zuweisen.

Um den minimalen Absolutwert zuzuweisen, gehen Sie wie folgt vor:
1. \textit{Menu} \rightarrow \text{F}4 \rightarrow \text{Konfiguration} \rightarrow \text{F}5 \rightarrow \text{Weiter} \rightarrow \text{F}5 \rightarrow \text{Weiter} \rightarrow \text{F}3 \rightarrow \text{Messumformer 1/2} \rightarrow \text{so oft drücken, bis der gewünschte Parameter angezeigt wird.} \\
\rightarrow \text{Ausgang 1 Wert unten.}
2. \text{F}1 \rightarrow \text{drücken, um den Wert zu erhöhen oder} \text{F}5 \rightarrow \text{drücken, um den Wert zu senken.}
3. \rightarrow \text{drücken.} \\
\rightarrow \text{Der minimale Absolutwert ist zugewiesen.}

7.14.5 Maximalen Absolutwert zuweisen

In dieser Anzeige können Sie dem Ausgang des Messumformers einen maximalen Grenzwert als Absolutwert zuweisen.

Um den maximalen Absolutwert zuzuweisen, gehen Sie wie folgt vor:
1. \textit{Menu} \rightarrow \text{F}4 \rightarrow \text{Konfiguration} \rightarrow \text{F}5 \rightarrow \text{Weiter} \rightarrow \text{F}5 \rightarrow \text{Weiter} \rightarrow \text{F}3 \rightarrow \text{Messumformer 1/2} \rightarrow \text{so oft drücken, bis der gewünschte Parameter angezeigt wird.} \\
\rightarrow \text{Ausgang 1 Wert oben.}
2. \text{F}1 \rightarrow \text{drücken, um den Wert zu erhöhen oder} \text{F}5 \rightarrow \text{drücken, um den Wert zu senken.}
3. \rightarrow \text{drücken.} \\
\rightarrow \text{Der minimale Absolutwert ist zugewiesen.}

7.15 Speicher (optional)

Mit dieser Funktion können Sie die Einstellungen des Messwertspeichers vornehmen. Hierbei werden der Ereignisspeicher und die Schreiberfunktion konfiguriert. Das Gerät verfügt über eine Speicherkapazität von 8 MB. Der Speicher ist in 2 Bereiche gegliedert:

\textbf{Mittelwertspeicher}

Beim Mittelwertspeicher werden alle gemessenen und berechneten Werte mit den von Ihnen eingestellten Mittelwertintervallen gemittelt und gespeichert. Das Mittelwertintervall können Sie in Stufen zwischen 1 Sekunde und 40 Sekunden einstellen [\textit{\rightarrow 106}].
Ereignispeicher

Ereignis auslösen

Der Messwertschreiber kann ein Ereignis in Abhängigkeit des einstellbaren Unterspannungsgrenzwerts und/oder Überspannungsgrenzwerts auslösen. Die Daten, die hierbei erfasst werden, sind im Ereignispeicher des Messwertspeichers abgelegt.

Zeitlicher Verlauf

Um eine Überschreitung und Unterschreitung der Grenzwerte besser auszuwerten, umfasst der zeitliche Verlauf der gemessenen und berechneten Werte auch die letzten 10 Sekunden vor der eigentlichen Überschreitung oder Unterschreitung des Grenzwerts. Der zeitliche Rahmen der Speicherung je Ereignis beschränkt sich auf maximal 5 Minuten.

Während ein Ereignis ansteht, werden im Ereignispeicher nur die zeitlichen Verläufe der gemessenen und berechneten Werte gespeichert.

Messwertschreiber

Mit dem Modul Messwertschreiber, können die nachfolgend aufgeführten Daten gespeichert und entweder am Display oder mittels der Visualisierungsoftware TAPCON®-trol am PC angezeigt und ausgewertet werden.

Folgende Werte werden hierbei angezeigt:

- Gemessene Werte
 - Laststufenschalterstellung
 - Spannung
 - Wirkstrom
 - Blindstrom
- Berechnete Werte
 - Wirkleistung
 - Blindleistung
 - Scheinleistung
 - Leistungsfaktor

Die Berechnung der genannten Werte richtet sich nach den erfassten Messwerten und eingestellten Parametern, wie zum Beispiel:

- aktuelle Messschaltung
7 Funktionen und Einstellungen

- Primärstrom
- Spannungswandlerdaten von Primärseite und Sekundärseite

Eine korrekte Berechnung kann nur erfolgen, wenn Sie die Konfigurationsdaten vollständig und richtig eingegeben haben.

7.15.1 Unterspannungsschwelle einstellen

Mit diesen Parametern können Sie die Unterspannungsschwelle als Relativwert oder Absolutwert einstellen. Wenn die eingestellte Unterspannungsschwelle unterschritten wird, werden Messwerte mit hoher Auflösung für die Dauer der Unterschreitung gespeichert.

Relativwert

Um die Unterspannungsschwelle einzustellen, gehen Sie wie folgt vor:

1. "Konfiguration" > "F4" Konfiguration > "F5" Weiter > "F5" Weiter > "F3" Speicher.
 => "U< Schwelle".
2. "F1" drücken, um den Wert zu erhöhen oder "F5" drücken, um den Wert zu senken.
3. "" drücken.
 => Die Unterspannungsschwelle ist eingestellt.

Absolutwert

Die Eingabe erfolgt wahlweise in V oder kV. Wenn Sie den Absolutwert in V eingeben, bezieht sich dieser auf die Wandlersekundärspannung. Wenn Sie den Absolutwert in kV eingeben, bezieht sich dieser auf die Primärspannung.

Um die Unterspannungsschwelle einzustellen, gehen Sie wie folgt vor:

1. "Konfiguration" > "F4" Konfiguration > "F5" Weiter > "F5" Weiter > "F3" Speicher >
 so oft drücken, bis der gewünschte Parameter angezeigt wird.
 => "U< Speicher".
2. Gegebenenfalls "F3" drücken, um die gewünschte Einheit V oder kV auszuwählen.
3. Falls V ausgewählt ist, "F4" drücken, um die Kommaestelle zu markieren.
 => Die Kommaestelle ist markiert und der Wert kann geändert werden.
4. "F1" drücken, um den Wert zu erhöhen oder "F5" drücken, um den Wert zu senken.
5. "" drücken.
 => Die Unterspannungsschwelle ist eingestellt.
7 Funktionen und Einstellungen

7.15.2 Überspannungsschwelle einstellen

Mit diesen Parametern können Sie die Überspannungsschwelle als Relativwert oder Absolutwert einstellen. Wenn die eingestellte Überspannungsschwelle überschritten wird, werden Messwerte mit hoher Auflösung für die Dauer der Überschreitung gespeichert.

Relativwert

Um die Überspannungsschwelle einzustellen, gehen Sie wie folgt vor:

1. \(\text{MENU} > [F4] \text{Konfiguration} > [F5] \text{Weiter} > [F5] \text{Weiter} > [F3] \text{Speicher} > \)
 - so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - \(\Rightarrow \text{U} > \text{Schwelle}. \)
2. \(\text{F1} \) drücken, um den Wert zu erhöhen oder \(\text{F5} \) drücken, um den Wert zu senken.
3. \(\Rightarrow \) Die Überspannungsschwelle ist eingestellt.

Absolutwert

Die Eingabe erfolgt wahlweise in V oder kV. Wenn Sie den Absolutwert in V eingeben, bezieht sich dieser auf die Wandlersekundärspannung. Wenn Sie den Absolutwert in kV eingeben, bezieht sich dieser auf die Primärspannung.

Um die Überspannungsschwelle einzustellen, gehen Sie wie folgt vor:

1. \(\text{MENU} > [F4] \text{Konfiguration} > [F5] \text{Weiter} > [F5] \text{Weiter} > [F3] \text{Speicher} > \)
 - so oft drücken, bis der gewünschte Parameter angezeigt wird.
 - \(\Rightarrow \text{U} > \text{Speicher}. \)
2. Gegebenenfalls \([F3] \) drücken, um die gewünschte Einheit \(V \) oder \(kV \) auszuwählen.
3. Falls \(V \) ausgewählt ist, \([F4] \) drücken, um die Komma zu markieren.
 - \(\Rightarrow \) Die Komma ist markiert und der Wert kann geändert werden.
4. \(\text{F1} \) drücken, um den Wert zu erhöhen oder \(\text{F5} \) drücken, um den Wert zu senken.
5. \(\Rightarrow \) Die Überspannungsschwelle ist eingestellt.
7.15.3 Zeitdifferenz des Mittelwertintervalls einstellen

Mit diesem Parameter können Sie den Langzeitspeicher des Geräts einstellen. Der Speicher ist in den Mittelwertspeicher und den Ereignisspeicher unterteilt. Im Mittelwertspeicher werden, je nach Einstellung, Intervalle von 1; 2; 4; 10; 20 oder 40 Sekunden gespeichert.

Wenn Sie das Mittelwertintervall einstellen, wird nach der Bestätigung der Änderung der vollständige Speicher gelöscht.

Um das Mittelwertintervall einzustellen, gehen Sie wie folgt vor:

 ☑ Mittelwertintervall.

3. Drücken Sie [☐]

 ☑ Das Mittelwertintervall ist eingestellt.

7.15.4 Ereignisspeichergröße einstellen

Mit diesem Parameter können Sie die Ereignisspeichergröße konfigurieren. Der Ereignisspeicher speichert Überschreitungen oder Unterschreitungen der voreingestellten Schwellwerte (U> und U<) in einer höheren Auflösung. Die maximale Anzahl der Ereignisse ist von der Ereignisspeichergröße abhängig:

<table>
<thead>
<tr>
<th>Ereignisspeichergröße</th>
<th>256 kB</th>
<th>512 kB</th>
<th>1024 kB</th>
<th>2048 kB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximale Anzahl der Ereignisse</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>160</td>
</tr>
</tbody>
</table>

Tabelle 27: Ereignisspeichergröße

Ereignisdauer von weniger als 5 Minuten

Wenn das Ereignis weniger als 5 Minuten dauert, wird das Ereignis hochauf lösend aufgezeichnet. Das Aufzeichnen der hochauflösenden Daten beginnt 10 Sekunden vor dem Ereignis. Wenn die Spannung wieder in die Bandbreite zurückkehrt, wird das Ereignis weiterhin aufgezeichnet, bis die Nachlaufzeit von 10 Sekunden abgelaufen ist.

Bei einer niedrigen Auflösung wird der gesamte Verlauf gespeichert.
Ereignisdauer von mehr als 5 Minuten

Abbildung 72: Ereignisdauer (>5 Minuten)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hochauflösende Aufzeichnung</td>
<td>B</td>
<td>Ereignis tritt ein (Spannung verlässt die Bandbreite)</td>
</tr>
<tr>
<td>2</td>
<td>Niedrigauflösende Aufzeichnung</td>
<td>C</td>
<td>Ende der hochauflösenden Aufzeichnung; Beginn der niedrigauflösenden Aufzeichnung</td>
</tr>
<tr>
<td>3</td>
<td>Dauer: 10 Sekunden</td>
<td>D</td>
<td>Beginn der Vorlaufzeit eines Ereignisses</td>
</tr>
<tr>
<td>4</td>
<td>Dauer der hochauflösenden Aufzeichnung: 5 Minuten</td>
<td>E</td>
<td>Ereignis tritt ein (Spannung wieder in der Bandbreite)</td>
</tr>
<tr>
<td>A</td>
<td>Beginn der Vorlaufzeit eines Ereignisses</td>
<td>F</td>
<td>Ende der Nachlaufzeit eines Ereignisses</td>
</tr>
</tbody>
</table>

Aus der nachfolgenden Tabelle können Sie die Speicherzeit entnehmen. Sie beträgt, in Abhängigkeit von Mittelwertintervall und Ereignisspeichergröße maximal 401 Tage.

