© Tous droits réservés à la société Maschinenfabrik Reinhausen

La transmission et la reproduction du présent document, l'exploitation et la communication de son contenu sont interdites sauf autorisation expresse.

Tout manquement expose son auteur au versement de dommages et intérêts. Tous droits réservés pour le cas de la délivrance d'un brevet, d'un modèle d'utilité ou d'un modèle de présentation.

Des modifications ont pu intervenir sur le produit depuis la clôture de la rédaction de la présente documentation.

Sous réserve expresse de modifications des caractéristiques techniques, de la conception ainsi que du contenu de la livraison.

Les informations transmises et les accords convenus lors du traitement des offres et commandes respectives doivent toujours être pris en compte.

Les instructions de service d'origine sont libellées en allemand.
Sommaire

<table>
<thead>
<tr>
<th>Chapitre</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>1.1</td>
<td>Fabricant</td>
<td>12</td>
</tr>
<tr>
<td>1.2</td>
<td>Intégralité</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>Lieu de stockage</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>Conventions de représentation</td>
<td>13</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Concept de mise en garde</td>
<td>13</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Concept d'information</td>
<td>14</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Concept de manipulation</td>
<td>14</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Orthographe</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Sécurité</td>
<td>16</td>
</tr>
<tr>
<td>2.1</td>
<td>Utilisation conforme à l'emploi prévu</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Consignes de sécurité fondamentales</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Qualification du personnel</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Équipement de protection individuelle</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Sécurité IT</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Généralités</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Mise en service</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>Fonctionnement</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Interfaces</td>
<td>24</td>
</tr>
<tr>
<td>3.5</td>
<td>Normes de cryptage</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Description du produit</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Contenu de la livraison</td>
<td>29</td>
</tr>
<tr>
<td>4.2</td>
<td>Description fonctionnelle</td>
<td>29</td>
</tr>
<tr>
<td>4.3</td>
<td>Caractéristiques</td>
<td>29</td>
</tr>
<tr>
<td>4.4</td>
<td>Variantes</td>
<td>31</td>
</tr>
<tr>
<td>4.4.1</td>
<td>ETOS® ED L/ETOS® ED L-S</td>
<td>31</td>
</tr>
<tr>
<td>4.4.2</td>
<td>ETOS® ED XL</td>
<td>32</td>
</tr>
<tr>
<td>4.5</td>
<td>Structure</td>
<td>33</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Champ d'affichage</td>
<td>35</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Chauffage anti-condensation</td>
<td>35</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Cadre pivotant/Cadre de bornes</td>
<td>35</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Dispositif de signalisation de positions</td>
<td>36</td>
</tr>
</tbody>
</table>
Sommaire

4.5.5 Plaque de recouvrement du réducteur de puissance .. 36
4.5.6 Capteur de température ambiante ... 37
4.5.7 Modules ISM ... 38
4.6 Plaque signalétique ... 45
4.7 Dispositifs de protection .. 46
4.8 Indications de sécurité .. 47
4.9 Mode d'urgence en cas de blocage de commutation (pont X100) 47
4.10 Visualisation .. 48
4.10.1 Écran d'accueil ... 48
4.10.2 Éléments de commande et d'affichage additionnels en cas d'utilisation du panneau tactile MControl (en option) .. 53
4.10.3 Concept de commande .. 54

5 Emballage, transport et stockage .. 59
5.1 Emballage .. 59
5.1.1 Aptitude .. 59
5.1.2 Marquages .. 60
5.2 Transport, réception et traitement des expéditions .. 60
5.3 Stockage de la marchandise .. 61
5.4 Déballage du produit et vérification de l'absence de dommages subis pendant le transport .. 62

6 Montage .. 64
6.1 Montage du coffret de contrôle sur le transformateur .. 64
6.2 Montage des arbres d'entraînement et du renvoi d'angle ... 67
6.3 Caler le changeur de prises en charge et le mécanisme d'entraînement 67
6.4 Raccordement de modules ISM® .. 74
6.4.1 Câbles recommandés (modules ISM®) .. 75
6.4.2 Indications concernant le raccordement des interfaces série RS232 et RS485 .. 76
6.4.3 Indications relatives au raccordement au bus de capteurs MR 78
6.4.4 Indications concernant le raccordement des capteurs analogiques 83
6.4.5 Compatibilité électromagnétique .. 86
6.4.6 Raccorder les câbles aux périphériques ... 89
6.4.7 Câbler l'appareil .. 90
6.4.8 Monter la résistance de terminaison du bus CAN ... 91
6.5 Raccordement du mécanisme d'entraînement ... 91
6.5.1 Câbles recommandés .. 92
6.5.2 Raccordement électrique ... 93
Sommaire

7 Mise en service .. 95
 7.1 Mettre le mécanisme d'entraînement en service ... 95
 7.2 Contrôles sur le mécanisme d'entraînement ... 96
 7.2.1 Vérifier si le courant est correctement coupé ... 96
 7.2.2 Vérification du verrouillage mécanique et électrique des positions extrêmes du changeur de prises en charge/ changeur de prises hors tension et du mécanisme d'entraînement ... 97
 7.2.3 Vérifier le déclenchement du disjoncteur-protecteur du moteur 98
 7.2.4 Vérification du bon fonctionnement .. 98
 7.3 Contrôles sur le transformateur ... 98
 7.3.1 Essais de haute tension sur le transformateur ... 98
 7.3.2 Essais diélectriques sur le câblage du transformateur ... 99
 7.4 Transport du transformateur vers le lieu d’implantation .. 99
 7.5 Mise en service du transformateur sur le lieu d'implantation 100
 7.6 Visualisation .. 101
 7.6.1 Établissement d'une connexion à la visualisation .. 101
 7.6.2 Réglage de la langue .. 103
 7.6.3 Réglage de la date et de l'heure .. 104
 7.6.4 Assistant de mise en service .. 104
 7.6.5 Contrôles des valeurs mesurées et de l'état des entrées et sorties numériques 105
 7.6.6 Vérification de la mesure de température ... 106

8 Service .. 107
 8.1 Actionnement du mécanisme d'entraînement à distance ... 107
 8.2 Actionnement du mécanisme d'entraînement sur site .. 107
 8.3 Actionner le mécanisme d'entraînement au moyen de la manivelle 108

9 Visualisation ... 110
 9.1 Établissement d'une connexion à la visualisation ... 110
 9.2 Généralités .. 113
 9.2.1 Réglage des fonctions générales de l’appareil ... 114
 9.2.2 Réglage de la déconnexion automatique .. 115
 9.2.3 Activation / Désactivation de l'accès utilisateur à la maintenance 116
 9.3 Configuration réseau .. 117
 9.3.1 Adresse de destination passerelle ETH 1/ETH 2.2 ... 119
 9.4 MQTT .. 120
 9.5 Réglage de l'appareil .. 122
 9.5.1 Synchronisation temporelle via PTP .. 124
Sommaire

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td>Configuration Syslog</td>
<td>124</td>
</tr>
<tr>
<td>9.7</td>
<td>Réglage de l'écran de veille</td>
<td>126</td>
</tr>
<tr>
<td>9.8</td>
<td>SCADA</td>
<td>127</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Configuration CEI 61850 (en option)</td>
<td>128</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Configuration CEI 60870-5-101 (en option)</td>
<td>130</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Configuration CEI 60870-5-103 (en option)</td>
<td>133</td>
</tr>
<tr>
<td>9.8.4</td>
<td>Configuration CEI 60870-5-104 (en option)</td>
<td>136</td>
</tr>
<tr>
<td>9.8.5</td>
<td>Configuration Modbus (en option)</td>
<td>138</td>
</tr>
<tr>
<td>9.8.6</td>
<td>Configuration DNP3 (en option)</td>
<td>140</td>
</tr>
<tr>
<td>9.8.7</td>
<td>Configuration GOOSE (en option)</td>
<td>142</td>
</tr>
<tr>
<td>9.8.8</td>
<td>Configuration des points de données (en option)</td>
<td>147</td>
</tr>
<tr>
<td>9.8.9</td>
<td>Affichage de l'état de la connexion SCADA</td>
<td>155</td>
</tr>
<tr>
<td>9.9</td>
<td>Plaque signalétique</td>
<td>156</td>
</tr>
<tr>
<td>9.9.1</td>
<td>Entrée des données de la plaque signalétique</td>
<td>156</td>
</tr>
<tr>
<td>9.9.2</td>
<td>Affichage de la plaque signalétique</td>
<td>157</td>
</tr>
<tr>
<td>9.10</td>
<td>Relier les signaux et les événements</td>
<td>157</td>
</tr>
<tr>
<td>9.10.1</td>
<td>Relier les fonctions</td>
<td>158</td>
</tr>
<tr>
<td>9.10.2</td>
<td>Relier les sorties numériques</td>
<td>159</td>
</tr>
<tr>
<td>9.10.3</td>
<td>Relier les messages de système de conduite</td>
<td>159</td>
</tr>
<tr>
<td>9.11</td>
<td>Contrôle de la réfrigération (en option)</td>
<td>160</td>
</tr>
<tr>
<td>9.11.1</td>
<td>Configuration des étages de réfrigération</td>
<td>161</td>
</tr>
<tr>
<td>9.11.2</td>
<td>Réglage du mode de fonctionnement</td>
<td>163</td>
</tr>
<tr>
<td>9.11.3</td>
<td>Désactivation du contrôle de la réfrigération</td>
<td>163</td>
</tr>
<tr>
<td>9.11.4</td>
<td>Configuration du mode dépendant de la charge</td>
<td>163</td>
</tr>
<tr>
<td>9.11.5</td>
<td>Configuration du mode périodique</td>
<td>165</td>
</tr>
<tr>
<td>9.11.6</td>
<td>Configuration du mode alternant</td>
<td>166</td>
</tr>
<tr>
<td>9.11.7</td>
<td>Configuration du contrôle de la réfrigération basé sur la fréquence</td>
<td>167</td>
</tr>
<tr>
<td>9.11.8</td>
<td>Affichage de l'état des étages de réfrigération</td>
<td>170</td>
</tr>
<tr>
<td>9.12</td>
<td>Surveillance de la réfrigération (en option)</td>
<td>171</td>
</tr>
<tr>
<td>9.12.1</td>
<td>Réglage de la surveillance de la réfrigération</td>
<td>172</td>
</tr>
<tr>
<td>9.12.2</td>
<td>Surveillance de la puissance frigorifique (en option)</td>
<td>173</td>
</tr>
<tr>
<td>9.12.3</td>
<td>Surveillance du débit de réfrigération (en option)</td>
<td>174</td>
</tr>
<tr>
<td>9.13</td>
<td>Commande du mécanisme d'entraînement (en option)</td>
<td>178</td>
</tr>
<tr>
<td>9.13.1</td>
<td>Régler l'impulsion de manœuvre de la commande du mécanisme d'entraînement</td>
<td>179</td>
</tr>
<tr>
<td>9.13.2</td>
<td>Régler de la surveillance de la durée de fonctionnement du moteur</td>
<td>180</td>
</tr>
<tr>
<td>9.13.3</td>
<td>Régler le sens de manœuvre</td>
<td>181</td>
</tr>
</tbody>
</table>
9.14 Aperçu du mécanisme d’entraînement ... 182
9.15 Régulation ... 183
9.15.1 Comportement en cas d’interruption du système de conduite (en option) .. 183
9.15.2 Régler la variable de régulation (en option) ... 185
9.16 Régulation de la tension (en option) .. 186
9.16.1 Réglage de la valeur de consigne .. 186
9.17 Régulation de la puissance réactive (en option) .. 203
9.18 Régulation de la puissance active (en option) ... 207
9.19 Données du transformateur de mesure ... 211
9.19.1 Réglage des données du transformateur de mesure ... 212
9.19.2 Exemples de couplages pour les transformateurs de tension et les transformateurs d’intensité 214
9.20 Mesure ... 228
9.20.1 Canaux de mesure UI ... 228
9.20.2 Variante de régulation ... 229
9.20.3 Mode de régulation ... 229
9.20.4 Affichage facteur puissance négatif .. 229
9.21 Compensation de ligne ... 230
9.21.1 Compensation R-X ... 230
9.21.2 Compensation Z ... 232
9.22 Marche en parallèle (en option) .. 233
9.22.1 Méthodes de marche en parallèle .. 233
9.22.2 Configuration de la marche en parallèle ... 238
9.22.3 Modernisation TAPCON® 2xx .. 242
9.22.4 Détecteur de commande en parallèle via les entrées de groupe (en option) ... 243
9.23 Fonctions de surveillance .. 244
9.23.1 Surveillance de la tension ... 244
9.23.2 Surveillance de l’intensité ... 247
9.23.3 Surveillance de la puissance ... 250
9.23.4 Surveill. retour flux puiss. ... 252
9.23.5 Surveillance de la position de prise (option) ... 254
9.23.6 Surveillance de largeur de bande U .. 256
9.23.7 Surveillance de largeur de bande Q (en option) ... 258
9.23.8 Surveillance de largeur de bande P (en option) ... 260
9.23.9 Surveillance symétrie phases ... 262
9.23.10 Surveillance de la température ... 263
9.23.11 Surveillance de l’intervalle de commutation ... 264
<table>
<thead>
<tr>
<th>Numéro</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.23.12</td>
<td>Surveillance du volume de gaz du relais Buchholz (CPEC)</td>
<td>264</td>
</tr>
<tr>
<td>9.23.13</td>
<td>Surveillance du volume de gaz du relais Buchholz (transformateur)</td>
<td>266</td>
</tr>
<tr>
<td>9.23.14</td>
<td>Surveillance de la pression d'huile (transformateur)</td>
<td>267</td>
</tr>
<tr>
<td>9.23.15</td>
<td>Surveillance de la pression d'huile (changeur de prises en charge)</td>
<td>267</td>
</tr>
<tr>
<td>9.24</td>
<td>Départ sur prise cible</td>
<td>268</td>
</tr>
<tr>
<td>9.25</td>
<td>Valeurs de mesure</td>
<td>269</td>
</tr>
<tr>
<td>9.25.1</td>
<td>Afficher les valeurs de mesure actuelles</td>
<td>269</td>
</tr>
<tr>
<td>9.25.2</td>
<td>Afficher l'enregistreur de valeurs de mesure (en option)</td>
<td>270</td>
</tr>
<tr>
<td>9.25.3</td>
<td>Réglage de l'enregistreur de valeurs de mesure</td>
<td>275</td>
</tr>
<tr>
<td>9.25.4</td>
<td>Affichage de la courbe de température (en option)</td>
<td>276</td>
</tr>
<tr>
<td>9.25.5</td>
<td>Afficher les températures d'enroulement (en option)</td>
<td>277</td>
</tr>
<tr>
<td>9.25.6</td>
<td>Affichage des valeurs mesurées du relais Buchholz (en option)</td>
<td>277</td>
</tr>
<tr>
<td>9.25.7</td>
<td>Affichage des valeurs mesurées de la soupape de surpression (en option)</td>
<td>278</td>
</tr>
<tr>
<td>9.25.8</td>
<td>Affichage de la courbe des valeurs mesurées du niveau d'huile et de l'assécheur d'air (en option)</td>
<td>279</td>
</tr>
<tr>
<td>9.26</td>
<td>Surveillance du changeur de prises en charge</td>
<td>280</td>
</tr>
<tr>
<td>9.26.1</td>
<td>Modification de la désignation de la position de prise (en option)</td>
<td>280</td>
</tr>
<tr>
<td>9.26.2</td>
<td>Réglage du facteur de calcul TCR (en option)</td>
<td>280</td>
</tr>
<tr>
<td>9.26.3</td>
<td>Affichage des statistiques de commutation (en option)</td>
<td>281</td>
</tr>
<tr>
<td>9.26.4</td>
<td>Motor Current Index (MCI)</td>
<td>282</td>
</tr>
<tr>
<td>9.26.5</td>
<td>Afficher les informations relatives à l'érosion des contacts (seulement OILTAP®)</td>
<td>286</td>
</tr>
<tr>
<td>9.26.6</td>
<td>Informations sur le changeur de prises en charge</td>
<td>287</td>
</tr>
<tr>
<td>9.27</td>
<td>Surveillance du transformateur (en option)</td>
<td>288</td>
</tr>
<tr>
<td>9.27.1</td>
<td>Calcul de point-chaud (en option)</td>
<td>288</td>
</tr>
<tr>
<td>9.27.2</td>
<td>Pronostic du point chaud (en option)</td>
<td>291</td>
</tr>
<tr>
<td>9.27.3</td>
<td>Réglage du calcul de la consommation de durée de vie du transformateur (en option)</td>
<td>292</td>
</tr>
<tr>
<td>9.27.4</td>
<td>Affichage de l'état des appareils de protection (en option)</td>
<td>293</td>
</tr>
<tr>
<td>9.27.5</td>
<td>Asset Intelligence</td>
<td>293</td>
</tr>
<tr>
<td>9.27.6</td>
<td>Statistiques du transformateur</td>
<td>295</td>
</tr>
<tr>
<td>9.27.7</td>
<td>Affichage des valeurs actuelles de Niveau d'huile/Assécheur d'air</td>
<td>296</td>
</tr>
<tr>
<td>9.27.8</td>
<td>Affichage de la courbe des valeurs mesurées du niveau d'huile et de l'assécheur d'air (en option)</td>
<td>297</td>
</tr>
<tr>
<td>9.28</td>
<td>Analyse des gaz dissous dans l'huile (en option)</td>
<td>298</td>
</tr>
<tr>
<td>9.28.1</td>
<td>Configurer la surveillance AGD</td>
<td>298</td>
</tr>
<tr>
<td>9.28.2</td>
<td>Afficher les valeurs de mesure</td>
<td>301</td>
</tr>
<tr>
<td>9.29</td>
<td>Bus de capteurs MR</td>
<td>307</td>
</tr>
<tr>
<td>9.29.1</td>
<td>Configuration du bus de capteurs MR</td>
<td>308</td>
</tr>
<tr>
<td>9.29.2</td>
<td>Gestion des capteurs</td>
<td>309</td>
</tr>
<tr>
<td>9.29.3</td>
<td>Affectation d'une fonction</td>
<td>311</td>
</tr>
</tbody>
</table>
Sommaire

9.29.4 Définition des capteurs .. 312
9.29.5 Afficher les informations sur les capteurs raccordés .. 316
9.30 Configuration des entrées et des sorties analogiques (en option) ... 318
9.31 Configuration des entrées et sorties numériques .. 322
9.32 Maintenance (en option) ... 324
9.32.1 Réglage de l'intervalle exploitant pour la maintenance OLTC .. 325
9.32.2 Réglage de l'intervalle exploitant pour la maintenance du transformateur 326
9.32.3 Réalisation et confirmation des maintenances .. 327
9.32.4 Affichage de l'aperçu de maintenance .. 330
9.32.5 Affichage du journal de maintenance .. 330
9.32.6 Masquer un événement de maintenance ... 332
9.33 Surveillance du couple (en option) .. 333
9.33.1 Plages de commutation (fenêtres) M1...M8 .. 333
9.33.2 Types de commutation ... 334
9.33.3 Valeurs limites ... 334
9.33.4 Surveillance de commutation ... 335
9.33.5 Changements de prises analysés et non analysés ... 336
9.33.6 Affichage de la surveillance du couple .. 336
9.34 Gestion d'événements ... 339
9.34.1 Afficher et acquitter les événements ... 339
9.34.2 Configurer les événements .. 340
9.34.3 Affichage de la mémoire d'événements ... 342
9.35 Gestion d'utilisateurs .. 343
9.35.1 Rôles utilisateur .. 343
9.35.2 Changer le mot de passe ... 345
9.35.3 Créer, éditer et supprimer un utilisateur .. 346
9.35.4 Régler les droits d'accès aux paramètres et événements .. 348
9.35.5 Authentication utilisateur via RADIUS (en option) .. 349
9.36 Informations relatives à l'appareil ... 351
9.36.1 Matériel .. 351
9.36.2 Logiciel ... 353
9.36.3 Marche en parallèle .. 353
9.37 Gestionnaire d'importation/d'exportation ... 354
9.37.1 Exporter des données ... 354
9.37.2 Importation des données (à partir de la version logicielle 3.44) ... 356
9.38 Configuration du convertisseur de support avec Managed Switch ... 357
9.38.1 Mise en service ... 357
9.38.2 Configuration ... 359
9.38.3 Mise à jour du micrologiciel ... 360
9.39 Transformer Personal Logic Editor (TPLE) .. 362
9.39.1 Mode de fonctionnement ... 362
9.39.2 Configuration TPLE .. 376
9.40 Calibrage du capteur de position .. 379
9.41 Réalisation de tests de commutation ... 380

10 Dépannage ... 382
10.1 Consignes de sécurité ... 382
10.2 Consignes générales .. 382
10.3 Dérangement à proximité du mécanisme d'entraînement .. 383
10.4 Dérangement dans le mécanisme d'entraînement après un changement de prise non terminé ... 383
10.5 Dérangement dans le mécanisme d'entraînement après un changement de prise correctement terminé .. 384
10.6 Actionnement par manivelle en cas de dérangement.. 384
10.7 Dépannage ISM (matériel et logiciel) .. 385
10.7.1 Dérangements généraux ... 385
10.7.2 Interface homme-machine .. 386
10.7.3 Surveillance du couple .. 386
10.7.4 Surveillance de la température .. 390
10.7.5 Messages de maintenance ... 395
10.7.6 Surveillance du fonctionnement .. 398
10.7.7 Autres défauts .. 400

11 Inspection et maintenance ... 401
11.1 Entretien .. 401
11.2 Inspection ... 401
11.3 Maintenance .. 402

12 Démontage .. 403

13 Élimination .. 406

14 Caractéristiques techniques ... 407
14.1 Mécanisme d'entraînement ... 407
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>Coffret de contrôle</td>
<td>407</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Schémas</td>
<td>409</td>
</tr>
<tr>
<td>14.3</td>
<td>Caractéristiques techniques du dispositif de signalisation de position</td>
<td>414</td>
</tr>
<tr>
<td>14.4</td>
<td>Conditions ambiantes admissibles</td>
<td>415</td>
</tr>
<tr>
<td>14.5</td>
<td>Modules ISM®</td>
<td>415</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Alimentation électrique</td>
<td>415</td>
</tr>
<tr>
<td>14.5.2</td>
<td>Alimentation électrique</td>
<td>415</td>
</tr>
<tr>
<td>14.5.3</td>
<td>Mesure de la tension et mesure du courant</td>
<td>417</td>
</tr>
<tr>
<td>14.5.4</td>
<td>Mesure de la tension et mesure du courant UI 5-4</td>
<td>418</td>
</tr>
<tr>
<td>14.5.5</td>
<td>Entrées et sorties numériques</td>
<td>420</td>
</tr>
<tr>
<td>14.5.6</td>
<td>Entrées et sorties analogiques</td>
<td>423</td>
</tr>
<tr>
<td>14.5.7</td>
<td>Entrées et sorties analogiques AIO 8</td>
<td>424</td>
</tr>
<tr>
<td>14.5.8</td>
<td>Unité centrale de calcul CPU I</td>
<td>424</td>
</tr>
<tr>
<td>14.5.9</td>
<td>Mise en réseau du système</td>
<td>426</td>
</tr>
<tr>
<td>14.5.10</td>
<td>Conditions ambiantes</td>
<td>428</td>
</tr>
<tr>
<td>14.5.11</td>
<td>Normes et directives</td>
<td>429</td>
</tr>
</tbody>
</table>

Glossaire | 431

Index | 433
1 Introduction

La présente documentation technique contient les consignes détaillées pour le montage, le raccordement, la mise en service et la surveillance en toute sécurité et adéquats du produit.

Elle contient également les consignes de sécurité ainsi que les informations générales sur le produit.

La présente documentation technique s'adresser exclusivement au personnel spécialement formé et autorisé.

1.1 Fabricant

Ce produit est fabriqué par :

Maschinenfabrik Reinhausen GmbH
Falkensteinstraße 8
93059 Regensburg
Téléphone : (+49) 9 41/40 90-0
E-mail : sales@reinhausen.com

De plus amples informations relatives au produit et aux éditions de la présente documentation technique sont disponibles à cette adresse.

1.2 Intégralité

La présente documentation technique n'est intégrale qu'en combinaison avec les documents également applicables.

Les documents afférents suivants s'appliquent en plus de la présente documentation technique :

- Schémas de connexion
- Procès-verbal d'essai de routine
- Supplément

Observez, en outre, les lois, normes et directives, ainsi que les réglementations en matière de prévention des accidents et de protection de l'environnement en vigueur dans le pays d'utilisation.

1.3 Lieu de stockage

Conservez la présente documentation technique ainsi que tous les documents afférents à portée de main et accessibles à tout moment pour une utilisation ultérieure.
1.4 Conventions de représentation

1.4.1 Concept de mise en garde

Les avertissements contenus dans la présente documentation technique sont représentés comme suit :

1.4.1.1 Avertissement relatif à un chapitre

Les avertissements relatifs à un chapitre concernent des chapitres entiers ou des sections, sous-sections ou plusieurs paragraphes de la présente documentation technique. Les avertissements relatifs à un chapitre répondent au schéma suivant :

⚠️ AVERTISSEMENT

Type de danger !

Source du danger et conséquences.
► Mesure
► Mesure

1.4.1.2 Avertissement imbriqué

Les avertissements imbriqués se rapportent à une partie précise d'une section. Contrairement aux avertissements relatifs au chapitre, ces avertissements s'appliquent à des unités d'informations de plus petite taille. Les avertissements imbriqués répondent au schéma suivant :

⚠️ DANGER !

Instruction visant à éviter une situation dangereuse.

1.4.1.3 Mots-signaux et pictogrammes

Mots-signaux utilisés :

<table>
<thead>
<tr>
<th>Mot-signal</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Caractérise une situation dangereuse entraînant la mort ou des blessures graves si elle n'est pas évitée.</td>
</tr>
<tr>
<td>AVERTISSEMENT</td>
<td>Caractérise une situation dangereuse pouvant entraîner la mort ou des blessures graves si elle n'est pas évitée</td>
</tr>
<tr>
<td>ATTENTION</td>
<td>Caractérise une situation dangereuse pouvant entraîner des blessures graves si elle n'est pas évitée</td>
</tr>
<tr>
<td>AVIS</td>
<td>Caractérise les mesures visant à éviter les dommages matériels.</td>
</tr>
</tbody>
</table>

Tableau 1: Mots-signaux dans les indications d'avertissement
Les pictogrammes sont utilisés pour mettre en garde contre les dangers :

<table>
<thead>
<tr>
<th>Pictogramme</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Avertissement signalant un endroit dangereux</td>
</tr>
<tr>
<td></td>
<td>Avertissement signalant une tension électrique dangereuse</td>
</tr>
<tr>
<td></td>
<td>Avertissement contre des substances inflammables</td>
</tr>
<tr>
<td></td>
<td>Avertissement contre le risque de basculement</td>
</tr>
<tr>
<td></td>
<td>Avertissement contre le risque d'écrasement !</td>
</tr>
</tbody>
</table>

Tableau 2: Pictogrammes dans les avertissements

1.4.2 Concept d'information

Les informations servent à simplifier et améliorer la compréhension de certains processus. Dans la présente documentation technique, elles suivent le schéma ci-après :

Informations importantes.

1.4.3 Concept de manipulation

La présente documentation technique contient des consignes opératoires à une étape et à plusieurs étapes.

Consignes opératoires à une étape

Les consignes opératoires englobant une seule étape de travail répondent au schéma suivant dans la présente documentation technique :
1.4.4 Orthographes

<table>
<thead>
<tr>
<th>Orthographe</th>
<th>Utilisation</th>
<th>Exemple</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJUSCULES</td>
<td>Éléments de commande, interrupteur</td>
<td>ON/OFF</td>
</tr>
<tr>
<td>[Parenthèses]</td>
<td>Clavier d'ordinateur</td>
<td>[Ctrl] + [Alt]</td>
</tr>
<tr>
<td>Gras</td>
<td>Éléments de commande logiciel</td>
<td>Appuyez sur le bouton Suivant</td>
</tr>
<tr>
<td>...>...>...</td>
<td>Chemins de menu</td>
<td>Paramètres > Paramètres de régulation</td>
</tr>
<tr>
<td>Italique</td>
<td>Messages système, messages d'erreur, signaux</td>
<td>L'alarme Surveillance du fonctionnement s'est déclenchée</td>
</tr>
<tr>
<td>[► Page]</td>
<td>Renvoi</td>
<td>[► Page 41].</td>
</tr>
<tr>
<td>Soulignement en pointillé</td>
<td>Entrée dans le glossaire, abréviations, définitions etc.</td>
<td>Entrée dans le glossaire, abréviations, définitions etc.</td>
</tr>
</tbody>
</table>

Tableau 3: Orthographes utilisées dans la présente documentation technique
2 Sécurité

- Veuillez lire la présente documentation technique afin de vous familiariser avec le produit.
- La présente documentation technique fait partie du produit.
- Lisez et tenez compte des consignes de sécurité contenues dans ce chapitre.
- Lisez et tenez compte des avertissements contenus dans la présente documentation technique afin d'éviter les dangers liés au fonctionnement.
- Ce produit a été fabriqué selon l'état actuel de la technique. Néanmoins, on ne peut exclure entièrement des risques fonctionnels pour l'intégrité corporelle et la vie de l'utilisateur, ni de préjudices au produit et autres dommages matériels en cas d'utilisation non conforme à l'emploi prévu.

2.1 Utilisation conforme à l'emploi prévu

Le mécanisme d'entraînement sert à adapter la position de service des changeurs de prises en charge dans les transformateurs de réglage aux exigences opérationnelles correspondantes. Le mécanisme d'entraînement est exclusivement prévu pour une utilisation dans les installations et les équipements d'énergie électrique. S'il est utilisé conformément à l'emploi prévu et si les conditions contenues dans la présente documentation technique, ainsi que les avertissements contenus dans la présente documentation technique et inscrits sur le mécanisme d'entraînement sont respectés, celui-ci ne présente aucun danger pour les personnes, les biens matériels et l'environnement. Cela est valable pour toute la durée de vie du produit, depuis la livraison jusqu'au démontage et l'élimination, en passant par le montage et l'exploitation.

L'utilisation est conforme à l'emploi prévu dans les cas suivants :

- Utilisez le produit uniquement conformément à la présente documentation technique, ainsi qu'aux conditions de livraison et aux caractéristiques techniques.
- Utilisez les dispositifs et les outils spéciaux accompagnant le produit exclusivement aux fins prévues et conformément aux stipulations de la présente documentation technique.
- Utilisez le produit uniquement pour le transformateur / changeur de prises en charge / changeur de prises hors tension faisant l'objet de la commande.
- Vous trouverez la norme en vigueur pour le produit, y compris l'année d'édition, sur la plaque signalétique.
- Les numéros de série des changeurs de prises en charge / hors tension et des accessoires de changeurs de prises en charge / hors tension (mécanisme d'entraînement, arbre d'entraînement, renvoi d'angle, relais de protection, etc.) doivent concorder lorsque les changeurs de prises en charge et les accessoires des changeurs de prises en charge sont livrés sous forme de kit pour une commande.
- En service normal, vous actionnez électriquement à distance le mécanisme d'entraînement.
Dans des cas particuliers (par ex. lors de travaux de maintenance), vous pouvez également actionner électriquement le mécanisme d'entraînement sur site à l'aide du bouton de réglage S3.