<table>
<thead>
<tr>
<th>Mittelwertintervall</th>
<th>Eventspeichergröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>256 kB</td>
</tr>
<tr>
<td>1 s</td>
<td>10 d</td>
</tr>
<tr>
<td>2 s</td>
<td>20 d</td>
</tr>
<tr>
<td>4 s</td>
<td>40 d</td>
</tr>
<tr>
<td>10 s</td>
<td>100 d</td>
</tr>
<tr>
<td>20 s</td>
<td>201 d</td>
</tr>
<tr>
<td>40 s</td>
<td>401 d</td>
</tr>
</tbody>
</table>

Tabelle 28: Speicherzeit des Messwertspeichers
Wenn Sie die Ereignisspeichergröße einstellen, wird der vollständige Speicher gelöscht, sobald Sie die Änderung bestätigt haben.

Um die Ereignisspeichergröße einzustellen, gehen Sie wie folgt vor:

2. oder drücken, um die gewünschte Ereignisspeichergröße einzustellen.
3. drücken. ⇨ Die Ereignisspeichergröße ist eingestellt.

7.15.5 Zeitschreiber

Im Menüpunkt Info befindet sich die Zeitschreiberfunktion. Darin wird Istspannung und der von Ihnen eingestellte Sollwert angezeigt. Die Einheiten der Spannungen pro Einheit werden automatisch festgelegt und können von Ihnen jederzeit geändert werden. In der Zeitschreiberfunktion können Sie folgende Einstellungen vornehmen:

- Einteilung der Zeitachse
- Spannungsbereich
- Rücksprungzeit
- Rücksprungdatum

In den folgenden Abschnitten wird beschrieben, wie Sie den Zeitschreiber abrufen können.

7.15.5.1 Visuelle Darstellung der Zeitschreiberfunktion

Der Zeitschreiber wird wie folgt dargestellt:
7 Funktionen und Einstellungen

Symbole

Abbildung 73: Symbole des Zeitschreibers

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zeitachse rückwärts verschieben</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Zeitachse vorwärts verschieben</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Einstellwerte um eine Einheit nach oben verändern</td>
<td></td>
</tr>
</tbody>
</table>

Anzeige des Spannungssollwerts/Spannungsistwerts

Abbildung 74: Sollwert/Istwert

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anzeige des eingestellten Spannungssollwerts</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Anzeige des Spannungsistwerts</td>
<td>4</td>
</tr>
</tbody>
</table>
7 Funktionen und Einstellungen

Anzeige der Überspannung/Unterspannung

Abbildung 75: Überspannung/Unterspannung

<table>
<thead>
<tr>
<th></th>
<th>Überspannungsbalken/Unterspannungsbalken</th>
<th>Obere Spannungswert</th>
<th>Unterer Spannungswert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.15.5.2 Zeitachse verschieben

Im Zeitschreiber können Sie im Einstellfeld die Mitteilungszeiten einstellen. Die Einteilung der Zeitachse und die daraus resultierende Dauer des angezeigten Bereichs entnehmen Sie aus der Tabelle.

<table>
<thead>
<tr>
<th>Einstellbare Schritte (Gitternetzbreite)</th>
<th>15 s</th>
<th>30 s</th>
<th>1 min</th>
<th>2,5 min</th>
<th>5 min</th>
<th>10 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angezeigter Bereich (in der gesamten Anzeige)</td>
<td>3,5 min</td>
<td>7 min</td>
<td>14 min</td>
<td>35 min</td>
<td>70 min</td>
<td>140 min</td>
</tr>
</tbody>
</table>

Tabelle 29: Dauer des angezeigten Bereichs
Um die Einstellungen vorzunehmen, gehen Sie wie folgt vor:

1. **[Menu]** > **[F5]** *Info* > **[←]** so oft drücken, bis die gewünschte Anzeige erscheint.
 ⇒ Zeitschreiber.

2. **[F4]** drücken, um das Einstellfeld für die Mitteilungszeiten zu markieren.
 ⇒ Das Einstellfeld ist markiert und der Wert kann geändert werden.

3. **[F3]** drücken, um die Anzeige einen Schritt vorzustellen oder **[F5]** drücken, um die Anzeige einen Schritt zurückzustellen.
 ⇒ Die Zeitachse ist eingestellt.

7.15.5.3 Spannungsbereich einstellen

Der Spannungsbereich wird in dieser Anzeige im Bereich zwischen den horizontalen Gitternetzlinien dargestellt. Den Bereich zwischen den horizontalen Gitternetzlinien können Sie im entsprechenden Einstellfeld begrenzen. Je nach Einstellung der Anzeige, können Sie sich den darzustellenden Spannungsbereich in V oder kV darstellen lassen. Die Einteilung des darzustellenden Spannungsbereichs erfolgt in folgenden Schritten:
Um den Spannungsbereich einzustellen, gehen Sie wie folgt vor:

1. **INFO > F5** Info > ← so oft drücken, bis die gewünschte Anzeige erscheint.
 - Zeitschreiber.
2. **F4** so oft drücken, bis das Einstellfeld für den Spannungsbereich markiert ist.
 - Das Einstellfeld ist markiert und der Wert kann geändert werden.
3. **F3** drücken, um eine Einheit vorzustellen oder **F5** drücken, um eine Einheit zurückzustellen.
 - Der Spannungsbereich ist eingestellt.

7.15.5.4 Rücksprungzeit einstellen

Mit dieser Funktion können Sie den Verlauf zu einem genauen Zeitpunkt verschieben, um das Verhalten der Spannung in der Vergangenheit zurückzuverfolgen.

<table>
<thead>
<tr>
<th>Einteilung</th>
<th>0,5 V</th>
<th>1 V</th>
<th>2 V</th>
<th>5 V</th>
<th>10 V</th>
<th>15 V</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,1 kV</td>
<td>0,2 kV</td>
<td>0,5 kV</td>
<td>1 kV</td>
<td>2 kV</td>
<td>5 kV</td>
<td>10 kV</td>
<td>20 kV</td>
</tr>
</tbody>
</table>

Tabelle 30: Spannungsbereich zwischen den horizontalen Gitternetzlinien

Abbildung 77: Spannungsbereich

1. Horizontale Gitternetzlinien (eingestellter Spannungsbereich liegt zwischen den horizontalen Gitternetzlinien)
2. Einstellfeld für den angezeigten Spannungsbereich
Der Zeitpunkt ist von der gegenwärtigen Uhrzeit bis zur ältesten Zeit im Speicher einstellbar. Das Eingabeformat der Uhrzeit ist folgendes: HH:MM:SS

Abbildung 78: Rücksprungzeit

Um den Verlauf zu einem genauen Zeitpunkt zu verschieben, gehen Sie wie folgt vor:

1. [INFO] > [F5] Info > ↪ so oft drücken, bis die gewünschte Anzeige erscheint.
 ⇒ Zeitschreiber.
2. [F4] so oft drücken, bis das Einstellfeld für die Rücksprungzeit markiert ist.
 ⇒ Das Einstellfeld ist markiert und der Wert kann geändert werden.
 ⇒ Die Rücksprungzeit ist eingestellt. In der Anzeige erscheint der Verlauf zum angegebenen Zeitpunkt.

7.15.5.5 Rücksprungdatum einstellen

Mit dieser Funktion können Sie die Verläufe der Messwerte zu einem von Ihnen gewählten Zeitpunkt oder Datum darstellen, um das Verhalten der Spannung in der Vergangenheit zurückzuverfolgen.

Das Datum ist vom heutigen Tag bis zur ältesten Zeit im Speicher einstellbar. Das Eingabeformat des Datums ist folgendes: DD.MM.YY
Um den Verlauf zu einem genauen Zeitpunkt zu verschieben, gehen Sie wie folgt vor:

1. **INFO > F5 Info > ←** so oft drücken, bis die gewünschte Anzeige erscheint.
 - Zeitschreiber.

2. **F4** so oft drücken, bis das Einstellfeld für den Rücksprung markiert ist.
 - Das Einstellfeld ist markiert und der Wert kann geändert werden.

3. **F3** drücken, um das Datum um eine Ziffer vorzustellen oder **F5** drücken, um das Datum um eine Ziffer zurückzustellen.
 - Das Rücksprungdatum ist eingestellt. In der Anzeige erscheint der Verlauf des eingegebenen Tags.

7.16 Informationen zum Gerät anzeigen

Im folgenden Abschnitt wird beschrieben, wie Sie sich Informationen zum Gerät anzeigen lassen.

7.16.1 Info-Bildschirm anzeigen

Hier können Sie sich Informationen des Gerätes anzeigen lassen.

Folgende Informationen werden angezeigt:
- Gerätetyp
- Versionsnummer der Firmware
- Seriennummer
- RAM-Arbeitsspeicher
- Zusätzliche Karten

Um den Infobildschirm anzeigen zu lassen, gehen Sie wie folgt vor:
7.16.2 Messwerte anzeigen

In dieser Anzeige werden die aktuellen Messwerte dargestellt. Folgende Messwerte können angezeigt werden:

Um die Messwerte anzeigen zu lassen, gehen Sie wie folgt vor:

1. ✔️ > F5 Info > so oft drücken, bis der gewünschte Parameter angezeigt wird.

glomer Messwerte.

7.16.3 LED-Test durchführen

Sie können prüfen, ob die LEDs funktionstüchtig sind. Drücken Sie dazu die jeweilige Funktionstaste um eine LED leuchten zu lassen:

<table>
<thead>
<tr>
<th>Taste</th>
<th>LED-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 F5</td>
<td>LED 1...LED 5</td>
</tr>
<tr>
<td>F1 F5 F4 F5</td>
<td>LED 6...LED 9</td>
</tr>
<tr>
<td>Alle LEDs</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 31: Zuordnung der Tasten für den LED-Test

Mit dieser Funktion testen Sie ausschließlich die Funktionstüchtigkeit der jeweiligen LED. Die zur LED zugehörige Gerätefunktion wird nicht geprüft.

Um den LED-Test durchzuführen, gehen Sie wie folgt vor:

1. ✔️ > F5 Info > so oft drücken, bis der gewünschte Parameter angezeigt wird.

glomer LED-Test.

2. Beliebige F-Taste für die gewünschte LED drücken, um den Funktions-
test durchzuführen.
7.16.4 Input-/Output-Status anzeigen

In der Anzeige **INPUT-/OUTPUT-STATUS** wird der Zustand der jeweiligen Optokopplereingänge dargestellt. Sobald ein Dauersignal am Eingang liegt, wird es in der Anzeige mit einer 1 angezeigt. Bei 0 liegt kein Signal am Eingang an.

![Input-/Output-Status Anzeige](image)

Abbildung 80: Signale

| 1 | Meldestatus | 2 | Steuereingänge/Ausgangsrelais |

Um den Status abzurufen, gehen Sie wie folgt vor:

► **INFO > F5** so oft drücken, bis der gewünschte Parameter angezeigt wird.

⇒ **INPUT-/OUTPUT-STATUS**.

7.16.5 UC-Karten-Status anzeigen

In dieser Anzeige wird der Zustand der jeweiligen Optokopplereingänge dargestellt. Sobald ein Dauersignal am Eingang liegt, wird es in der Anzeige mit einer 1 angezeigt. Bei 0 liegt kein Signal am Eingang an.

![UC-Karten-Status Anzeige](image)

Abbildung 81: UC-Karte Signale

| 1 | Meldestatus | 2 | Steuereingänge |
Um den Status abzufragen, gehen Sie wie folgt vor:

1. **INFO** > [F5] Info > .. so oft drücken, bis der gewünschte Parameter angezeigt wird.
2. **UC1-KARTE-STATUS/UC2-KARTE-STATUS**.

7.16.6 Parameter zurücksetzen

Mit dieser Anzeige können Sie Ihre Einstellungen auf die Werkseinstellungen zurücksetzen. Es wird zudem dargestellt, ob alle Parameter korrekt gespeichert sind.

Wenn Sie die Parameter auf die Werkseinstellungen zurücksetzen, werden Ihre Einstellungen unwiderruflich gelöscht.

Um alle eingestellten Parameter zurückzusetzen, gehen Sie wie folgt vor:

1. **INFO** > [F5] Info > .. so oft drücken, bis der gewünschte Parameter angezeigt wird.
2. **Parameter**
3. **F3** und **F4** gleichzeitig drücken.
4. **Alles auf Standard**
5. **Alle Parameter sind auf die Werkseinstellungen zurückgesetzt.**

7.16.7 Echtzeituhr anzeigen

Um die Echtzeituhr anzeigen zu lassen, gehen Sie wie folgt vor:

1. **INFO** > [F5] Info > .. so oft drücken, bis der gewünschte Parameter angezeigt wird.
2. **RTC**
7.16.8 Parallelbetrieb anzeigen

Diese Anzeige gibt die Reglernummer (CAN-Bus-Adresse) für den Parallelbetrieb und die Anzahl der Spannungsregler an, die sich aktuell im Parallelbetrieb befinden.

Um sich die Daten des Parallelbetriebs anzeigen zu lassen, gehen Sie wie folgt vor:

► **INFO > F5 Info > P** so oft drücken, bis die gewünschte Anzeige erscheint.

⇒ Parallelbetrieb.

7.16.9 Daten auf CAN-Bus anzeigen

In dieser Anzeige werden die CAN-Bus-Daten der verbundenen Geräte angezeigt.

![Abbildung 82: CAN-Bus-Daten](image)

<table>
<thead>
<tr>
<th>1</th>
<th>CAN-Bus-Adresse des Geräts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Spannung in V</td>
</tr>
<tr>
<td>3</td>
<td>Wirkstrom in %</td>
</tr>
<tr>
<td>4</td>
<td>Blindstrom in %</td>
</tr>
<tr>
<td>5</td>
<td>Aktuelle Stufenstellung</td>
</tr>
</tbody>
</table>
Abbildung 83: Weitere CAN-Bus-Daten

<table>
<thead>
<tr>
<th></th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gruppeneingang 1</td>
</tr>
<tr>
<td>2</td>
<td>Gruppeneingang 2</td>
</tr>
<tr>
<td>3</td>
<td>Kreisblindstromparallellauf (0 = deaktiviert; 1 = aktiviert)</td>
</tr>
<tr>
<td>4</td>
<td>Stufengleichlauf Master (0 = deaktiviert; 1 = aktiviert)</td>
</tr>
<tr>
<td>5</td>
<td>Stufengleichlauf Follower (0 = deaktiviert; 1 = aktiviert)</td>
</tr>
<tr>
<td>6</td>
<td>Stufengleichlauf Auto (0 = deaktiviert; 1 = aktiviert)</td>
</tr>
<tr>
<td>7</td>
<td>Gerät blockiert die Gruppe, weil eine Störung des Parallelbetriebs vorliegt (0 = wird nicht blockiert; 1 = wird blockiert)</td>
</tr>
</tbody>
</table>

Um die CAN-Bus-Daten anzeigen zu lassen, gehen Sie wie folgt vor:

1.

 1. **Info** > **F5** **Info** > so oft drücken, bis der gewünschte Parameter angezeigt wird.

 – DATEN AUF CAN-BUS.

2. **F1** gedrückt halten, um weitere Daten anzuzeigen.

 – Die weiteren Informationen werden so lange angezeigt, bis Sie die Taste loslassen.

7.16.10 Messwertspeicher anzeigen

Das Gerät kann optional mit einem Langzeitspeichermodul ausgestattet werden. Informationen zum Speicher können Sie sich in diesem Fenster anzeigen lassen.

Um den Messwertspeicher anzeigen zu lassen, gehen Sie wie folgt vor:
7 Funktionen und Einstellungen

7.16.11 Peakspeicher anzeigen

In dieser Anzeige werden die, seit dem letzten Rücksetzen, minimale und maximale gemessene Spannung sowie die minimale und maximale Stufeneinstellung des Laststufenschalters angezeigt. Alle erfassten Werte werden mit Zeit und Datum gespeichert.

Die Minimalwerte und Maximalwerte werden auch bei Stromausfall weiterhin in einem internen Festwertspeicher gespeichert.

Abbildung 84: Peakspeicher

1	Maximal gemessene Spannung U1	5	Zeit (HH:MM:SS) und Datum (DD.MM.YY) der erfassten minimalen Stufeneinstellung
2	Maximale Stufeneinstellung des Laststufenschalters	6	Zeit (HH:MM:SS) und Datum (DD.MM.YY) der minimal gemessenen Spannung U1
3	Zeit (HH:MM:SS) und Datum (DD.MM.YY) der maximal gemessenen Spannung U1	7	Minimale Stufeneinstellung des Laststufenschalters
4	Zeit (HH:MM:SS) und Datum (DD.MM.YY) der erfassten maximalen Stufeneinstellung	8	Minimal gemessene Spannung U1

Um den Peakspeicher anzeigen zu lassen, gehen Sie wie folgt vor:
7.16.12 CIC-Karte SCADA Information anzeigen

In der Anzeige **CIC-Karte SCADA Information** werden folgende Information zur SCADA-Verbindung dargestellt:

- Protokoll
- Datenformat
- BOOT Version

Zudem können Sie bei Bedarf die Ethernet-Verbindung zurücksetzen (Reset).

Um die SCADA Informationen der CIC-Karte anzeigen zu lassen, gehen Sie wie folgt vor:

1. **MENU** > **F5** Info > ⌃ so oft drücken, bis der gewünschte Parameter angezeigt wird. ⇒ CIC1-Karte SCADA Information/CIC2-Karte SCADA Information.
2. Die SCADA Informationen der CIC-Karte werden angezeigt.
4. **F3** und **F4** gleichzeitig drücken, um einen Reset der Ethernet-Verbindung durchzuführen.

7.16.13 Anstehende Meldungen anzeigen

In dieser Anzeige werden anstehende Meldungen angezeigt, wie zum Beispiel:

- Unterspannung
- Überspannung
- Störung im Parallelbetrieb
- etc.
Um die anstehenden Meldungen anzeigen zu lassen, gehen Sie wie folgt vor:

► **MENU > F5 Info > . . .** so oft drücken, bis der gewünschte Parameter angezeigt wird.

⇒ ANSTEHENDE MELDUNGEN.
8 Wartung und Pflege

Sie können das Gehäuse des Geräts mit einem trockenen Tuch reinigen.
9 Leitstellenprotokoll

9.1 Protokollbeschreibung

Das Gerät stellt einen Ausschnitt an Befehlen und Meldungen aus dem Schnittstellenprotokoll IEC 61850 für die Kommunikation zur Verfügung.

Gerätespezifische Datenpunkte

- MICS (Model Implementation Conformance Statement)
- PICS (Protocol Implementation Conformance Statement)
- PIXIT (Protocol Implementation eXtra Information for Testing)
- TICS (Technical Issues Conformance Statement)

Beachten Sie in den oben genannten Dokumenten mögliche Einschränkungen und Kommentare zu den gerätespezifischen Datenpunkten und Voreinstellungen.

9.1.1 ICD-Datei herunterladen

Für einen einwandfreien Download bei den Betriebssystemen Windows Vista/7/8, verwenden Sie den Windows Explorer.

Um die ICD-Datei herunterzuladen, gehen Sie wie folgt vor:

1. Im Browser **ftp://gast@<IP-Adresse>** eingeben (im Beispiel in folgender Abbildung lautet die IP-Adresse 192.168.0.1) und das Verzeichnis **home/gast** auswählen.
2. Wenn nötig die Passwortabfrage ohne Eingabe eines Passworts bestätigen.

Abbildung 85: Herunterladen der ICD-Datei mit Hilfe eines Internetbrowsers

3. Die ICD-Datei (im Beispiel ATCC.ICD) über **Ziel speichern unter** herunterladen.

4. Weitere Dateien, wie z. B. Model Implementation Conformance Statement, befinden sich im Verzeichnis **misc** und können ebenfalls über **Ziel speichern unter** heruntergeladen werden.

9.2 Datenpunkte

Diese Zeichen finden Sie in den folgenden Tabellen:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>no / not available</td>
</tr>
<tr>
<td>Y</td>
<td>yes / available</td>
</tr>
<tr>
<td>M</td>
<td>mandatory</td>
</tr>
<tr>
<td>O</td>
<td>optional</td>
</tr>
<tr>
<td>C</td>
<td>conditional</td>
</tr>
</tbody>
</table>

Tabelle 32: Zeichen

Sehen Sie dazu auch

- ICD-Datei herunterladen [p 125]

9.2.1 LPHD - Physikalisches Gerät

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPHD</td>
<td>-</td>
<td>Physical device information</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.2.2 LLN0 - Logischer Knoten

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLN0</td>
<td>-</td>
<td>Logical node zero Name</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod</td>
<td>ENC</td>
<td>Mode</td>
<td>M</td>
<td>Status-only</td>
</tr>
<tr>
<td>Beh</td>
<td>INS</td>
<td>Behaviour</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>Health</td>
<td>INS</td>
<td>Health</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>NamPlt</td>
<td>LPL</td>
<td>Name plate</td>
<td>M</td>
<td>-</td>
</tr>
</tbody>
</table>

9.2.3 ATCC1 - Automatic tap changer controller

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E/C</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC1</td>
<td>-</td>
<td>AVR</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Common Logical Node Information

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod</td>
<td>ENC</td>
<td>Mode</td>
<td>O</td>
<td>status-only</td>
</tr>
<tr>
<td>Beh</td>
<td>INS</td>
<td>Behaviour</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>Health</td>
<td>INS</td>
<td>Health</td>
<td>O</td>
<td>1:=OK; 2:=function monitoring; 3:=no internal communication or parameter error</td>
</tr>
<tr>
<td>NamPlt</td>
<td>LPL</td>
<td>Name plate</td>
<td>O</td>
<td>-</td>
</tr>
</tbody>
</table>

Controls

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E/C</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TapChg</td>
<td>BSC</td>
<td>Change Tap Position</td>
<td>C</td>
<td>direct-with-normal-security</td>
</tr>
<tr>
<td>ParOp</td>
<td>DPC</td>
<td>Parallel Independent</td>
<td>M</td>
<td>direct-with-normal-security</td>
</tr>
<tr>
<td>LTCBlk</td>
<td>SPC</td>
<td>Block Automatic Control</td>
<td>O</td>
<td>direct-with-normal-security</td>
</tr>
<tr>
<td>CirCur</td>
<td>SPC</td>
<td>Circulating current (parallel control)</td>
<td>E</td>
<td>direct-with-normal-security</td>
</tr>
<tr>
<td>Attribute Name</td>
<td>Attribute Type</td>
<td>Explanation</td>
<td>M/O/E/C</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Master</td>
<td>SPC</td>
<td>Master mode (parallel control)</td>
<td>E</td>
<td>direct-with-normal-security</td>
</tr>
<tr>
<td>Follower</td>
<td>SPC</td>
<td>Follower mode (parallel control)</td>
<td>E</td>
<td>direct-with-normal-security</td>
</tr>
<tr>
<td>SICmd1</td>
<td>SPC</td>
<td>Serial Interface Command 1</td>
<td>E</td>
<td>direct-with-normal-security</td>
</tr>
<tr>
<td>SICmd2</td>
<td>SPC</td>
<td>Serial Interface Command 2</td>
<td>E</td>
<td>direct-with-normal-security</td>
</tr>
<tr>
<td>SICmd3</td>
<td>SPC</td>
<td>Serial Interface Command 3</td>
<td>E</td>
<td>direct-with-normal-security</td>
</tr>
<tr>
<td>VoltLvl1</td>
<td>SPC</td>
<td>Voltage level 1</td>
<td>E</td>
<td>direct-with-normal-security</td>
</tr>
<tr>
<td>VoltLvl2</td>
<td>SPC</td>
<td>Voltage level 2</td>
<td>E</td>
<td>direct-with-normal-security</td>
</tr>
<tr>
<td>VoltLvl3</td>
<td>SPC</td>
<td>Voltage level 3</td>
<td>E</td>
<td>direct-with-normal-security</td>
</tr>
</tbody>
</table>