N'actionnez jamais le mécanisme d'entraînement électriquement ou par manivelle avant que le transformateur ne soit mis hors tension si vous suspectez une erreur au niveau du transformateur ou du changeur de prises en charge / changeur de prises hors tension. Vous trouverez d'autres remarques dans le chapitre « Élimination des dérangements ».

La manivelle fournie permet d'actionner le mécanisme d'entraînement pendant l'installation et lors de la réalisation de contrôles dans le transformateur ou de travaux de maintenance lorsque le transformateur est déconnecté.

Vous trouverez de plus amples détails sur l'utilisation de la manivelle en mode de fonctionnement d'urgence sur le transformateur sous tension dans le chapitre « Fonctionnement » [Section 8, Page 107].

2.2 Consignes de sécurité fondamentales

Le responsable du transport, du montage, de l'exploitation, de la maintenance et de l'élimination du produit ou de pièces du produit est tenu de garantir les points suivants afin de prévenir les accidents, les dérangements et les avaries et de protéger l'environnement :

Équipement de protection individuelle

Des vêtements amples ou inappropriés augmentent le risque de happement ou d'entraînement par les pièces en rotation et le risque de coincement dans les pièces en saillie. Il existe donc un danger pour l'intégrité corporelle et la vie de l'utilisateur.

- Portez un équipement de protection individuelle, comme un casque, des chaussures de travail etc. pour exécuter la tâche correspondante.
- Ne portez jamais d'équipement de protection individuelle défectueux.
- Ne portez jamais de bagues, chaînes ni autres bijoux.
- Portez une résille si vous avez des cheveux longs.

Espace de travail

Les espaces de travail non rangés et non éclairés comportent un risque d'accident.

- Veillez à ce que l'espace de travail soit propre et ordonné.
- Assurez-vous que l'espace de travail est bien éclairé.
- Respectez les lois nationales en vigueur concernant la prévention des accidents.
Séchage du transformateur

Le séchage du mécanisme d'entraînement endommage ce dernier et entraîne son dysfonctionnement.
- Ne séchez jamais le mécanisme d'entraînement.

Travaux lors de l'exploitation

N'utilisez le produit que si celui-ci est en parfait état de fonctionnement. Dans le cas contraire, il y a danger pour l'intégrité corporelle et la vie de l'utilisateur.
- Contrôlez régulièrement le bon fonctionnement des dispositifs de sécurité.
- Observez les travaux d'inspection et d'entretien, ainsi que les intervalles d'entretien, décrits dans la présente documentation technique.

Rayonnement laser invisible

Évitez de regarder directement dans le rayon réfléchissant afin d'éviter le risque de lésions oculaires. Le rayon sort au niveau des raccordements optiques ou à l'extrémité des fibres optiques de modules qui y sont raccordées. Lisez également le chapitre « Caractéristiques techniques à ce sujet ».
- Ne regardez jamais directement dans le rayon réfléchissant.
- Ne regardez jamais dans le rayon avec des instruments optiques comme p. ex. une loupe ou un microscope.
- Si le rayonnement laser atteint l'œil, fermez les yeux et éloignez immédiatement la tête du rayon.

Manipulation des transformateurs d'intensité

Un transformateur d'intensité fonctionnant avec un circuit secondaire ouvert peut générer des tensions élevées dangereuses et entraîner des blessures et des dégâts matériels.
- N'exploitez jamais le transformateur d'intensité lorsque le circuit secondaire est ouvert, d'où la nécessité de le court-circuiter.
- Observez les consignes contenues dans les instructions de service du transformateur d'intensité.

Manipulation des composants électriques

Les composants électriques peuvent être endommagés par les décharges électrostatiques.
- Ne jamais toucher des composants électriques pendant la mise en service, le fonctionnement ou lors de travaux de maintenance.
- Assurez-vous par le biais de mesures appropriées (par ex. recouvrement) que les composants de l'appareil ne puissent pas être touchés par le personnel.
- Porter un équipement de protection individuelle adéquat.
Orifice pour la manivelle
Si vous introduisez vos mains dans l'orifice pour la manivelle pendant une manœuvre, vous vous exposez à des risques de blessures provoquées par l'arbre en rotation.
• N'introduisez jamais vos mains dans l'orifice pour la manivelle.

Sécurisation du mécanisme d'entraînement
Si vous ouvrez le mécanisme d'entraînement pendant le fonctionnement, il y a risque de choc électrique dû aux composants sous tension situés derrière le cadre pivotant.
• Pendant le fonctionnement, sécurisez le mécanisme d'entraînement avec un cadenas contre une ouverture non autorisée.
• L'ouverture du mécanisme d'entraînement est strictement réservée à un électricien qualifié.

Ouverture du cadre pivotant
Si vous ouvrez le cadre pivotant lorsque le mécanisme d'entraînement est en service, vous risquez de subir un choc électrique provoqué par des composants sous tension.
• Seul un électricien qualifié est habilité à ouvrir le cadre pivotant.

Protection contre les explosions
Les gaz, vapeurs et poussières facilement inflammables ou explosifs peuvent entraîner des explosions graves et des incendies. Il existe donc un danger pour l'intégrité corporelle et la vie de l'utilisateur.
• Évitez de monter, d'exploiter et d'entretenir le produit dans des atmosphères explosives.

Indications de sécurité
Les panneaux d'avertissement et de sécurité sont apposés sur le produit comme indications de sécurité. Ils constituent un élément important du concept de sécurité.
• Observez toutes les indications de sécurité apposées sur le produit.
• Veillez à ce que toutes les indications de sécurité sur le produit soient intégrales et lisibles.
• Remplacez les indications de sécurité endommagées ou détachées.

Conditions ambiantes
Afin de garantir un fonctionnement fiable et sûr du produit, utilisez celui-ci uniquement dans les conditions ambiantes indiquées dans la partie Caractéristiques techniques.
• Respectez les conditions de fonctionnement et les exigences sur le lieu d'implantation.
Matières consommables
Les matières consommables non autorisées par le fabricant peuvent entraîner des dommages corporels et matériels, ainsi que des dysfonctionnements du produit.
- Utilisez exclusivement des tuyaux, tubes et systèmes de pompage conducteurs autorisés pour les liquides inflammables.
- Utilisez uniquement les lubrifiants et les consommables autorisés par le fabricant.
- Contactez le fabricant.

 Modifications et transformations
Les modifications non autorisées ou inadéquates du produit sont susceptibles de causer des dommages corporels et matériels ou d’entraîner des dysfonctionnements.
- N’effectuez des modifications du produit qu’après concertation avec la société Maschinenfabrik Reinhausen GmbH.

Pièces de rechange
Les pièces de rechange non autorisées par la société Maschinenfabrik Reinhausen GmbH peuvent entraîner des dommages corporels et matériels, ainsi que des dysfonctionnements du produit.
- Utilisez exclusivement les pièces de rechange autorisées par Maschinenfabrik Reinhausen GmbH.
- Contactez la société Maschinenfabrik Reinhausen GmbH.

2.3 Qualification du personnel
La personne responsable du montage, de la mise en service, de la commande, de la maintenance et de l'inspection doit s'assurer que le personnel est suffisamment qualifié.

Électricien
L’électricien a suivi une formation spécialisée qui lui confère les connaissances et les expériences requises, ainsi que la connaissance des normes et dispositions en vigueur. Qui plus est, il dispose des aptitudes suivantes :
- L’électricien identifie par lui-même les risques potentiels et est en mesure de les éviter.
- L’électricien est en mesure d'exécuter des travaux sur les installations électriques.
- L’électricien est spécialement formé pour l'environnement de travail qui est le sien.
- L’électricien doit respecter les dispositions des prescriptions légales en vigueur en matière de prévention des accidents.
Personnes initiées à l'électrotechnique

Une personne initiée à l'électrotechnique a été informée par l'électricien et a appris de celui-ci les tâches qui lui sont confiées, et les risques potentiels dus à un comportement inapproprié, ainsi que les dispositifs de protection et les mesures de protection. La personne initiée à l'électrotechnique travaille exclusivement sous la direction et la surveillance d'un électricien.

Opérateur

L'opérateur utilise et commande le produit dans le cadre de la présente documentation technique. Il reçoit un apprentissage et une formation par l'exploitant sur les tâches spéciales et les risques qu'elles peuvent comporter en cas de comportement inapproprié.

Service technique

Nous recommandons vivement de faire effectuer les travaux de maintenance, de réparation et de rétrofit par notre service technique qui saura garantir une exécution conforme de tous les travaux. Si une maintenance n'est pas effectuée par notre service technique, il faut s'assurer que le personnel a été formé et autorisé par Maschinenfabrik Reinhausen GmbH.

Personnel autorisé

Le personnel autorisé est formé par la société Maschinenfabrik Reinhausen GmbH pour effectuer les maintenances spéciales.

2.4 Équipement de protection individuelle

Le port d'équipements de protection individuelle pendant le travail est indispensable dans le but de minimiser les risques pour la santé.

▪ Portez toujours les équipements de protection requis pour chaque cas pendant le travail.
▪ Ne portez jamais un équipement de protection défectueux.
▪ Observez les indications relatives aux équipements de protection individuelle affichées dans la zone de travail.

<table>
<thead>
<tr>
<th>Vêtements de protection au travail</th>
<th>Vêtements de travail ajustés et peu résistants, avec manches étroites et sans pièces saillantes. Ils protègent essentiellement contre un happement par les pièces mobiles de la machine.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaussures de sécurité</td>
<td>Protègent en cas de chute de pièces lourdes et de risques de glissade.</td>
</tr>
<tr>
<td>Lunettes de protection</td>
<td>Protègent les yeux contre les pièces mobiles et les projections de liquides.</td>
</tr>
<tr>
<td>Visière protège-visage</td>
<td>Protège le visage contre les pièces mobiles et les projections de liquides ou autres substances dangereuses.</td>
</tr>
<tr>
<td>Casque de protection</td>
<td>Protège contre la chute et la projection de pièces et matériaux.</td>
</tr>
</tbody>
</table>
Tableau 4: Équipement de protection individuelle

<table>
<thead>
<tr>
<th>Équipement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casque anti-bruits</td>
<td>Protège contre les pertes auditives.</td>
</tr>
<tr>
<td>Gants de protection</td>
<td>Protègent contre les risques mécaniques, thermiques et électriques.</td>
</tr>
</tbody>
</table>
3 Sécurité IT

Veuillez observer les recommandations ci-après afin de garantir un fonctionnement en toute sécurité du produit.

3.1 Généralités

- Assurez-vous que seules les personnes autorisées ont accès à l'appareil.
- Utilisez l'appareil uniquement dans un périmètre de sécurité électronique (ESP – electronic security perimeter). Établissez toujours une connexion sécurisée à Internet. Utilisez les mécanismes de segmentation de réseau verticale et horizontale et les passerelles de sécurité (pare-feux) aux points de transition.
- Assurez-vous que l'appareil est utilisé exclusivement par un personnel formé sensibilisé aux thèmes afférents à la sécurité IT.

3.2 Mise en service

Observez les recommandations ci-après pour la mise en service de l'appareil :

- Les identifiants utilisateur doivent être univoques et clairement attribuables. N'utilisez ni la fonction « Compte de groupe », ni la fonction « Connexion automatique ».
- Activez la fonction « Déconnexion automatique ».
- Limitez au maximum les droits des différents groupes d'utilisateurs, cela vous permet d'éviter les erreurs opérationnelles. Exemple : un utilisateur du rôle « Opérateur » ne devrait pas être en mesure de modifier les réglages de l'appareil, mais devrait uniquement pouvoir exécuter des opérations.
- Supprimez ou désactivez l’identifiant utilisateur pré-installé « admin ». Pour ce faire, vous devez créer au préalable un nouvel identifiant utilisateur du rôle « Administrateur » que vous pourrez alors utiliser pour supprimer ou désactiver le compte pré-installé « admin ».
- Désactivez l'accès utilisateur à la maintenance.
- Activez le cryptage SSL/TLS ; un accès à l'appareil n'est alors possible que via le protocole SSL/TLS. En plus de chiffrer la communication, ce protocole sert également à la vérification de l'authenticité du serveur.
- Utilisez si possible la version TLS 1.2 ou supérieure.
- Intégrez l'appareil dans une infrastructure à clés publiques. Si nécessaire, créez à cet effet vos propres certificats SSL et importez-les.
- Connectez l'appareil à un serveur de journal centralisé en utilisant l'interface Syslog.
- Utilisez la fonction SNMP uniquement si la communication est protégée par des dispositifs de sécurité externes.
3 Sécurité IT

- Convertisseur de média avec commutateur géré (module SW 3-3) [Section 9.38, Page 357] :
 - changer le compte utilisateur et le mot de passe,
 - désactiver les services inutiles.

3.3 Fonctionnement

Observez les recommandations ci-après pendant le fonctionnement de l'appareil :
- Changez régulièrement le mot de passe.
- Exportez régulièrement le Journal de sécurité [Section 9.37.1, Page 354].
- Vérifiez régulièrement si des tentatives d'accès non autorisé aux fichiers journaux ou d'autres incidents de sécurité ont eu lieu.
- Convertisseur de média avec commutateur géré (module SW 3-3) : vérifiez régulièrement si des mises à jour sont disponibles pour le produit « EES 25 » du fabricant Belden/Hirschmann et effectuez éventuellement une mise à jour du micrologiciel [Section 9.38.3, Page 360].

3.4 Interfaces

L'appareil utilise les interfaces suivantes pour la communication :

<table>
<thead>
<tr>
<th>Interface</th>
<th>Protocole</th>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETH1.1</td>
<td>TCP</td>
<td>21</td>
<td>Accès service FTP</td>
</tr>
<tr>
<td>ETH1.1</td>
<td>TCP</td>
<td>80</td>
<td>Visualisation Web</td>
</tr>
<tr>
<td>ETH1.1</td>
<td>TCP</td>
<td>443</td>
<td>Visualisation Web protégée par SSL</td>
</tr>
<tr>
<td>ETH1.1</td>
<td>TCP</td>
<td>990</td>
<td>Accès service FTP protégé par SSL</td>
</tr>
<tr>
<td>ETH1.1</td>
<td>TCP</td>
<td>8080</td>
<td>Visualisation Web (port alternatif)</td>
</tr>
</tbody>
</table>

Figure 1: Interface ETH1.1 sur le module OT1205
Le port est fermé si vous activez le cryptage SSL de l’appareil.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Protocole</th>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETH1.1</td>
<td>TCP</td>
<td>8081</td>
<td>Visualisation Web protégée par SSL (port alternatif)</td>
</tr>
<tr>
<td>ETH1.1</td>
<td>UDP</td>
<td>67</td>
<td>Serveur DHCP</td>
</tr>
</tbody>
</table>

Tableau 5: Interfaces et ports ouverts du module OT1205

Figure 2: Interfaces du module CPU

<table>
<thead>
<tr>
<th>Interface</th>
<th>Protocole</th>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN 1</td>
<td>-</td>
<td>-</td>
<td>Connexion au module DIO</td>
</tr>
<tr>
<td>CAN 2</td>
<td>-</td>
<td>-</td>
<td>Communication avec d’autres appareils ISM® (p. ex. marche en parallèle)</td>
</tr>
<tr>
<td>COM 1</td>
<td>-</td>
<td>-</td>
<td>Interface système interne</td>
</tr>
<tr>
<td>COM 2</td>
<td>-</td>
<td>-</td>
<td>Interface série (SCADA)</td>
</tr>
<tr>
<td>USB</td>
<td>-</td>
<td>-</td>
<td>Importation ou exportation de données</td>
</tr>
<tr>
<td>ETH 1</td>
<td>TCP</td>
<td>80</td>
<td>HTTP pour la visualisation web</td>
</tr>
<tr>
<td>ETH 1</td>
<td>TCP</td>
<td>443</td>
<td>HTTPS pour la visualisation web</td>
</tr>
<tr>
<td>ETH 1</td>
<td>TCP</td>
<td>102</td>
<td>CEI 61850</td>
</tr>
<tr>
<td>ETH 1</td>
<td>TCP</td>
<td>502</td>
<td>Modbus</td>
</tr>
<tr>
<td>ETH 1</td>
<td>TCP</td>
<td>20000</td>
<td>DNP3</td>
</tr>
<tr>
<td>ETH 1</td>
<td>UDP</td>
<td>161</td>
<td>SNMP</td>
</tr>
<tr>
<td>ETH 2.x</td>
<td>TCP</td>
<td>21</td>
<td>FTP (réservé au service technique MR)</td>
</tr>
<tr>
<td>ETH 2.x</td>
<td>TCP</td>
<td>80</td>
<td>HTTP pour la visualisation web</td>
</tr>
<tr>
<td>ETH 2.x</td>
<td>TCP</td>
<td>443</td>
<td>HTTPS pour la visualisation web</td>
</tr>
<tr>
<td>ETH 2.x</td>
<td>TCP</td>
<td>990</td>
<td>FTPS (réservé au service technique MR)</td>
</tr>
<tr>
<td>ETH 2.x</td>
<td>TCP</td>
<td>8080</td>
<td>HTTP pour la visualisation web</td>
</tr>
<tr>
<td>ETH 2.x</td>
<td>TCP</td>
<td>8081</td>
<td>HTTPS pour la visualisation web</td>
</tr>
<tr>
<td>ETH 2.x</td>
<td>UDP</td>
<td>161</td>
<td>SNMP</td>
</tr>
</tbody>
</table>

Tableau 6: Interfaces et ports ouverts du module CPU
1) Le port est fermé si vous activez le cryptage SSL de l'appareil.

2) En fonction du réglage du paramètre Autorisation visualisation [Page 119].

3) Réglage par défaut ; si vous avez changé le port du protocole poste de conduite, seul le port réglé est ouvert.

4) En fonction du réglage du paramètre Agent SNMP.

Figure 3: Interfaces du module SW 3-3

<table>
<thead>
<tr>
<th>Interface</th>
<th>Protocole</th>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETH 2.3, ETH 2.4</td>
<td>TCP</td>
<td>22</td>
<td>SSH<sup>1)</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>Telnet<sup>1)</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>HTTP pour visualisation web<sup>1)</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>443</td>
<td>HTTPS pour visualisation web<sup>1)</sup></td>
</tr>
<tr>
<td></td>
<td>UDP</td>
<td>161</td>
<td>SNMP<sup>1)</sup></td>
</tr>
</tbody>
</table>

Tableau 7: Interfaces et ports ouverts du module SW 3-3

1) Le port est fermé lorsque le service correspondant est désactivé.

3.5 Normes de cryptage

L'appareil prend en charge les versions TLS suivantes :

- TLS 1.0
- TLS 1.1
- TLS 1.2
L’appareil utilise les suites de chiffrement suivantes pour une connexion sécurisée TLS :

<table>
<thead>
<tr>
<th>Changement de clé</th>
<th>Authentification</th>
<th>Cryptage</th>
<th>Longueur de clé</th>
<th>Mode de fonctionnement</th>
<th>Fonction de hachage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS</td>
<td>ECDHE</td>
<td>RSA</td>
<td>WITH</td>
<td>AES</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>DHE</td>
<td></td>
<td></td>
<td>CBC</td>
<td>SHA265</td>
</tr>
<tr>
<td></td>
<td>ECDHE</td>
<td>ECDSA</td>
<td></td>
<td>GCM</td>
<td>SHA256</td>
</tr>
<tr>
<td></td>
<td>ECDH</td>
<td></td>
<td>256</td>
<td>CBC</td>
<td>SHA256</td>
</tr>
<tr>
<td></td>
<td>RSA</td>
<td></td>
<td></td>
<td></td>
<td>SHA384</td>
</tr>
</tbody>
</table>

Tableau 8: Suite de chiffrement

1) Non disponible pour la version TLS >= 1.2

L’appareil utilise la fonction de hachage SHA256 pour l’enregistrement des mots de passe.

Le module SW 3-3 prend en charge la version TLS suivante :
- TLS 1.2

Le module utilise les suites de chiffrement suivantes pour une connexion sécurisée TLS :

<table>
<thead>
<tr>
<th>Changement de clé</th>
<th>Authentification</th>
<th>Cryptage</th>
<th>Longueur de clé</th>
<th>Mode de fonctionnement</th>
<th>Fonction de hachage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS</td>
<td>ECDHE</td>
<td>RSA</td>
<td>WITH</td>
<td>AES</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>DHE</td>
<td></td>
<td></td>
<td>GCM</td>
<td>SHA265</td>
</tr>
<tr>
<td></td>
<td>ECDHE</td>
<td></td>
<td>256</td>
<td>CBC</td>
<td>SHA</td>
</tr>
</tbody>
</table>

Tableau 9: Suite de chiffrement

L’appareil utilise les normes de cryptage ci-après conformément à la Directive technique TR-02102-4 du BSI (Office fédéral allemand chargé de la sécurité des technologies de l’information) :

- Validation de clé :
 - diffie-hellman-group1-sha1
 - diffie-hellman-group14-sha1
 - diffie-hellman-group16-sha512
 - diffie-hellman-group18-sha512
 - diffie-hellman-group-exchange-sha256
 - ecdh-sha2-nistp256

- Authentification serveur :
 - ssh-rsa
 - rsa-sha2-512
 - rsa-sha2-256
• Algorithmes de cryptage :
 – aes128-ctr
 – aes128-gcm@openssh.com
 – chacha20-poly1305@openssh.com

• Sauvegardes MAC :
 – hmac-sha1
 – hmac-sha2-256
 – hmac-sha1-etm@openssh.com
 – hmac-sha2-256-etm@openssh.com

• Compression :
 – None
 – zlib@openssh.com
 – Zlib
4 Description du produit

4.1 Contenu de la livraison
Le mécanisme d'entraînement est livré dans un emballage protégé contre l'humidité et comprend :
- Mécanisme d'entraînement
- Documentation sur le produit

Notez les points suivants :
1. Vérifiez l'intégralité de la livraison à l'aide des documents d'expédition.
2. Entreposez les pièces dans un endroit sec jusqu'au montage.
3. Conservez le produit dans la housse de protection à l'abri de l'air jusqu'au moment du montage.

4.2 Description fonctionnelle
Le mécanisme d'entraînement sert à adapter la position de service des changeurs de prises en charge dans les transformateurs de réglage aux exigences opérationnelles correspondantes.

Le changement de prise est enclenché par l'actionnement du mécanisme d'entraînement (impulsion de commande unique, par exemple par le biais du pack fonctionnel optionnel « Régulation automatique de la tension AVR basic / pro »). Ce processus de réglage est terminé de force, que d'autres impulsions de commande aient été émises au cours de la manœuvre ou non. Dans le cas de l'exécution standard, une nouvelle manœuvre n'est possible qu'après le retour en position de repos de tous les appareils de commande.

Comportement en cas d'interruption de la tension
Si une interruption de la tension se produit pendant un changement de prise, le mécanisme d'entraînement termine le changement de prise commencé, après le retour de l'alimentation.

4.3 Caractéristiques
En fonction de votre commande, l'appareil est équipé des packs fonctionnels optionnels suivants :
- Surveillance de base
 - Tension, courant, fréquence
 - Puissance active, puissance réactive, puissance apparente, facteur de puissance
 - Surveillance de la température (température ambiante, température de la couche d'huile supérieure, température de la couche d'huile inférieure (en option), calcul de la température de point chaud conformément à CEI 60076-7 ou IEEE C57.91)
 - En option : niveau d'huile du transformateur
– Consommation de durée de vie et taux de vieillissement relatif
– État du mécanisme d'entraînement (disjoncteur-protecteur du moteur, moteur en marche)
– Affichage de la position de prise
– En option : état des dispositifs de protection (relais Buchholz, relais de protection, limiteur de pression)

• ETOS® ED digital ready
 – Calcul de l'intervalle d'entretien
 – Statistiques de commutation du changeur de prises en charge
 – État du mécanisme d'entraînement (disjoncteur-protecteur du moteur, moteur en marche)

• Surveillance du changeur de prises en charge
 – Calcul de l'érosion des contacts (seulement pour OILTAP® V, M, R, RM, MS, G)
 – Calcul de l'intervalle d'entretien
 – Encrassement de l'huile (seulement pour OILTAP® V, M, R)
 – Surveillance de la température OLTC (en option)
 – Statistiques de commutation du changeur de prises en charge
 – En option : niveau d'huile du changeur de prises en charge
 – En option : installation de filtrage d'huile
 – État du mécanisme d'entraînement (disjoncteur-protecteur du moteur, moteur en marche)
 – En option : Motor Current Index

• Surveillance du changeur de prises en charge expert
 – Surveillance du couple
 – Surveillance de la séquence de commutation
 – Surveillance de la température (mécanisme d'entraînement, environnement, OLTC, différence de température OLTC et transformateur)
 – Surveillance de la manivelle

• Régulation automatique de la tension AVR basic
 – Mesure de la tension et du courant
 – 1 valeur de consigne
 – Régulation de la tension avec temporisation linéaire T1
 – État du mécanisme d'entraînement (disjoncteur-protecteur du moteur, moteur en marche)

• Régulation automatique de la tension AVR pro
 – Mesure de la tension et du courant
 – Valeur de consigne selon commande (1, 3 ou 5 valeurs de consigne, TDSC, valeur de consigne analogique prédéfinie, valeur de consigne prédéfinie pas à pas, valeur de consigne via BCD)
4 Description du produit

- Régulation automatique de la tension avec temporisation linéaire ou intégrale T1 et avec temporisation T2
- Marche en parallèle
- Compensation de ligne
- État du mécanisme d'entraînement (disjoncteur-protecteur du moteur, moteur en marche)
- Surveillance de largeur de bande
- Surveillance du fonctionnement
- Surveillance des valeurs limites (tension, courant, puissance, angle de phase)

• Contrôle de la réfrigération
 - 2, 4 ou 6 étages de réfrigération, paramétrables séparément
 - Mode dépendant de la charge (pour l'activation précoce des étages de réfrigération)
 - Mode périodique (pour l'activation régulière des étages de réfrigération)
 - Mode alternant (pour une charge uniforme des étages de réfrigération similaires)
• Surveillance des étages de réfrigération (2, 4 ou 6 étages de réfrigération)
• AGD
 - Jusqu'à 10 gaz
 - Humidité d'huile relative
 - Surveillance des valeurs absolues et taux d'augmentation
 - En option : analyse selon Rogers, Duval, Dörnenburg et CEI 60599
• Bus de capteurs MR
• Calcul de la capacité de surcharge du transformateur (mode de secours)

4.4 Variantes

Les modules ISM® sont montés comme suit dans le mécanisme d'entraînement (illustrations : cadre pivotant intérieur, avec plaque de recouvrement lorsque le cadre pivotant est fermé, sans plaque de recouvrement lorsque le cadre pivotant est ouvert) :

4.4.1 ETOS® ED L/ETOS® ED L-S

Les modules ISM sont montés comme suit dans le mécanisme d'entraînement (illustrations : cadre pivotant intérieur, avec plaque de recouvrement lorsque le cadre pivotant est fermé, sans plaque de recouvrement lorsque le cadre pivotant est ouvert) :
4 Description du produit

Sans écran

Figure 4: ETOS® ED L/ETOS® ED L-S sans écran

Avec écran

Figure 5: ETOS® ED L/ETOS® ED L-S avec écran

4.4.2 ETOS® ED XL

Les modules ISM sont montés comme suit dans le mécanisme d'entraînement (illustrations : cadre pivotant intérieur, avec plaque de recouvrement lorsque le cadre pivotant est fermé, sans plaque de recouvrement lorsque le cadre pivotant est ouvert) :
4 Description du produit

Sans écran

Figure 6: ETOS® ED XL sans écran

Avec écran

Figure 7: ETOS® ED XL avec écran

4.5 Structure

Ce chapitre offre une vue d'ensemble de la structure du mécanisme d'entraînement.
Les composants qui ne sont pas décrits ici de manière détaillée sont décrits dans la section Caractéristiques techniques du mécanisme d’entraînement.

Figure 8: Structure

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Porte du coffret de contrôle</td>
</tr>
<tr>
<td>2</td>
<td>Fenêtre d’affichage</td>
</tr>
<tr>
<td>3</td>
<td>Anneau de levage</td>
</tr>
<tr>
<td>4</td>
<td>Champ d’affichage</td>
</tr>
<tr>
<td>5</td>
<td>Plaque de recouvrement du réducteur de puissance</td>
</tr>
<tr>
<td>6</td>
<td>Arbre de sortie</td>
</tr>
<tr>
<td>7</td>
<td>Orifice pour la manivelle avec interrupteur de blocage de la manivelle</td>
</tr>
<tr>
<td>8</td>
<td>Baladeuse</td>
</tr>
<tr>
<td>9</td>
<td>Patte de fixation</td>
</tr>
<tr>
<td>10</td>
<td>Manivelle</td>
</tr>
<tr>
<td>11</td>
<td>Boîtier insérable de 19 pouces</td>
</tr>
<tr>
<td>12</td>
<td>Disjoncteur-protecteur du moteur Q1</td>
</tr>
<tr>
<td>13</td>
<td>Bouton de réglage S3</td>
</tr>
<tr>
<td>14</td>
<td>Cadre pivotant / chauffage anti-condensation</td>
</tr>
<tr>
<td>15</td>
<td>Pochette porte-documents</td>
</tr>
</tbody>
</table>
4.5.1 Champ d'affichage

Le mécanisme d'entraînement comprend un champ d'affichage clairement structuré. L'aiguille et le compteur de manœuvres sont entraînés mécaniquement et indiquent le déroulement de la manœuvre et la position de service du mécanisme d'entraînement. La touche de remise à zéro du compteur de manœuvres est plombée en usine.

Figure 9: Champ d'affichage

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Affichage de la plage de régulation par deux aiguilles entraînées</td>
</tr>
<tr>
<td>2</td>
<td>Indicateur de position</td>
</tr>
<tr>
<td>3</td>
<td>Affichage des unités de paliers de commutation : affichage de la position actuelle de la came de commande (33 unités de paliers de commutation par position de service)</td>
</tr>
<tr>
<td>4</td>
<td>Compteur de manœuvres mécanique indiquant le nombre de manœuvres</td>
</tr>
</tbody>
</table>

4.5.2 Chauffage anti-condensation

Le chauffage anti-condensation est un radiateur plat servant en même temps de recouvrement frontal du cadre pivotant.

La construction du mécanisme d'entraînement et du radiateur plat garantit la circulation de l'air à l'intérieur du mécanisme d'entraînement et, par là même, une température intérieure homogène toujours supérieure à la température extérieure.

4.5.3 Cadre pivotant/Cadre de bornes

Le cadre pivotant empêche un contact avec tous les composants électriques et mécaniques du mécanisme d'entraînement situés derrière le cadre pivotant.
Le cadre de bornes est situé derrière le cadre pivotant et simplifie le raccordement électrique du mécanisme d'entraînement. Le câblage du raccordement est facile à réaliser grâce aux réglettes en profilé chapeau et aux borniers disposés à la verticale.

4.5.4 Dispositif de signalisation de positions

AVIS

Endommagement du changeur de prises en charge et du mécanisme d'entraînement !

Endommagement du changeur de prises en charge et du mécanisme d'entraînement dû à une utilisation non conforme à l'emploi prévu du dispositif de signalisation de positions.

► Seuls les circuits électriques indiqués au chapitre Caractéristiques techniques du dispositif de signalisation de positions [Section 14.3, Page 414] peuvent être branchés aux raccordements du module de signalisation de positions.

► L'instant de commutation du dispositif de signalisation de positions dans le mécanisme d'entraînement ne correspond pas à celui de la commutation en charge. Il dépend du type de commutateur. Ce fait doit être pris en considération lors de la projection des circuits de verrouillage entre le mécanisme d'entraînement et le dispositif externe (p. ex. le disjoncteur de puissance du transformateur).