Measured values

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E/C</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CtlV</td>
<td>MV</td>
<td>Control Voltage</td>
<td>M</td>
<td>Unit: V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multiplier: none</td>
</tr>
<tr>
<td>LodA</td>
<td>MV</td>
<td>Load Current (transformer secondary current)</td>
<td>O</td>
<td>Unit: A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multiplier: none</td>
</tr>
</tbody>
</table>

Status Information

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E/C</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loc</td>
<td>SPS</td>
<td>Local operation</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>Auto</td>
<td>SPS</td>
<td>Automatic Manual</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>OverV</td>
<td>SPS</td>
<td>Voltage high limit reached</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>UnderV</td>
<td>SPS</td>
<td>Voltage low limit reached</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>OverC</td>
<td>SPS</td>
<td>Current overload</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>MotDrv</td>
<td>SPS</td>
<td>Motor drive running</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>Ulnd1</td>
<td>SPS</td>
<td>User indication 1</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>Ulnd2</td>
<td>SPS</td>
<td>User indication 2</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>Ulnd3</td>
<td>SPS</td>
<td>User indication 3</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>Ulnd4</td>
<td>SPS</td>
<td>User indication 4</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>FuncMon</td>
<td>SPS</td>
<td>Function monitoring</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>ParErr</td>
<td>SPS</td>
<td>Parameter error</td>
<td>E</td>
<td>-</td>
</tr>
</tbody>
</table>

Settings

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E/C</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BndCtr</td>
<td>ASG</td>
<td>Band center voltage (actual reference)</td>
<td>O</td>
<td>Unit: V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multiplier: none</td>
</tr>
<tr>
<td>BndWid</td>
<td>ASG</td>
<td>Band width voltage (as percent of nominal voltage, FPF presumed)</td>
<td>O</td>
<td>Unit: none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multiplier: c</td>
</tr>
<tr>
<td>CtlDITtmms</td>
<td>ING</td>
<td>Control intentional time delay (FPF presumed, in seconds)</td>
<td>O</td>
<td>-</td>
</tr>
</tbody>
</table>
9.2.4 GGIO1 - Generic process I/O

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGIO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Common Logical Node Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mod</td>
<td>ENC</td>
<td>Mode</td>
<td>O</td>
<td>status-only</td>
</tr>
<tr>
<td>Beh</td>
<td>INS</td>
<td>Behaviour</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>Health</td>
<td>INS</td>
<td>Health</td>
<td>O</td>
<td>1: OK; 3: no internal communication</td>
</tr>
<tr>
<td>NamPit</td>
<td>LPL</td>
<td>Name plate</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Controls</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Measured values</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Status Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind1</td>
<td>SPS</td>
<td>IO-X1:31</td>
<td>O</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDCR</td>
<td>ASG</td>
<td>Line drop voltage due to line resistance component (voltage)</td>
<td>O</td>
<td>Unit: V Multiplier: none</td>
</tr>
<tr>
<td>LDCX</td>
<td>ASG</td>
<td>Line drop voltage due to line reactance component (voltage)</td>
<td>O</td>
<td>Unit: V Multiplier: none</td>
</tr>
<tr>
<td>BlkLV</td>
<td>ASG</td>
<td>Control voltage below which auto Lower commands blocked (relative)</td>
<td>O</td>
<td>Unit: none Multiplier: c</td>
</tr>
<tr>
<td>LimLodA</td>
<td>ASG</td>
<td>Limit Load Current (LTC Block Load Current, percentage)</td>
<td>O</td>
<td>Unit: none Multiplier: c</td>
</tr>
<tr>
<td>LDC</td>
<td>SPG</td>
<td>Line Drop Compensation is R and X or Z model (0=R and X, 1=Z compensation)</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>TmDlChr</td>
<td>SPG</td>
<td>Time delay linear or inverse characteristic (0=lin., 1=inv.)</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>LDCZ</td>
<td>SPG</td>
<td>Line drop voltage due to line total impedance (percentage of nominal voltage)</td>
<td>O</td>
<td>Unit: none Multiplier: c</td>
</tr>
<tr>
<td>TapBlkR</td>
<td>ING</td>
<td>Tap position of Load Tap Changer where automatic Raise commands are blocked</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>TapBlkB</td>
<td>ING</td>
<td>Tap position of Load Tap Changer where automatic Lower commands are blocked</td>
<td>O</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 35: ATCC class (ATCC1)
<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ind2</td>
<td>SPS</td>
<td>IO-X1:33</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Ind3</td>
<td>SPS</td>
<td>IO-X1:16</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Ind4</td>
<td>SPS</td>
<td>IO-X1:17</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Ind5</td>
<td>SPS</td>
<td>IO-X1:14</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Ind6</td>
<td>SPS</td>
<td>IO-X1:13</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Ind7</td>
<td>SPS</td>
<td>IO-X1:11</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Ind8</td>
<td>SPS</td>
<td>IO-X1:12</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Ind9</td>
<td>SPS</td>
<td>IO-X1:29</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Ind10</td>
<td>SPS</td>
<td>IO-X1:28</td>
<td>O</td>
<td>-</td>
</tr>
</tbody>
</table>

Settings

- -

Tabelle 36: GGIO class (GGIO1)

9.2.5 GGIO2 - Generic process I/O

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGIO2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Common Logical Node Information

<table>
<thead>
<tr>
<th>Mod</th>
<th>ENC</th>
<th>Mode</th>
<th>O</th>
<th>status-only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beh</td>
<td>INS</td>
<td>Behaviour</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>Health</td>
<td>INS</td>
<td>Health</td>
<td>O</td>
<td>1: OK; 3: no internal communication</td>
</tr>
</tbody>
</table>

| NamPlt | LPL | Name plate | O | - |

Controls

- -

Measured values

- -

Status Information

Ind1	SPS	UC1-X1:11	O	-
Ind2	SPS	UC1-X1:12	O	-
Ind3	SPS	UC1-X1:14	O	-
Ind4	SPS	UC1-X1:15	O	-
Ind5	SPS	UC1-X1:16	O	-
Ind6	SPS	UC1-X1:17	O	-
Ind7	SPS	UC1-X1:30	O	-
Ind8	SPS	UC1-X1:31	O	-
Ind9	SPS	UC1-X1:32	O	-
Ind10	SPS	UC1-X1:33	O	-
GGIO3 - Generic process I/O

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGIO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Common Logical Node Information

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute Type</th>
<th>Explanation</th>
<th>M/O/E</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod</td>
<td>ENC</td>
<td>Mode</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Beh</td>
<td>INS</td>
<td>Behaviour</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>Health</td>
<td>INS</td>
<td>Health</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>NamPlt</td>
<td>LPL</td>
<td>Name plate</td>
<td>O</td>
<td>-</td>
</tr>
</tbody>
</table>

Measured values

Ind1	SPS	UC2-X1:11	O	-
Ind2	SPS	UC2-X1:12	O	-
Ind3	SPS	UC2-X1:14	O	-
Ind4	SPS	UC2-X1:15	O	-
Ind5	SPS	UC2-X1:16	O	-
Ind6	SPS	UC2-X1:17	O	-
Ind7	SPS	UC2-X1:30	O	-
Ind8	SPS	UC2-X1:31	O	-
Ind9	SPS	UC2-X1:32	O	-
Ind10	SPS	UC2-X1:33	O	-

Settings

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Tabelle 38: GGIO class (GGIO3)
10 Störungsbeseitigung

Dieses Kapitel beschreibt die Beseitigung von einfachen Betriebsstörungen.

10.1 Generelle Störungen

<table>
<thead>
<tr>
<th>Ausprägung/Detail</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Funktion</td>
<td>Keine Spannungsversorgung</td>
<td>Spannungsversorgung prüfen</td>
</tr>
<tr>
<td>• LED Betriebsanzeige leuchtet nicht</td>
<td>Sicherung ausgelöst</td>
<td>Maschinenfabrik Reinhausen GmbH kontaktieren</td>
</tr>
<tr>
<td>Relais klappen</td>
<td>Versorgungsspannung zu niedrig</td>
<td>Versorgungsspannung prüfen</td>
</tr>
<tr>
<td></td>
<td>Hohe EMV-Belastung</td>
<td>Geschirmte Kabel oder externe Filter verwenden</td>
</tr>
<tr>
<td></td>
<td>Schlechte Erdung</td>
<td>Funktionserdung prüfen</td>
</tr>
</tbody>
</table>

Tabelle 39: Generelle Störungen

10.2 Keine Regelung bei Betriebsart AUTO

<table>
<thead>
<tr>
<th>Ausprägung/Detail</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>• HÖHER/TIEFER-LEDs leuchten periodisch</td>
<td>Fehlende Verbindung</td>
<td>Verdrahtung gemäß Schaltbild prüfen.</td>
</tr>
<tr>
<td>Gerät blockiert</td>
<td>Negativer Leistungsfluss</td>
<td>Polarität der Stromwandler prüfen.</td>
</tr>
<tr>
<td></td>
<td>Steuereingänge doppelt parametriert.</td>
<td>Parametrierung der Steuereingänge prüfen.</td>
</tr>
<tr>
<td></td>
<td>NORMset ist aktiv, aber nicht korrekt in Betrieb genommen</td>
<td>Betriebsart aktivieren und eine manuelle Stufenschaltung über die Tasten oder durchführen. Anschließend Betriebsart aktivieren.</td>
</tr>
<tr>
<td>Gerät blockiert</td>
<td>Unterspannungsblockierung aktiv</td>
<td>Parameter prüfen</td>
</tr>
<tr>
<td>• LED U< leuchtet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gerät blockiert</td>
<td>Überspannungsblockierung aktiv</td>
<td>Parameter prüfen</td>
</tr>
<tr>
<td>• LED U> leuchtet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10 Störungsbehandlung

<table>
<thead>
<tr>
<th>Ausprägung/Detail</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerät blockiert</td>
<td>Überstromblockierung aktiv</td>
<td>Parameter prüfen</td>
</tr>
<tr>
<td>• LED I> leuchtet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Bandbreite zu hoch eingestellt | Empfohlene Bandbreite [► 56] bestimmen und Parameter einstellen. | |

Tabelle 40: Keine Regelung bei Betriebsart AUTO

10.3 Man-Machine-Interface

<table>
<thead>
<tr>
<th>Ausprägung/Detail</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasten: Betriebsart MANUAL/AUTO kann nicht gewechselt werden</td>
<td>Betriebsart REMOTE aktiv und die LED der Taste leuchtet.</td>
<td>Parameter auf Werkseinstellungen zurücksetzen [► 118].</td>
</tr>
<tr>
<td>• LEDs der Tasten und leuchten nicht.</td>
<td>Parameterfehler</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spannungsversorgung unterbrochen.</td>
<td>Spannungsversorgung prüfen.</td>
<td></td>
</tr>
<tr>
<td>Sicherung defekt.</td>
<td>Maschinenfabrik Reinhausen kontaktieren.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEDs</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frei konfigurierbare LED leuchtet</td>
<td>Kundenspezifische Parameterlieferung der LED.</td>
<td>Parameter prüfen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEDs</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED blinkt</td>
<td>Eingangssignal nicht konstant.</td>
<td>Eingangssignal prüfen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COM1</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
</table>

Tabelle 41: Man-Machine-Interface

10.4 Fehlerhafte Messwerte

<table>
<thead>
<tr>
<th>Ausprägung/Detail</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Isolierung einklemmt</td>
<td>Isolierung eingekeilt.</td>
<td></td>
</tr>
<tr>
<td>Draht ist nicht weit genug eingeschoben.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicherungsausfall ausge- löst.</td>
<td>Sicherung überprüfen.</td>
<td></td>
</tr>
</tbody>
</table>

Maschinenfabrik Reinhausen 2014 1801003/06 DE TAPCON® 260 133
10 Störungsbeseitigung

<table>
<thead>
<tr>
<th>Ausprägung/Detail</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messspannung</td>
<td>Spannungsabfall auf der Messleitung.</td>
<td>Messspannung an Steckklemme MI: 01/MI:02 überprüfen.</td>
</tr>
<tr>
<td>Messspannung</td>
<td>Leitung zum Stromwandler unterbrochen.</td>
<td>Verdrahtung überprüfen.</td>
</tr>
<tr>
<td>Messstrom</td>
<td>Übersetzungsverhältnis nicht korrekt parametriert.</td>
<td>Parametrierung korrionieren.</td>
</tr>
<tr>
<td>Messstrom</td>
<td>Fehler in externer Wanderschaltung.</td>
<td>Wanderschaltung überprüfen.</td>
</tr>
<tr>
<td>Phasenwinkel</td>
<td>Fehler in externer Wanderschaltung.</td>
<td>Wanderschaltung überprüfen.</td>
</tr>
<tr>
<td>LED leuchtet nicht.</td>
<td>CAN-Bus-Adresse des Geräts auf "0" eingestellt.</td>
<td>CAN-Bus-Adresse einstellen (ungleich 0).</td>
</tr>
</tbody>
</table>

Tabelle 42: Fehlerhafte Messwerte

10.5 Parallellaufstörungen

<table>
<thead>
<tr>
<th>Ausprägung/Detail</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED leuchtet nicht.</td>
<td>CAN-Bus-Adresse des Geräts auf "0" eingestellt.</td>
<td>CAN-Bus-Adresse einstellen (ungleich 0).</td>
</tr>
</tbody>
</table>

Tabelle 43: Parallellaufstörungen
10.6 Stufenstellungserfassung fehlerhaft

<table>
<thead>
<tr>
<th>Ausprägung/Detail</th>
<th>Ursache</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Vorzeichen nicht korrekt</td>
<td>Minimaler Wert des analogen Eingangssignals nicht korrekt parametriert</td>
<td>Parameter überprüfen.</td>
</tr>
<tr>
<td>Stufenanzeige nicht korrekt.</td>
<td>Störbeeinflussung.</td>
<td>Leitung abschirmen.</td>
</tr>
<tr>
<td>▪ Anzeige schwankt.</td>
<td></td>
<td>Abstand zur Störquelle vergrößern.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Störleitungen getrennt verlegen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal in getrennten Leitungen führen (Filter, abgeschirmte Leitungen).</td>
</tr>
<tr>
<td>▪ "-" wird angezeigt.</td>
<td>L- für Digitaleingang fehlt.</td>
<td>Verdrahtung überprüfen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statusbildschirm überprüfen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gemäß Schaltbild anschließen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signalverlauf überprüfen</td>
</tr>
</tbody>
</table>

Tabelle 44: Stufenstellungserfassung

10.7 Sonstige Störungen

Sollte es bei einer Störung keine auffindbare Lösung geben, kontaktieren Sie bitte die Maschinenfabrik Reinhausen. Halten Sie bitte folgende Daten bereit:

▪ Seriennummer

Diese finden Sie:

▪ rechte Außenwand bei Frontansicht

▪ Infobildschirm (F5) Info

Bereiten Sie sich auf folgende Fragen vor:

▪ Gab es ein Firmwareupdate?

▪ Gab es bereits in der Vergangenheit Probleme mit diesem Gerät?

▪ Gab es diesbezüglich bereits Kontakt zur Maschinenfabrik Reinhausen? Wenn ja, zu wem?
11 Meldungen

In diesem Kapitel finden Sie eine Übersicht der Meldungen des Geräts.

11.1 Signaleingänge

<table>
<thead>
<tr>
<th>Eingang</th>
<th>Beschreibung</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO-X1:28</td>
<td>MOTORANTRIEB IN BETRIEB</td>
<td>Motorantrieb ist in Betrieb</td>
</tr>
<tr>
<td>IO-X1:29</td>
<td>MOTORSchutz-Schalter AUS</td>
<td>Motorschutzschalter hat ausgelöst</td>
</tr>
<tr>
<td>IO-X1:31</td>
<td>FREI PARAMETER-RIERBAR</td>
<td></td>
</tr>
<tr>
<td>IO-X1:33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IO-X1:12</td>
<td>AUTO</td>
<td>AUTO-Modus aktivieren</td>
</tr>
<tr>
<td>IO-X1:11</td>
<td>HAND</td>
<td>HAND-Modus aktivieren</td>
</tr>
<tr>
<td>IO-X1:13</td>
<td>HÖHER</td>
<td>Höher schalten</td>
</tr>
<tr>
<td>IO-X1:14</td>
<td>TIEFER</td>
<td>Tiefer schalten</td>
</tr>
<tr>
<td>UC-X1:14...17, UC-X1:14...18, UC-X1:30...33</td>
<td>BCD1…BCD10</td>
<td>BCD Stufeneingangssignal</td>
</tr>
<tr>
<td>UC-X1:11</td>
<td>PARALLEL GRUPPE 1</td>
<td>Parallellaufgruppe 1 zuweisen</td>
</tr>
<tr>
<td>UC-X1:12</td>
<td>PARALLEL GRUPPE 2</td>
<td>Parallellaufgruppe 2 zuweisen</td>
</tr>
</tbody>
</table>

Tabelle 45: Signaleingänge
11.2 Signalausgänge

<table>
<thead>
<tr>
<th>Relais</th>
<th>Beschriftung</th>
<th>Ursache</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO-X1:21</td>
<td>FUNKTIONSÜBERWACHUNG</td>
<td>Signal bei Meldung Funktionsüberwachung</td>
</tr>
<tr>
<td>IO-X1:10</td>
<td>AUTO</td>
<td>Signal, wenn Automatikbetrieb aktiv</td>
</tr>
<tr>
<td>IO-X1:09</td>
<td>HAND</td>
<td>Signal, wenn Handbetrieb aktiv</td>
</tr>
<tr>
<td>IO-X1:04</td>
<td>HÖHER</td>
<td>Signal bei Höherschaltimpuls</td>
</tr>
<tr>
<td>IO-X1:06</td>
<td>TIEFER</td>
<td>Signal bei Tieferschaltimpuls</td>
</tr>
<tr>
<td>IO-X1:20</td>
<td>UNTERSPEL-ÜBERSPANNUNG ÜBERSTROM</td>
<td>Signal bei Meldung Unterspannung, Überspannung, Überstrom</td>
</tr>
<tr>
<td>UC-X1:02</td>
<td>PARALLEL STÖRUNG</td>
<td>Signal bei Meldung Fehler Parallellauf</td>
</tr>
<tr>
<td>UC-X1:04</td>
<td>PARALLEL EIN</td>
<td>Signal, wenn Parallellauf aktiv</td>
</tr>
<tr>
<td>UC-X1:06...10, UC-X1:19...27</td>
<td>STUFENSTELLUNG BCD1... BCD20, BCD+, BCD-</td>
<td>BCD-Signal der Stufenstellung</td>
</tr>
</tbody>
</table>
11.3 Ereignismeldungen

<table>
<thead>
<tr>
<th>Ereignismeldung</th>
<th>Ursache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterspannung</td>
<td>Ereignismeldung erscheint, wenn Unterspannungsgrenzwert unterschritten wird.</td>
</tr>
<tr>
<td>Überspannung</td>
<td>Ereignismeldung erscheint, wenn Überspannungsgrenzwert überschritten wird.</td>
</tr>
<tr>
<td>Überstrom</td>
<td>Ereignismeldung erscheint, wenn Überstromgrenzwert überschritten wird.</td>
</tr>
<tr>
<td>Fehler Parallellauf</td>
<td>Ereignismeldung erscheint bei folgenden Ursachen:</td>
</tr>
<tr>
<td></td>
<td>• Methode Stufengleichlauf</td>
</tr>
<tr>
<td></td>
<td>– Stufenstellung ungleich</td>
</tr>
<tr>
<td></td>
<td>– Kein Master oder mehr als ein Master eingestellt</td>
</tr>
<tr>
<td></td>
<td>– Ungültige Stufenstellung</td>
</tr>
<tr>
<td></td>
<td>– Falsche Parallellaufmethode bei einem Gerät ausgewählt</td>
</tr>
<tr>
<td></td>
<td>• Methode Kreisblindstromminimierung</td>
</tr>
<tr>
<td></td>
<td>– Kreisblindstromgrenze überschritten</td>
</tr>
<tr>
<td></td>
<td>– Falsche Parallellaufmethode bei einem Gerät ausgewählt</td>
</tr>
<tr>
<td></td>
<td>– Nur ein Gerät in aktiver Parallellaufgruppe</td>
</tr>
<tr>
<td>Motorschutz</td>
<td>Ereignismeldung erscheint, wenn der Motorschutzschalter auslöst.</td>
</tr>
<tr>
<td>Blockierung</td>
<td>Ereignismeldung erscheint, wenn für den Kundeneingang die Funktion „Blockierung“ ausgewählt ist und ein Signal am Kundeneingang anliegt.</td>
</tr>
<tr>
<td>Keine Stufenschalterstellung</td>
<td>Ereignismeldung erscheint, wenn keine Stufenschalterstellung erkannt wird.</td>
</tr>
<tr>
<td>Fehler Schaltungserskennung</td>
<td>Ereignismeldung erscheint, wenn eine Laststufenschaltung nicht korrekt erkannt wurde.</td>
</tr>
</tbody>
</table>
12 Entsorgung

Das Gerät ist gemäß der Richtlinie 2011/65/EU (RoHS) der Europäischen Gemeinschaft hergestellt und muss dementsprechend entsorgt werden. Falls das Gerät nicht innerhalb der Europäischen Union betrieben wird, sind die nationalen Entsorgungsvorschriften im jeweiligen Verwenderland zu beachten.
In diesem Abschnitt finden Sie eine Übersicht zu den jeweiligen Menüs und Parametern.