► C'est pourquoi le contact de marche « Changeur de prises en service » indiqué dans le schéma de connexion doit être utilisé à la place du dispositif de signalisation de positions aux fins de surveillance externe, de verrouillage et de commande.

Le dispositif de signalisation de positions sert à afficher la position de service du changeur de prises en charge/du changeur de prises hors tension au repos.

Il existe différents modèles d'affichage à distance.

Le module de signalisation de position pour le raccordement côté client se trouve sur le cadre de bornes [Section 4.5.3, Page 35].

Vous trouverez de plus amples informations sur le dispositif de signalisation de positions au chapitre Caractéristiques techniques du dispositif de signalisation de positions [Section 14.3, Page 414].

4.5.5 Plaque de recouvrement du réducteur de puissance

AVIS

Danger de mort et risque de blessures graves dus à la tension électrique !

Danger de mort et risque de blessures graves dus à la tension électrique en raison de l'absence de plaque de recouvrement du réducteur de puissance.

► Ne mettez jamais l'entraînement à moteur en service sans plaque de recouvrement du réducteur de puissance.
La plaque de recouvrement du réducteur de puissance avec protection anti-contact est munie d'une ouverture pour l'insertion de la manivelle pour le mode manuel.

4.5.6 **Capteur de température ambiante**

L'appareil est équipé d'un capteur de température servant à l'enregistrement de la température ambiante. Le capteur de température est situé sur la face inférieure du boîtier de protection.

Veillez à une circulation suffisante de l'air ambiant autour du capteur de température. Dans le cas contraire, il peut survenir des erreurs de surveillance du couple.

Figure 10: Capteur de température ambiante sur la face inférieure du boîtier de protection

1 Capteur de température ambiante
4.5.7 Modules ISM

En fonction de la commande, l'appareil se présente sous forme de boîtier insérable de 19 pouces ou d'un ensemble de composants destinés à un montage sur une réglette en profilé chapeau. La section suivante décrit les différents modules de l'appareil.

Figure 11: Boîtier insérable de 19 pouces (OT1205)

Figure 12: Ensemble de composants pour un montage sur une réglette en profilé chapeau
4 Description du produit

4.5.7.1 Alimentation électrique

Le module OT1205 contient le bloc d'alimentation servant à alimenter l'appareil. Selon la configuration, l'appareil est équipé de l'une des variantes de bloc d'alimentation suivantes :

- Bloc d'alimentation à grande portée 85 à 265 VCA/VCC
- Bloc d'alimentation à courant continu 20 à 70 VCC

4.5.7.2 Unité centrale de calcul CPU I

Le module CPU I est l'unité centrale de calcul de l'appareil. Il est doté des interfaces suivantes :

- Interface système interne RS232 (COM1)
- Interface série RS232/485 (COM2)
- 3x Ethernet (ETH1, ETH 2.1, ETH 2.2)
- USB (USB 2.0)
- 2 bus CAN (CAN 1, CAN 2)

![Figure 13: Module CPU I](image-url)
4.5.7.3 Mesure de la tension et mesure du courant

Le module UI 1 sert à la mesure monophasée de la tension et du courant.

Figure 14: Module UI 1

Le module UI 3 sert à la mesure triphasée de la tension et du courant.

Figure 15: Module UI 3

- Mise en garde contre un danger. Veuillez lire les indications fournies dans les instructions de service du produit.
- Mise en garde contre une tension électrique dangereuse.
- Le module est protégé par une double isolation ou une isolation renforcée.

Tableau 10: Symboles de sécurité relatifs au module
4.5.7.4 Mesure de la tension et mesure du courant UI 5-4

Le module UI 5-4 sert à la mesure triphasée de la tension et du courant.

Figure 16: Module UI 5-4

⚠️ Mise en garde contre un danger. Veuillez lire les indications fournies dans les instructions de service du produit.

⚠️ Mise en garde contre une tension électrique dangereuse.

❑ Le module est protégé par une double isolation ou une isolation renforcée.

Tableau 11: Symboles de sécurité relatifs au module

4.5.7.5 Entrées et sorties numériques

Les modules DIO 28-15 et DIO 42-20 (HL) offrent des entrées et des sorties numériques en nombre différent selon l'exécution :

- DIO 28-15 : 28 entrées, 15 sorties (6 contacts à fermeture, 9 contacts inverseurs)
- DIO 42-20 (HL) : 42 entrées, 20 sorties (8 contacts à fermeture, 12 contacts inverseurs)
Mise en garde contre un danger. Veuillez lire les indications fournies dans les instructions de service du produit.

Mise en garde contre une tension électrique dangereuse.

Tableau 12: Symboles de sécurité relatifs au module

4.5.7.6 Entrées et sorties analogiques

Les sous-ensembles AIO 2 et AIO 4 fournissent des entrées et des sorties analogiques :
- AIO 2 : 2 canaux
- AIO 4 : 4 canaux

Le sous-ensemble AIO prend en charge un des types de signaux suivants conformément à la configuration de l’appareil :

<table>
<thead>
<tr>
<th>Entrée</th>
<th>Sortie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension</td>
<td>Intensité</td>
</tr>
<tr>
<td>0 à 10 V</td>
<td>0 à 20 mA</td>
</tr>
<tr>
<td>4 à 20 mA</td>
<td></td>
</tr>
</tbody>
</table>

Mesure de la résistance (p. ex. PT100, rangée de contacts potentiométriques)

Tableau 13: Types de signaux pris en charge par le module AIO
4.5.7.7 Entrées et sorties analogiques (AIO 8)

Le module AIO 8 offre huit canaux pour entrées et sorties analogiques. Le module AIO prend en charge un des types de signaux suivants conformément à la configuration de l’appareil :

- Tension : 0…10 V
- Courant : 0/4…20 mA (uniquement les canaux 1, 2, 7 et 8)
- Mesure de la résistance (p. ex. PT100)
4.5.7.8 Convertisseur de support

Le module MC 2-2 est un convertisseur de support qui convertit deux raccords électriques (RJ45) indépendamment l'un de l'autre sur un raccord de fibre optique. Les interfaces suivantes sont disponibles :

- 2x RJ45 (ETH12, ETH22)
- 2x Duplex-LC (module SFP) (ETH11, ETH21)

Le convertisseur de support est exécuté avec transparence pour le réseau et ne possède aucune adresse IP propre.

Figure 20: Module MC 2-2

4.5.7.9 Convertisseur de support avec Managed Switch

Le module SW 3-3 est un convertisseur de support avec Managed Switch. Il allie deux fonctions indépendantes et offre les interfaces suivantes :

- Le convertisseur de support convertit un raccordement électrique (RJ45) sur un raccordement de fibre optique
 - RJ45 (ETH12)
 - Duplex-LC (module SFP) (ETH11)
- Managed Switch avec fonction de redondance (PRP ou RSTP)
 - 2x RJ45 (ETH23, ETH24), raccordement à l'intérieur de l'appareil
 - 2x Duplex-LC (module SFP) (ETH21, ETH22), raccordement de redondance

Les fonctions de redondance suivantes sont disponibles conformément à la commande :

- PRP (réglage par défaut)
- RSTP
4.6 Plaque signalétique

Selon l'exécution, la plaque signalétique est située à l'intérieur du coffret de contrôle et/ou à l'extérieur de celui-ci.

Intérieur : ETOS® ED L, ETOS® ED L-S et ETOS® ED XL
4.7 Dispositifs de protection

Les dispositifs de protection suivants sont intégrés dans le mécanisme d’entraînement :

• dispositif fin de course (mécanique et électrique)
• protection contre le passage continu
• protection du moteur
• protection contre le toucher
4.8 Indications de sécurité

Les marquages de sécurité suivants sont utilisés sur le produit :

<table>
<thead>
<tr>
<th></th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Avertissement indiquant des pièces en rotation</td>
</tr>
<tr>
<td>2</td>
<td>Mise en garde contre une tension électrique dangereuse</td>
</tr>
<tr>
<td>3</td>
<td>Avertissement signalant une surface chaude</td>
</tr>
<tr>
<td>4</td>
<td>Lire la documentation</td>
</tr>
</tbody>
</table>

Figure 24: Vue d'ensemble des marquages de sécurité

4.9 Mode d'urgence en cas de blocage de commutation (pont X100)

La fonction de surveillance du changeur de prises en charge n'est active que si l'appareil est opérationnel et si un signal émet État OK à la sortie numérique.

Si votre appareil est équipé du pack fonctionnel Système de monitorisation OLTC Expert, le système de monitorisation peut bloquer d'autres changements de prise en cas de besoin. Dans ce cas, le système de monitorisation signale l'événement Blocage actif. S'il est impératif de poursuivre l'exploitation sans que la cause de l'événement n'ait été éliminée, vous pouvez activer le mode d'urgence en .

Lorsque le pont X100 est inséré, le blocage de l'entraînement par le système de monitorisation est désactivé. Toutes les valeurs de service continuent d'être saisies et mémorisées par le système de monitorisation.
AVIS

Endommagement du transformateur et /ou du changeur de prises en charge

En présence de l’événement *Blocage actif* dans le système de monitorisation, la cause de l’événement doit être analysée avant le début du mode d’urgence. Si des commutations supplémentaires du mécanisme d’entraînement sont effectuées sans analyse, cela risque d’entraîner des dégâts sur le changeur de prises en charge et / ou le transformateur.

► Vérifiez la cause de l’événement *Blocage actif* et décidez, en fonction de la cause de l’événement, si le changeur de prises en charge continuera à être utilisé.

► Exportez les données de maintenance et contactez la société Maschinenfabrik Reinhausen GmbH.

4.10 Visualisation

4.10.1 Écran d’accueil

La visualisation Web est divisée en différentes zones.

Les principales valeurs mesurées du transformateur s’affichent à l’écran d’accueil. Les différents affichages d’état du transformateur représenté peuvent être directement sélectionnés via le navigateur Web lors de l’accès. Ils servent de lien vers les options de menu correspondantes. Lorsque vous commandez l’appareil via le panneau frontal, vous ne pouvez appeler les éléments que via le menu Information.

<table>
<thead>
<tr>
<th>Zone d'affichage</th>
<th>Navigation secondaire</th>
<th>Navigation primaire</th>
<th>Barre d'état</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 25: Écran d’accueil

6385142/09 FR Maschinenfabrik Reinhausen GmbH 2021
Si l'appareil n'est pas doté d'une des fonctions optionnelles, cela s'affiche à l'écran sous la forme d'une petit cadenas 🝐.

En fonction de la configuration de l'appareil, l'écran d'accueil affiche le schéma d'un transformateur pour les applications de réseau ou d'un transformateur pour les applications industrielles.

4.10.1.1 Transformateur pour application de réseau

![Diagram of transformer](image)

Figure 26: Données du transformateur

<table>
<thead>
<tr>
<th></th>
<th>1 AGD (état)</th>
<th>2 Température de la couche d'huile supérieure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 Température de point chaud</td>
<td>4 Réfrigération (état)</td>
</tr>
<tr>
<td></td>
<td>5 Courant de charge et tension de charge des phases L1, L2, L3</td>
<td>6 Désignation du transformateur</td>
</tr>
</tbody>
</table>
4 Description du produit

Figure 27: Puissance apparente, niveau d'huile et température ambiante

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asset Intelligence</td>
</tr>
<tr>
<td>2</td>
<td>Puissance apparente totale</td>
</tr>
<tr>
<td>3</td>
<td>Température ambiante</td>
</tr>
<tr>
<td>4</td>
<td>Niveau d'huile (à gauche transformateur, à droite changeur de prises en charge)</td>
</tr>
</tbody>
</table>

Figure 28: Changeur de prises en charge et mécanisme d' entraînement

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Température d'huile CPEC</td>
</tr>
<tr>
<td>2</td>
<td>Position de prise actuelle</td>
</tr>
<tr>
<td>3</td>
<td>Régulateur de tension</td>
</tr>
<tr>
<td>4</td>
<td>Statistiques commutation</td>
</tr>
<tr>
<td>5</td>
<td>Message d’état de l'OLTC (message collectif)</td>
</tr>
</tbody>
</table>
4.10.1.2 Transformateur pour application industrielle

Figure 29: Données du transformateur

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGD (état)</td>
</tr>
<tr>
<td>2</td>
<td>Température de la couche d'huile supérieure</td>
</tr>
<tr>
<td>3</td>
<td>Température de point chaud</td>
</tr>
<tr>
<td>4</td>
<td>Réfrigération (état)</td>
</tr>
<tr>
<td>5</td>
<td>Courant de charge et tension de charge des phases L1, L2, L3 (côté haute tension)</td>
</tr>
<tr>
<td>6</td>
<td>Désignation du transformateur</td>
</tr>
</tbody>
</table>

Figure 30: Puissance apparente, niveau d'huile et température ambiante

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asset Intelligence</td>
</tr>
<tr>
<td>2</td>
<td>Puissance apparente totale</td>
</tr>
<tr>
<td>3</td>
<td>Température ambiante</td>
</tr>
<tr>
<td>4</td>
<td>Niveau d'huile (à gauche transformateur, à droite changeur de prises en charge)</td>
</tr>
</tbody>
</table>
4 Description du produit

Figure 31: Changeur de prises en charge et mécanisme d'entraînement

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Température d'huile CPEC</td>
</tr>
<tr>
<td>2</td>
<td>Position de prise actuelle</td>
</tr>
<tr>
<td>3</td>
<td>Régulateur de tension</td>
</tr>
<tr>
<td>4</td>
<td>Statistiques commutation</td>
</tr>
<tr>
<td>5</td>
<td>Message d'état de l'OLTC (message collectif)</td>
</tr>
</tbody>
</table>
4.10.2 Éléments de commande et d'affichage additionnels en cas d'utilisation du panneau tactile MControl (en option)

Si vous utilisez l'appareil avec le panneau tactile MControl disponible en option, vous pouvez afficher les éléments de commande et d'affichage additionnels sur le bord gauche de l'écran. Différentes touches sont disponibles en fonction de la configuration de l'appareil.

![Figure 32: Éléments de commande et d'affichage additionnels](image)

<table>
<thead>
<tr>
<th>État</th>
<th>DEL état</th>
<th>Affichage d'état</th>
</tr>
</thead>
</table>
| À DISTANCE | Touche À DISTANCE | Sélectionner le mode de fonctionnement :
| | | • Activé : À DISTANCE |
| | | • Désactivé : LOCAL |
| AVR-AUTO | Touche AVR-AUTO | Activer le mode automatique. |
| AUGMENTER | Touche AUGMENTER | Envoyer une instruction de commande au mécanisme d'entraînement pour augmenter la tension. Possible uniquement en mode manuel. |
| AVR Manuel | Touche AVR Manuel | Activer le mode manuel. |
| DIMINUER | Touche DIMINUER | Envoyer une instruction de commande au mécanisme d'entraînement pour diminuer la tension. Possible uniquement en mode manuel. |

1) pas disponible si le passage de Local à À distance est effectué via une entrée numérique.

2) disponible uniquement avec l'ensemble de fonctions « Régulation automatique de la tension ».
4.10.3 Concept de commande

Vous pouvez commander l'appareil au moyen des éléments de commande situés sur le panneau frontal ou par ordinateur via la visualisation Web ISM™ Intuitive Control Interface. Les deux possibilités de commande sont largement identiques quant à leurs fonctionnalités et leur structure.

Droits d'utilisateur et rôles d'utilisateur

L'appareil est équipé d'un système de droits et de rôles qui permet de gérer au niveau utilisateur l'affichage et les droits d'accès aux réglages de l'appareil ou aux événements.

Vous pouvez configurer les système de droits et de rôles selon vos exigences. Vous trouverez de plus amples informations sur les droits d'utilisateur dans la section Gestion d'utilisateurs [Section 9.35, Page 343]. Vous ne pouvez modifier les réglages de l'appareil ou les paramètres que si vous possédez les droits requis.

Connexion, déconnexion ou changement d'utilisateur

La gestion des droits d'accès aux réglages de l'appareil et aux paramètres est basée sur l'utilisateur. Différents utilisateurs peuvent se connecter simultanément (p. ex. via la visualisation) et accéder à l'appareil.

Pour une commande simultanée de l'appareil via les éléments de commande et la visualisation, vous devez vous connecter sur l'appareil et via la visualisation.

1. Sélectionnez le bouton CONNEXION ou CHANGER dans la barre d'état.
2. Entrez le nom d'utilisateur et le mot de passe et sélectionnez le bouton Ok.

L'utilisateur connecté s'affiche dans la barre d'état.

Pour vous déconnecter comme utilisateur, procédez comme suit :

1. Sélectionnez le bouton DÉCONNEXION dans la barre d'état.

Navigation

Si vous commandez l'appareil via les éléments de commande, vous pouvez naviguer dans tout le menu à l'aide du bouton rotatif. Le menu respectivement sélectionné est encadré en bleu. Pour ouvrir le menu sélectionné, vous devez appuyer sur la touche ENTER. Appuyez sur la touche BACK pour revenir au niveau de menu précédent.

Si vous commandez l'appareil via la visualisation Web, vous pouvez naviguer sur les boutons correspondants par un clic de souris.

Exemple 1. Sélectionnez l'option de menu Réglages.
2. Sélectionnez l'option de menu **Paramètres**.
3. Sélectionnez le point de menu **Système**.
4. Sélectionnez l'option de menu **Synchronisation temporelle**.
5. Sélectionnez **Heure**.

Le chemin de navigation vers un paramètre est toujours représenté sous forme de raccourci dans les présentes instructions de service : sélectionnez l'option de menu **Réglages > Paramètres > Système > Synchronisation temporelle**.

Réglage des paramètres

En fonction des paramètres, vous avez différentes possibilités de définir des réglages.

Sélectionner une liste

Pour sélectionner l'entrée d'une liste, procédez comme suit :

1. Naviguez vers la liste à l'aide du bouton rotatif et appuyez sur la touche **ENTER**.

![Figure 33: Sélectionner une entrée dans la liste](image)

2. Marquez une entrée dans la liste avec le bouton rotatif et appuyez sur la touche **ENTER**.

3. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.
Entrer une valeur
Pour entrer une valeur, procédez comme suit :

1. Sélectionnez le champ de la valeur à l'aide du bouton rotatif et appuyez sur la touche **ENTER**.

 En cas de commande via le panneau frontal, le pavé numérique s'affiche.

![Figure 34: Entrer une valeur](image)

2. Entrez la valeur souhaitée et confirmez avec **✓**.
3. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

Entrer un texte
1. Sélectionnez le champ de texte à l'aide du bouton rotatif et appuyez sur la touche **ENTER**.

 En cas de commande via le panneau frontal, le clavier s'affiche.

![Figure 35: Entrer un texte](image)

2. Entrez le texte souhaité et confirmez avec **✓**.
3. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.
Rechercher un paramètre

Dans le menu de paramètres, vous pouvez utiliser la fonction de recherche rapide pour rechercher un paramètre. À cet effet, entrez le nom du paramètre souhaité dans le champ correspondant *Recherche*.

![Figure 36: Recherche rapide](image)

Mode Expert

L’appareil est équipé d’un mode Expert qui sert à entrer les paramètres. Dans ce mode, vous pouvez régler les paramètres directement à l’écran d’aperçu du menu correspondant.

![Figure 37: Mode Expert](image)

1. Sélectionnez l’option de menu *Réglages > Paramètres*.
2. Cochez la case *Mode Expert*.
 - Le mode Expert est actif.
Paramètres affichés/masqués
Selon la méthode de réglage des paramètres que vous adoptez, l'appareil masque ou affiche d'autres paramètres associés à cette fonction.
5 Emballage, transport et stockage

5.1 Emballage

Selon les besoins, les produits sont livrés en partie dans un emballage étanche et en partie à l’état sec.

Un emballage étanche sous forme de film en plastique enveloppe entièrement le produit.

Les produits en outre séchés sont marqués d’un panneau indicateur jaune sur l’emballage étanche. À l’état sec, une livraison dans un conteneur de transport est également possible.

Les indications correspondantes contenues dans les sections ci-dessous doivent être appliquées comme il se doit.

5.1.1 Aptitude

AVIS

Dommages matériels dus à l’empilage incorrect des caisses !

L’empilage incorrect des caisses peut endommager le produit emballé.

► Le marquage extérieur sur l’emballage indique, par ex., si le changeur de prises en charge ou le sélecteur sont emballés à la verticale. N’empilez jamais ces caisses.

► En règle générale : n’empilez jamais les caisses à partir d’une hauteur de 1,5 m.

► Pour d’autres cas : empilez au maximum 2 caisses de dimensions identiques.

L’emballage convient pour des moyens de transport intacts et entièrement opérationnels dans le respect des lois et des prescriptions locales relatives au transport.

Le produit est emballé dans une caisse solide. Cela garantit que le produit emballé est stabilisé dans sa position de transport de manière à empêcher tout déplacement inadmissible et prévient tout contact des pièces avec la surface de chargement du moyen de transport ou avec le sol après le déchargement.

Un emballage étanche sous forme de film en plastique enveloppe entièrement le produit. Le produit emballé est protégé de l’humidité par un dessiccateur. Le film plastique a été scellé après la mise en place du dessiccateur.
5.1.2 Marquages

L'emballage porte des symboles avec des consignes pour le transport en sécurité et pour un stockage adéquat. Les symboles graphiques ci-après sont utilisés pour l'expédition de marchandises non dangereuses. Leur respect est obligatoire.

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>☔️</td>
<td>Tenir à l'abri de l'humidité</td>
</tr>
<tr>
<td>🔐</td>
<td>Haut</td>
</tr>
<tr>
<td>🍃</td>
<td>Fragile</td>
</tr>
<tr>
<td>⚠️</td>
<td>Accrocher ici</td>
</tr>
<tr>
<td>⚖️</td>
<td>Centre de gravité</td>
</tr>
</tbody>
</table>

Tableau 14: Symboles graphiques utilisés pour l'expédition

5.2 Transport, réception et traitement des expéditions

⚠️ AVERTISSEMENT

Danger de mort et risque de blessures graves !

Danger de mort et risque de blessure graves dus au basculement ou à la chute de la charge.

► La caisse doit impérativement être fermée pour le transport.

► N'enlevez pas le matériel de fixation utilisé dans la caisse pendant le transport.

► Si le produit est livré sur une palette, il convient de garantir une fixation conforme.

► Seules les personnes autorisées et ayant été formées en la matière sont habilitées à sélectionner les moyens d'accrochage et à procéder à l'accrochage de la charge.

► Ne vous placez pas sous la charge suspendue.

► Utilisez des moyens de transport et des engins de levage d'une force suffisante conformément aux indications de poids mentionnées sur le bordereau de livraison.

Outre des vibrations, des chocs sont également possibles pendant le transport. Pour exclure d'éventuels endommagements, prévenir la chute, le basculement et le rebondissement.

Si une caisse bascule d'une certaine hauteur (à cause de la rupture d'un accessoire d'élingage, par ex.), ou chute sans être freinée, il faut s'attendre à des dommages, indépendamment du poids.

À chaque livraison, le destinataire doit contrôler les points suivants avant d'en accuser la réception :

• L'intégralité de la livraison sur la base du bordereau de livraison

• La présence de dommages extérieurs de toute nature
5 Emballage, transport et stockage

Procédez aux contrôles après le déchargement lorsque la caisse ou le récipient de transport est totalement accessible.

Dommages visibles
Si, lors de la réception, vous constatez des dégâts extérieurs visibles occasionnés pendant le transport, procédez comme suit :

▪ Mentionnez immédiatement le dommage de transport constaté sur les documents de transport et faites-les contresigner par la personne ayant assuré la livraison.
▪ En cas de dommages graves, de perte totale et de coûts de dégâts élevés, informez immédiatement le fabricant et l'assureur compétent.
▪ Ne modifiez pas l'état de la marchandise après constat du dommage et conservez l'emballage jusqu'à ce que le transporteur ou l'assureur ait décidé d'une visite de contrôle.
▪ Documentez le dommage sur place avec les transporteurs impliqués. Cette démarche est essentielle pour une demande de dommages et intérêts !
▪ Faites des photos des dommages sur l'emballage et le produit emballé ; ceci est également valable pour les traces de corrosion sur le produit emballé dues à l'humidité (pluie, neige, eau de condensation).
▪ **AVIS !** Endommagement du produit emballé dû au mauvais état de l'emballage étanche. Si le produit est livré dans un emballage étanche, contrôlez immédiatement ce dernier. Si l'emballage étanche est endommagé, il est strictement déconseillé de monter le produit ou de le mettre en service. Vous pouvez soit sécher à nouveau par vos propres soins le produit emballé séché conformément aux instructions de service, soit contacter le fabricant pour convenir de la marche à suivre.
▪ Citez les pièces endommagées.

Dommages cachés
Procédez comme suit pour les dommages constatés seulement après la réception de la marchandise lors du déballage (dommages cachés) :

▪ engagez au plus vite la responsabilité du potentiel auteur du dommage par téléphone et par écrit et documentez le dommage
▪ observez les délais en vigueur en la matière dans le pays dans lequel vous vous trouvez informez-vous en à temps

Un recours contre le transporteur (ou un autre auteur du dommage) est particulièrement difficile en cas de dommages cachés. En matière d’assurance, un cas de dommage de cette nature ne peut aboutir que si cela est explicitement défini dans les conditions d’assurance.

5.3 Stockage de la marchandise

Produit emballé séché par Maschinenfabrik Reinhausen

Dès réception du produit emballé séché par Maschinenfabrik Reinhausen, sortez-le de l'emballage étanche et entreposez-le à l'abri de l'air dans du liquide isolant sec jusqu'à l'utilisation définitive, si le produit emballé n'a pas été livré immergé dans du liquide isolant.
Produit emballé non séché

Le produit non séché dans un emballage étanche fonctionnel peut être stocké à l'air libre, à condition d'observer les stipulations suivantes.

À respecter lors du choix et de l'aménagement du lieu de stockage :

▪ le produit entreposé doit être protégé contre l'humidité (inondation, eau de fonte des neiges et de la glace), l'encrassement, les animaux nuisibles ou parasites tels que les rats, souris, termites, etc. et contre l'accès non autorisé.

▪ posez les caisses sur des madriers et des bois carrés afin de garantir une protection contre l'humidité du sol et une meilleure aération

▪ assurez-vous que le sol est suffisamment solide

▪ gardez l'accès libre

▪ le produit entreposé doit être contrôlé à des intervalles réguliers et des mesures supplémentaires doivent être prises après une tempête, une pluie diluvienne ou une chute de neige abondante

le film d'emballage doit être protégé contre les rayons de soleil directs afin d'en prévenir la désintégration par les rayons ultra-violets et, par là même, la perte des propriétés étanches de l'emballage.

Si le produit est monté après plus de six mois après la livraison, des mesures appropriées doivent être prises à temps. Il s'agit :

▪ de la régénération du déshydratant et de la restauration de l'emballage étanche par un spécialiste

▪ du déballage et du stockage du produit dans un entrepôt approprié (suffisamment aéré, si possible exempt de poussière et avec une humidité de l'air < 50 %)

5.4 Déballage du produit et vérification de l'absence de dommages subis pendant le transport

▪ **AVIS !** Transportez la caisse dans son emballage jusqu'au lieu de montage du produit. Ouvrez l'emballage étanche juste avant le montage. Dans le cas contraire, le produit sera endommagé en raison d'un emballage étanche devenu inefficace.

▪ **AVERTISSEMENT !** Vérifiez l'état du produit emballé lorsque vous le sortez de l'emballage. Placez le produit emballé dans une caisse pour le protéger contre la chute. Dans le cas contraire, il existe un risque de blessures graves et d'endommagement du produit.

▪ Contrôlez l'intégralité du supplément à l'aide du bordereau de livraison.
Points d'arrimage pour engins de levage

⚠️ AVERTISSEMENT ⚠️

Danger de mort et risque de dommages matériels !

Danger de mort et risque de dommages matériels dus au basculement ou à la chute de la charge !

► Seules les personnes autorisées et ayant été formées en la matière sont habilitées à sélectionner les moyens d'accrochage et à procéder à l'accrochage de la charge.

► Ne vous placez pas sous la charge suspendue.

► Utilisez des moyens de transport et des engins de levage d'une force suffisante conformément aux indications de poids mentionnées dans la section Caractéristiques techniques.

• ⚠️ AVERTISSEMENT ⚠️ Blessures graves et endommagement du coffret de contrôle dus à une chute. Fixez l'engin de levage de manière à ce que l'angle du câble mesuré par rapport à la verticale soit toujours inférieur à 45°.

Figure 38: Angle de câble maximal admissible pour la butée de l'engin de levage du coffret de contrôle

• ⚠️ AVERTISSEMENT ⚠️ Blessures graves provoquées par le basculement du coffret de contrôle et endommagement du presse-étoupe si le coffret de contrôle est posé, transporté et entreposé à la verticale. Assurez-vous de poser, de transporter et d'entreposer le coffret de contrôle uniquement à l'horizontale.

• Ne déchargez le coffret de contrôle de la grue qu'une fois entièrement visé au transformateur.
6 Montage

Ce chapitre décrit le montage et le raccordement appropriés de l'appareil.

AVERTISSEMENT

Danger de mort et risque de blessures graves !

Un transformateur sous tension et des composants du changeur de prises en charge sous tension peuvent présenter un danger de mort ou de blessures graves pendant le montage du mécanisme d'entraînement !

► S’assurer que le transformateur et les composants du changeur de prises en charge sont hors tension pendant le montage du mécanisme d'entraînement.

6.1 Montage du coffret de contrôle sur le transformateur

Le coffret de contrôle est équipé de quatre languettes de fixation sur la face arrière pour la fixation.

1. Fixez quatre goujons filetés (non fournis par MR) sur la cuve du transformateur.

![Figure 39: Fixer les goujons filetés](image)

| a 675±2 | B 500±2 |
2. Dans le cas de coffrets de contrôle avec amortisseurs de vibrations : fixez les équerres intérieures au coffret de contrôle. Fixez les équerres extérieures à la paroi du transformateur. Les surfaces d'appui des équerres doivent être complètement en appui.

3. Positionnez le coffret de contrôle avec les languettes de fixation sur les goujons filetés et alignez-le à la verticale sur la cuve du transformateur.

Figure 40: Mettre en place le coffret de contrôle
4. **AVIS !** Endommagement du coffret de contrôle dû à la contrainte mécanique. Fixez le coffret de contrôle sans contrainte.

Figure 41: Fixer le mécanisme d'entraînement

5. Raccordez le câble de terre au coffret de contrôle et à la cuve du transformateur en maintenant le coffret de contrôle avec une clé (ouverture 36).

Figure 42: Brancher le câble de terre au coffret de contrôle
6.2 Montage des arbres d'entraînement et du renvoi d'angle

Le montage des arbres d'entraînement et du renvoi d'angle est décrit dans les instructions de montage et de mise en service du changeur de prises en charge / changeur de prises hors tension.

6.3 Caler le changeur de prises en charge et le mécanisme d'entraînement

⚠ AVERTISSEMENT

Danger de mort et risque de blessures graves !

Danger de mort et risque de blessures graves dus à un démarrage involontaire de l'entraînement à moteur et à la tension électrique !
► Avant les travaux d'accouplement, assurez-vous que le disjoncteur-protecteur du moteur est déclenché.
► Effectuez les travaux de réglage exclusivement en mode manuel.
► Seule la manivelle fournie avec l'appareil doit être utilisée pour actionner manuellement l'entraînement à moteur.
► Veillez à ce que l'interrupteur de verrouillage de la manivelle coupe le circuit du moteur en deux phases, sans pour autant interrompre le circuit de commande.