<table>
<thead>
<tr>
<th>Parameter > Normset</th>
<th>Einstellbereich</th>
<th>Werkseinstellung</th>
<th>Aktuelle Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normset Aktivierung</td>
<td>Ein/Aus</td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>Primärspannung</td>
<td>0...9999 kV</td>
<td>0 kV</td>
<td></td>
</tr>
<tr>
<td>Sekundärspannung</td>
<td>57...125 V</td>
<td>100 V</td>
<td></td>
</tr>
<tr>
<td>Sollwert 1</td>
<td>49...140 V</td>
<td>100 V</td>
<td></td>
</tr>
</tbody>
</table>

Parameter > Regelparameter			
Bandbreite	0,5...9 %	1,00 %	
Sollwert 1	49...140 V	100,0 V	
Sollwert 2	49...140 V	100,0 V	
Sollwert 3	49...140 V	100,0 V	
T1 Regelverhalten	T1 linear/T1 integral	T1 linear	
T1 Verzögerungszeit	0...600 s	40 s	
T2 Aktivierung	T2 ein/T2 aus	T2 aus	
T2 Verzögerungszeit	1...60 s	10,0 s	

Parameter > Grenzwerte			
Fkt. Überwachung	Ein/Aus	Aus	
Grenzwerte Absolut	Ein/Aus	Aus	
I> Überstrom	50...210 %	110 %	
Max. Stufenzahl in Zeit	0...20	0	
Stufe max.	-128...128	128	
Stufe min.	-128...128	-128	
T block max. Stufenanz.	0...600 s	0 s	
Tiefer -> Höherzähler 0	Ein/Aus	Aus	
U< Blockierung	Ein/Aus	Ein	
U< Unterspannung (%)	60...100 %	90 %	
U< Unterspannung (V)	34...160 V	90,0 V	
U< Verzögerung	0...20 s	10,0 s	
U< auch unter 30 V	Ein/Aus	Aus	
U> Überspannung (%)	100...140 %	110,0 %	
U> Überspannung (V)	34...160 V	110,0 V	

Parameter > Kompensation			
Ur-Leitungskomp.	-25...25 V	0,0 V	
Ux-Leitungskomp.	-25...25 V	0,0 V	
Z-Komp. Grenzwert	0...15 %	0,0 %	
Z-Kompensation	0...15 %	0,0 %	

| Parameter > Kreuzüberwachung | | | |
| Fehlermeldung | 0...10 s | 10 s | |
13 Parameterübersicht

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einstellbereich</th>
<th>Werkseinstellung</th>
<th>Aktuelle Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>U prim. Regler 2</td>
<td>0...9999 kV</td>
<td>0 kV</td>
<td></td>
</tr>
<tr>
<td>U sek. Regler 2</td>
<td>57...125 V</td>
<td>100,0 V</td>
<td></td>
</tr>
<tr>
<td>U< Regler 2</td>
<td>34...160 V</td>
<td>60,0 V</td>
<td></td>
</tr>
<tr>
<td>U< Regler 2</td>
<td>60...100 %</td>
<td>60 %</td>
<td></td>
</tr>
<tr>
<td>U> Regler 2</td>
<td>34...160 V</td>
<td>140,0 V</td>
<td></td>
</tr>
<tr>
<td>U> Regler 2</td>
<td>100...140 %</td>
<td>140 %</td>
<td></td>
</tr>
<tr>
<td>Usoll Regler 2</td>
<td>49...140 V</td>
<td>100,0 V</td>
<td></td>
</tr>
</tbody>
</table>

Konfiguration > Wandlerdaten

Primärspannung	0...9999 kV	0 kV	
Primärstrom	0...9999 A	0 A	
Sekundärspannung	57...125 V	100,0 V	
Stromwandler Anschluss	Unbekannt; 0,2 A; 1 A; 5 A	Unbekannt	
Wandlerschaltung	siehe [► 82]	0 1PH	

Konfiguration > Allgemeines

Anzeige %/ A	Ein/Aus	Aus	
Anzeige dunkel	Ein/Aus	Ein	
Anzeige kV / V	kV/V	V	
COM1 Einstellung	9,6 kBaud; 19,2 kBaud; 38,4 kBaud; 57,6 kBaud	57,6 kBaud	
H / T-Impulsdauer	0...10 s	1,5 s	
IO1-X1:23/24	siehe [► 48]	Sollwert 3	
IO1-X1:25/26	siehe [► 48]	Sollwert 2	
IO1-X1:31	siehe [► 46]	Aus	
IO1-X1:33	siehe [► 46]	Aus	
Motorlaufzeit	0...30 s	0,0 s	
Reglerkennung	-	0000	
Sprache	siehe [► 38]	Deutsch	
Netzwerkmaske			
Netzwerkadresse			
Zeitserveradresse			
Gateway			

Konfiguration > Parallellauf

<p>| Blockierung | 0,5...20 % | 20,0 % | |
| CAN Adresse | 0...16 | 1 | |
| Fehlermeldung | 1...99 s | 10 s | |
| ParFehlerFallsAllein | Ein/Aus | Aus | |
| Parallellaufmethode | Aus, Kreisblindst.; Master; Follower; Gleichl. Auto | Aus | |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einstellbereich</th>
<th>Werkseinstellung</th>
<th>Aktuelle Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKB Parallellauf</td>
<td>Ein/Aus</td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>Stabilität</td>
<td>0...100 %</td>
<td>0,0 %</td>
<td></td>
</tr>
<tr>
<td>Stufenricht. Gedreht</td>
<td>Standard/Gedreht</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

Konfiguration > Analogeingänge

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einstellbereich</th>
<th>Werkseinstellung</th>
<th>Aktuelle Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingang 1 Grenze oben</td>
<td>0...100 %</td>
<td>100,0 %</td>
<td></td>
</tr>
<tr>
<td>Eingang 1 Grenze unten</td>
<td>0...100 %</td>
<td>0,0 %</td>
<td></td>
</tr>
<tr>
<td>Eingang 1 Wert oben</td>
<td>-999,9...999,9</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Eingang 1 Wert unten</td>
<td>-999,9...999,9</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Eingang 2 Grenze oben</td>
<td>0...100 %</td>
<td>0,0 %</td>
<td></td>
</tr>
<tr>
<td>Eingang 2 Grenze unten</td>
<td>0...100 %</td>
<td>0,0 %</td>
<td></td>
</tr>
<tr>
<td>Eingang 2 Wert oben</td>
<td>-999,9...999,9</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Eingang 2 Wert unten</td>
<td>-999,9...999,9</td>
<td>0,0</td>
<td></td>
</tr>
</tbody>
</table>

Konfiguration > LED-Auswahl

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einstellbereich</th>
<th>Werkseinstellung</th>
<th>Aktuelle Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED1</td>
<td>siehe [► 93]</td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>LED2</td>
<td>siehe [► 93]</td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>LED3 gelb</td>
<td>siehe [► 93]</td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>LED4 grün</td>
<td>siehe [► 93]</td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>LED4 rot</td>
<td>siehe [► 93]</td>
<td>Aus</td>
<td></td>
</tr>
</tbody>
</table>

Konfiguration > Messumformer 1/2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einstellbereich</th>
<th>Werkseinstellung</th>
<th>Aktuelle Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgang 1 Messwert</td>
<td>siehe [► 100]</td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>Ausgang 1 Wert oben</td>
<td>-9999...9999</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ausgang 1 Wert unten</td>
<td>-9999...9999</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ausgang 1 oben</td>
<td>1 mA; 10 mA; 20 mA; N/A</td>
<td>20 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgang 1 unten</td>
<td>siehe [► 101]</td>
<td>+4 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgang 2 Messwert</td>
<td>siehe [► 100]</td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>Ausgang 2 Wert oben</td>
<td>-9999...9999</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ausgang 2 Wert unten</td>
<td>-9999...9999</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ausgang 2 oben</td>
<td>1 mA; 10 mA; 20 mA; N/A</td>
<td>20 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgang 2 unten</td>
<td>siehe [► 101]</td>
<td>+4 mA</td>
<td></td>
</tr>
</tbody>
</table>

Konfiguration > Messumformer 3/4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Einstellbereich</th>
<th>Werkseinstellung</th>
<th>Aktuelle Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgang 3 Messwert</td>
<td>siehe [► 100]</td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>Ausgang 3 Wert oben</td>
<td>-9999...9999</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ausgang 3 Wert unten</td>
<td>-9999...9999</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ausgang 3 oben</td>
<td>1 mA; 10 mA; 20 mA; 10 V</td>
<td>20 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgang 3 unten</td>
<td>siehe [► 101]</td>
<td>+4 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgang 4 Messwert</td>
<td>siehe [► 100]</td>
<td>Aus</td>
<td></td>
</tr>
<tr>
<td>Ausgang 4 Wert oben</td>
<td>-9999...9999</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ausgang 4 Wert unten</td>
<td>-9999...9999</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Einstellbereich</td>
<td>Werkseinstellung</td>
<td>Aktuelle Einstellung</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Ausgang 4 oben</td>
<td>1 mA; 10 mA; 20 mA; N10 V</td>
<td>20 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgang 4 unten</td>
<td>siehe [► 101]</td>
<td>+4 mA</td>
<td></td>
</tr>
<tr>
<td>Konfiguration > Speicher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eventspeicher</td>
<td>256 k; 512 k; 1024 k; 2048 k</td>
<td>256 k</td>
<td></td>
</tr>
<tr>
<td>Mittelwertintervall</td>
<td>siehe [► 106]</td>
<td>1 s</td>
<td></td>
</tr>
<tr>
<td>U< Schwelle</td>
<td>60...100 %</td>
<td>90 %</td>
<td></td>
</tr>
<tr>
<td>U< Speicher</td>
<td>34...160 V</td>
<td>90,0 V</td>
<td></td>
</tr>
<tr>
<td>U> Schwelle</td>
<td>100...140 %</td>
<td>110 %</td>
<td></td>
</tr>
<tr>
<td>U> Speicher</td>
<td>34...160 V</td>
<td>110,0 V</td>
<td></td>
</tr>
<tr>
<td>Konfiguration > Kommunikationsanschluss CIC2 (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Komm. Anschluss CIC2</td>
<td>RS232, Ethernet, LWL</td>
<td>RS232</td>
<td></td>
</tr>
<tr>
<td>Baudrate Komm. CIC2</td>
<td>9,6...57,6 kBaud</td>
<td>9,6 kBaud</td>
<td></td>
</tr>
<tr>
<td>Netzwerkadresse CIC2</td>
<td>0.0.0.0...255.255.255.255</td>
<td>0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>TCP-Port CIC2</td>
<td>0...9999</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Sendeverzögerung CIC2</td>
<td>0...254 ms</td>
<td>5 ms</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 48: Parameterübersicht
14 Technische Daten

14.1 Anzeigeelemente

<table>
<thead>
<tr>
<th>Anzeigeelemente</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>LCD, monochrom, grafikfähig 128 x 128 dot</td>
</tr>
<tr>
<td>LEDs</td>
<td>15 LEDs für Betriebsanzeige und Meldungen</td>
</tr>
</tbody>
</table>

Tabelle 49: Anzeigeelemente

14.2 Spannungsversorgung

<table>
<thead>
<tr>
<th>Spannungsversorgung</th>
<th>SUH-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zulässiger Spannungs bereich</td>
<td>88...264 VAC</td>
</tr>
<tr>
<td></td>
<td>88...353 VDC</td>
</tr>
<tr>
<td></td>
<td>U_N: 100...240 VAC</td>
</tr>
<tr>
<td></td>
<td>U_N: 88...353 VDC</td>
</tr>
<tr>
<td>Zulässiger Frequenzbereich</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Eingangsstrom</td>
<td>Max. 1 A</td>
</tr>
<tr>
<td>Leistungsaufnahme</td>
<td>35 VA</td>
</tr>
<tr>
<td>Interne Sicherung</td>
<td>250 V; 3 A; 6,3 x 32 mm, Charakteristik „träge“</td>
</tr>
</tbody>
</table>

Tabelle 50: Standardausführung

Abbildung 86: Interne Sicherungen der SUH-P-Karte

F1 Sicherung F2 Ersatzsicherung
14 Technische Daten

<table>
<thead>
<tr>
<th>SUL-P</th>
<th>SUM-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zulässiger Spannungsbereich</td>
<td>18...36 VDC</td>
</tr>
<tr>
<td></td>
<td>36...72 VDC</td>
</tr>
<tr>
<td>Eingangsstrom</td>
<td>Max. 2,3 A</td>
</tr>
<tr>
<td></td>
<td>Max. 1 A</td>
</tr>
<tr>
<td>Interner Sicherung</td>
<td>250 V; 3 A; 6,3 x 32 mm, Charakteristik „flink“</td>
</tr>
</tbody>
</table>

Tabelle 51: Sonderausführung

Abbildung 87: Interne Sicherung der SUM-P-Karte und SUL-P-Karte

<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>Pin</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>L1 / +DC</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>N / GND</td>
</tr>
</tbody>
</table>

Tabelle 52: Klemme X1
14.3 Spannungsmessung und Strommessung

<table>
<thead>
<tr>
<th>Messung</th>
<th>MI</th>
<th>MI3-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spannungsmessung</td>
<td>1-phasig</td>
<td>3-phasig</td>
</tr>
<tr>
<td>(U_N): 100 VAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messbereich: 85...140 VAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nennfrequenz: 45...65 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eigenverbrauch: < 1 VA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messkategorie IV gemäß IEC 61010-2-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messfehler: < 0,3 % ± 40 ppm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strommessung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_N): 0,2 / 1 / 5 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messbereich: 0,01...2,1 (\cdot I_N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nennfrequenz: 45...65 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eigenverbrauch: < 1 VA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belastbarkeit: 2,1 (\cdot I_N) (dauernd), 40 (\times I_N) / 1 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messfehler: < 0,5 % ± 40 ppm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phasenwinkel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messgenauigkeit: ± 1°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequenzmessung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_N): 50 / 60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messbereich: 45...65 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messgenauigkeit: ± 1 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 53: Spannungsmessung und Strommessung

<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>Pin</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Spannungswandler</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Spannungswandler</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Gemeinsamer Rückleiter</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Stromwandler mit Bemessungsstrom 5 A</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Stromwandler mit Bemessungsstrom 1 A</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Stromwandler mit Bemessungsstrom 0,2 A</td>
</tr>
</tbody>
</table>

Tabelle 54: MI-Karte Klemme X1
<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>Pin</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Spannungswandler L1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Spannungswandler L1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Rückleiter des Stromwandlers L1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Stromwandler L1 (Bemessungsstrom 5 A)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Spannungswandler L2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Spannungswandler L2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Rückleiter des Stromwandlers L2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Stromwandler L2 (Bemessungsstrom 5 A)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Spannungswandler L3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Spannungswandler L3</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Rückleiter des Stromwandlers L3</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Stromwandler L3 (Bemessungsstrom 5 A)</td>
</tr>
</tbody>
</table>

Tabelle 55: MI3-G-Karte Klemme X1

14.4 Digitale Eingänge und Ausgänge

<table>
<thead>
<tr>
<th></th>
<th>IO</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingänge</td>
<td>Anzahl</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Logisch 0</td>
<td>0...25 VDC</td>
</tr>
<tr>
<td></td>
<td>Logisch 1</td>
<td>40...250 VDC</td>
</tr>
<tr>
<td></td>
<td>Eingangsstrom</td>
<td>Min. 1 mA</td>
</tr>
<tr>
<td>Ausgänge</td>
<td>Anzahl (davon Wechselkontakte)</td>
<td>8 (5)</td>
</tr>
<tr>
<td></td>
<td>Kontaktbelastbarkeit</td>
<td>Min.: 12 V, 100 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. AC: 250 V, 5 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. DC: Siehe Diagramm</td>
</tr>
</tbody>
</table>

Tabelle 56: Digitale Eingänge und Ausgänge
14 Technische Daten

Abbildung 88: Maximale Kontaktbelastbarkeit der Ausgänge bei Gleichstrom

1 Ohmsche Last

14.5 Analog Eingänge und Ausgänge

<table>
<thead>
<tr>
<th></th>
<th>AD</th>
<th>AD8</th>
<th>AN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanäle</td>
<td>2 Eingänge</td>
<td>8 Eingänge</td>
<td>2 Ausgänge oder 4 Ausgänge (AN + AN1)</td>
</tr>
<tr>
<td>Eingangssignale (abhängig von Konfiguration)</td>
<td>0...±20mA</td>
<td>0...±10mA</td>
<td>4...20 mA</td>
</tr>
<tr>
<td></td>
<td>0...±10V</td>
<td>50...2000 Ohm</td>
<td>-</td>
</tr>
<tr>
<td>Ausgangssignale (abhängig von Konfiguration)</td>
<td>-</td>
<td>-</td>
<td>0...±20mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0...±10mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0...±1mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0...±10V</td>
</tr>
</tbody>
</table>

Tabelle 57: Analog Eingänge und Ausgänge (optional)

14.6 Steuerspannungversorgung (optional)

<table>
<thead>
<tr>
<th></th>
<th>AC-115</th>
<th>AC-230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingang</td>
<td>115 VAC, 50/60 Hz</td>
<td>230 VAC, 50/60 Hz</td>
</tr>
<tr>
<td>Ausgang</td>
<td>60 VDC, max. 0.2 A</td>
<td></td>
</tr>
</tbody>
</table>
14 Technische Daten

<table>
<thead>
<tr>
<th></th>
<th>AC-115</th>
<th>AC-230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromaufnahme</td>
<td>0,16 A</td>
<td>0,08 A</td>
</tr>
<tr>
<td>Interne Sicherung</td>
<td>250 V; 3 A; 6,3 x 32 mm, Charakteristik „flink“</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 58: Steuerungsversorgung

Abbildung 89: Interne Sicherungen der AC-115-Karte und AC-230-Karte

F1 Sicherung

<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>Pin</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>L1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>N</td>
</tr>
</tbody>
</table>

Tabelle 59: Klemme X1

<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>Pin</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>+DC</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-DC</td>
</tr>
</tbody>
</table>

Tabelle 60: Klemme X2
14.7 Zentrale Recheneinheit

<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>Pin</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>GND_ISO</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>CAN_L</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>SHLD*</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CAN_H</td>
</tr>
</tbody>
</table>

Tabelle 61: Klemme X9 (CAN-Bus)

*) Alternativ können Sie den Kabelschirm auf der Kabelschelle des Schottblechs auflegen.

14.8 Systemvernetzung

CIC-Karte

<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>CIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232</td>
<td>9 polige SUB-D Buchse</td>
</tr>
</tbody>
</table>
| RS485 | 3 polige Buchse von Phoenix Contact (MC1,5/3 GF 3,5)
Polarität:
A > B um 200 mV entspricht 1.
A < B um 200 mV entspricht 0.
Empfohlener Abschlusswiderstand 120 Ω. |
| RJ45 (optional) | Max. 100 m
10 MBit/s |
| Lichtwellenleiter (optional) | F-ST (850 nm oder 660 nm)
F-SMA (850 nm oder 660 nm) |

Tabelle 62: Technische Daten der CIC-Karte

<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>Pin</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>TXD</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>RXD</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>GND</td>
</tr>
</tbody>
</table>

Tabelle 63: Klemme X8 (RS232)
14 Technische Daten

<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>Pin</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>GND (100 Ω Erdwiderstand)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>B (invertiert)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>A (nicht invertiert)</td>
</tr>
</tbody>
</table>

Tabelle 64: Klemme X9 (RS485)

<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>Pin</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>TxD+</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>TxD-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>RxD+</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>RxD-</td>
</tr>
</tbody>
</table>

Tabelle 65: Klemme X7 (RJ45)

SID-Karte

<table>
<thead>
<tr>
<th>SID</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJ45</td>
<td>Max. 100 m</td>
</tr>
<tr>
<td></td>
<td>Ethernet</td>
</tr>
<tr>
<td></td>
<td>100 MBit/s</td>
</tr>
</tbody>
</table>

Tabelle 66: Technische Daten der SID-Karte

<table>
<thead>
<tr>
<th>Schnittstelle</th>
<th>Pin</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>TxD+</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>TxD-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>RxD+</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>RxD-</td>
</tr>
</tbody>
</table>

Tabelle 67: RJ45-Schnittstelle

14.9 Abmessungen und Gewicht

<table>
<thead>
<tr>
<th>Gehäuse</th>
<th>19 Zoll Einschubgehäuse nach DIN 41494 Teil 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B x H x T)</td>
<td>483 x 133 x 178 mm (19 x 5,2 x 7 in)</td>
</tr>
<tr>
<td>Gewicht</td>
<td>5,0 kg (11 lb)</td>
</tr>
</tbody>
</table>

Tabelle 68: Abmessungen und Gewicht
14.10 Umgebungsbedingungen

<table>
<thead>
<tr>
<th>Betriebstemperatur</th>
<th>-25°C...+70°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagertemperatur</td>
<td>-30°C...+85°C</td>
</tr>
</tbody>
</table>

Tabelle 69: Zulässige Umgebungsbedingungen
14.11 Prüfungen

14.11.1 Elektrische Sicherheit

<table>
<thead>
<tr>
<th>Normnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61010-1</td>
<td>Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte</td>
</tr>
<tr>
<td>IEC 61131-2</td>
<td>Isolationsprüfung mit Betriebsfrequenz 2,5 kV / 1 min</td>
</tr>
<tr>
<td>IEC 60255</td>
<td>Isolationsprüfung mit Stoßspannung 5 kV, 1,2 / 50 µs</td>
</tr>
<tr>
<td>IEC 60 644-1</td>
<td>Verschmutzungsgrad 2, Überspannungskategorie III</td>
</tr>
</tbody>
</table>

Tabelle 70: Elektrische Sicherheit

14.11.2 EMV-Prüfungen

<table>
<thead>
<tr>
<th>Normnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61000-4-2</td>
<td>Elektrostatische Entladungen (ESD) 6 kV/8 kV</td>
</tr>
<tr>
<td>IEC 61000-4-3</td>
<td>Elektromagnetische Felder (HF) 20 V/m 80...3000 MHz</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td>Schnelle Transienten (Burst) 2 kV</td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
<td>Störfestigkeit gegen Transienten (Surge) 4 kV/2 kV/1 kV</td>
</tr>
<tr>
<td>IEC 61000-4-6</td>
<td>HF-Störfestigkeit (Leitungen) 10 V, 150 kHz... 80 MHz</td>
</tr>
<tr>
<td>IEC 61000-4-8</td>
<td>Störfestigkeit gegen Magnetfelder 30 A/m, 50 Hz, dauernd</td>
</tr>
<tr>
<td>IEC 61000-4-11</td>
<td>Störfestigkeit gegen Spannungseinbrüche bei AC Versorgung</td>
</tr>
<tr>
<td>IEC 61000-4-29</td>
<td>Störfestigkeit gegen Spannungseinbrüche bei DC Versorgung</td>
</tr>
<tr>
<td>IEC 61000-6-2</td>
<td>Störfestigkeit Industriebereich</td>
</tr>
<tr>
<td>IEC 61000-6-4</td>
<td>Störaussendung Industriebereich</td>
</tr>
<tr>
<td>DIN EN 55011,</td>
<td>Emission „RFI“</td>
</tr>
<tr>
<td>DIN EN 55022</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 71: EMV-Prüfungen

14.11.3 Beständigkeitsprüfungen Umwelt

<table>
<thead>
<tr>
<th>Normnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN EN 60529</td>
<td>Schutzart IP 20</td>
</tr>
<tr>
<td>IEC 60068-2-1</td>
<td>Trockene Kälte - 25 °C / 96 Stunden</td>
</tr>
<tr>
<td>IEC 60068-2-2</td>
<td>Trockene Wärme + 70 °C/ 96 Stunden</td>
</tr>
</tbody>
</table>
| IEC 60068-2-3 | Feuchte Wärme konstant
| | + 40 °C / 93 % / 4 Tage, keine Betauung |
| IEC 60068-2-30 | Feuchte Wärme zyklisch (12 + 12 Stunden)
| | + 55 °C / 93 % / 6 Zyklen |