AVIS

Dégâts matériels !

Endommagement du changeur de prises en charge dû à un calage inadéquat du mécanisme d'entraînement.
► Ne manœuvrez pas le changeur de prises en charge plus de 250 fois. Après 250 manœuvres, remplissez entièrement le récipient d'huile avec de l'huile isolante et lubrifiez les surfaces de roulement des contacts au niveau du sélecteur et de l'engrenage du sélecteur avec de l'huile isolante.

Les étapes suivantes pour le centrage du changeur de prises en charge et du mécanisme d'entraînement ne s'appliquent pas aux types DEETAP® DU et COMTAP® ARS. Le centrage du mécanisme d'entraînement et des types DEETAP® DU ou COMTAP® ARS est décrit dans les instructions de service correspondantes.

Un changement de prise correspond à un tour complet de l'affichage des unités de paliers de commutation. Cet affichage est divisé en 33 unités de paliers de commutation, une unité de paliers de commutation correspondant à un tour de manivelle lorsqu'il s'agit du modèle standard du mécanisme d'entraînement. L’instant de commutation dépend du type de changeur de prises en charge / changeur de prises hors tension, mais se trouve toujours au plus tard à deux unités de paliers de commutation avant la zone grise de l'affichage des unités de paliers de commutation.
Procédez de la manière suivante pour caler le changeur de prises en charge et le mécanisme d'entraînement.

1. **AVIS** Placez le changeur de prises en charge / changeur de prises hors tension et le mécanisme d'entraînement en position d'ajustage avant de commencer les travaux de réglage. Assurez-vous que les indicateurs de position du mécanisme d'entraînement et du changeur de prises en charge / changeur de prises hors tension concordent. Dans le cas contraire, il y a risque d'endommagement du changeur de prises en charge et du transformateur.

![Figure 43: Position d'ajustage](image1)

2. Insérez la manivelle fixée dans le mécanisme d'entraînement sur l'extrémité de l'arbre dans la plaque de recouvrement supérieure. Un interrupteur de verrouillage de la manivelle est alors actionné et coupe le circuit du moteur bipolaire.

![Figure 44: Manivelle](image2)
3. Tournez la manivelle dans le sens des aiguilles d’une montre jusqu’à la commutation du commutateur en charge. Lorsque vous tournez la manivelle, observez l’affichage des unités de paliers de commutation qui est un reflet mécanique d’une commutation.

![Figure 45: Tourner la manivelle](image)

4. Après la commutation du commutateur en charge, continuez de tourner dans le même sens et comptez les unités de paliers de commutation encore nécessaires jusqu’à ce que l’indicateur soit en position médiane dans la zone grise de l’affichage des unités de paliers de commutation. Inscrivez la valeur A déterminée ainsi que le sens de rotation (exemple : A=2).

![Figure 46: Compter les pas de commutation nécessaires jusqu’en position médiane](image)

5. Si la valeur déterminée A est supérieure à huit unités de paliers de commutation, la commutation est terminée correctement. Si la valeur déterminée A est inférieure à huit unités de paliers de commutation, continuez à tourner 8-A unités de paliers de commutation dans le même sens.
(exemple : 8-2=6) pour terminer la commutation. Tournez ensuite dans le sens contraire jusqu'à ce que l'indicateur soit en position médiane dans la zone grise de l'affichage des unités de paliers de commutation.

Figure 47: Terminer la commutation en charge

6. Tournez la manivelle dans le sens contraire des aiguilles d'une montre jusqu'à la commutation du commutateur en charge.

Figure 48: Tourner la manivelle dans le sens inverse
7. Après la commutation du commutateur en charge, continuez de tourner dans le même sens et comptez les unités de paliers de commutation encore nécessaires jusqu'à ce que l'indicateur soit en position médiane dans la zone grise de l'affichage des unités de paliers de commutation. Inscrivez la valeur B déterminée ainsi que le sens de rotation (exemple : B=5).

Figure 49: Compter les unités de paliers de commutation nécessaires jusqu'en position médiane

8. Si la valeur déterminée B est supérieure à huit unités de paliers de commutation, la commutation est terminée correctement. Si la valeur B déterminée est inférieure à huit unités de paliers de commutation, continuez à tourner 8-B unités de paliers de commutation dans le même sens (exemple : 8-5=3) pour terminer la commutation. Tournez ensuite dans le sens contraire jusqu'à ce que l'indicateur soit en position médiane dans la zone grise de l'affichage des unités de paliers de commutation.

Figure 50: Terminer la commutation en charge

9. Si les valeurs A et B déterminées sont identiques, cela signifie que le mécanisme d'entraînement et le changeur de prises en charge sont correctement accouplés (une légère asymétrie de maximum une unité de paliers de commutation est autorisée). Si les valeurs A et B sont différentes, dé-
terminez la valeur C. Pour cela, divisez par deux la différence entre A et B :

\[C = \frac{|A-B| \times 0.5|}{2} \]

Exemple : C = |(2-5) \times 0.5| = |-1.5| = 1.5

Tenez également compte des décimales.

10. Si la valeur de correction |C| est inférieure à 0,5 unité de paliers de commutation, aucune mesure supplémentaire n'est nécessaire. Voir le point 18 pour la suite.

11. Tournez la manivelle dans le sens dans lequel la valeur déterminée A ou B était supérieure (exemple : dans le sens contraire des aiguilles d'une montre, puisque B > A), jusqu'à la commutation du commutateur en charge.

12. Après la commutation du commutateur en charge, continuez de tourner la manivelle de 8 tours dans le même sens pour terminer correctement la commutation.
13. Découplez le mécanisme d'entraînement et l'arbre d'entraînement vertical en démontant les coquilles d'accouplement. Évitez toute torsion supplémentaire de l'arbre d'entraînement après le découpage.

14. Actionnez le mécanisme d'entraînement à l'aide de la manivelle dans le même sens d'un nombre d'unités de paliers de commutation égal à C sur l'affichage des unités de paliers de commutation (exemple: 1,5 unités de paliers de commutation).

15. Coupez le mécanisme d'entraînement et le changeur de prises en charge en remontant l'arbre d'entraînement vertical (couple de serrage 9 Nm). Évitez toute torsion supplémentaire de l'arbre d'entraînement, de l'arbre de sortie du renvoi d'angle et du mécanisme d'entraînement.

16. Continuez de tourner dans le même sens et comptez les unités de paliers de commutation encore nécessaires jusqu'à ce que l'indicateur soit en position médiane dans la zone grise de l'affichage des unités de paliers de commutation. Inscrivez la valeur A déterminée ainsi que le sens
de rotation. Si la valeur déterminée A est supérieure à huit unités de paliers de commutation, la commutation est terminée correctement. Si la valeur déterminée A est inférieure à huit unités de paliers de commutation, continuez à tourner 8-A unités de paliers de commutation dans le même sens (exemple : 8-4=4) pour terminer la commutation. Tournez ensuite dans le sens contraire jusqu’à ce que l’indicateur soit en position médiane dans la zone grise de l’affichage des unités de paliers de commutation. Vérifiez à nouveau le couplage comme décrit plus haut.

17. Une fois un changement de prise à l’aide de la manivelle terminé, assurez-vous que l’indicateur de l’affichage des unités de paliers de commutation soit en position médiane dans la zone grise.

18. Une fois les travaux de couplage dans les deux sens terminés, effectuez plusieurs changements de prises en guise de contrôle et vérifiez si les prises du changeur de prises en charge et du mécanisme d’entraînement sont identiques.

6.4 Raccordement de modules ISM®

⚠️ AVERTISSEMENT

Choc électrique !

Danger de mort dû à un raccordement incorrect.

► Mettez l’appareil à la terre à l’aide de la vis de mise à la terre située sur le boîtier.
6.4.1 Câbles recommandés (modules ISM®)

Observez la recommandation suivante de Maschinenfabrik Reinhausen lors du câblage de l’appareil.

- Des capacités de ligne trop élevées peuvent empêcher la coupure du courant de contact par les contacts de relais. Tenez compte, dans les circuits de contrôle actionnés par le courant alternatif, de l’influence de la capacité des lignes de commande longues sur le fonctionnement des contacts de relais.

- Si vous voulez établir des connexions Ethernet depuis une armoire électrique ou un bâtiment, nous vous recommandons l’utilisation de fibres optiques (conformément à la recommandation CEI 61850-90-4).

- Assurez-vous que les conducteurs en cuivre utilisés résistent à une température de 70 °C.

<table>
<thead>
<tr>
<th>Câble</th>
<th>Module</th>
<th>Type de câble</th>
<th>Section de conducteur</th>
<th>Matériau des conducteurs</th>
<th>Longueur max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesure de tension</td>
<td>UI 1, UI 3, UI 5-4</td>
<td>blindé</td>
<td>2,5 mm²</td>
<td>Cuivre</td>
<td>-</td>
</tr>
<tr>
<td>Mesure du courant</td>
<td>UI 1, UI 3, UI 5-4</td>
<td>non blindé</td>
<td>4 mm²</td>
<td>Cuivre</td>
<td>-</td>
</tr>
<tr>
<td>Entrées de signaux</td>
<td>DIO 28-15, DIO 42-20</td>
<td>blindé</td>
<td>1,5 mm²</td>
<td>Cuivre</td>
<td>400 m (<25 Ω/km)</td>
</tr>
<tr>
<td>Sorties de signaux*</td>
<td>DIO 28-15, DIO 42-20</td>
<td>blindé</td>
<td>1,5 mm²</td>
<td>Cuivre</td>
<td>-</td>
</tr>
<tr>
<td>Entrées de signaux</td>
<td>AIO 2, AIO 4, AIO 8</td>
<td>blindé</td>
<td>1 mm²</td>
<td>Cuivre</td>
<td>400 m (<25 Ω/km)</td>
</tr>
<tr>
<td>Sorties de signaux</td>
<td>AIO 2, AIO 4, AIO 8</td>
<td>blindé</td>
<td>1 mm²</td>
<td>Cuivre</td>
<td>-</td>
</tr>
<tr>
<td>RS232, SUB-D</td>
<td>CPU I, CPU II</td>
<td>blindé</td>
<td>0,25 mm²</td>
<td>-</td>
<td>25 m</td>
</tr>
<tr>
<td>RS485, SUB-D</td>
<td>CPU I, CPU II</td>
<td>blindé</td>
<td>0,25 mm²</td>
<td>-</td>
<td>140 m</td>
</tr>
<tr>
<td>Bus CAN</td>
<td>CPU I</td>
<td>blindé</td>
<td>0,75 mm²</td>
<td>-</td>
<td>2 000 m (bus CAN complet)</td>
</tr>
<tr>
<td>Ethernet (RJ45)</td>
<td>CPU I</td>
<td>min. Cat-5, blindé S/FTP</td>
<td>-</td>
<td>-</td>
<td>100 m</td>
</tr>
<tr>
<td>Pour ETOS® ED XL</td>
<td>Connecteur cou-dé recommandé</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet FO</td>
<td>MC 2-2, SW 3-3</td>
<td>Duplex-LC Multimode, OM3, 1310 nm</td>
<td>-</td>
<td>-</td>
<td>2000 m</td>
</tr>
</tbody>
</table>

Tableau 15: Câbles de raccordement recommandés

*) Observez la capacité des lignes, voir l'indication ci-dessus.
6.4.2 Indications concernant le raccordement des interfaces série RS232 et RS485

AVIS
Endommagement de l'appareil !
L'utilisation de câbles de données inappropriés peut endommager l'appareil.
► Utiliser exclusivement des câbles de données conformes à la description suivante.

RS232 (D-SUB 9 pôles)

Pour le raccordement de l'appareil via l'interface RS232 (COM2), utilisez un câble de données conformément au montage suivant :

Figure 53: Câble de données RS232 (9 pôles)
RS485 (D-SUB 9 pôles)

Pour le raccordement de l'appareil via l'interface RS485 (COM2), utilisez un câble de données conformément au montage suivant :

![Diagramme de câblage](image)

Figure 54: Câble de données RS485

Connecteur D-SUB 9 pôles

Utilisez exclusivement des connecteurs D-SUB 9 pôles présentant les propriétés suivantes :
- Boîtier de connecteur métallique ou métallisée
- Blindage du câble relié au connecteur conforme à une des variantes suivantes :
 - Blindage vissé à la décharge de traction.
 - Blindage soudé au boîtier de connecteur.

![Diagramme de connecteur](image)

Figure 55: Exemple de blindage soudé au boîtier de connecteur
6.4.3 Indications relatives au raccordement au bus de capteurs MR

La fonction optionnelle Bus de capteurs MR peut être utilisée pour le raccordement des capteurs numériques et analogiques à l'appareil via Modbus RTU. Le bus de capteurs MR prend en charge le raccordement de 31 capteurs au maximum (Esclaves Modbus). L'appareil ISM® fonctionne comme Maître Modbus.

Assurez-vous qu'aucun autre Maître Modbus n'est raccordé au bus de capteurs MR. Attribuez une adresse Modbus univoque à chaque capteur que vous raccordez via le bus de capteurs MR. Si plusieurs capteurs utilisent la même adresse Modbus, cela peut entraîner un dysfonctionnement du bus de capteurs MR.

Observez les indications suivantes pour le raccordement des capteurs :

▪ **AVIS** ! Endommagement de l'appareil ou du capteur. Raccordez tous les capteurs à une barre d'équipotentialité afin d'éviter des courants de compensation au-dessus du bus de capteurs MR.

▪ Le bus de capteurs MR utilise Modbus dans la configuration à double conducteur (2W). La configuration à quatre conducteurs (4W) n'est pas prise en charge.

▪ Vous devez raccorder les capteurs via un câble blindé avec trois conducteurs (D0, D1, Common). Les câbles de données (D0, D1) doivent être torsadés par paire (twisted pair). Utilisez les câbles recommandés.

▪ Les tronçons de ligne du nœud de bus par rapport au participant concerné doivent mesurer moins de 20 m.

▪ Le module CPU comporte une résistance de terminaison (120 Ω) avec l'interface COM2. Montez une résistance de terminaison supplémentaire (120 Ω, 0,5 W) à l'autre extrémité du bus.

▪ Le module CPU comporte une résistance Pull-Up et une résistance Pull-Down (680 Ω chacune conformément à la spécification Modbus). Des résistances Pull-Up-/Pull-Down supplémentaires ne sont pas nécessaires.
6.4.3.1 **MSENSE® AGD**

Si vous souhaitez utiliser un capteur de type MSENSE® AGD, vous devez raccorder ledit capteur conformément aux exemples de raccordement suivants, au bus de capteurs MR. Si le capteur MSENSE® AGD est le seul ou le dernier participant au bus, vous devez utiliser une résistance de terminaison (120 Ω, 0,5 W).

Figure 57: Exemple de raccordement MSENSE® AGD 2/3 (connecteur M12, type A, 5 pôles conformément à CEI 61076-2-101)
6.4.3.2 MESSKO® MTeC® EPT303 FO

Si vous souhaitez utiliser un capteur de type MESSKO® MTeC® EPT303 FO, vous devez raccorder ledit capteur avec la borne enfichable RS485 au bus de capteurs MR. Positionnez le blindage du câblage à l'aide d'un étrier de blindage. Vous pouvez raccorder d'autres capteurs de type MESSKO® MTeC® EPT303 FO directement à la borne enfichable.

Le module de capteur EPT303 FO comporte une résistance de terminaison. Si vous souhaitez utiliser le capteur EPT303 FO simultanément avec d'autres types de capteurs sur le bus de capteurs MR, nous recommandons de raccorder le capteur EPT303 FO à l'extrémité du bus.
6.4.3.3 MESSKO® MTRAB® 2.5

Si vous souhaitez utiliser un capteur de type MESSKO® MTRAB® 2.5, vous devez raccorder ledit capteur avec la borne enfichable RS485 au bus de capteurs.
Vous devez activer le mode d'exploitation semi-duplex sur le capteur en positionnant l'interrupteur « Duplex mode » sur « HALF ». Si le capteur MESSKO® MTRAB® 2.5 est le seul ou dernier participant au bus, vous devez activer la résistance de terminaison du capteur en positionnant l'interrupteur « BUS termination 120 Ohm » sur « 1 = ON » et « 2 = OFF ».

Figure 62: Configuration Modbus du MESSKO® MTRAB® 2.5

1. Résistance de terminaison : avec semi-duplex : 1 = ON, 2 = OFF ; avec duplex intégral : 1 = ON, 2 = ON
2. Mode d'exploitation : HALF = semi-duplex, FULL = duplex intégral
3. Adresse Modbus

6.4.3.4 MSENSE®-FO ECU-I/S

Si vous souhaitez utiliser un capteur de type MSENSE®-FO ECU-I ou ECU-S, vous devez raccorder ledit capteur avec la borne enfichable RS485 au bus de capteurs. Positionnez le blindage du câblage à l'aide d'un étrier de blindage. Si le capteur MSENSE®-FO est le seul ou le dernier participant au
bus, vous devez utiliser une résistance de terminaison (120 Ω, 0,5 W). Vous devez activer le mode d'exploitation semi-duplex, 2 conducteurs, sur le capteur à l'aide du logiciel de configuration MSET-FO.

Figure 63: Exemple de raccordement MSENSE®-FO ECU-I ou ECU-S (borne RS485)

6.4.4 Indications concernant le raccordement des capteurs analogiques

AVIS

Endommagement de l'appareil et des capteurs !

Les entrées / sorties analogiques mal raccordées et mal configurées peuvent entraîner des dégâts sur l'appareil et sur le capteur.

► Suivez les indications concernant le raccordement des capteurs analogiques [Section 6.4.4, Page 83].
► Configurez les entrées et les sorties analogiques conformément aux capteurs raccordés.
Le module AIO est équipé d'un connecteur pour chaque canal (entrée ou sortie). Les connecteurs sont affectés comme suit :

Figure 64: Brochage du module AIO (exemple d'illustration à l'aide du module AIO 4)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 6 11 16</td>
<td>I OUT (+) : sortie de courant +</td>
</tr>
<tr>
<td></td>
<td>2 7 12 17</td>
<td>I/U IN (+) U OUT (+) : entrée de tension +, entrée de courant +, sortie de tension +</td>
</tr>
<tr>
<td></td>
<td>3 8 13 18</td>
<td>I/U IN (-) : entrée de tension -, entrée de courant -</td>
</tr>
<tr>
<td></td>
<td>4 9 14 19</td>
<td>I/U OUT (-) : sortie de tension -, sortie de courant -</td>
</tr>
<tr>
<td></td>
<td>5 10 15 20</td>
<td>non utilisé</td>
</tr>
</tbody>
</table>

Tableau 16: Entrées et sorties analogiques

Vous pouvez raccorder les types de capteurs analogiques suivants :
- 4…20 mA
- PT100/PT1000 (2 conducteurs, 3 conducteurs, 4 conducteurs)
Capteur 4...20 mA

Vous devez raccorder un capteur 4...20 mA aux broches 2 et 3. Vous devez, en outre, raccorder le pont fourni aux broches 3, 4 et 5.

Capteur PT100/PT1000

Vous raccorder un capteur PT100-Sensor ou PT1000 comme suit, en fonction du type :

- 2 conducteurs : broche 1 et 4
- 3 conducteurs : broche 1, 3 et 4
- 4 conducteurs : broche 1, 2, 3 et 4

Figure 65: Exemple de raccordement d'un capteur 4...20 mA

Figure 66: Exemple de raccordement d'un capteur PT100/PT1000
6.4.5 Compatibilité électromagnétique

L'appareil a été développé conformément aux normes CEM applicables. Observez les points suivants pour garantir la conformité avec les normes CEM.

6.4.5.1 Exigence de câblage sur le lieu de montage

Observez les points suivants lors du choix du lieu de montage :

▪ La protection contre la surtension doit être active.
▪ La mise à la terre de l'installation doit être conforme aux règles de la technique.
▪ Les pièces séparées de l'installation doivent être interconnectées via une liaison équipotentielle.
▪ L’appareil et son câblage doivent être situés à 10 m au moins des disjoncteurs, des sectionneurs et des barres conductrices.

6.4.5.2 Exigence de câblage sur le lieu d'exploitation

Observez les points suivants lors du câblage sur le lieu d'exploitation :

▪ Posez les connexions dans des goulottes de câblage en métal mises à la terre.
▪ Ne posez pas les câbles sujets aux perturbations (p. ex. câbles d'alimentation) et les câbles sensibles aux interférences (p. ex. lignes de signaux) dans la même goutlette de câblage.
▪ Respectez une distance supérieure à 100 mm entre les câbles sujets aux perturbations et les câbles sensibles aux perturbations.

![Figure 67: Câblage recommandé](image)

<table>
<thead>
<tr>
<th></th>
<th>1 Goutlette pour câbles sujets aux perturbations</th>
<th>3 Goutlette pour câbles sensibles aux perturbations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Câble sujet aux perturbations (p. ex. câble d'alimentation)</td>
<td>4 Câble sensible aux perturbations (p. ex. ligne de signaux)</td>
</tr>
</tbody>
</table>

▪ Court-circuitez et mettez à la terre les câbles de réserve.
6 Montage

- Ne raccordez en aucun cas l'appareil à un câble collecteur à quatre brins.
- Pour la transmission des signaux, utilisez des câbles blindés avec conducteurs individuels torsadés par paires (conducteur aller / retour).
- Connectez le blindage sur toute la surface (360°) à l'appareil ou à un rail de mise à la terre proche.

L'usage de monobrins peut considérablement entraver l'efficacité du blindage. Connectez le blindage brièvement et sur toute la surface.

Figure 68: Connexion recommandée du blindage

| 1 | Connexion du blindage via un conducteur unique |
| 2 | Connexion du blindage sur toute la surface |

6.4.5.3 Exigence de câblage dans l'armoire électrique

Observez les indications suivantes lors du câblage de l'armoire électrique :
- L'armoire électrique prévue pour le montage de l'appareil doit être préparée conformément aux spécifications CEM :
 - structure fonctionnelle de l'armoire électrique (séparation spatiale),
 - liaison équipotentielle constante (toutes les pièces métalliques sont interconnectées),
 - câblage satisfaisant aux exigences CEM (séparation des câbles sujets aux interférences et des câbles sensibles aux interférences)
 - blindage optimal (boîtier en métal),
 - protection contre la surtension (protection contre la foudre),
 - bus de terre (barre de terre principale),
 - traversées de câbles conformes aux exigences CEM,
 - câblage des bobines de contacteur.
Les câbles de raccordement de l'appareil doivent être posés très près du boîtier en métal ou dans des porte-câbles en métal mis à la terre.
Les lignes de signaux et les câbles d'alimentation/câbles de connexion doivent être posés dans des supports de câbles séparés.

6.4.5.4 Indications relatives au blindage du bus CAN

Afin de garantir le fonctionnement sans faille du bus CAN, vous devez raccorder le blindage conformément à une des variantes ci-après. Si vous ne pouvez appliquer aucune des variantes mentionnées, nous vous recommandons d'utiliser des câbles à fibre optique. Les câbles à fibre optique découplent les appareils et sont insensibles aux perturbations électromagnétiques (surtension et salve).

AVIS

Endommagement de l'appareil !

Si vous raccordez le câble du bus CAN à des appareils qui ne sont pas sur le même potentiel, il risque d'y avoir un passage de courant dans le blindage. Ce courant est susceptible d'endommager l'appareil.

► Raccordez les appareils à une barre d'équipotentialité pour assurer la liaison équipotentielle.
► Si les deux appareils ne sont pas sur le même potentiel, ne raccordez le blindage du câble du bus CAN qu'à un seul appareil.

Variante 1 : les appareils connectés sont sur le même potentiel

Si les appareils à connecter sont sur le même potentiel, procédez comme suit :
1. Raccordez tous les appareils à une barre d'équipotentialité pour assurer la liaison équipotentielle.
2. Raccordez le blindage du câble du bus CAN à tous les appareils connectés.

Variante 2 : les appareils connectés sont sur un potentiel différent

Notez que l'efficacité du blindage est plus faible dans le cas de cette variante.

Si les appareils à connecter sont sur un potentiel différent, procédez comme suit :
► Raccordez le blindage du câble du bus CAN à un seul appareil.
Raccordement du blindage

Raccordez le blindage du câble du bus CAN au connecteur DSub à 9 pôles :

![Diagramme du raccordement du blindage du câble du bus CAN au connecteur DSub à 9 pôles](image)

Figure 69: Raccordement du blindage du câble du bus CAN au connecteur DSub à 9 pôles

6.4.5.5 Indications concernant le blindage des câbles pour signaux analogiques

Pour une acquisition sans erreur des signaux analogiques, vous devez poser le blindage du câble dans le mécanisme d'entraînement sur la borne de terre. Ce faisant, veillez à ce que le blindage du câble soit enlevé, si possible, peu avant le raccordement, afin que la distance des câbles non blindés soit la plus courte possible. Le raccordement du blindage doit être effectué avec des colliers de blindage.

![Exemples de raccordement du blindage à la borne de terre](image)

Figure 70: Exemples de raccordement du blindage à la borne de terre (à gauche : raccordement direct au module A/O, à droite : raccordement au moyen d'un bornier)

6.4.6 Raccorder les câbles aux périphériques

Ne câbler qu'autant de lignes que nécessaire afin d’assurer une meilleure vue d’ensemble lors de la connexion.
Pour raccorder les câbles aux périphériques, procédez comme suit :

- Utilisez uniquement les câbles spécifiés pour le câblage. Utilisez les câbles recommandés.
- Raccordez les câbles devant être branchés à l'appareil aux périphériques conformément au schéma de raccordement.

6.4.7 Câbler l'appareil

Ne câbler qu'autant de lignes que nécessaire afin d'assurer une meilleure vue d'ensemble lors de la connexion.

Pour câbler l'appareil, procédez de la manière suivante :

- Observez le schéma de raccordement.
- Utilisez uniquement les câbles spécifiés pour le câblage. Utilisez les câbles recommandés.
- Raccordez les câbles aux périphériques [Section 6.4.6, Page 89].

1. Dénudez les câbles et les fils électriques.
2. Sertissez les fils toronnés avec des embouts.
3. Passez les fils dans les bornes correspondantes des connecteurs et fixez-les à l'aide d'un tournevis.

![Figure 71: Exemple : connecteur pour la mesure de la tension](image_url)

6.4.8 **Monter la résistance de terminaison du bus CAN**

Si vous souhaitez exploiter l'appareil en marche en parallèle, vous devez monter une résistance de terminaison de 120 Ω aux deux extrémités du bus CAN. Utilisez, à cet effet, le connecteur avec résistance de terminaison optionnel compris dans la livraison.

6.5 **Raccordement du mécanisme d'entraînement**

⚠️ **AVERTISSEMENT**

Danger de mort et risque de blessures graves !

Un transformateur sous tension et des composants de changeur de prises en charge sous tension peuvent présenter un danger de mort ou de blessures graves pendant le raccordement !

► Il est impératif de respecter les mesures de sécurité ci-après.
Ne raccordez le mécanisme d'entraînement qu'à des circuits électriques munis d'un dispositif de déconnexion externe et omnipolaire le plus proche possible du mécanisme d'entraînement, permettant ainsi de mettre l'installation complètement hors tension en cas de besoin (maintenance, entretien etc.).

En outre, il est permis de raccorder un mécanisme d'entraînement non muni d'un dispositif de protection contre les surintensités pour le circuit de contrôle et le circuit de chauffage uniquement à des circuits électriques équipés d'un dispositif de protection contre les surintensités. Le fusible doit garantir une protection contre un contact indirect. Pour la protection à proximité du mécanisme d'entraînement recommandée par la société Maschinenfabrik Reinhausen GmbH, utilisez 1,6 A C (dans le cas d'un circuit de chauffage avec chauffage additionnel et tension d'alimentation < 127 V CA / CC utilisez 3,0 A C). Une mesure doit être effectuée après l'installation pour en apporter la preuve.

Les dispositifs de déconnexion conformes aux normes CEI 60947-1 et CEI 60947-3 peuvent se prêter à cet effet (p. ex. disjoncteur). Lors de la sélection du type de sectionneur, tenez compte des propriétés des différents circuits électriques (tension, courants maximum). Observez, en outre, les points suivants lors de l'installation :

▪ Le dispositif de déconnexion doit être facilement accessible à l'utilisateur
▪ Le dispositif de déconnexion doit être marqué pour l'appareil à déconnecter et les circuits électriques à déconnecter
▪ Le dispositif de déconnexion ne doit en aucun cas faire partie de la ligne électrique
▪ Le dispositif de déconnexion ne doit en aucun cas couper le conducteur de protection principal

Les circuits de courant d'alimentation doivent être raccordés par un conducteur de section de 2,5 mm² minimum (14 AWG), sauf indication contraire. Sur la base des normes et directives locales en vigueur, vérifiez si la section minimale indiquée du câble d'alimentation est suffisante.

6.5.1 Câbles recommandés

AVIS

Endommagement de l'appareil !

Un courant électrique dans le blindage des câbles de signaux peut entraîner des dommages sur l'appareil.

► Pour les câbles de signaux entre le mécanisme d'entraînement et le transformateur : raccordez le blindage du câble de signal au mécanisme d'entraînement.

► Pour tous les autres câbles de signaux : raccordez le blindage des deux côtés dans la mesure où il n'y a pas de différence de potentiel entre les deux appareils. En cas de différence de potentiel, ici aussi, ne raccordez le blindage que d'un seul côté.
Observez la recommandation suivante de Maschinenfabrik Reinhausen lors du câblage.

- Les perturbations électromagnétiques qui sont à craindre sur les câbles de signaux dans l'environnement du transformateur risquent d'entraîner le bon fonctionnement du mécanisme d'entraînement.
- Si possible, les câbles de signaux doivent être blindés.
- S'assurer que les conducteurs en cuivre utilisés résistent à une température de 70 °C.

Tableau 17: Câbles de raccordement recommandés

<table>
<thead>
<tr>
<th>Circuit électrique</th>
<th>Fonction</th>
<th>Type</th>
<th>Matériau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit moteur</td>
<td>Alimentation</td>
<td>non blindé, câble séparé</td>
<td>Cuivre</td>
</tr>
<tr>
<td>Circuit de commande</td>
<td>Alimentation</td>
<td>non blindé, câble séparé</td>
<td>Cuivre</td>
</tr>
<tr>
<td></td>
<td>Surveillance de commutation</td>
<td>blindé</td>
<td>Cuivre</td>
</tr>
<tr>
<td></td>
<td>Circuit d'impulsion augmen-</td>
<td>blindé</td>
<td>Cuivre</td>
</tr>
<tr>
<td></td>
<td>ter/diminuer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circuit de déclenchement</td>
<td>blindé</td>
<td>Cuivre</td>
</tr>
<tr>
<td></td>
<td>Q1-arrêt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit de surveillance</td>
<td>capteur de température</td>
<td>blindé</td>
<td>Cuivre</td>
</tr>
<tr>
<td>Circuits de signalisation</td>
<td>Transmission de signaux</td>
<td>blindé</td>
<td>Cuivre</td>
</tr>
<tr>
<td>Câblage transversal entre les mécanismes d'entraînement</td>
<td>Alimentation</td>
<td>non blindé, câble séparé</td>
<td>Cuivre</td>
</tr>
<tr>
<td></td>
<td>Surveillance de commutation</td>
<td>blindé</td>
<td>Cuivre</td>
</tr>
<tr>
<td></td>
<td>Circuit d'impulsion augmen-</td>
<td>blindé</td>
<td>Cuivre</td>
</tr>
<tr>
<td></td>
<td>ter/diminuer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circuit de déclenchement</td>
<td>blindé</td>
<td>Cuivre</td>
</tr>
<tr>
<td></td>
<td>Q1-arrêt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.5.2 Raccordement électrique

L'alimentation en tension du mécanisme d'entraînement doit pouvoir fournir de 5 à 7 fois la valeur du courant de service nominal du mécanisme d'entraînement pendant une seconde.

Une tolérance de tension maximale de -20...+10 % par rapport à la tension nominale doit être respectée pour éviter d'endommager le mécanisme d'entraînement.

1. Coupez l'alimentation électrique.
2. Protégez l'alimentation électrique contre une remise en marche.
3. Assurez-vous que l'appareil est hors tension.
4. Mettez le mécanisme d'entraînement à la terre de manière visible et court-circuitez-le.
5. Recouvrez les pièces avoisinantes sous tension ou barrez-en l'accès.
6. Raccordez le mécanisme d'entraînement conformément aux schémas de connexion contenus dans la pochette porte-documents. Respectez les tensions d'alimentation indiquées sur le schéma de connexion (circuit de contrôle, circuit de chauffage) et les affectations des raccords.

7. Veillez, pendant le fonctionnement du mécanisme d'entraînement, à ce qu'un courant conforme aux données du chapitre Caractéristiques techniques (Résistance des microrupteurs) circule toujours dans le mécanisme d'entraînement via les microrupteurs, afin de garantir le bon fonctionnement de ces derniers.
7 Mise en service

7.1 Mettre le mécanisme d'entraînement en service

Préparatifs
1. Assurez-vous que le mécanisme d'entraînement est raccordé conformément au schéma de connexion fourni.
2. Assurez-vous que tous les conducteurs de protection sont correctement raccordés.
3. Assurez-vous que le préfusible sélectionné correspond aux dispositifs de protection montés dans le mécanisme d'entraînement.
4. Assurez-vous que le mécanisme d'entraînement et le changeur de prises en charge sont correctement accouplés et que les positions de service du mécanisme d'entraînement et du changeur de prises en charge concordent.
5. Assurez-vous que la manivelle n'est pas introduite dans l'orifice pour la manivelle.
6. Assurez-vous que tous les contacts de signalisation présents dans le schéma de connexion sont émis et surveillés dans la salle de contrôle.
7. Assurez-vous que le disjoncteur-protecteur du moteur et le fusible du circuit de contrôle sont désactivés.

Mise en service
1. Mettez le mécanisme d'entraînement sous tension.
4. En option en cas d'alimentation séparée du circuit de chauffage : mesurez la tension du circuit de chauffage sur la borne X1 et comparez-la avec celle indiquée sur le schéma de connexion. Les indications doivent concorder.
5. En option sur le moteur triphasé : assurez-vous que la tension sur les bornes de raccordement possède une suite de phases tournant à droite.
6. En option avec moteur à courant continu : assurez-vous que la fixation du potentiel de la tension du moteur est correcte.
7. Mettez en place le disjoncteur-protecteur du moteur et les fusibles du circuit de contrôle et du circuit de chauffage (le cas échéant).

⇒ La DEL du moniteur de tension et la DEL du thermostat (si disponible) situées au dos du cadre pivotant doivent être vertes.
8. Fermez le mécanisme d'entraînement et sécurisez-le avec un cadenas contre une ouverture non autorisée.

⇒ La mise en service est terminée.

En cas de doute ou de problème pendant la mise en service, contactez la société Maschinenfabrik Reinhausen GmbH.

7.2 Contrôles sur le mécanisme d'entraînement

AVERTISSEMENT

Choc électrique !

Danger de mort et risque de blessures graves dus à la tension électrique !

► Assurez-vous que le mécanisme d'entraînement est correctement raccordé conformément aux schémas de connexion fournis.

► Assurez-vous que la tension d'alimentation est adaptée aux caractéristiques techniques du mécanisme d'entraînement.

► Assurez-vous que tout risque de contact accidentel est écarté avant de procéder aux contrôles. La plaque de recouvrement du réducteur de puissance doit être placée, le moteur et le cadre pivotant doivent être fermés.

► Veillez à accoupler correctement le mécanisme d'entraînement et le changeur de prises en charge / changeur de prises hors tension et assurez-vous que les prises sont identiques entre le changeur de prises en charge / changeur de prises hors tension et le mécanisme d'entraînement dans chaque position de service.

En cas d'incertitude quant aux essais, n'hésitez pas à contacter Maschinenfabrik Reinhausen GmbH.

7.2.1 Vérifier si le courant est correctement coupé

1. Commutez le mécanisme d'entraînement à l'aide du bouton de réglage S3.

2. Vérifiez si l'indicateur de l'affichage des unités de paliers de commutation s'arrête à l'intérieur de la zone grise lorsque la manœuvre est terminée.

3. Effectuer le contrôle dans les deux sens de rotation.
7.2.2 Vérification du verrouillage mécanique et électrique des positions extrêmes du changeur de prises en charge/changeur de prises hors tension et du mécanisme d'entraînement

1. Commutez le mécanisme d'entraînement jusqu'en avant-dernière position de service à l'aide du bouton de réglage S3.

2. Ouvrez la porte du mécanisme d'entraînement et coupez le disjoncteur-protecteur du moteur Q1 (position O).

3. Actionnez le mécanisme d'entraînement au moyen de la manivelle jusqu'en dernière position de service. Si la dernière position de service n'est pas atteinte, vérifiez le couplage entre le changeur de prises en charge / changeur de prises hors tension et le mécanisme d'entraînement.

4. Continuez à tourner le mécanisme d'entraînement à l'aide de la manivelle dans le même sens jusqu'au blocage mécanique du mécanisme d'entraînement.

5. À l'aide de la manivelle, ramenez le mécanisme d'entraînement jusqu'en position médiane de l'affichage des unités de paliers de commutation.

6. Retirez la manivelle.

7. Allumez le disjoncteur-protecteur du moteur Q1 (position I).

8. Vérifiez si le mécanisme d'entraînement ne redémarre plus dans le même sens d'actionnement comme au point 1 dans le cas d'une nouvelle commande avec S3.

9. Vérifiez les deux positions de fin de course.
7.2.3 Vérifier le déclenchement du disjoncteur-protecteur du moteur

Procédez comme suit pour contrôler le déclenchement du disjoncteur-protecteur du moteur :

✓ Le disjoncteur-protecteur du moteur Q1 est enclenché (position I).

1. Fermer la connexion X1:14 - X1:15 Q1 ARRET pour déclencher le disjoncteur-protecteur du moteur.
 - Le disjoncteur-protecteur du moteur se déclenche (position 0). Si le disjoncteur-protecteur du moteur ne se déclenche pas, contactez la société Maschinenfabrik Reinhausen GmbH.

2. Réenclenchez le disjoncteur-protecteur du moteur (position I).
 - Le déclenchement du disjoncteur-protecteur du moteur est vérifié.

7.2.4 Vérification du bon fonctionnement

Afin de garantir le câblage correct de l'appareil, vérifiez le bon fonctionnement de celui-ci.

AVIS

Endommagement de l'appareil et des périphériques

Un appareil mal raccordé peut entraîner des dommages sur l'appareil et les périphériques.

► Vérifier le câblage général avant la mise en service.

Contrôlez les points suivants :

- La DEL RUN du sous-ensemble CPU I est allumée.

L'appareil est livré monté et peut être configuré. Les étapes indispensables à cette fin sont décrites au chapitre suivant.

7.3 Contrôles sur le transformateur

En cas d'incertitude quant aux essais, n'hésitez pas à contacter Maschinenfabrik Reinhausen GmbH.

7.3.1 Essais de haute tension sur le transformateur

Observez les points suivants avant d'effectuer les essais de haute tension sur le transformateur :

- Assurez-vous que le récipient d'huile du changeur de prises en charge est entièrement rempli de liquide isolant.
- Assurez-vous que tous les dispositifs de protection du changeur de prises en charge fonctionnent correctement et sont opérationnels.
Assurez-vous de l'absence de peinture sur les raccordements à la terre du boîtier de protection du mécanisme d'entraînement et de la fixation du boîtier de protection.

Procédez à l'essai de haute tension uniquement lorsque la porte du mécanisme d'entraînement est fermée.

Déconnectez les câbles externes vers les composants électroniques dans le mécanisme d'entraînement afin de prévenir des dommages dus à la surtension.

Seuls les traversées de câbles dans le fond du boîtier de protection prévues pour l'entrée de câbles doivent être utilisés pour le raccordement de la tension d'alimentation du mécanisme d'entraînement.

Toutes les conduites de mise à la terre doivent converger vers un point de raccordement central (mise en place d'une terre de référence adéquate).

Déconnectez tous les composants électroniques avant l'essai de haute tension. Démontez tous les appareils à tension de tenue < 1000 V avant un essai diélectrique du câblage.

Enlevez les câbles utilisés pour l'essai avant l'essai de haute tension parce qu'ils ont un effet d'antenne.

Veillez, dans la mesure du possible, à poser séparément les câbles de mesure / de données et les câbles électriques.

Veuillez contacter le fabricant si vous avez encore le moindre doute quant à d'éventuels risques.

7.3.2 Essais diélectriques sur le câblage du transformateur

Observez les points suivants concernant les essais diélectriques sur le câblage du transformateur :

l'isolation de l'entraînement à moteur est contrôlée avant la livraison de celui-ci.

Avant l'essai diélectrique du câblage du transformateur, déconnectez l'entraînement du circuit à contrôler afin de ne pas augmenter la charge des composants montés dans l'entraînement à moteur.

7.4 Transport du transformateur vers le lieu d'implantation

Si le transport du transformateur requiert le démontage du mécanisme d'entraînement, procédez comme suit :

1. Assurez-vous que le mécanisme d'entraînement et le changeur de prises en charge se trouvent en position d'ajustage.
2. Démontez le mécanisme d'entraînement.
3. N'actionnez pas le mécanisme d'entraînement lorsque le changeur de prises en charge est découpé et ne tournez pas l'arbre de sortie.
4. N'actionnez pas le changeur de prises en charge découpé et ne tournez pas son arbre d'entraînement.
5. Transportez le mécanisme d'entraînement dans l'emballage de livraison MR vers le lieu d'implantation.
6. Montez le mécanisme d'entraînement et l'arbre d'entraînement sur le transformateur sur le lieu d'implantation.

7.5 Mise en service du transformateur sur le lieu d'implantation

AVIS
Endommagement du mécanisme d'entraînement !
Endommagement du mécanisme d'entraînement dû à la présence d'eau de condensation dans le boîtier de protection du mécanisme d'entraînement.
► Le boîtier de protection du mécanisme d'entraînement doit toujours être hermétiquement fermé.
► Dans les cas d'immobilisation de plus de 8 semaines avant la mise en service, raccordez et mettez en service le chauffage anti-condensation dans le mécanisme d'entraînement. Si cela n'est pas possible, placez une quantité suffisante de dessiccateur dans le boîtier de protection.

AVIS
Endommagement du changeur de prises en charge et du mécanisme d'entraînement !
Endommagement du changeur de prises en charge et du mécanisme d'entraînement dû à une utilisation non conforme à l'emploi prévu du dispositif de signalisation de positions.
► Seuls les circuits électriques indiqués au chapitre Caractéristiques techniques du dispositif de signalisation de positions ► Section 14.3, Page 414 peuvent être branchés aux raccordements du module de signalisation de positions.
► L'instant de commutation du dispositif de signalisation de positions dans le mécanisme d'entraînement ne correspond pas à celui de la commutation en charge. Il dépend du type de commutateur. Ce fait doit être pris en considération lors de la projection des circuits de verrouillage entre le mécanisme d'entraînement et le dispositif externe (p. ex. le disjoncteur de puissance du transformateur).
► C'est pourquoi le contact de marche « Changeur de prises en service » indiqué dans le schéma de connexion doit être utilisé à la place du dispositif de signalisation de positions aux fins de surveillance externe, de verrouillage et de commande.

1. Mise en service du mécanisme d'entraînement [► Section 7.1, Page 95].
2. Garantie du bon fonctionnement du mécanisme d'entraînement [► Section 7.2, Page 96].
7.6 Visualisation

7.6.1 Établissement d'une connexion à la visualisation

Selon la variante du produit, vous pouvez établir la connexion à la visualisation comme suit.

ETOS® ED sans affichage

Pour établir la connexion vers la visualisation, vous pouvez utiliser l'interface ETH2.1 ou l'interface optionnelle ETH2.2 du module CPU. Les interfaces n'utilisent pas de serveur DHCP, raison pour laquelle vous devez affecter une adresse IP fixe à votre ordinateur. Observez, à ce sujet, l'exemple de configuration suivant :

<table>
<thead>
<tr>
<th>Interface</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>ETH2.1</td>
</tr>
<tr>
<td>PC</td>
<td>Adresse IP : 192.168.165.1</td>
</tr>
<tr>
<td></td>
<td>(pas réglable)</td>
</tr>
<tr>
<td></td>
<td>Masque de sous-réseau : 255.255.255.0</td>
</tr>
<tr>
<td>En option</td>
<td>ETH2.2</td>
</tr>
<tr>
<td>PC</td>
<td>Adresse IP : 192.0.1.230 (réglage usine) [► Section 9.3, Page 117]</td>
</tr>
<tr>
<td></td>
<td>Masque de sous-réseau : 255.255.255.0</td>
</tr>
<tr>
<td></td>
<td>Adresse IP : 192.0.1.100</td>
</tr>
<tr>
<td></td>
<td>Masque de sous-réseau : 255.255.255.0</td>
</tr>
</tbody>
</table>

Tableau 18: Exemple de configuration des interfaces

Pour établir une connexion, procédez comme suit :

1. Connectez l'ordinateur et l'appareil à l'aide du câble Ethernet (connecteur RJ45) via l'interface ETH2.1 ou ETH2.2.

![Figure 75: Établissement d'une connexion via l'interface ETH2.1 ou ETH2.2](image)

2. Affectez à l'ordinateur une adresse IP unique qui se trouve dans le même sous-réseau que l'appareil (par ex. ETH2.1 : 192.168.165.100).

\[\text{La visualisation est appelée.}\]

ETOS® ED avec affichage

Pour établir la connexion à la visualisation, vous pouvez utiliser l'interface frontale ETH1.1 ou l'interface optionnelle ETH2.2 du module CPU. Observez, à ce sujet, l'exemple de configuration suivant :

<table>
<thead>
<tr>
<th>Interface</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>ETH1.1</td>
</tr>
<tr>
<td></td>
<td>Adresse IP : 192.168.165.1 (pas réglable)</td>
</tr>
<tr>
<td></td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>Configuration automatique via DHCP</td>
</tr>
<tr>
<td>En option</td>
<td>ETH2.2</td>
</tr>
<tr>
<td></td>
<td>Adresse IP : 192.0.1.230 (réglage usine) [Section 9.3, Page 117]</td>
</tr>
<tr>
<td></td>
<td>Masque de sous-réseau : 255.255.255.0</td>
</tr>
<tr>
<td></td>
<td>PC</td>
</tr>
<tr>
<td></td>
<td>Adresse IP : 192.0.1.100</td>
</tr>
<tr>
<td></td>
<td>Masque de sous-réseau : 255.255.255.0</td>
</tr>
</tbody>
</table>

Tableau 19: Exemple de configuration des interfaces

Interface ETH1.1

Pour établir une connexion via l'interface ETH1.1, procédez comme suit :

1. Connectez l'ordinateur et l'appareil à l'aide du câble Ethernet (connecteur RJ45) via l'interface frontale.

2. Sur l'ordinateur, activer l'assignation automatique de l'adresse IP via DHCP.

\[\text{La visualisation est appelée.}\]

Interface ETH2.2 (en option)
L'appareil est livré avec l'adresse IP 192.0.1.230 configurée en usine. Si vous avez changé l'adresse IP, vous pouvez l'afficher dans le menu Communication.

Pour la connexion via l'interface ETH2.2, procédez comme suit :

1. Connectez l'ordinateur et l'appareil à l'aide du câble Ethernet (connecteur RJ45) via l'interface ETH2.2.

2. Affectez à l'ordinateur une adresse IP unique qui se trouve dans le même sous-réseau que l'appareil (p. ex. 192.0.1.100).

La visualisation est appelée.

7.6.2 Réglage de la langue

Ce paramètre sert à définir la langue d'affichage de l'appareil. L'appareil est livré avec quatre langues maximum.

<table>
<thead>
<tr>
<th>Langue</th>
<th>Langue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglais</td>
<td>Italien*</td>
</tr>
<tr>
<td>Allemand</td>
<td>Portugais*</td>
</tr>
<tr>
<td>Français*</td>
<td>Russe*</td>
</tr>
<tr>
<td>Espagnol*</td>
<td>Chinois*</td>
</tr>
<tr>
<td>Coréen*</td>
<td>Polonais*</td>
</tr>
</tbody>
</table>

Tableau 20: Langues d'affichage réglables
*) La langue est disponible en option

1. Dans la barre d'état, sélectionnez le bouton **Langue** ou bien l'option de menu **Réglages > Système > Généralités > Langue**.

2. Sélectionnez la langue souhaitée dans la liste déroulante.

3. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.
 - La boîte de dialogue « Redémarrer l'appareil » apparaît.

4. Redémarrez l'appareil pour appliquer la modification du réglage de la langue.

7.6.3 Réglage de la date et de l'heure

Vous pouvez régler la date et l'heure en utilisant l'une des variantes suivantes :

- **Réglage manuel**
- **Synchronisation temporelle via le système de conduite (SCADA)**
- **Synchronisation temporelle via le serveur de synchronisation SNTP**

Si vous utilisez un système de conduite, l'appareil synchronise automatiquement la date et l'heure avec le système de conduite. Si vous voulez utiliser un serveur de synchronisation SNTP, vous devez régler les paramètres nécessaires.

Observez, à cet effet, les indications fournies dans la section **Réglage de l'heure de l'appareil** [Section 9.5, Page 122].

7.6.4 Assistant de mise en service

Si vous souhaitez vous servir de l'appareil pour les réglages des paramètres correspondants, vous pouvez utiliser l'assistant de mise en service. L'assistant de mise en service offre une série de paramètres que vous pouvez définir les uns après les autres.

Vous trouverez une description détaillée des différents paramètres dans le chapitre Fonctionnement.

Pour appeler l'assistant de mise en service, vous devez posséder les droits d'accès [Section 9.35, Page 343] requis.

Dans l'état à la livraison, vous pouvez vous connecter comme administrateur comme suit :

- **Nom d'utilisateur** : admin
- **Mot de passe** : admin
Pour définir les paramètres à l'aide de l'assistant de mise en service, procédez comme suit :

1. Connectez-vous comme utilisateur jouissant des droits d'accès nécessaires.
2. Sélectionnez l'option de menu **Réglages > Assistant de mise en service**.

![Figure 79: Appeler l'assistant de mise en service](image)

3. Sélectionnez le bouton **Suivant** pour démarrer l'assistant de mise en service.
4. Suivez les instructions qui s'affichent.

Une fois tous les paramètres utiles pour la mise en service entrés, continuez avec le contrôle du fonctionnement.

7.6.5 Contrôle des valeurs mesurées et de l'état des entrées et sorties numériques

Pour la mise en service de l'appareil, vérifiez si les valeurs mesurées et l'état des entrées et des sorties numériques sont plausibles. Si nécessaire, utilisez à cet effet un appareil de mesure supplémentaire pour la mesure de chaque valeur mesurée.

Pour afficher les valeurs mesurées et l'état des entrées et des sorties numériques, procédez comme suit :

1. Sélectionnez l'option de menu **Information > Matériel**.
2. Sélectionnez successivement les différents **modules** et vérifiez les valeurs mesurées qui s'affichent ou l'état des entrées et des sorties numériques.
3. En cas d'erreurs, vérifiez le chemin de mesure et le câblage.
7.6.6 Vérification de la mesure de température

À des fins de mise en service de l'appareil, vérifiez si les températures mesurées sont plausibles et si les capteurs de température sont correctement câblés et affectés aux fonctions souhaitées. Pour cela, procédez comme suit :

1. Affichage de la courbe de température [⇒ Section 9.25.4, Page 276].
2. Mesurez les températures aux points de mesure à l'aide d'un instrument de mesure approprié et comparez-les aux températures qui s'affichent. Les températures doivent concorder, de légers écarts sont admissibles en raison des tolérances de mesure.
8 Service

8.1 Actionnement du mécanisme d'entraînement à distance

En service normal, vous actionnez le mécanisme d'entraînement à distance.

L'actionnement peut être enclenché via une impulsion de commande unique, par exemple par le biais du pack fonctionnel optionnel « Régulation automatique de la tension AVR basic / pro ».

Ce processus de réglage est terminé de force, que d'autres impulsions de commande aient été émises au cours de la manœuvre ou non. Dans le cas de l'exécution standard, une nouvelle manœuvre n'est possible qu'après le retour en position de repos de tous les appareils de commande.

Comportement en cas d'interruption de la tension

Si une interruption de la tension se produit pendant un changement de prise, le mécanisme d'entraînement termine le changement de prise commencé, après le retour de l'alimentation en tension.

8.2 Actionnement du mécanisme d'entraînement sur site

Dans des cas particuliers (par ex. lors de travaux de maintenance), vous pouvez également actionner électriquement le mécanisme d'entraînement sur site à l'aide du bouton de réglage S3.

Un actionnement à l'aide de la manivelle est possible dans des cas exceptionnels. Vous trouverez plus de détails dans la section suivante.
8.3 Actionner le mécanisme d'entraînement au moyen de la manivelle

Risque d'explosion !

Un actionnement non autorisé du mécanisme d'entraînement avec la manivelle peut entraîner la mort ou des blessures graves !

► N'actionnez jamais le mécanisme d'entraînement électriquement ou par manivelle avant que le transformateur ne soit mis hors tension si vous suspectez un défaut au niveau du transformateur ou du changeur de prises en charge / changer de prises hors tension.
► Ne terminez jamais par la manivelle un changement de prise entamé électriquement mais pas entièrement terminé.
► Ne tournez plus la manivelle si elle est difficile à tourner.
► N'inversez jamais le sens de rotation lors de l'actionnement du mécanisme d'entraînement à l'aide de la manivelle.
► En cas de doutes concernant l'état du changeur de prises en charge / changer de prises hors tension ou l'origine du défaut, contactez immédiatement le service technique de la société Maschinenfabrik Reinhausen GmbH.
► Utilisez uniquement la manivelle fixée dans le mécanisme d'entraînement pour actionner manuellement le mécanisme d'entraînement.

Vous trouverez des informations sur l'élimination des dérangements dans le chapitre Élimination des dérangements.

Fonctionnement normal

Un actionnement par manivelle n'est pas nécessaire lors du fonctionnement normal. La manivelle est principalement utilisée lors de l'installation sur site ou lors des contrôles dans le transformateur.

L'actionnement du mécanisme d'entraînement par la manivelle est autorisé sur le transformateur déconnecté, p. ex. pour des travaux de maintenance, si aucun dérangement n'est visible sur le transformateur ou sur le changeur de prises en charge / changer de prises hors tension et si le changement de prise précédent a été correctement terminé.

Exception mode d'urgence

S'il est impératif de procéder à un changement de prise en présence d'un dérangement dans le mécanisme d'entraînement alors que le transformateur est sous tension, on parle alors de mode d'urgence. Dans ce cas, observez impérativement les avertissements indiqués plus haut.

Actionner le mécanisme d'entraînement au moyen de la manivelle

Pour effectuer un changement de prise à la manivelle, procédez comme suit :
1. Ouvrez la porte du boîtier de protection du mécanisme d'entraînement.
2. Coupez le disjoncteur-protecteur du moteur Q1 (position 0).

3. Insérez la manivelle fixée dans le mécanisme d'entraînement dans l'orifice pour la manivelle situé dans la plaque de recouvrement supérieure.
 ⇒ L'interrupteur de verrouillage de la manivelle coupe le circuit du moteur bipolaire. Le circuit de contrôle reste sous tension.

4. **AVIS** Endommagement du changeur de prises en charge dû à un changement de prise incorrectement terminé. Tournez la manivelle dans un sens jusqu'à ce que l'indicateur ait fait tout le tour de l'affichage des unités de paliers de commutation et se retrouve en position médiane dans la zone grise de l'affichage des unités de paliers de commutation.
 ⇒ Le changement de prise est terminé.

5. Retirez la manivelle et remettez-la dans le support.

6. Allumez le disjoncteur-protecteur du moteur Q1 (position I).

7. Fermez la porte du boîtier de protection du mécanisme d'entraînement.
9 Visualisation

Le mécanisme d'entraînement ETOS® ED est équipé d'une visualisation Web. Celle-ci vous permet de configurer l'appareil avec un ordinateur et d'afficher les valeurs mesurées.

Configuration requise du système

Pour accéder à la visualisation Web, vous avez besoin d'un ordinateur avec un navigateur compatible avec HTML5. L'affichage est optimisé pour les navigateurs suivants :

- Microsoft® Internet Explorer 10 ou plus récent
- Google Chrome™

9.1 Établissement d'une connexion à la visualisation

Selon la variante du produit, vous pouvez établir la connexion à la visualisation comme suit.

ETOS® ED sans affichage

Pour établir la connexion vers la visualisation, vous pouvez utiliser l'interface ETH2.1 ou l'interface optionnelle ETH2.2 du module CPU. Les interfaces n'utilisent pas de serveur DHCP, raison pour laquelle vous devez affecter une adresse IP fixe à votre ordinateur. Observez, à ce sujet, l'exemple de configuration suivant :

<table>
<thead>
<tr>
<th>Interface</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>ETH2.1 Adresse IP : 192.168.165.1 (pas réglable)</td>
</tr>
<tr>
<td>PC</td>
<td>Adresse IP : 192.168.165.100 Masque de sous-réseau : 255.255.255.0</td>
</tr>
<tr>
<td>En option</td>
<td>ETH2.2 Adresse IP : 192.0.1.230 (réglage usine) [► Section 9.3, Page 117] Masque de sous-réseau : 255.255.255.0</td>
</tr>
<tr>
<td>PC</td>
<td>Adresse IP : 192.0.1.100 Masque de sous-réseau : 255.255.255.0</td>
</tr>
</tbody>
</table>

Tableau 21: Exemple de configuration des interfaces
Pour établir une connexion, procédez comme suit :

1. Connectez l'ordinateur et l'appareil à l'aide du câble Ethernet (connecteur RJ45) via l'interface ETH2.1 ou ETH2.2.

![Figure 80: Établissement d'une connexion via l'interface ETH2.1 ou ETH2.2](image)

2. Affectez à l'ordinateur une adresse IP unique qui se trouve dans le même sous-réseau que l'appareil (par ex. ETH2.1 : 192.168.165.100).

La visualisation est appelée.

ETOS® ED avec affichage

Pour établir la connexion à la visualisation, vous pouvez utiliser l'interface frontale ETH1.1 ou l'interface optionnelle ETH2.2 du module CPU. Observez, à ce sujet, l'exemple de configuration suivant :

<table>
<thead>
<tr>
<th>Interface</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>ETH1.1</td>
</tr>
<tr>
<td></td>
<td>Adresse IP : 192.168.165.1 (pas réglable)</td>
</tr>
<tr>
<td>PC</td>
<td>Configuration automatique via DHCP</td>
</tr>
<tr>
<td>En option</td>
<td>ETH2.2</td>
</tr>
<tr>
<td></td>
<td>Adresse IP : 192.0.1.230 (réglage usine) [Section 9.3, Page 117]</td>
</tr>
<tr>
<td></td>
<td>Masque de sous-réseau : 255.255.255.0</td>
</tr>
<tr>
<td>PC</td>
<td>Adresse IP : 192.0.1.100</td>
</tr>
<tr>
<td></td>
<td>Masque de sous-réseau : 255.255.255.0</td>
</tr>
</tbody>
</table>

Tableau 22: Exemple de configuration des interfaces
Interface ETH1.1 Pour établir une connexion via l'interface ETH1.1, procédez comme suit :
1. Connectez l'ordinateur et l'appareil à l'aide du câble Ethernet (connecteur RJ45) via l'interface frontale.

2. Sur l'ordinateur, activer l'assignation automatique de l'adresse IP via DHCP.
3. Dans le navigateur de l'ordinateur, entrez l'adresse IP de la visualisation
 http://192.168.165.1 ou, lorsque le cryptage SSL est actif,
 ⊳ La visualisation est appelée.

Interface ETH2.2 (en option)
L'appareil est livré avec l'adresse IP 192.0.1.230 configurée en usine. Si vous avez changé l'adresse IP, vous pouvez l'afficher dans le menu Communication.
Pour la connexion via l'interface ETH2.2, procédez comme suit :
1. Connectez l'ordinateur et l'appareil à l'aide du câble Ethernet (connecteur RJ45) via l'interface ETH2.2.

![Figure 82: Établir une connexion via l'interface arrière ETH2.2](image)

2. Affectez à l'ordinateur une adresse IP unique qui se trouve dans le même sous-réseau que l'appareil (p. ex. 192.0.1.100).

La visualisation est appelée.

9.2 Généralités

Dans cette option de menu, vous pouvez régler les paramètres généraux.
9.2.1 Réglage des fonctions générales de l'appareil

Les paramètres suivants servent à régler les fonctions générales de l’appareil.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Généralités</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langue</td>
<td>Français</td>
<td></td>
</tr>
<tr>
<td>Assistant de mise en service</td>
<td>Oui</td>
<td>Désactivé</td>
</tr>
<tr>
<td>Déconnexion automatique</td>
<td>Désactivé</td>
<td></td>
</tr>
<tr>
<td>Délai avant déconnexion automatique</td>
<td>15.0 min</td>
<td></td>
</tr>
<tr>
<td>Affichage des valeurs de mesure</td>
<td>Valeurs primaires</td>
<td></td>
</tr>
<tr>
<td>Désignation du transformateur</td>
<td>Transformateur</td>
<td></td>
</tr>
<tr>
<td>Comportement à distance</td>
<td>Matériel et SCADA</td>
<td></td>
</tr>
<tr>
<td>Interface USB</td>
<td>Désactivé</td>
<td></td>
</tr>
<tr>
<td>Activation accès utilisateur ma...</td>
<td>Activé</td>
<td></td>
</tr>
<tr>
<td>Agent SNMP</td>
<td>Désactivé</td>
<td></td>
</tr>
</tbody>
</table>

Figure 83: Généralités

1. Sélectionnez l’option de menu Réglages > Paramètres > Système > Généralités.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Assistant de mise en service

Ce paramètre sert à définir si l’assistant de mise en service [Section 7.6.4, Page 104] doit démarrer automatiquement lors d’un redémarrage de l’appareil.

Affichage des valeurs mesurées

Ce paramètre permet de définir si les valeurs mesurées affichées, ainsi que les paramètres de régulation doivent se reporter au côté primaire ou au côté secondaire du transformateur de mesure.

Affichage de la tension entre phases

Ce paramètre sert à définir si l’appareil doit afficher la tension entre phases (phase L-L (U1)) dans l’affichage de la valeur mesurée. Lorsque vous activez le paramètre, l’appareil utilise la tension entre phases comme valeur mesurée pour la régulation de la tension.