Tabelle 72: Beständigkeitsprüfungen Umwelt
Glossar

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN</td>
<td>Abkürzung für "Deutsches Institut für Normung"</td>
</tr>
<tr>
<td>EMV</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>EN</td>
<td>Abkürzung für "Europäische Norm"</td>
</tr>
<tr>
<td>H/T</td>
<td>Höher/Tiefer</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>LDC</td>
<td>Line Drop Compensation</td>
</tr>
<tr>
<td>LWL</td>
<td>Abkürzung für Lichtwellenleiter</td>
</tr>
<tr>
<td>MR</td>
<td>Abkürzung für "Maschinenfabrik Reinhausen GmbH"</td>
</tr>
<tr>
<td>RTC</td>
<td>Abkürzung für "Real Time Clock"</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>AC-Karte</td>
<td>Eingang 1 Grenze oben</td>
</tr>
<tr>
<td>AD8-Karte</td>
<td>Eingang 1 Grenze unten</td>
</tr>
<tr>
<td>AD-Karte</td>
<td>Eingang 1 Wert oben</td>
</tr>
<tr>
<td>Analogeingang</td>
<td>Eingang 1 Wert unten</td>
</tr>
<tr>
<td>AN-Karte</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>Anschluss</td>
<td>Ereignisspeicher</td>
</tr>
<tr>
<td>Anstehende Meldungen</td>
<td>Ereignisspeichers</td>
</tr>
<tr>
<td>Anzeigeelemente</td>
<td>LED</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Bandbreite</td>
<td></td>
</tr>
<tr>
<td>Baudrate</td>
<td></td>
</tr>
<tr>
<td>Baugruppe</td>
<td></td>
</tr>
<tr>
<td>AC-Karte</td>
<td>27</td>
</tr>
<tr>
<td>AD8-Karte</td>
<td>26</td>
</tr>
<tr>
<td>AD-Karte</td>
<td>25</td>
</tr>
<tr>
<td>Analogeingang</td>
<td>26</td>
</tr>
<tr>
<td>AN-Karte</td>
<td>26</td>
</tr>
<tr>
<td>CIC-Karte</td>
<td>28</td>
</tr>
<tr>
<td>CPU-Karte</td>
<td>28</td>
</tr>
<tr>
<td>IO-Karte</td>
<td>24</td>
</tr>
<tr>
<td>MI</td>
<td>23</td>
</tr>
<tr>
<td>SID-Karte</td>
<td>29</td>
</tr>
<tr>
<td>SU-Karte</td>
<td>22</td>
</tr>
<tr>
<td>UC-Karte</td>
<td>24</td>
</tr>
<tr>
<td>Baugruppen</td>
<td>21</td>
</tr>
<tr>
<td>Bedienelemente</td>
<td>18</td>
</tr>
<tr>
<td>Betriebsart</td>
<td>17</td>
</tr>
<tr>
<td>Automatikbetrieb</td>
<td>17</td>
</tr>
<tr>
<td>Handbetrieb</td>
<td>17</td>
</tr>
<tr>
<td>Local-Betrieb</td>
<td>17</td>
</tr>
<tr>
<td>Remote-Betrieb</td>
<td>17</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CAN-Bus</td>
<td>87</td>
</tr>
<tr>
<td>Daten</td>
<td>119</td>
</tr>
<tr>
<td>CIC-Karte</td>
<td>28</td>
</tr>
<tr>
<td>CIC-Karte SCADA Information</td>
<td>122</td>
</tr>
<tr>
<td>COM1-Einstellung</td>
<td>43</td>
</tr>
<tr>
<td>CPU-Karte</td>
<td>28</td>
</tr>
<tr>
<td>D</td>
<td>Datum</td>
</tr>
<tr>
<td></td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Display-Kontrast</td>
</tr>
<tr>
<td></td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Display-Verdunklung</td>
</tr>
<tr>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Durchgangsleistung</td>
</tr>
<tr>
<td></td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>ICD-Datei</td>
</tr>
<tr>
<td></td>
<td>IEC 61850</td>
</tr>
<tr>
<td></td>
<td>IED-Name</td>
</tr>
<tr>
<td></td>
<td>Info</td>
</tr>
<tr>
<td></td>
<td>IO-Karte</td>
</tr>
<tr>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Netzwerkwirtresse</td>
</tr>
<tr>
<td></td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Netzwerkmaske</td>
</tr>
<tr>
<td></td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>NORMset</td>
</tr>
<tr>
<td></td>
<td>52</td>
</tr>
</tbody>
</table>

Stichwortverzeichnis
<table>
<thead>
<tr>
<th>P</th>
<th>T</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallelbetrieb</td>
<td>119</td>
<td>T block max Stufenanz.</td>
</tr>
<tr>
<td>Parallellauf</td>
<td>86</td>
<td>Tasten</td>
</tr>
<tr>
<td>CAN-Bus</td>
<td>87</td>
<td>Tastensperre</td>
</tr>
<tr>
<td>Kreisblindstrom</td>
<td>87</td>
<td>TCP-Port</td>
</tr>
<tr>
<td>Parallellauffehlemolding</td>
<td>90</td>
<td>Tiefer -> Höherzähler 0</td>
</tr>
<tr>
<td>Parallellaufmethode</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Bandbreite</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Parameter zurücksetzen</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Parameterübersicht</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Peakspeicher</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Phasenlage</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Primärspannung</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Regelparameter</td>
<td>53</td>
<td>Sollwert</td>
</tr>
<tr>
<td>Sollwert</td>
<td>56</td>
<td>Sollwert</td>
</tr>
<tr>
<td>Regelverhalten T1</td>
<td>57</td>
<td>Überspannungsschwelle</td>
</tr>
<tr>
<td>Regelkennung</td>
<td>42</td>
<td>Überstrom I></td>
</tr>
<tr>
<td>RTC</td>
<td>118</td>
<td>UC-Karte</td>
</tr>
<tr>
<td>Rücksprungdatum</td>
<td>114</td>
<td>UC-Karte Status</td>
</tr>
<tr>
<td>Rücksprungzeit</td>
<td>113</td>
<td>Uhrzeit</td>
</tr>
<tr>
<td>R-X-Kompensation</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Schaltintervallüberwachung</td>
<td>67</td>
<td>Unterspannungsschwellen aktivieren</td>
</tr>
<tr>
<td>Schnellrückschaltung</td>
<td>64</td>
<td>Unterspannungsschwellen deaktivieren</td>
</tr>
<tr>
<td>Schnittstellenprotokoll IEC 61850</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Sekundärspannung</td>
<td>52</td>
<td>Verdrahtung</td>
</tr>
<tr>
<td>Sendeverzögerung RS485</td>
<td>99</td>
<td>Verzögerungszeit T1</td>
</tr>
<tr>
<td>SID-Karte</td>
<td>29</td>
<td>Verzögerungszeit T2</td>
</tr>
<tr>
<td>SNTP-Zeitserver</td>
<td>95</td>
<td>aktivieren</td>
</tr>
<tr>
<td>Sollwert</td>
<td>53</td>
<td>deaktivieren</td>
</tr>
<tr>
<td>Sollwert</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Spannungsanzeige kV/V</td>
<td>43</td>
<td>Wandlerdaten</td>
</tr>
<tr>
<td>Speicher</td>
<td>102</td>
<td>Kreuzüberwachung</td>
</tr>
<tr>
<td>Sprache</td>
<td>38</td>
<td>Primärspannung</td>
</tr>
<tr>
<td>Stufennrichtung gedreht</td>
<td>51</td>
<td>Primärstrom</td>
</tr>
<tr>
<td>Stufenstellungserfassung analog</td>
<td>91</td>
<td>Sekundärspannung</td>
</tr>
<tr>
<td>SU-Karte</td>
<td>22</td>
<td>Stromwandleranschluss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wandlerschaltung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Werkseinstellung</td>
</tr>
</tbody>
</table>

Zeitachse 111, Zeitfenster für Stufen 69, Zeitschreiber 109, Rücksprungdatum 114, Rücksprungzeit 113, Spannungsbereich 112, visuelle Darstellung 109, Zeitachse 111, Zeitserveradresse 95, Z-Kompensation aktivieren 73, Grenzwert 74,
MR worldwide

Australia
Reinhausen Australia Pty. Ltd.
17/20-22 St Albans Road
Kingsgrove NSW 2208
Phone: +61 2 9502 2202
Fax: +61 2 9502 2224
E-Mail: sales@au.reinhausen.com

Brazil
MR do Brasil Indústria Mecânica Ltda.
Av. Elias Yazbek, 465
CEP: 06803-000
Embu - São Paulo
Phone: +55 11 4785 2150
Fax: +55 11 4785 2185
E-Mail: vendas@reinhausen.com.br

Canada
Reinhausen Canada Inc.
3755, rue Java, Suite 180
Brossard, Québec J4Y 0E4
Phone: +1 514 370 5377
Fax: +1 450 659 3092
E-Mail: m.foata@ca.reinhausen.com

India
Easun-MR Tap Changers Ltd.
612, CTH Road
Tiruniravur, Chennai 602 024
Phone: +91 44 26300883
Fax: +91 44 26390881
E-Mail: easunmr@vsnl.com

Indonesia
Pt. Reinhausen Indonesia
German Center, Suite 6310, Jl. Kapt. Subjianto Dj.
BSD City, Tangerang
Phone: +62 21 5315-3183
Fax: +62 21 5315-3184
E-Mail: c.haering@id.reinhausen.com

Iran
Iran Transfo After Sales Services Co.
Zanjan, Industrial Township No. 1 (Aliabad)
Corner of Morad Str.
Postal Code 4533144551
E-Mail: ias@iran-transfo.com

Italy
Reinhausen Italia S.r.l.
Via Alserio, 16
20159 Milano
Phone: +39 02 6943471
Fax: +39 02 69434766
E-Mail: sales@it.reinhausen.com

Japan
MR Japan Corporation
German Industry Park
1-18-2 Hakusan, Midori-ku
Yokohama 226-0006
Phone: +81 45 929 5728
Fax: +81 45 929 5741

Luxembourg
Reinhausen Luxembourg S.A.
72, Rue de Prés L-7333 Steinse
Phone: +352 27 3347 1
Fax: +352 27 3347 99
E-Mail: sales@lu.reinhausen.com

Malaysia
Reinhausen Asia-Pacific Sdn. Bhd
Level 11 Chulan Tower
No. 3 Jalan Conlay
50450 Kuala Lumpur
Phone: +60 3 2142 6481
Fax: +60 3 2142 6422
E-Mail: mr_rap@my.reinhausen.com

P.R.C. (China)
MR China Ltd. (MRT)
开德贸易（上海）有限公司
中国上海浦东新区浦东路 360 号
新上海国际大厦 4 楼 E 座
邮编：200120
电话：+86 21 61634588
传真：+86 21 61634582
邮箱：mr-sales@cn.reinhausen.com

Russian Federation
OOO MR
Naberezhnaya Akademika Tupoleva
15, Bid. 2 (“Tupolev Plaza”) 105005 Moscow
Phone: +7 495 980 89 67
Fax: +7 495 980 89 67
E-Mail: mrr@reinhausen.ru

South Africa
Reinhausen South Africa (Pty) Ltd.
No. 15, Third Street, Booysems Reserve
Johannesburg
Phone: +27 11 8352077
Fax: +27 11 8353806
E-Mail: support@za.reinhausen.com

South Korea
Reinhausen Korea Ltd.
21st floor, Standard Chartered Bank Bldg.,
47, Chongro, Chongro-gu, Seoul 110-702
Phone: +82 2 767 4909
Fax: +82 2 736 0049
E-Mail: you-mi.jang@kr.reinhausen.com

U.S.A.
Reinhausen Manufacturing Inc.
2549 North 9th Avenue
Humboldt, TN 38343
Phone: +1 731 784 7681
Fax: +1 731 784 7682
E-Mail: sales@reinhausen.com

United Arab Emirates
Reinhausen Middle East FZE
Dubai Airport Freezone, Building Phase 6
3rd floor, Office No. 6E, 341 Dubai
Phone: +971 4 2368 451
Fax: +971 4 2368 225
Email: service@ae.reinhausen.com

Maschinenfabrik Reinhausen GmbH
Falkensteinstrasse 8
93059 Regensburg

+49 (0) 941 4090-0
www.reinhausen.com
+49(0)941 4090-7001
sales@reinhausen.com

1801003/06 DE • 04/14 •