Désignation du transformateur

Ce paramètre sert à entrer une désignation de transformateur à des fins d’identification. La désignation de transformateur est affichée sur l’écran principal de la visualisation.
Comportement à distance

Ce paramètre permet de sélectionner le comportement de l'appareil en mode de fonctionnement À distance. Selon la configuration de l'appareil, vous pouvez régler le comportement à distance comme suit.

- Via la visualisation (en option)
- Via le réglage des entrées numériques (en option)

Vous pouvez sélectionner les réglages suivants :

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seulement le matériel</td>
<td>L'appareil accepte des instructions via les entrées numériques.</td>
</tr>
<tr>
<td>Seulement SCADA</td>
<td>L'appareil accepte des instructions via SCADA.</td>
</tr>
<tr>
<td>Matériel et SCADA</td>
<td>L'appareil accepte des instructions via les entrées numériques et via SCADA.</td>
</tr>
</tbody>
</table>

Tableau 23: Sélectionner le comportement à distance

Interface USB

Ce paramètre sert à désactiver le port USB. Vous avez le choix parmi les options suivantes :

- Activé : le port USB est activé
- Désactivé : le port USB est désactivé

9.2.2 Réglage de la déconnexion automatique

Vous pouvez régler l'option de déconnexion automatique, par l'appareil, d'un utilisateur connecté après un certain temps d'inactivité de ce dernier.

Ce réglage est valable pour tous les utilisateurs. Si vous avez activé la fonction Connexion automatique [Section 9.35.3, Page 346] pour un utilisateur, celui-ci ne sera pas automatiquement déconnecté.
Figure 84: Généralités

1. Sélectionnez l'option de menu Réglages > Paramètres > Système > Généralités.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Déconnexion automatique

Ce paramètre sert à activer la déconnexion automatique.

Délai avant déconnexion automatique

Ce paramètre sert à régler le délai de déconnexion automatique d'un utilisateur après un certain temps d'inactivité de ce dernier.

9.2.3 Activation / Désactivation de l'accès utilisateur à la maintenance

L'appareil est équipé d'un accès utilisateur pour le service technique de Maschinenfabrik Reinhausen GmbH. Cet accès sert au diagnostic d'erreurs et au dépannage dans les cas de dérangements constatés de l'appareil. Acti- vez l'accès utilisateur à la maintenance uniquement de façon temporaire en vue du dépannage, afin de garantir la sécurité informatique.

Si vous désactivez l'accès utilisateur à la maintenance et perdez votre mot de passe pour le rôle Administrateur, il ne vous sera pas possible de réini- tialiser le mot de passe administrateur. En cas de perte du mot de passe administrateur, vous devez réinitialiser l'appareil au réglage usine, ce qui aura pour conséquence la perte de toutes les informations enregistrées sur l'appareil.
Pour régler le paramètre, vous devez appartenir au rôle Administrateur.

Dans l'état à la livraison, vous pouvez vous connecter comme administrateur comme suit :
- **Nom d'utilisateur** : admin
- **Mot de passe** : admin

1. Sélectionnez l'option de menu **Réglages > Paramètres > Système > Généralités**.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.
5. Redémarrez l'appareil afin d'appliquer la modification.

Activation accès utilisateur maintenance

Ce paramètre sert à activer ou à désactiver l'accès utilisateur à la maintenance.

9.3 Configuration réseau

Dans cette option de menu vous pouvez configurer les interfaces réseau ETH 1 et ETH 2.2 du module CPU.

Vous ne pouvez régler les paramètres de l'interface ETH 1 que si l'appareil est équipé de la connexion au système de conduite en option via Ethernet (TCP / IP) :
- **CEI 61850**
- **CEI 60870-5-104**
- **Modbus (type Modbus TCP actif)**
- **DNP3 (mode de transmission DNP3 TCP actif)**
- **MQTT**
Vous ne pouvez régler les paramètres de l'interface ETH 2.2 que si l'appareil est équipé de l'interface optionnelle pour la visualisation.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Réglages réseau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Adresse IP Eth 1</td>
<td>192.168.10.254</td>
</tr>
<tr>
<td></td>
<td>Masque de sous-réseau Eth 1</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td></td>
<td>Adresse passerelle Eth 1</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>Adresse destination passerelle</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>Adresse IP Eth 2.2</td>
<td>192.0.1.230</td>
</tr>
<tr>
<td></td>
<td>Masque de sous-réseau Eth 2.2</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td></td>
<td>Adresse passerelle Eth 2.2</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>Adresse destin. passerelle Eth 2.2</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>Autorisation visualisation</td>
<td>ETH2.x seul</td>
</tr>
<tr>
<td></td>
<td>Cryptage SSL/TLS</td>
<td>Désactivé</td>
</tr>
<tr>
<td></td>
<td>Version TLS</td>
<td>>= 1.0</td>
</tr>
</tbody>
</table>

Figure 86: Réglages réseau

1. Sélectionnez l’option de menu Réglages > Paramètres > Système > Réglages réseau.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Adresse IP ETH 1/ETH 2.2

Ce paramètre sert à assigner une adresse IP à l’appareil.

Assignez des adresses IP dans différents sous-réseaux pour la visualisation Web et SCADA (en option). Sinon, vous ne pourrez pas établir une connexion.

Masque de sous-réseau ETH 1/ETH 2.2

Ce paramètre permet de régler le masque de sous-réseau.

Entrez impérativement un masque réseau valide différent de 0.0.0.0, sinon il ne sera pas possible d’établir une connexion à l’appareil.

Adresse Gateway ETH 1/ETH 2.2

Ce paramètre sert à définir l’adresse du Gateway.

Si vous définissez la valeur 0.0.0.0, aucun Gateway n’est utilisé.
9.3.1 Adresse de destination passerelle ETH 1/ETH 2.2

Ce paramètre sert à entrer l'adresse IP de la destination de la passerelle.

Autorisation visualisation

Ce paramètre sert à régler les interfaces par le biais desquelles vous pouvez accéder à la visualisation :
- ETH 2.x seule
- ETH 1 et ETH 2.x

Vous ne pouvez régler ce paramètre que si l'appareil est équipé de la connexion au système de conduite en option via Ethernet (TCP / IP) et de l'interface optionnelle pour la visualisation :

Cryptage SSL/TLS

Ce paramètre sert à définir si l'accès à la visualisation doit avoir lieu via une interface cryptée SSL/TLS.

Version TLS

Ce paramètre permet de régler les versions TLS acceptées. Si vous souhaitez créer une interface de visualisation cryptée, vous devez utiliser une version TLS acceptée. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Versions TLS acceptées</th>
</tr>
</thead>
<tbody>
<tr>
<td>>= 1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>>= 1.1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>>= 1.2<sup>1)</sup></td>
<td>1.2</td>
</tr>
</tbody>
</table>

Tableau 24: Version TLS

¹⁾ L'option est uniquement disponible lorsque la version TLS est compatible avec le périphérique raccordé.

Activer DNS (en option)

Ce paramètre sert à activer DNS pour la résolution de nom. Si vous souhaitez utiliser le protocole MQTT, vous pouvez établir la connexion au serveur MQTT via un serveur DNS. Réglez également les paramètres nécessaires pour le protocole MQTT [Section 9.4, Page 120].

Serveur DNS (en option)

Ce paramètre sert à régler l'adresse IP du serveur DNS.
9.4 MQTT

Dans cette option de menu, vous pouvez activer et configurer le protocole de messages MQTT. Pour cela, vous devez connecter l’appareil à un serveur MQTT (agent de messages) par le biais d'Ethernet via l'interface ETH 1 ou ETH2.x sur le module CPU. Notez que l'appareil envoie des messages seulement (publish). La réception de messages n'est pas active.

Deux possibilités s'offrent à vous pour la configuration du protocole :

- **Via l'adresse IP du serveur MQTT** :
 - entrez l'adresse IP comme adresse de l'agent de messages.
 - Réglages d'un serveur DNS pas nécessaires.

- **Via le serveur DNS** :
 - configurez le serveur DNS dans l'option de menu « Réglages réseau ».
 - Entrez l'URL comme adresse de l'agent de messages.

Figure 87: MQTT

✓ Si vous utilisez une URL sur l'agent de messages, entrez éventuellement l'adresse IP [Page 119] du serveur DNS et activez-la [Page 119].
✓ S'il n’existe pas de serveur DNS, entrez l’adresse IP [Page 118] du serveur MQTT.

1. Sélectionnez l’option de menu Réglages > Paramètres > Système > MQTT.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Activer MQTT

Ce paramètre sert à activer la transmission de messages au serveur MQTT (agent de messages).
Adresse agent de messages
Si vous utilisez une adresse URL, vous pouvez utiliser ce paramètre pour entrer le nom de domaine du serveur MQTT (agent de messages). Dans le cas contraire, vous pouvez entrer l'adresse IP du serveur MQTT.

Port agent de messages
Ce paramètre sert à régler le port du serveur MQTT (agent de messages). Les ports suivants sont utilisés par défaut :
- 8883 (SSL/TLS)
- 1883

Nom d'utilisateur client (en option)
Ce paramètre vous permet de régler le nom d'utilisateur du client pour l'authentification sur l'agent de messages. Si vous utilisez une authentification, vous devez configurer l'agent de messages en conséquence.

Mot de passe (en option)
Ce paramètre vous permet de régler le mot de passe pour l'authentification sur l'agent de messages. Si vous utilisez une authentification, vous devez configurer l'agent de messages en conséquence.

Cryptage SSL/TLS
Ce paramètre sert à définir si la transmission de données doit avoir lieu via une interface cryptée SSL/TLS.

Notez qu'une transmission cryptée ne fonctionnera pas si vous utilisez un proxy SSL.
9.5 Réglage de l'appareil

Vous pouvez synchroniser l'heure de l'appareil manuellement ou automatiquement via un serveur de synchronisation SNTP. Pour cela, vous devez connecter l'appareil via Ethernet à un serveur de synchronisation. Vous pouvez expérimenter SNTP et PTP simultanément. Dans ce cas, l'heure PTP est interrogée en mode Esclave.

<table>
<thead>
<tr>
<th>Nom</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronisation temporelle via SNTP</td>
<td>Désactivé</td>
</tr>
<tr>
<td>Intervalle de synchronisation</td>
<td>60 s</td>
</tr>
<tr>
<td>Horaire horaire</td>
<td>UTC +01:00</td>
</tr>
<tr>
<td>Activer deuxième serveur</td>
<td>Désactivé</td>
</tr>
<tr>
<td>Serveur de temps SNTP 2</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

Figure 88: Synchronisation temporelle

1. Sélectionnez l'option de menu **Réglages > Paramètres > Système > Synchronisation temporelle**.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

Heure

Ce paramètre sert au réglage manuel de la date et de l'heure.

Synchronisation temporelle via SNTP

Ce paramètre sert à activer la synchronisation temporelle via un serveur de synchronisation SNTP.

Serveur de synchronisation SNTP

Ce paramètre sert à entrer l'adresse IP du serveur de synchronisation SNTP. Si vous utilisez un serveur de synchronisation, l'appareil adopte l'heure du serveur de synchronisation comme heure système.

Entrez impérativement une adresse de serveur de synchronisation valide différente de 0.0.0.0, sinon il sera impossible d'établir une connexion à l'appareil.
Intervalle de synchronisation

Ce paramètre sert à régler l'intervalle d'interrogation de l'heure du serveur de synchronisation par l'appareil.

Heure d'été/Heure d'hiver automatique

Le paramètre sert à activer le passage automatique à l'heure d'été et à l'heure d'hiver (heure normale). En fonction du fuseau horaire (région) réglé, l'appareil passe automatiquement à l'heure d'été et d'hiver aux dates définies.

Fuseau horaire

Si l'information temporelle est transmise à l'appareil par un service de réseau (SNTP ou SCADA), cette heure est transmise selon l'heure de référence réglée. Pour adapter l'heure de l'appareil à votre heure locale, vous pouvez utiliser ce paramètre pour régler le décalage horaire par rapport au temps universel coordonné (UTC).

Exemple :

<table>
<thead>
<tr>
<th>Région</th>
<th>Décalage horaire par rapport à UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mumbai, Inde</td>
<td>UTC +5:30 h</td>
</tr>
<tr>
<td>Pékin, Chine</td>
<td>UTC +8:00 h</td>
</tr>
<tr>
<td>Brasilia, Brésil</td>
<td>UTC -3:00 h</td>
</tr>
</tbody>
</table>

Tableau 25: Décalage horaire par rapport au temps universel coordonné (Coordinated Universal Time)

Activer le deuxième serveur de synchronisation (en option)

Vous pouvez, en option, utiliser un deuxième serveur de synchronisation, par ex. en cas de panne du premier serveur de synchronisation. Si vous activez le deuxième serveur de synchronisation, l'appareil synchronise le temps avec le deuxième serveur de synchronisation au cas où il est impossible d'établir une connexion au premier serveur de synchronisation. Si l'appareil peut rétablir une connexion au premier serveur de synchronisation, il synchronise alors automatiquement le temps à nouveau avec le premier serveur de synchronisation.

Vous ne pouvez utiliser le deuxième serveur de synchronisation que si vous avez activé le paramètre Synchronisation temporelle via SNTP et entré une Adresse IP pour le premier serveur de synchronisation.

Serveur de synchronisation SNTP 2 (en option)

Ce paramètre sert à entrer l'adresse IP du deuxième serveur de synchronisation SNTP en option.
9.5.1 Synchronisation temporelle via PTP

Ce paramètre sert à activer la synchronisation temporelle via un serveur de synchronisation PTP.

Hops PTP

Ce paramètre vous permet d'entrer le nombre de segments de réseau entre le Maître et l'Esclave. Vous pouvez régler jusqu'à 16 hops.

Version PTP

Ce paramètre vous permet de sélectionner la version PTP.
- Version PTP 1 (IEEE 1588-2002)
- Version PTP 2 (IEEE 1588-2008)

Interface PTP

Ce paramètre vous permet de sélectionner l'interface à utiliser par l'appareil pour PTP.

9.6 Configuration Syslog

L'appareil prend en charge la transmission de messages de journal via le protocole Syslog conformément aux normes RFC 5424 et RFC 3164.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Syslog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Activation Syslog</td>
<td>Arrêt</td>
<td></td>
</tr>
<tr>
<td>Norme Syslog</td>
<td>RFC 5425</td>
<td></td>
</tr>
<tr>
<td>Serveur Syslog</td>
<td>0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>Port serveur Syslog</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td>Temporisation Reconnect</td>
<td>10 s</td>
<td></td>
</tr>
<tr>
<td>Désignation d'appareil</td>
<td>m200</td>
<td></td>
</tr>
<tr>
<td>Gravité Emergency</td>
<td>Arrêt</td>
<td></td>
</tr>
<tr>
<td>Gravité Alert</td>
<td>Arrêt</td>
<td></td>
</tr>
<tr>
<td>Gravité Critical</td>
<td>Arrêt</td>
<td></td>
</tr>
<tr>
<td>Gravité Error</td>
<td>Arrêt</td>
<td></td>
</tr>
<tr>
<td>Gravité Warning</td>
<td>Arrêt</td>
<td></td>
</tr>
<tr>
<td>Gravité Notice</td>
<td>Arrêt</td>
<td></td>
</tr>
<tr>
<td>Gravité Info</td>
<td>Arrêt</td>
<td></td>
</tr>
</tbody>
</table>

Figure 89: Syslog

1. Sélectionnez l'option de menu Réglages > Paramètres > Système > Syslog.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.
Activation Syslog

Ce paramètre sert à activer la transmission des messages Syslog par l'appareil.

Norme Syslog

Ce paramètre est utilisé pour le réglage du procédé de transmission et le format des messages Syslog. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Standard</th>
<th>Transport</th>
<th>Format de message</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 5425 (recommandé)</td>
<td>TLS</td>
<td>RFC 5424</td>
</tr>
<tr>
<td>RFC 5426</td>
<td>UDP</td>
<td></td>
</tr>
<tr>
<td>RFC 6587</td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td>RFC 3164</td>
<td>UDP</td>
<td>RFC 3164</td>
</tr>
</tbody>
</table>

Tableau 26: Norme Syslog

Serveur Syslog

Ce paramètre sert à régler l'adresse IP du serveur Syslog.

Port serveur Syslog

Ce paramètre sert à régler le port du serveur Syslog.

Temporisation Reconnect

Ce paramètre vous permet de régler le délai d'établissement d'une nouvelle connexion par l'appareil si la connexion a été interrompue ou si un message Syslog n'a pas pu être transmis (uniquement pour TCP ou TLS).

Désignation d'appareil

Ce paramètre sert à régler la désignation de l'appareil par laquelle l'appareil est identifié dans le serveur Syslog.
Degré de gravité

Vous pouvez régler les messages Syslog pour une transmission par l’appareil. Pour cela, vous pouvez activer ou désactiver les messages de chaque degré de gravité.

<table>
<thead>
<tr>
<th>Degré de gravité</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>Système inutilisable.</td>
</tr>
<tr>
<td>Alert</td>
<td>Action immédiate nécessaire.</td>
</tr>
<tr>
<td>Critical</td>
<td>État critique</td>
</tr>
<tr>
<td>Error</td>
<td>État d'erreur</td>
</tr>
<tr>
<td>Warning</td>
<td>État d'avertissement</td>
</tr>
<tr>
<td>Notice</td>
<td>État d'avis</td>
</tr>
<tr>
<td>Info</td>
<td>État d'information</td>
</tr>
<tr>
<td>Debug</td>
<td>État de débogage</td>
</tr>
</tbody>
</table>

Tableau 27: Degrés de gravité

9.7 Réglage de l'écran de veille

Afin d'augmenter la durée de vie de l'écran sur le panneau frontal de l'appareil, vous pouvez activer et régler un écran de veille. Vous disposez pour cela des options suivantes :

- Extinction de l'écran
- Varier l'intensité lumineuse de l'écran

1. Sélectionnez l'option de menu Réglages > Paramètres > Système > Écran de veille.
2. Sélectionnez le paramètre souhaité.
3. Règlez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
Écran de veille

Si vous activez cette fonction, l'appareil éteint complètement l'écran après expiration du temps d'attente réglable si aucune touche n'est actionnée. Si vous actionnez ensuite une touche quelconque, l'appareil rallume l'écran.

Si vous désactivez l'écran de veille, cela a un effet négatif sur la durée de vie de l'écran. Maschinenfabrik Reinhausen recommande d'activer l'écran de veille et de régler un temps d'attente de 15 minutes.

Temps d'attente Écran de veille

Ce paramètre sert à régler le temps d'attente de l'écran de veille.

Variation

Si vous activez cette fonction, l'appareil diminue la luminosité de l'écran après expiration du temps d'attente réglable si aucune touche n'est actionnée. Si vous appuyez ensuite sur une touche quelconque, l'appareil rétablit la pleine luminosité.

Lorsque l'écran de veille et la variation de luminosité sont actifs, vous devez appuyer à deux reprises sur une touche quelconque pour que l'écran redevienne actif et retrouve sa pleine luminosité.

Temps d'attente Variation

Ce paramètre sert à régler le temps d'attente de la variation.

Variation Luminosité

Réglage de la luminosité lorsque la luminosité de l'écran est variée. 100 % correspond à la pleine luminosité, 10 % à la luminosité la plus faible.

9.8 SCADA

La section suivante décrit la configuration de l'appareil pour la connexion à un système de contrôle (SCADA). Vous pouvez télécharger les points de données à l'aide du gestionnaire d'exportation [Section 9.37, Page 354].
9.8.1 Configuration CEI 61850 (en option)

Si vous souhaitez utiliser le protocole de système de conduite CEI 61850, vous devez régler les paramètres suivants. Consultez également la section Configuration réseau [Section 9.3, Page 117].

Figure 91: CEI 61850

1. Sélectionnez l'option de menu Réglages > Paramètres > Système > CEI 61850.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Nom IED

Ce paramètre sert à assigner un nom IED à l'appareil en vue de son identification dans le réseau CEI 61850.

Le nom IED doit commencer par une lettre et ne peut pas dépasser onze caractères.

Identifiant de l'appareil

Ce paramètre sert à assigner un identifiant à l'appareil en vue de son identification dans le réseau CEI 61850.

Point d'accès

Ce paramètre sert à assigner un nom au point d'accès dans le réseau CEI 61850.
Édition

Ce paramètre sert à passer de la 1ère édition à la 2e édition du protocole poste de conduite CEI 61850.

9.8.1.1 Télécharger le fichier ICD

Le fichier ICD peut être téléchargé depuis l'appareil à l'aide du gestionnaire d'importation/d'exportation [➤ Section 9.37, Page 354]. Vous devez établir une connexion Ethernet entre l'appareil et votre ordinateur à cet effet.

9.8.1.2 Importation du fichier CID/SCD (en option)

Pour l'importation d'un fichier CID ou SCD, observez les principes suivants.

L'IED (dispositif électronique intelligent) importé doit être le même que l'IED exporté depuis TEMPLATE.icd, à l'exception des éléments suivants :

▪ Les éléments DataSet peuvent être créés dans chaque LN
▪ Les éléments ReportControl peuvent être créés dans le LN dans lequel se trouve le DataSet correspondant
▪ Adresse IP (s'il n'en existe pas, utilisez celle qui est déjà réglée)
▪ Masque de sous-réseau (s'il n'en existe pas, utilisez celui qui est déjà réglé)
▪ Adresse IP Gateway (s'il n'en existe pas, utilisez celle qui est déjà réglée)
▪ Nom IED (IED name)
▪ Nom du point d'accès (Accesspoint Attribut name)
▪ Nom de l'appareil logique (LDevice Attribut inst)

OSI-PSEL, OSI-SSEL et OSI-TSEL ne peuvent pas être personnalisés.

Le fichier SCD doit contenir 45 IED au maximum. L'importation d'un fichier SCD intégral peut prendre plusieurs minutes. Le fichier SCD ne doit contenir que les IED nécessaires.

Vous pouvez importer le fichier CID / SCD à l'aide du gestionnaire d'importation / d'exportation. Pour cela, procédez comme suit :

1. Sélectionner l'option de menu Réglages > Importation.
2. Sélectionnez et importez le fichier CID / SCD souhaité.
9.8.2 Configuration CEI 60870-5-101 (en option)

Si vous voulez utiliser le protocole de système de conduite CEI 60870-5-101, vous devez régler les paramètres suivants.

2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Interface série

Ce paramètre sert à sélectionner l'interface série vers pour la transmission des données. Vous avez le choix parmi les options suivantes :
- RS232
- RS485

Débit en bauds

Ce paramètre sert à régler le débit en bauds de l'interface série. Vous avez le choix parmi les options suivantes :
- 9600 Bauds
- 19200 Bauds
- 38400 Bauds
- 57600 Bauds
- 115200 Bauds
Procédure de transmission
Ce paramètre sert à régler la procédure de transmission. Vous avez le choix parmi les options suivantes :
- Transmission asymétrique
- Transmission symétrique

Nombre octets adresse de lien
Ce paramètre sert à régler le nombre d'octets pour l'adresse de lien.

Adresse de lien
Ce paramètre sert à régler l'adresse de lien.

Nombre octets adresse ASDU
Ce paramètre sert à régler le nombre d'octets pour l'adresse ASDU.

Adresse ASDU
Ce paramètre sert à régler l'adresse ASDU.

Nombre octets adresse objet d'information
Ce paramètre sert à régler le nombre d'octets pour l'adresse de l'objet d'information.

Nombre octets cause de transmission
Ce paramètre sert à régler le nombre d'octets pour l'adresse de la cause de la transmission.

Nombre bits de données
Ce paramètre sert à régler le nombre de bits de données.

Parité
Ce paramètre sert à régler la parité. Vous avez le choix parmi les options suivantes :
- Aucun
- Pair
- Impair

Nombre bits d'arrêt
Ce paramètre sert à régler le nombre de bits d'arrêt.
Confirmation par caractère individuel ASDU

Ce paramètre permet de définir si une confirmation doit être envoyée sous forme de caractère individuel au lieu d’un message entier. La confirmation par caractère individuel est uniquement possible pour les requêtes de données de classe 2 (Class 2 Request).

Contrôle de bit RES

Ce paramètre sert à définir si l’appareil doit contrôler le bit RES (Reserved Bit) dans le panneau de commande. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marche</td>
<td>Les messages du Maître avec bit RES = 1 sont réfutés par l’appareil.</td>
</tr>
<tr>
<td>Arrêt</td>
<td>Les messages du Maître avec bit RES = 1 sont acceptés par l’appareil.</td>
</tr>
</tbody>
</table>

Tableau 28: Contrôle de bit RES

Optimisation de séquence ASDU

Le paramètre sert à régler la méthode d’optimisation des types ASDU. La norme autorise des optimisations pour pouvoir transmettre, dans un seul télégramme, plusieurs modifications de valeurs dans une séquence d’adresses d’objets d’information ascendantes. Ceci est signalé par le bit de séquence. Le choix des types ASDU pour lesquels cette optimisation est autorisée dépend de la date d’édition de la norme.

Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aucun</td>
<td>L’appareil n’effectue pas d’optimisation des types ASDU.</td>
</tr>
<tr>
<td>1ère éd.</td>
<td>Optimisation conformément à CEI 60870 1ère édition (type 1, 3, 9, 11, 21, 126).</td>
</tr>
<tr>
<td>1ère éd. amendement2</td>
<td>Optimisation conformément à CEI 60870 1ère édition, amendement 2 (type 1, 3, 9, 11, 13, 15, 21, 126).</td>
</tr>
<tr>
<td>2e éd.</td>
<td>Optimisation conformément à CEI 60870 2e édition (type 1, 3, 5, 7, 9, 11, 13, 15, 20, 21, 126).</td>
</tr>
</tbody>
</table>

Tableau 29: Optimisation de séquence ASDU
9.8.3 Configuration CEI 60870-5-103 (en option)

Si vous voulez utiliser le protocole de système de conduite CEI 60870-5-103, vous devez régler les paramètres suivants.

<table>
<thead>
<tr>
<th>Nom</th>
<th>Paramètres</th>
<th>CEI 60870-5-103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface série</td>
<td>RE232</td>
<td></td>
</tr>
<tr>
<td>Débit en baud</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>Adresse ASDU</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Nombre de bits de données</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Parité</td>
<td>Pair</td>
<td></td>
</tr>
<tr>
<td>Nombre bits d'arrêt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Compatibilité DFC</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Temps de référence</td>
<td>UTC</td>
<td></td>
</tr>
</tbody>
</table>

Figure 93: CEI 60870-5-103

1. Sélectionnez l'option de menu Réglages > Paramètres > Système > CEI 60870-5-103.
2. Sélectionnez le paramètre souhaité.
3. Règlez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
Interface série
Ce paramètre sert à sélectionner l'interface série vers pour la transmission des données. Vous avez le choix parmi les options suivantes :
- RS232
- RS485

Débit en bauds
Ce paramètre sert à régler le débit en bauds de l'interface série. Vous avez le choix parmi les options suivantes :
- 9600 Bauds
- 19200 Bauds
- 38400 Bauds
- 57600 Bauds
- 115200 Bauds

Adresse ASDU
Ce paramètre sert à régler l'adresse ASDU.

Nombre bits de données
Ce paramètre sert à régler le nombre de bits de données.

Parité
Ce paramètre sert à régler la parité. Vous avez le choix parmi les options suivantes :
- Aucun
- Pair
- Impair

Nombre bits d'arrêt
Ce paramètre sert à régler le nombre de bits d'arrêt.
Compatibilité DFC

Ce paramètre sert à régler la méthode d'utilisation par l'appareil du bit DFC (Data Flow Control) sur le panneau de commande. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>L'appareil définit le bit DFC dans chaque réponse sur une commande. L'appareil indique ainsi que le Maître n'est pas autorisé à envoyer de commande supplémentaire. Le Maître doit réagir au bit ACD (Access Demand) et chercher la réponse à la commande p. ex. via une requête pour données de classe 1 depuis la file d'attente de l'Esclave.</td>
</tr>
<tr>
<td>Alternative</td>
<td>L'appareil définit le bit DFC dans une réponse lorsqu'une deuxième commande est reçue, sans que le Maître n'ait envoyé au préalable une requête pour données de classe 1.</td>
</tr>
</tbody>
</table>

Tableau 31: Compatibilité DFC

Heure de référence

Ce paramètre sert à régler l'heure transmise par le système de conduite. L'appareil utilise cette information pour la synchronisation temporelle [Section 9.5, Page 122]. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Le système de conduite transmet l'heure locale. Avis : si vous utilisez cette option, vous devez désactiver le changement automatique entre heure d'été à heure d'hiver [Page 123]. Dans le cas contraire, l'appareil utilisera une heure incorrecte.</td>
</tr>
<tr>
<td>UTC</td>
<td>Le système de conduite transmet l'heure UTC (temps universel coordonné). L'appareil calcule l'heure locale à partir de l'heure UTC et du fuseau horaire [Page 123] réglé.</td>
</tr>
</tbody>
</table>

Tableau 32: Heure de référence
9.8.4 Configuration CEI 60870-5-104 (en option)

Si vous voulez utiliser le protocole de système de conduite CEI 60870-5-104, vous devez régler les paramètres suivants. Consultez également la section Configuration réseau [Section 9.3, Page 117].

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>CEI 60870-5-104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Port TCP</td>
<td>2404</td>
</tr>
<tr>
<td></td>
<td>Adresse ASDU</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Optimisation de séquence ASDU</td>
<td>Aucun</td>
</tr>
<tr>
<td></td>
<td>Temps de référence</td>
<td>UTC</td>
</tr>
</tbody>
</table>

Figure 94: CEI 60870-5-104

1. Sélectionnez l'option de menu Réglages > Paramètres > Système > CEI 60870-5-104.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Port TCP
Ce paramètre sert à régler le port TCP.

Adresse ASDU
Ce paramètre sert à régler l'adresse ASDU.

Optimisation de séquence ASDU
Le paramètre sert à régler la méthode d'optimisation des types ASDU. La norme autorise des optimisations pour pouvoir transmettre, dans un seul télégramme, plusieurs modifications de valeurs dans une séquence d'adresses d'objets d'information ascendantes. Ceci est signalé par le bit de séquence. Le choix des types ASDU pour lesquels cette optimisation est autorisée dépend de la date d'édition de la norme.
Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aucun</td>
<td>L'appareil n'effectue pas d'optimisation des types ASDU.</td>
</tr>
<tr>
<td>1ère éd.</td>
<td>Optimisation conformément à CEI 60870 1ère édition (type 1, 3, 9, 11, 21, 126).</td>
</tr>
<tr>
<td>1ère éd. amendement2</td>
<td>Optimisation conformément à CEI 60870 1ère édition, amendement 2 (type 1, 3, 9, 11, 13, 15, 21, 126).</td>
</tr>
<tr>
<td>2e éd.</td>
<td>Optimisation conformément à CEI 60870 2e édition (type 1, 3, 5, 7, 9, 11, 13, 15, 20, 21, 126).</td>
</tr>
</tbody>
</table>

Tableau 33: Optimisation de séquence ASDU

Heure de référence

Ce paramètre sert à régler l'heure transmise par le système de conduite. L'appareil utilise cette information pour la synchronisation temporelle [Section 9.5, Page 122]. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Le système de conduite transmet l'heure locale.</td>
</tr>
<tr>
<td></td>
<td>Avis : si vous utilisez cette option, vous devez désactiver le changement automatique entre heure d'été à heure d'hiver [Page 123]. Dans le cas contraire, l'appareil utilisera une heure incorrecte.</td>
</tr>
<tr>
<td>UTC</td>
<td>Le système de conduite transmet l'heure UTC (temps universel coordonné). L'appareil calcule l'heure locale à partir de l'heure UTC et du fuseau horaire réglé.</td>
</tr>
</tbody>
</table>

Tableau 34: Heure de référence

Adresse IP client 1/2/3 (en option)

Si vous utilisez la fonction optionnelle « Multi-Client », vous pouvez régler avec ce paramètre les adresses IP des clients SCADA. L'appareil accepte uniquement les ordres via le système de conduite des terminaux avec les adresses IP réglées ici.

Notez que tous les clients SCADA communiquent de manière égale avec l'appareil, puisque ce dernier ne définit aucune priorité pour les ordres. Si vous transmettez simultanément des ordres de plusieurs clients SCADA à l'appareil, ce dernier exécute le dernier ordre transmis.
9.8.5 Configuration Modbus (en option)

Si vous voulez utiliser le protocole de système de contrôle Modbus, vous devez régler les paramètres correspondant au type Modbus sélectionné. Consultez également la section Configuration réseau [► Section 9.3, Page 117] si vous souhaitez utiliser Modbus TCP.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Modbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Type Modbus</td>
<td>RTU</td>
<td></td>
</tr>
<tr>
<td>Adresse Modbus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Port TCP</td>
<td>502</td>
<td></td>
</tr>
<tr>
<td>Connexions TCP maximales</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TCP Keepalive</td>
<td>Désactivé</td>
<td></td>
</tr>
<tr>
<td>Interface série</td>
<td>RS232</td>
<td></td>
</tr>
<tr>
<td>Débit en baud</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>Nombre de bits de données</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Parité</td>
<td>Pair</td>
<td></td>
</tr>
<tr>
<td>Nombre bits d'arrêt</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Figure 95: Modbus

1. Sélectionnez l'option de menu Réglages > Paramètres > Système > Modbus.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Type Modbus

Ce paramètre vous permet de régler le type Modbus. Vous avez le choix parmi les options suivantes :

- RTU
- TCP
- ASCII

Adresse Modbus

Ce paramètre vous permet de régler l'adresse Modbus.

Port TCP

Ce paramètre sert à régler le port TCP.

Connexions TCP maximales

Ce paramètre sert à régler le nombre maximal de connexions TCP.
TCP Keepalive
Ce paramètre sert à activer/désactiver la fonction « TCP Keepalive ».

Interface série
Ce paramètre sert à sélectionner l'interface série vers pour la transmission des données. Vous avez le choix parmi les options suivantes :
- RS232
- RS485

Débit en bauds
Ce paramètre sert à régler le débit en bauds de l'interface série. Vous avez le choix parmi les options suivantes :
- 9600 Bauds
- 19200 Bauds
- 38400 Bauds
- 57600 Bauds
- 115200 Bauds

Nombre bits de données
Ce paramètre sert à régler le nombre de bits de données.

Parité
Ce paramètre sert à régler la parité. Vous avez le choix parmi les options suivantes :
- Aucun
- Pair
- Impair

Nombre bits d'arrêt
Ce paramètre sert à régler le nombre de bits d'arrêt.
9.8.6 Configuration DNP3 (en option)

Si vous voulez utiliser le protocole de système de conduite DNP3, vous devez régler les paramètres suivants. Consultez également la section Configuration réseau [Section 9.3, Page 117] si vous souhaitez utiliser DNP3 via TCP.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>DNP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Type de transmission DNP3</td>
<td>TCP</td>
<td></td>
</tr>
<tr>
<td>Port TCP</td>
<td>20000</td>
<td></td>
</tr>
<tr>
<td>Adresse de l'appareil</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dépasse. délai confirmation réponse</td>
<td>5 s</td>
<td></td>
</tr>
<tr>
<td>Messages spontanés</td>
<td>Désactivé</td>
<td></td>
</tr>
<tr>
<td>Adresse cible</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>Dépassement de délai</td>
<td>5 s</td>
<td></td>
</tr>
<tr>
<td>Répét. limitation de mess. spontané</td>
<td>Désactivé</td>
<td></td>
</tr>
<tr>
<td>Répétitions messages spontanés</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>User ID Code</td>
<td>ISM</td>
<td></td>
</tr>
<tr>
<td>Temps de référence</td>
<td>UTC</td>
<td></td>
</tr>
</tbody>
</table>

Figure 96: DNP3

1. Sélectionnez l’option de menu Réglages > Paramètres > Système > DNP3.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

9.8.6.1 Type de transmission DNP3

Ce paramètre sert à régler le type de transmission. Vous avez le choix parmi les options suivantes :

- TCP
- Série

Port TCP

Ce paramètre sert à régler le port TCP.

Interface série

Ce paramètre sert à sélectionner l'interface série vers pour la transmission des données. Vous avez le choix parmi les options suivantes :

- RS232
- RS485
Débit en bauds

Ce paramètre sert à régler le débit en bauds de l'interface série. Vous avez le choix parmi les options suivantes :

- 9600 Bauds
- 19200 Bauds
- 38400 Bauds
- 57600 Bauds
- 115200 Bauds

9.8.6.2 Adresse de l'appareil

Ce paramètre sert à régler l'adresse de lien de l'appareil.

9.8.6.3 Adresse cible

Ce paramètre sert à régler l'adresse de lien du Maître cible.

9.8.6.4 Messages spontanés

Ce paramètre sert à définir si l'appareil doit prendre en charge les « Messages spontanés (Unsolicited Messages) ». Si vous activez Messages spontanés, l'appareil envoie un message via le système de conduite lors de chaque changement de valeur.

9.8.6.5 Répétitions des messages spontanés

Ce paramètre sert à régler le nombre d'envois d'un message spontané par l'appareil jusqu'à ce qu'il reçoive une réponse du Maître DNP3.

9.8.6.6 Répéter les messages spontanés un nombre de fois illimité

Ce paramètre sert à définir si l'appareil doit envoyer un nombre illimité de messages spontanés jusqu'à ce qu'il obtienne une réponse du Maître DNP3.

9.8.6.7 Dépassement de délai

Ce paramètre sert à régler le délai des messages spontanés.

9.8.6.8 Dépassement du délai de confirmation de réponse

Ce paramètre sert à régler le délai des confirmations de réponse dans le cas des messages spontanés.

9.8.6.9 User ID Code

Ce paramètre sert au réglage du User ID Code.
Heure de référence

Ce paramètre sert à régler l'heure transmise par le système de conduite. L'appareil utilise cette information pour la synchronisation temporelle [Section 9.5, Page 122]. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Le système de conduite transmet l'heure locale. Avis : si vous utilisez cette option, vous devez désactiver le changement automatique entre heure d'été à heure d'hiver [Page 123]. Dans le cas contraire, l'appareil utilisera une heure incorrecte.</td>
</tr>
<tr>
<td>UTC</td>
<td>Le système de conduite transmet l'heure UTC (temps universel coordonné). L'appareil calcule l'heure locale à partir de l'heure UTC et du fuseau horaire [Page 123] réglé.</td>
</tr>
</tbody>
</table>

Tableau 35: Heure de référence

9.8.7 Configuration GOOSE (en option)

La fonction optionnelle GOOSE sert à envoyer (GOOSE-Publisher) ou à recevoir (GOOSE-Subscriber) des messages GOOSE avec l'appareil via le protocole de système de conduite CEI 61850.

La configuration GOOSE est décrite dans les sections suivantes.

9.8.7.1 Configuration GOOSE-Publisher

Si vous configurez l'appareil comme GOOSE-Publisher, vous pouvez envoyer en tant que messages GOOSE tous les points de données que l'appareil fournit via MMS. Pour cela, vous devez configurer les points de données via les DataSets dans un fichier SCD / CID.

Exigences du fichier SCD / CID

- Le GOOSE-Control-Block (GSEControl) et les DataSet correspondants ne peuvent être créés que dans LLN0.
- Les éléments GSE pour la configuration du message GOOSE peuvent être créés sous ConnectedAP.
- Le nombre maximal de points de données par message GOOSE est défini dans Private Element type="MR-MAX-GOOSE-PUBLISH-FCDA". Vous ne pouvez pas adapter cette valeur.
- Le nombre maximal d'éléments GSEControl utilisables est défini dans TEMPLATE.icd sous Services GOOSE. Vous ne pouvez pas adapter cette valeur.
- Le taux de répétition le plus court est défini dans Private Element type="MR-MINTIME-GOOSE". Vous ne pouvez pas adapter cette valeur.
Exemple :

```xml
<DataSet name="DataSet_ChStates">
  <FDCA lnInst="l88" lnClass="GO10" lnInst="1" doName="Ind1" for="#"/>
  <FDCA lnInst="l88" lnClass="GO10" lnInst="1" doName="Ind2" for="#"/>
  <FDCA lnInst="l88" lnClass="GO10" lnInst="1" doName="Ind3" for="#"/>
  <FDCA lnInst="l88" lnClass="GO10" lnInst="1" doName="Ind4" for="#"/>
</DataSet>

<STD lnInst="l88" cbName="ChStates">
  <Address>
    <F type="MAC-Address">01-0C-CD-01-00-01</F>
    <F type="APPID" xsi:type="iP_APPID">0021</F>
    <F type="VLAN-PRIORITY">7</F>
    <F type="VLAN-ID">0000</F>
  </Address>
  <MinTime unit="s" multiplier="m">100</MinTime>
  <MaxTime unit="s" multiplier="m">1000</MaxTime>
</STD>

<GSEControl name="ChStates" dataSet="DataSet_ChStates" appID="Go9" deac="l88 states" confDev="1"/>
```

Configuration

Pour configurer l’appareil comme GOOSE-Publisher, vous devez appeler la visualisation via un ordinateur. Vous devez appartenir au rôle utilisateur Paramètreur ou Administrateur.

Pour configurer l’appareil comme GOOSE-Publisher, procédez comme suit :

1. Sélectionnez l’option de menu **Régagements > Exportation**.

![Figure 97: Exporter la configuration SCADA](image)

2. Sélectionnez l’option **Configuration SCADA**.

 → La configuration SCADA est exportée sous forme d’archive Zip.

3. Décompressez le fichier Zip et personnalisez le fichier TEMPLATE.icd conformément aux exigences.

4. Sélectionner l’option de menu **Régagements > Importation**.
5. Sélectionnez l'option **PC** ou **USB**, sélectionnez le fichier SCD / CID et sélectionnez **Transmettre**.

![Figure 98: Importer le fichier CID / SCD](image)

6. Sélectionnez l’**IED** souhaité dont vous voulez importer la configuration puis sélectionnez **Appliquer** pour démarrer l'importation.

![Figure 99: Sélectionner un IED](image)

7. Une fois l'importation terminée, redémarrez l'appareil.

Le système redémarre et vérifie la configuration. Si la configuration est erronée, un message d'erreur s'affiche et l'appareil réinitialise la configuration à l'état à la livraison.

9.8.7.2 Configuration GOOSE-Subscriber

Si vous configurez l'appareil comme GOOSE subscriber, vous pouvez recevoir les messages GOOSE d'un IED dans le réseau et les relier aux fonctions de l'appareil. Cela permet de reproduire tous les signaux d'entrée numériques de l'appareil via GOOSE.
Exigences du datagramme GOOSE

La chaîne de points de données doit contenir 52 caractères au maximum. La chaîne de points de données est composée des valeurs ci-après : nom IED, FCDA ldInst, Prefix, InClass, lnInst, fc, doName, daName.

Pour relier les datagrammes GOOSE d'un IED aux fonctions de l'appareil, l'IED doit contenir un GOOSE-Control-Block (GSEControl) dans le nœud LN0, ainsi qu'un DataSet valide et un bloc GSE. Le DataSet référencé peut tout à fait contenir des objets de données (DO) ou des attributs de données (DA). Le nombre maximal de points de données utilisables par message GOOSE est défini dans Private Element type="MR-MAX-GOOSE-SUBSCRIBER-FCDA". Vous ne pouvez pas adapter cette valeur.

Seuls des points de données avec bType BOOLEAN (true | false) et Dbpos (intermediate-state | off | on | bad-state) peuvent être utilisés. La contrainte fonctionnelle (Functional Constraint) doit être de type ST.

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>on</td>
</tr>
<tr>
<td>false</td>
<td>off</td>
</tr>
<tr>
<td>intermediate-state</td>
<td></td>
</tr>
<tr>
<td>bad-state</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 36: Description des valeurs

L'appareil évalue automatiquement la qualité. Si l'appareil reçoit une qualité non nulle, la valeur sera également interprétée comme invalide. L'appareil génère alors le message d'événement Communication CEI 61850-GOOSE erronée.

Exemple :

```xml
<GOOSEControl name="LLIB_CBL" dataSet="Dataset_CBL" appID="Goool" confRev="1"/>

<GOOSE idinst="1564" obName="LLIB_CBL">
  <Address>
    <F type="MAC-Address">01-0C-CD-01-00-01</F>
    <F type="AFFID">71</F>
    <F type="VLAN-PRIORITY">7</F>
    <F type="VLAN-ID">142</F>
  </Address>
  <MinTime unit="s" multiplier="y">4000</MinTime>
  <MaxTime unit="s" multiplier="y">1000</MaxTime>
</GOOSE>
```

Configuration

Pour configurer l'appareil comme GOOSE subscriber, vous devez appeler la visualisation via un ordinateur. Vous devez appartenir au rôle utilisateur Paramétrateur ou Administrateur.
Pour configurer l’appareil comme GOOSE subscriber, procédez comme suit :

- Le fichier SCD de votre installation est importé avec tous les IED nécessaires.

1. Appelez l’option de menu **Réglages > Mappage**.
 - La liste des fonctions disponibles dans l’appareil s’affiche.

2. Sélectionnez la fonction souhaitée.
4. Sélectionnez le point de données souhaité.

5. Sélectionnez le bouton **Appliquer** pour enregistrer la configuration.
 - La boîte de dialogue **Redémarrer l’appareil** apparaît.
6. Sélectionnez **Annuler** si vous voulez configurer d'autres points de données ou **OK** pour terminer la configuration modifiée par un redémarrage de l'appareil.

Suppression de la configuration

Vous pouvez supprimer, si nécessaire, la configuration des points de données. Pour cela, procédez comme suit :
1. Appelez l'option de menu **Réglages > Mappage**.
2. Sélectionnez la **fonction** souhaitée.
3. Sélectionnez le bouton **Supprimer** pour supprimer la configuration.

9.8.8 Configuration des points de données (en option)

La fonction optionnelle « Configuration des points de données » est utilisée pour personnaliser les points de données du système de conduite. Vous pouvez configurer les points de données uniquement sur un ordinateur via la visualisation Web.

9.8.8.1 CEI 60870-5-101-Configuration des points de données

Vous pouvez personnaliser les propriétés suivantes des points de données pour le protocole du système de conduite CEI 60870-5-101 :

<table>
<thead>
<tr>
<th>Colonne</th>
<th>Description</th>
<th>Modifiable</th>
<th>Plage de réglage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Vous pouvez cocher la case pour sélectionner la transmission ou non du point de données via le protocole du poste de conduite.</td>
<td>Oui</td>
<td>Actif/inactif</td>
</tr>
</tbody>
</table>
| IOA | Adresse du point de données. La plage de réglage dépend du réglage du paramètre Nombre d'octets de l'adresse de l'objet d'information (2 ou 3 octets). | Oui | 2 octets : 1 à 65535
3 octets : 1 à 16777215 |
| Nom | Désignation du point de données. | Non | - |
| Type | Type de point de données. | Non | - |
| Groupe | Groupe ou groupes du point de données. Vous devez entrer l'appartenance au groupe sous forme de code binaire (5 bits). 5 groupes au maximum sont possibles. Exemple :
 - 00000 : n'appartient à aucun groupe
 - 00001 : groupe 1
 - 01000 : groupe 4
 - 01001 : groupe 1 et groupe 4 | Oui | 00000 à 11111 |
| INTG | La valeur indique si le point de données est censé être contenu dans une requête générale (1) ou non (0). | Oui | 0, 1 |
Colonne | Description | Modifiable | Plage de réglage
--- | --- | --- | ---
TH | Valeur de seuil pour les valeurs mesurées. Le point de données n'est retransmis que si la valeur modifiée est supérieure à la valeur de seuil.
 - Si vous entrez la valeur 0, aucune valeur de seuil n'est active.
 - Si vous n'entrez aucune valeur, l'appareil adopte la valeur de seuil fixée via le paramètre de l'appareil. S'il n'existe aucun paramètre de l'appareil pour la valeur de seuil, aucune valeur de seuil n'est active non plus.
 - Remarque : vous ne pouvez entrer que les points de données de type 9, 10, 11, 12, 13, 14, 21, 34, 35 ou 36 pour la valeur de seuil. | Oui | 0 à 32768
CT | Intervalle en ms pour l'envoi périodique du point de données. Si vous réglez la valeur 0, le point de données ne sera pas envoyé périodiquement.
 - Remarque : vous ne pouvez entrer l'intervalle que pour les points de données de type 9, 11 ou 13. | Oui | 0 à 10000

Tableau 37: CEI 60870-5-101-Configuration des points de données

Pour configurer les points de données, procédez comme suit :
1. Sélectionnez l'option de menu Réglages > Configuration des points de données.
2. Personnalisez les points de données à souhait.
3. Sélectionnez le bouton Appliquer pour appliquer la liste de points de données modifiée.
4. Redémarrez l'appareil pour activer la liste de points de données modifiée.
9.8.8.2 CEI 60870-5-103-Configuration des points de données

Vous pouvez personnaliser les propriétés suivantes des points de données pour le protocole du système de conduite CEI 60870-5-103 :

<table>
<thead>
<tr>
<th>Colonne</th>
<th>Description</th>
<th>Modifiable</th>
<th>Plage de réglage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actif</td>
<td>Vous pouvez cocher la case pour sélectionner la transmission ou non du point de données via le protocole du poste de conduite.</td>
<td>Oui</td>
<td>Actif/inactif</td>
</tr>
<tr>
<td>TYP</td>
<td>Identification du type de point de données.</td>
<td>Non</td>
<td>-</td>
</tr>
<tr>
<td>FUN</td>
<td>Type de fonction du point de données. Remarque : vous ne pouvez utiliser le type de fonction 254 que pour les points de données de l'identification de type 10 ou 11.</td>
<td>Oui</td>
<td>0 à 255</td>
</tr>
<tr>
<td>INF</td>
<td>Numéro d'information du point de données. Remarque : vous ne pouvez utiliser le numéro d'information 0 que pour les points de données avec le type de fonction 254.</td>
<td>Oui</td>
<td>0 à 255</td>
</tr>
<tr>
<td>GIN</td>
<td>Numéro d'identification générique du point de données. Remarque : vous ne pouvez utiliser le numéro d'identification générique 0 que pour les points de données avec un type de fonction différent de 254.</td>
<td>Oui</td>
<td>0 à 65535</td>
</tr>
<tr>
<td>Data Type</td>
<td>Type de données du point de données.</td>
<td>Non</td>
<td>-</td>
</tr>
<tr>
<td>Nom</td>
<td>Désignation du point de données.</td>
<td>Non</td>
<td>-</td>
</tr>
<tr>
<td>Interrogation</td>
<td>La valeur indique si le point de données est censé être contenu dans une requête générale (1) ou non (0).</td>
<td>Oui</td>
<td>0, 1</td>
</tr>
</tbody>
</table>
| Threshold | Valeur de seuil pour les valeurs mesurées. Le point de données n'est retransmis que si la valeur modifiée est supérieure à la valeur de seuil.
 ▪ Si vous entrez la valeur 0, aucune valeur de seuil n'est active.
 ▪ Si vous n'entrez aucune valeur, l'appareil adopte la valeur de seuil fixée via le paramètre de l'appareil. S'il n'existe aucun paramètre de l'appareil pour la valeur de seuil, aucune valeur de seuil n'est active non plus. | Oui | 0 à 1000000000 |

Tableau 38 : CEI 60870-5-103-Configuration des points de données
Figure 103: CEI 60870-5-103-Configuration des points de données

Pour configurer les points de données, procédez comme suit :

1. Sélectionnez l’option de menu **Réglages > Configuration des points de données**.
2. Personnalisez les points de données à souhait.
3. Sélectionnez le bouton **Appliquer** pour appliquer la liste de points de données modifiée.
4. Redémarrez l'appareil pour activer la liste de points de données modifiée.

9.8.8.3 CEI 60870-5-104-Configuration des points de données

Vous pouvez personnaliser les propriétés suivantes des points de données pour le protocole du système de conduite CEI 60870-5-104 :

<table>
<thead>
<tr>
<th>Colonne</th>
<th>Description</th>
<th>Modifiable</th>
<th>Plage de réglage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Vous pouvez cocher la case pour sélectionner la transmission ou non du point de données via le protocole du poste de conduite.</td>
<td>Oui</td>
<td>Actif/inactif</td>
</tr>
<tr>
<td>IOA</td>
<td>Adresse du point de données.</td>
<td>Oui</td>
<td>1 à 16777215</td>
</tr>
<tr>
<td>Nom</td>
<td>Désignation du point de données.</td>
<td>Non</td>
<td>-</td>
</tr>
<tr>
<td>Type</td>
<td>Type de point de données.</td>
<td>Non</td>
<td>-</td>
</tr>
</tbody>
</table>
| Group | Groupe ou groupes du point de données. Vous devez entrer l'appartenance au groupe sous forme de code binaire (5 bits). 5 groupes au maximum sont possibles. Exemple :
- 00000 : n'appartient à aucun groupe
- 00001 : groupe 1
- 01000 : groupe 4
- 01001 : groupe1 et groupe 4 |
| INTG | La valeur indique si le point de données est censé être contenu dans une requête générale (1) ou non (0). | Oui | 0, 1 |
Tableau 39: CEI 60870-5-104-Configuration des points de données

<table>
<thead>
<tr>
<th>Colonne</th>
<th>Description</th>
<th>Modifiable</th>
<th>Plage de réglage</th>
</tr>
</thead>
</table>
| TH | Valeur de seuil pour les valeurs mesurées. Le point de données n'est retransmis que si la valeur modifiée est supérieure à la valeur de seuil.
 ▪ Si vous entrez la valeur 0, aucune valeur de seuil n’est active.
 ▪ Si vous n'entrez aucune valeur, l'appareil adopte la valeur de seuil fixée via le paramètre de l'appareil. S'il n'existe aucun paramètre de l'appareil pour la valeur de seuil, aucune valeur de seuil n'est active non plus. Remarque : vous ne pouvez entrer que les points de données de type 9, 10, 11, 12, 13, 14, 21, 34, 35 ou 36 pour la valeur de seuil. | Oui | 0 à 32768 |
| CT | Intervalle en ms pour l'envoi périodique du point de données. Si vous réglez la valeur 0, le point de données ne sera pas envoyé périodiquement. Remarque : vous ne pouvez entrer l'intervalle que pour les points de données de type 9, 11 ou 13. | Oui | 0 à 10000 |

Figure 104: CEI 60870-5-104-Configuration des points de données

Pour configurer les points de données, procédez comme suit :

1. Sélectionnez l'option de menu Réglages > Configuration des points de données.
2. Personnalisez les points de données à souhait.
3. Sélectionnez le bouton Appliquer pour appliquer la liste de points de données modifiée.
4. Redémarrez l'appareil pour activer la liste de points de données modifiée.
Configuration des points de données Modbus

Vous pouvez personnaliser les propriétés suivantes des points de données pour le protocole du système de conduite Modbus :

<table>
<thead>
<tr>
<th>Colonne</th>
<th>Description</th>
<th>Modifiable</th>
<th>Plage de réglage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actif</td>
<td>Vous pouvez cocher la case pour sélectionner la transmission ou non du point de données via le protocole du poste de conduite.</td>
<td>Oui</td>
<td>Actif/inactif</td>
</tr>
<tr>
<td>Type</td>
<td>Type de point de données</td>
<td>Non</td>
<td>-</td>
</tr>
<tr>
<td>Index1</td>
<td>Adresse du point de données</td>
<td>Oui</td>
<td>0 à 65535</td>
</tr>
<tr>
<td>Index2</td>
<td>Deuxième adresse optionnelle du point de données active. Elle est automatiquement utilisée pour les points de données capables de transmettre des valeurs supérieures à 16 bits. Notez que l’adresse Index2 se trouve toujours exactement après l’adresse Index1.</td>
<td>Non</td>
<td>-</td>
</tr>
<tr>
<td>Nom</td>
<td>Désignation du point de données</td>
<td>Non</td>
<td>-</td>
</tr>
</tbody>
</table>

Tableau 40: Configuration des points de données Modbus

Pour configurer les points de données, procédez comme suit :

1. Sélectionnez l’option de menu Réglages > Configuration des points de données.
2. Personnalisez les points de données à souhait.
3. Sélectionnez le bouton Appliquer pour appliquer la liste de points de données modifiée.
4. Redémarrez l’appareil pour activer la liste de points de données modifiée.

Figure 105: Configuration des points de données Modbus
9.8.8.5 DNP3-Configuration des points de données

Vous pouvez personnaliser les propriétés suivantes des points de données pour le protocole du système de conduite DNP3 :

<table>
<thead>
<tr>
<th>Colonne</th>
<th>Description</th>
<th>Modifiable</th>
<th>Plage de réglage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actif</td>
<td>Vous pouvez cocher la case pour sélectionner la transmission ou non du point de données via le protocole du poste de conduite.</td>
<td>Oui</td>
<td>Actif/inactif</td>
</tr>
<tr>
<td>OBJGROUP</td>
<td>La colonne OBJGROUP affiche le groupe d'objets du point de données :</td>
<td>Non</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• AI = Analog Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AO = Analog Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BI = Binary Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BO = Binary Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CT = Counter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDEXADDR</td>
<td>Adresse du point de données.</td>
<td>Oui</td>
<td>0 à 4294967296</td>
</tr>
<tr>
<td>CLASS</td>
<td>Classe du point de données.</td>
<td>Oui</td>
<td>0 à 3</td>
</tr>
<tr>
<td></td>
<td>• 0 : Static</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 à 3 : Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remarque : vous pouvez régler la classe du point de données uniquement pour les points de données des groupes d'objet AI, BI et CT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREFSTATICVAR</td>
<td>Dans le cas d'un point de données de la classe 0 (Static), vous pouvez définir la variation suivante en fonction du groupe d'objet :</td>
<td>Oui</td>
<td>0 à 6</td>
</tr>
<tr>
<td></td>
<td>• BI : 1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BO : 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AI : 2, 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AO : 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CT : 1, 2, 5, 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREFEREVENTVAR</td>
<td>Dans le cas d'un point de données des classes 1 à 3 (Event), vous pouvez définir la variation suivante en fonction du groupe d'objet :</td>
<td>Oui</td>
<td>0 à 6</td>
</tr>
<tr>
<td></td>
<td>• BI : 1, 2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BO : aucune valeur</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AI : 2, 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AO : aucune valeur</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CT : 1, 2, 5, 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9 Visualisation

<table>
<thead>
<tr>
<th>Colonne</th>
<th>Description</th>
<th>Modifiable</th>
<th>Plage de réglage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>Désignation du point de données.</td>
<td>Non</td>
<td>-</td>
</tr>
<tr>
<td>Deadband</td>
<td>Valeur de seuil pour les sorties analogiques. Le point de données n’est retransmis que si la valeur modifiée est supérieure à la valeur de seuil.</td>
<td>Oui</td>
<td>0 à 32768</td>
</tr>
<tr>
<td></td>
<td>• Si vous entrez la valeur 0, aucune valeur de seuil n’est active.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Si vous n'entrez aucune valeur, l'appareil adopte la valeur de seuil fixée via le paramètre de l'appareil. S'il n’existe aucun paramètre de l’appareil pour la valeur de seuil, aucune valeur de seuil n’est active non plus.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remarque : la valeur de seuil possède la même unité que la valeur du point de données. Reportez-vous à la liste de points de données à cet effet.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 41: DNP3-Configuration des points de données

Pour configurer les points de données, procédez comme suit :
1. Sélectionnez l’option de menu **Réglages > Configuration des points de données**.
2. Personnalisez les points de données à souhait.
3. Sélectionnez le bouton **Appliquer** pour appliquer la liste de points de données modifiée.
4. Redémarrez l'appareil pour activer la liste de points de données modifiée.

9.8.8.6 Réinitialisation de la configuration des points de données aux réglages usine

Si vous voulez réinitialiser la configuration des points de données aux réglages usine, procédez comme suit :
1. Sélectionnez l’option de menu **Réglages > Configuration des points de données**.
2. Sélectionnez le bouton Réinitialiser.
 ⇒ Le message Réinitialiser s'affiche.
3. Sélectionnez le bouton Oui pour réinitialiser la configuration de points de données paramètres modifiés aux réglages d'usine.
4. Redémarrez l'appareil pour activer la liste de points de données modifiée.

9.8.8.7 Exportation et importation de la configuration des points de données

Vous pouvez exporter la configuration des points de données, p. ex. pour la sauvegarder ou pour l'importer sur un autre appareil. Vous trouverez de plus amples informations à ce sujet dans la section Gestionnaire d'importation/d'exportation [⇒ Section 9.37, Page 354].

9.8.9 Affichage de l'état de la connexion SCADA

Cet affichage montre l'état de la connexion au système de conduite. Les informations suivantes s'affichent :
- Connecté : l'appareil a établi une connexion au système de conduite.
- Rx : l'appareil a reçu un message du système de conduite.
- Tx : l'appareil a transmis un message au système de conduite.

L'affichage n'est pas disponible pour les systèmes de conduite Modbus ASCII, Modbus RTU, Modbus TCP et DNP3 série.

Figure 107: Communication

redential Sélectionnez l'option de menu Home > Communication.
9.9 Plaque signalétique

Vous pouvez entrer les données des plaques signalétiques du transformateur, du changeur de prises en charge et du mécanisme d’entraînement et les afficher ultérieurement.

9.9.1 Entrée des données de la plaque signalétique

Vous pouvez entrer les données de la plaque signalétique du transformateur, du changeur de prises en charge et du mécanisme d’entraînement.

Figure 108: Plaque signalétique

1. Sélectionnez l’option de menu Réglages > Paramètres > Système > Plaque signalétique.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
9.9.2 Affichage de la plaque signalétique

Vous pouvez afficher les données des plaques signalétiques du transformateur, du changeur de prises en charge et du mécanisme d’entraînement.

Figure 109: Plaque signalétique du transformateur

- Sélectionnez l’option de menu Information > Système > Plaque signalétique > Transformateur/Changeur de prises en charge/Mécanisme d’entraînement.

9.10 Relier les signaux et les événements

L’appareil vous offre la possibilité de connecter les entrées numériques (GPI) et les commandes du système de conduite (SCADA) aux fonctions de l’appareil, les sorties numériques (GPO) et les messages du système de conduite.

Pour cela, chaque entrée numérique disponible est étroitement reliée à un message d’événement Entrée numérique générique et chaque commande de système de conduite est étroitement reliée à un message d’événement Commande SCADA générique.

<table>
<thead>
<tr>
<th>Entrée / Commande</th>
<th>Message d’événement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrée numérique 1(^1)</td>
<td>Entrée numérique générique 1</td>
</tr>
<tr>
<td>Entrée numérique 2(^1)</td>
<td>Entrée numérique générique 2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Entrée numérique 42(^1)</td>
<td>Entrée numérique générique 42</td>
</tr>
<tr>
<td>Commande SCADA générique 1</td>
<td>Commande SCADA générique 1</td>
</tr>
<tr>
<td>Commande SCADA générique 2</td>
<td>Commande SCADA générique 2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Commande SCADA générique 10</td>
<td>Commande SCADA générique 10</td>
</tr>
</tbody>
</table>

Tableau 42: Relier les entrées numériques et les commandes de système de conduite aux messages d’événement
1) Le nombre d'entrées numériques disponibles dépend de la configuration de l'appareil telle qu'elle est spécifiée dans la commande.

Vous pouvez relier les messages d'événement aux fonctions de l'appareil, sorties numériques et messages de système de conduite. De plus, vous pouvez relier tous les autres messages d'événement (p. ex. Basse tension U<) aux sorties numériques et messages de système de conduite. Des paramètres sont disponibles à cet effet pour l'entrée du numéro d'événement correspondant.

9.10.1 Relier les fonctions

Vous pouvez relier les événements *Entrée numérique générique* ou *Commande SCADA générique* aux fonctions de l'appareil. Cela permet la commande à distance de l'appareil via les entrées numériques ou des ordres via le système de conduite (SCADA). En fonction de la configuration de l'appareil, différentes fonctions sont disponibles à cet effet via les paramètres.

Pour établir la liaison, vous devez entrer le numéro d'événement correspondant au paramètre souhaité.

Notez que vous pouvez entrer uniquement les numéros des événements *Entrée numérique générique* ou *Commande SCADA générique*.

Si vous entrez le numéro d'événement 500, la liaison est désactivée.

Figure 110: Relier les fonctions

1. Le numéro d'événement souhaité est connu.
 1. Sélectionnez l'option de menu **Réglages > Paramètres > Système > Relier les fonctions**.
 2. Sélectionnez le paramètre souhaité.
 3. Entrez le numéro d'événement souhaité.
 4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.
9.10.2 Relier les sorties numériques

Vous pouvez relier chaque événement à une sortie numérique. L'appareil offre à cet effet 20 sorties numériques maximum en fonction de la configuration de votre appareil. Lorsque vous reliez une sortie numérique à un événement, l'appareil déclenche un signal à ladite sortie lorsque l'événement se produit. Le signal persiste jusqu'à la disparition de l'événement. Un paramètre est disponible pour chaque sortie numérique disponible.

Pour transmettre les signaux d'entrée ou les commandes de système de conduite, vous devez relier les sorties numériques ou les messages de système de conduite aux événements Entrée numérique générique ou Commande SCADA générique.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Relier Liés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Sortie numérique générique 1</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Figure 111: Relier les sorties numériques

✓ Le numéro d'événement souhaité est connu [⇒ Section 9.34, Page 339].

1. Sélectionnez l'option de menu Réglages > Paramètres > Système > Relier les sorties.
2. Sélectionnez le paramètre souhaité.
3. Entrez le numéro d'événement souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

9.10.3 Relier les messages de système de conduite

Vous pouvez relier chaque événement à un message de système de conduite. L'appareil vous offre à cet effet 10 messages SCADA. Lorsque vous reliez un message SCADA à un événement, l'appareil définit le point de données sur « Activé » lorsque l'événement se produit. Lorsque l'événement disparaît, l'appareil définit le point de données sur « Désactivé ». Un paramètre est disponible pour chaque message SCADA disponible.
Pour transmettre les commandes de système de conduite, vous devez relier les messages de système de conduite aux événements *Entrée numérique générique* ou *Commande SCADA générique*.

Le numéro d'événement souhaité est connu.

1. Sélectionnez l'option de menu **Réglages > Paramètres > Système > Relier les messages**.
2. Sélectionnez le paramètre souhaité.
3. Entrez le numéro d'événement souhaité.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

Message SCADA générique X

Ce paramètre sert à relier le message SCADA avec un message d'événement. Pour ce faire, entrez le numéro d'événement souhaité.

Si vous entrez le numéro d'événement 500, la liaison est désactivée.

9.11 Contrôle de la réfrigération (en option)

Selon la configuration des appareils, le pack fonctionnel de contrôle de la réfrigération permet de commander et/ou de surveiller jusqu'à 6 étages de réfrigération.
9.11.1 Configuration des étages de réfrigération

Pour le contrôle de la réfrigération, vous devez régler les paramètres suivants pour chaque groupe de réfrigération.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Contrôle groupe réfrigération X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Activer</td>
<td>Activé</td>
<td></td>
</tr>
<tr>
<td>Grandeur d'entrée-Activation</td>
<td>Température de point chaud</td>
<td></td>
</tr>
<tr>
<td>Grandeur d'entrée-Désactivation</td>
<td>Température d'huile supérieure</td>
<td></td>
</tr>
<tr>
<td>Point de commutation</td>
<td>60 °C</td>
<td></td>
</tr>
<tr>
<td>Hystérésis</td>
<td>5 K</td>
<td></td>
</tr>
<tr>
<td>Temps de réactivité</td>
<td>2 min</td>
<td></td>
</tr>
<tr>
<td>Activer le mode atterrissage</td>
<td>Activé</td>
<td></td>
</tr>
<tr>
<td>Activer la mode atterrissage</td>
<td>Activé</td>
<td></td>
</tr>
<tr>
<td>Activer en cas d'erreur</td>
<td>Activé</td>
<td></td>
</tr>
</tbody>
</table>

Figure 113: Étage de réfrigération

1. Sélectionnez l'option de menu Réglages > Paramètres > Réfrigération > Contrôle groupe réfrigération X.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Activer

Ce paramètre sert à activer ou désactiver l'étage de réfrigération.
- **Activé** : l'étage de réfrigération est utilisé pour le contrôle de la réfrigération.
- **Désactivé** : l'étage de réfrigération n'est pas utilisé pour le contrôle de la réfrigération.

Activation de l'étage de réfrigération X

En mode de fonctionnement « Manuel » [Section 9.11.2, Page 163] vous pouvez démarrer ou arrêter à l'aide de ce paramètre.

Si vous avez démarré manuellement les étages de réfrigération et que survient une coupure de tension, l'appareil redémarre les étages de réfrigération après le rétablissement de la tension.
Variable d'entrée Activation

Ce paramètre sert à régler la valeur de température mesurée à utiliser pour l'activation de l'étage de réfrigération. Vous avez le choix parmi les options suivantes :

▪ Température d'huile supérieure
▪ Température de point chaud
▪ Température ambiante
▪ Température d'huile inférieure
▪ Température d'huile CPEC
▪ Température générique

Variable d'entrée Désactivation

Ce paramètre sert à régler la valeur de température mesurée à utiliser pour la désactivation de l'étage de réfrigération. Vous avez le choix parmi les options suivantes :

▪ Température d'huile supérieure
▪ Température de point chaud
▪ Température ambiante
▪ Température d'huile inférieure
▪ Température d'huile CPEC
▪ Température générique

Point de coupure

Ce paramètre sert à régler la température à laquelle l'étage de réfrigération doit être activé ou désactivé. Si la température est supérieure au point de coupure, l'étage de réfrigération est activé. Si la température est inférieure au point de coupure moins l'hystérésis optionnelle, l'étage de réfrigération est désactivé.

Hystérésis

Ce paramètre sert à régler l'hystérésis au-dessous du point de coupure. L'étage de réfrigération n'est désactivé que si la température est inférieure au point de commutation moins l'hystérésis.

Temporisation d’activation

Ce paramètre sert à régler la temporisation d’activation de l’étage de réfrigération. L’étage de réfrigération n’est activé que si la température mesurée est supérieure au point de coupure plus longtemps que la temporisation d’activation réglée.

Mode alternant

Ce paramètre sert à activer le mode alternant [Section 9.11.6, Page 166] pour l'étage de réfrigération.
Mode périodique

Ce paramètre sert à activer le mode périodique [▶ Section 9.11.5, Page 165] pour l'étage de réfrigération.

Actif en cas d'erreur

Ce paramètre sert à définir si l'appareil doit activer l'étage de réfrigération en cas d'erreur (mode Fail-Safe). Les types d'erreur suivants sont détectés :
- Le signal d'entrée pour la température se trouve dans une zone inadmissible (par ex. rupture de câble, capteur défectueux)
- Le courant de charge du transformateur se trouve dans une plage inadmissible

9.11.2 Réglage du mode de fonctionnement

Ce paramètre sert à régler le mode de fonctionnement du contrôle de la réfrigération. Vous avez le choix parmi les options suivantes :
- Automatique : l'appareil démarre et arrêt automatiquement les différents étages de réfrigération.
- Manuel : vous pouvez démarrer et arrêter manuellement les différents étages de réfrigération via Visualisation [▶ Section 9.11.1, Page 161] ou via le système de conduite.

Pour régler le mode de fonctionnement, procédez comme suit :
1. Sélectionnez l'option de menu Réglages > Paramètres > Réfrigération > Contrôle de la réfrigération> Mode de fonctionnement.
2. Sélectionnez l'option souhaitée.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

9.11.3 Désactivation du contrôle de la réfrigération

Vous pouvez désactiver le contrôle de la réfrigération à l'aide d'un signal à l'entrée numérique I : Désact. ctrl réfrigération ISM pour, par exemple, régler les étages de réfrigération via un appareil externe. Pour la configuration de l'entrée numérique, veuillez consulter la section Configuration des entrées et sorties numériques [▶ Section 9.31, Page 322].

9.11.4 Configuration du mode dépendant de la charge

En mode dépendant de la charge tous les étages de réfrigération sont activés lorsque le courant de charge du transformateur est supérieur au point de commutation réglé. Vous pouvez régler le point de commutation comme valeur en pourcentage par rapport au courant nominal du transformateur. Après expiration de la temporisation d'activation, les étages de réfrigération
La température de l'air ambiant est activée. Pour limiter le courant d'activation des étages de réfrigération, ces derniers sont successivement activés avec une temporisation de 60 secondes.

<table>
<thead>
<tr>
<th>Nom</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode de fonction</td>
<td>Manuel</td>
</tr>
<tr>
<td>Mode dépendant, mode altern.</td>
<td>Désactivé</td>
</tr>
<tr>
<td>Mode dépend. charge</td>
<td>Point commun : 100 %</td>
</tr>
<tr>
<td>Mode dépend. période</td>
<td>Temporis. ... : 2,0 min</td>
</tr>
<tr>
<td>Mode dépend. charge</td>
<td>Temps inerte : 30,0 min</td>
</tr>
<tr>
<td>Activer le mode altern.</td>
<td>Désactivé</td>
</tr>
<tr>
<td>Activer période : Intervalle</td>
<td>24 h</td>
</tr>
<tr>
<td>Activer période : Durée d'activation</td>
<td>30 min</td>
</tr>
<tr>
<td>Activer période : Temporis. actif</td>
<td>120 min</td>
</tr>
<tr>
<td>Activer le mode altern.</td>
<td>Désactivé</td>
</tr>
<tr>
<td>Activer altern. : Intervalle channel</td>
<td>24 h</td>
</tr>
</tbody>
</table>

Figure 114: Contrôle de la réfrigération

Pour utiliser cette fonction, vous devez activer l'étage de réfrigération correspondant [Section 9.11.1, Page 161].

1. Sélectionnez l'option de menu Réglages > Paramètres > Réfrigération > Contrôle de la réfrigération.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Activer le mode dépendant de la charge

Ce paramètre sert à activer le mode dépendant de la charge du contrôle de la réfrigération.

Mode dépendant de la charge : point de coupure

Ce paramètre est utilisé pour régler le seuil d'activation en pourcentage, par rapport au courant nominal du transformateur. Si le courant de charge du transformateur est supérieur au point de coupure, tous les étages de réfrigération sont activés.

Mode dépendant de la charge : temporisation d'activation

Ce paramètre sert à régler la temporisation de l'activation du premier étage de réfrigération.
Mode dépendant de la charge : temps de marche par inertie

Ce paramètre sert à régler la durée pendant laquelle les étages de réfrigération restent activés lorsque le courant de charge du transformateur redevient inférieur au point de coupure réglé.

9.11.5 Configuration du mode périodique

Le mode périodique sert à prévenir le grippage des paliers des étages de réfrigération à la suite de longues périodes d’immobilisation. Pour cela, les étages de réfrigération sont mis en service indépendamment de la température mesurée à des intervalles réguliers pour une période donnée. Vous pouvez activer / désactiver séparément le mode périodique pour chaque étage de réfrigération (Configuration des étages de réfrigération [► Section 9.11.1, Page 161]).

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Contr. d...ig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Mode de fonct.</td>
<td>Manuel</td>
<td></td>
</tr>
<tr>
<td>Mode dépend. le mode altern.</td>
<td>Désactivé</td>
<td></td>
</tr>
<tr>
<td>Mode dépend. charge : Point commu... 100.0 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode dépend. période : Temps ... 2.0 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode dépend. charge : Temps inert... 30.0 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activer le mode altern.</td>
<td>Désactivé</td>
<td></td>
</tr>
<tr>
<td>Activer période : Intervalle</td>
<td>24 h</td>
<td></td>
</tr>
<tr>
<td>Activer période : Durée d’activat...</td>
<td>30 min</td>
<td></td>
</tr>
<tr>
<td>Activer période : Temps. activ...</td>
<td>120 min</td>
<td></td>
</tr>
<tr>
<td>Activer le mode altern.</td>
<td>Désactivé</td>
<td></td>
</tr>
<tr>
<td>Activer altern. : Intervalle cha...</td>
<td>24 h</td>
<td></td>
</tr>
</tbody>
</table>

Figure 115: Contrôle de la réfrigération

1. Sélectionnez l’option de menu Réglages > Paramètres > Réfrigération > Contrôle de la réfrigération .
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Activer le mode périodique

Ce paramètre sert à activer le mode périodique du contrôle de la réfrigération.

Mode périodique : intervalle

Ce paramètre sert à régler la durée après laquelle les étages de réfrigération doivent être activés pour la première fois.
Mode périodique : durée d’activation

Ce paramètre sert à régler la durée d'activation des étages de réfrigération.

Mode périodique : temporisation d’activation

Ce paramètre sert à régler la durée après laquelle les étages de réfrigération doivent être réactivés.

9.11.6 Configuration du mode alternant

Si le transformateur est équipé de plusieurs étages de réfrigération équivalents, vous pouvez faire fonctionner les étages de réfrigération en mode alternant. En mode alternant, les différents étages de réfrigération fonctionnent en alternance afin de répartir uniformément la charge des étages de réfrigération. Vous pouvez activer / désactiver séparément le mode alternant pour chaque étage de réfrigération (Configuration des étages de réfrigération [Section 9.11.1, Page 161]).

Utilisez le mode alternant seulement pour les étages de réfrigération similaires.

Exemple : si vous activez le mode alternant pour deux étages de réfrigération et réglez un intervalle alternatif de 24 h, l’étage de réfrigération 1 sera désactivé au bout de 24 h et l’étage de réfrigération 2 sera activé. Après 24 h supplémentaires, l’étage de réfrigération 2 est désactivé et l’étage de réfrigération 1 est activé etc.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Contr. d...</th>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode de fonct.</td>
<td>Manuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode dépend. le mode altern.</td>
<td>Désactivé</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode dépend. charge : Point commu... 100.0 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode dépend. périod. : Temporis. ... 2.0 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode dépend. charge : Temps inert... 30.0 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activer le mode altern.</td>
<td>Désactivé</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activer périod. : Intervalle</td>
<td>24 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activer périod. : Durée d’activ... 30 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activer périod. : Temporis. activ... 120 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activer le mode altern.</td>
<td>Désactivé</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activer altern. : Intervalle chan... 24 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 116: Réfrigération générale

1. Sélectionnez l’option de menu Réglages > Paramètres > Réfrigération > Contrôle de la réfrigération.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

Activer le mode alternant

Ce paramètre sert à activer le mode alternant du contrôle de la réfrigération.

Mode alternant : intervalle d’alternance

Ce paramètre sert à régler la durée après laquelle l’étage de réfrigération doit être changé.

9.11.7 Configuration du contrôle de la réfrigération basé sur la fréquence

La fonction optionnelle Contrôle de la réfrigération basé sur la fréquence est utilisée pour régler les ventilateurs d’un système de réfrigération. L’appareil calcule la vitesse de rotation des ventilateurs en fonction de la température de la couche d’huile supérieure et du facteur de charge. L’appareil utilise la vitesse de rotation maximale qui résulte des dépendances configurées.

L’appareil émet la vitesse de rotation des ventilateurs comme signal analogique (0...10 V) sur la base d’une logique inverse : 100 % = 0 V, 0 % = 10 V. L’appareil saisit l’état des convertisseurs de fréquence raccordés via une logique inverse (low-actif).

Vitesse de rotation des ventilateurs en fonction de la température de la couche d’huile supérieure

Si la température de la couche d’huile supérieure est inférieure au seuil inférieur, l’appareil utilise la vitesse de rotation minimale des ventilateurs. Si la température de la couche d’huile supérieure est supérieure au seuil supérieur, l’appareil utilise la vitesse de rotation maximale des ventilateurs. Si la température de la couche d’huile supérieure est située entre le seuil inférieur et le seuil supérieur, l’appareil calcule la vitesse de rotation nécessaire sur la base des lignes droites entre les deux points S1 et S2.
Le diagramme ci-dessous montre un exemple de courbe de la vitesse de rotation des ventilateurs en fonction de la température de la couche d’huile supérieure conformément aux paramètres réglés.

![Diagramme de vitesse de rotation des ventilateurs en fonction de la température de la couche d’huile supérieure](image)

Figure 117: Vitesse de rotation des ventilateurs en fonction de la température de la couche d’huile supérieure

<table>
<thead>
<tr>
<th>n</th>
<th>Vitesse de rotation des ventilateurs</th>
<th>θ_{Topol}</th>
<th>Température de la couche d’huile supérieure</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_{min}</td>
<td>Vitesse rotation minimale ventilateurs</td>
<td>n_{max}</td>
<td>Vitesse rotation maximale ventilateurs</td>
</tr>
<tr>
<td>θ_{s1}</td>
<td>Seuil inférieur temp. huile sup.</td>
<td>θ_{s2}</td>
<td>Seuil supérieur temp. huile sup.</td>
</tr>
</tbody>
</table>

Vitesse de rotation des ventilateurs en fonction du facteur de charge

Le facteur de charge est le rapport entre le courant de charge et le courant nominal. Si le facteur de charge est inférieur au seuil inférieur, l’appareil utilise la vitesse de rotation minimale des ventilateurs. Si le facteur de charge est supérieur au seuil supérieur, l’appareil utilise la vitesse de rotation maximale des ventilateurs. Si le facteur de charge est situé entre le seuil inférieur et le seuil supérieur, l’appareil calcule la vitesse de rotation nécessaire sur la base des lignes droites entre les deux points S1 et S2.
Le diagramme ci-dessous montre un exemple de courbe de la vitesse de rotation des ventilateurs en fonction du facteur de charge conformément aux paramètres réglés.

![Diagramme de vitesse de rotation des ventilateurs en fonction du facteur de charge](Image)

Figure 118: Vitesse de rotation des ventilateurs en fonction du facteur de charge

<table>
<thead>
<tr>
<th>n</th>
<th>Vitesse de rotation des ventilateurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_{\text{max}})</td>
<td>Vitesse rotation maximale ventilateurs</td>
</tr>
<tr>
<td>(L_{S1})</td>
<td>Seuil inférieur facteur de charge</td>
</tr>
<tr>
<td>(L_{S2})</td>
<td>Seuil supérieur facteur de charge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Contrôle de la réfrigération</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durée de fonctionnement minimal...</td>
<td>300 s</td>
</tr>
<tr>
<td>Vitesse rotation minimale vent...</td>
<td>10 %</td>
</tr>
<tr>
<td>Vitesse rotation maximale vent...</td>
<td>100 %</td>
</tr>
<tr>
<td>Seuil inférieur temp. huile sup.</td>
<td>20 °C</td>
</tr>
<tr>
<td>Seuil supérieur temp. huile sup.</td>
<td>60 °C</td>
</tr>
<tr>
<td>Seuil inférieur facteur de charge</td>
<td>0 %</td>
</tr>
<tr>
<td>Seuil supérieur facteur de charge</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Figure 119: Contrôle de la réfrigération basé sur la fréquence

1. Sélectionnez l’option de menu Réglages > Paramètres > Réfrigération > Contrôle de la réfrigération.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

Durée de fonctionnement minimal des ventilateurs après erreur

Ce paramètre sert à régler la durée pendant laquelle les ventilateurs sont censés continuer à tourner si une erreur de contrôle de la réfrigération survient. Les ventilateurs tournent à pleine puissance pendant cette durée.

Vitesse rotation minimale ventilateurs

Ce paramètre sert à régler la vitesse de rotation minimale des ventilateurs.

Vitesse rotation maximale ventilateurs

Ce paramètre sert à régler la vitesse de rotation maximale des ventilateurs.

Seuil supérieur température d’huile supérieure

Ce paramètre est utilisé pour régler la température de la couche d’huile supérieure à laquelle les ventilateurs sont censés tourner à la vitesse de rotation maximale.

Seuil inférieur température d’huile supérieure

Ce paramètre est utilisé pour régler la température de la couche d’huile supérieure à laquelle les ventilateurs sont censés tourner à la vitesse de rotation minimale.

Seuil supérieur facteur de charge

Ce paramètre est utilisé pour régler le facteur de charge avec lequel les ventilateurs sont censés tourner à la vitesse de rotation maximale.

Seuil inférieur facteur de charge

Ce paramètre est utilisé pour régler le facteur de charge avec lequel les ventilateurs sont censés tourner à la vitesse de rotation minimale.

9.11.8 Affichage de l’état des étages de réfrigération

Vous pouvez afficher l’état des étages de réfrigération. Les informations suivantes sont disponibles pour chaque étage de réfrigération :

- **État**
 - Gris : étage de réfrigération inactif
 - Bleu : étage de réfrigération actif
 - Jaune, rouge : message d'événement
- **Nombre de démarrages**
- **Durée de fonctionnement**
9.12 Surveillance de la réfrigération (en option)

La fonction optionnelle Surveillance de la réfrigération sert à surveiller la réfrigération d'un transformateur.
9.12.1 Réglage de la surveillance de la réfrigération

Les paramètres suivants peuvent être utilisés pour régler les fonctions générales de surveillance de la réfrigération.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Surveillance de la réfrigération</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Temps de préparation analyse</td>
<td>60 s</td>
<td></td>
</tr>
<tr>
<td>Durée de fonctionnement</td>
<td>0 s</td>
<td></td>
</tr>
<tr>
<td>Nombre de démarrages</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Durée de fonctionnement</td>
<td>0 s</td>
<td></td>
</tr>
<tr>
<td>Nombre de démarrages</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 121: Surveillance de la réfrigération

1. Sélectionnez l’option de menu Réglages > Paramètres > Réfrigération > Surveillance de la réfrigération.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Temps de préparation analyse

Le paramètre est utilisé pour régler la durée d’activité d’un étage de réfrigération indispensable pour une analyse par l’appareil des valeurs caractéristiques à surveiller de la fonction « Surveillance du débit de réfrigération ». Cela permet d’éviter un message d’événement erroné pendant le processus de mise sous tension de la réfrigération.

Nombre de démarrages

L’appareil enregistre le nombre de démarrages de l’étage de réfrigération. Ce paramètre permet de réinitialiser le nombre de démarrages de l’étage de réfrigération correspondant lorsque vous avez, par exemple, remplacé le ventilateur ou les pompes du système de réfrigération.

Durée de fonctionnement

L’appareil enregistre la durée de fonctionnement de l’étage de réfrigération. Ce paramètre sert à réinitialiser la durée de fonctionnement de l’étage de réfrigération correspondant lorsque vous avez, par exemple, remplacé le ventilateur ou les pompes du système de réfrigération.
9.12.2 Surveillance de la puissance frigorifique (en option)

L'appareil peut surveiller la puissance frigorifique d'une réfrigération. Pour cela, l'appareil analyse la puissance frigorifique sur la base des valeurs suivantes :

- Résistance thermique R_{th}
- Comparaison de la température d'huile supérieure mesurée et de la température d'huile supérieure calculée
- Comparaison de la température de départ et de la température de refoulement du refroidisseur

9.12.2.1 Réglage de la surveillance de la puissance frigorifique

Vous devez régler les paramètres suivants pour la surveillance de la puissance frigorifique.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Surveillance...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Pertes à vide transformateur</td>
<td>20 kW</td>
<td></td>
</tr>
<tr>
<td>Pertes dues à la charge transformateur</td>
<td>200 kW</td>
<td></td>
</tr>
</tbody>
</table>

Figure 122: Surveillance de la puissance frigorifique

1. Sélectionnez l'option de menu Réglages > Paramètres > Réfrigération > Surveillance de la puissance frigorifique.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Pertes dues à la charge transformateur

Ce paramètre sert à régler les pertes dues à la charge (pertes cuivre) du transformateur P_{CU} pour le calcul de la résistance thermique de la réfrigération.

Pertes à vide transformateur

Ce paramètre sert à régler les pertes à vide du transformateur P_0 pour le calcul de la résistance thermique de la réfrigération.
9.12.2.2 Affichage de la puissance frigorifique

Vous pouvez afficher la courbe temporelle de la valeur moyenne de la résistance thermique de la réfrigération R_{th} au cours des dix derniers jours.

Figure 123: Puissance frigorifique

► Sélectionnez l'option de menu Information > Réfrigération > Puissance frigorifique.

9.12.3 Surveillance du débit de réfrigération (en option)

L'appareil peut surveiller un système de réfrigération doté de deux étages de réfrigération huile-eau. L'appareil surveille, à cet effet, les valeurs caractéristiques ci-après pour les réfrigérants huile et eau :

- Température
 - Départ
 - Refoulement
 - Différence départ/refoulement (huile seulement)
- Pression
- Débit
- Courant absorbé par la pompe
9.12.3.1 Réglage de la surveillance du débit de réfrigération

Pour les réfrigérants huile et eau, vous pouvez régler les valeurs limites ci-après pour la surveillance du débit de réfrigération :

<table>
<thead>
<tr>
<th>Valeur mesurée</th>
<th>Limite inférieure 2</th>
<th>Limite inférieure 1</th>
<th>Limite supérieure 1</th>
<th>Limite supérieure 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température de départ</td>
<td><<</td>
<td><</td>
<td>></td>
<td>>></td>
</tr>
<tr>
<td>Température de refoulement</td>
<td><<</td>
<td><</td>
<td>></td>
<td>>></td>
</tr>
<tr>
<td>Différence de température</td>
<td><<</td>
<td><</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pression</td>
<td><<</td>
<td><</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Débit</td>
<td><<</td>
<td><</td>
<td>></td>
<td>>></td>
</tr>
<tr>
<td>Courant de la pompe</td>
<td><<</td>
<td><</td>
<td>></td>
<td>>></td>
</tr>
</tbody>
</table>

Tableau 43: Valeurs limites pour la surveillance du débit de réfrigération
Comportement

Si la valeur mesurée est supérieure à la limite supérieure (> ou >>) ou inférieure à la limite inférieure (< ou <<), l’appareil déclenche un message d’événement.

Fig. 125: Surveillance étage réfrigération 1

1. Sélectionnez l’option de menu Réglages > Paramètres > Réfrigération > Surveillance étage de réfrigération 1/2.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Température d’huile départ

Ces paramètres servent à régler les valeurs limites de la température de départ admissible du circuit d’huile. Pour chaque étage de réfrigération vous pouvez régler deux valeurs limites supérieures et deux valeurs limites inférieures.

Température d’huile refoulement

Ces paramètres servent à régler les valeurs limites de la température de refoulement admissible du circuit d’huile. Pour chaque étage de réfrigération vous pouvez régler deux valeurs limites supérieures et deux valeurs limites inférieures.

Différence de température d’huile

Ces paramètres servent à régler les valeurs limites de la différence de température admissible entre le départ et le refoulement du circuit d’huile. Pour chaque étage de réfrigération vous pouvez régler deux valeurs limites inférieures.

$$\Delta \theta = \theta_{\text{flow}} - \theta_{\text{return}}$$

| $\Delta \theta$ | Différence de température | θ_{flow} | Température de départ | θ_{return} | Température de refoulement |
Pression huile
Ces paramètres servent à régler les valeurs limites de la pression admissible du circuit d'huile. Pour chaque étage de réfrigération vous pouvez régler deux valeurs limites inférieures.

Débit d'huile
Ces paramètres servent à régler les valeurs limites du débit admissible du circuit d'huile. Pour chaque étage de réfrigération vous pouvez régler deux valeurs limites inférieures.

Courant pompe à huile
Ces paramètres servent à régler les valeurs limites du courant absorbé admissible de la pompe du circuit d'huile. Pour chaque étage de réfrigération vous pouvez régler deux valeurs limites supérieures et deux valeurs limites inférieures.

Température d'eau départ
Ces paramètres servent à régler les valeurs limites de la température de départ admissible du circuit d'eau. Pour chaque étage de réfrigération vous pouvez régler deux valeurs limites supérieures et deux valeurs limites inférieures.

Température d'eau refoulement
Ces paramètres servent à régler les valeurs limites de la température de refoulement admissible du circuit d'eau. Pour chaque étage de réfrigération vous pouvez régler deux valeurs limites supérieures et deux valeurs limites inférieures.

Pression d'eau
Ces paramètres servent à régler les valeurs limites de la pression admissible du circuit d'eau. Pour chaque étage de réfrigération vous pouvez régler deux valeurs limites inférieures.

Débit d'eau
Ces paramètres servent à régler les valeurs limites du débit admissible du circuit d'eau. Pour chaque étage de réfrigération vous pouvez régler deux valeurs limites inférieures.

Courant pompe à eau
Ces paramètres servent à régler les valeurs limites du courant absorbé admissible de la pompe du circuit d'eau. Pour chaque étage de réfrigération vous pouvez régler deux valeurs limites supérieures et deux valeurs limites inférieures.
9.12.3.2 Affichage du débit de réfrigération

Vous pouvez afficher la courbe temporelle des valeurs mesurées de la surveillance du débit de réfrigération au cours des dix derniers jours.

Figure 126: Débit de réfrigération

► Sélectionnez l’option de menu Information > Réfrigération > Étage de réfrigération 1/2.

9.13 Commande du mécanisme d’entraînement (en option)

Les paramètres ci-après servent à configurer la commande du mécanisme d’entraînement. Vous pouvez régler les points suivants :

- Impulsion de manœuvre
- Durée de fonctionnement du moteur
- Sens de manœuvre

Figure 127: Commande moteur
9.13.1 Régler l’impulsion de manœuvre de la commande du mécanisme d’entraînement

Les paramètres Type d’impulsion de manœuvre, Durée de l’impulsion de manœuvre et Pause de l’impulsion de manœuvre servent à adapter l’impulsion de manœuvre de l’appareil aux exigences de la commande du mécanisme d’entraînement.

1. Sélectionnez l’option de menu Réglages > Paramètres > Moteur et coffret de contrôle > Commande du moteur
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Type d’impulsion de manœuvre

Ce paramètre permet de faire passer le type d’impulsion de manœuvre de l’impulsion continue à l’impulsion de manœuvre temporisée.

Impulsion continue

Si vous sélectionnez l’option « Impulsion continue », l’appareil émet l’impulsion de manœuvre en mode AVR Auto jusqu’à ce que la valeur de mesure revienne dans la largeur de bande. En mode de service AVR Manuel l’appareil émet l’impulsion de manœuvre jusqu’à ce que vous appuyez sur la touche ou .

Si, dans ce cas, l’appareil est l’Esclave dans la marche en parallèle, il émet l’impulsion de manœuvre jusqu’à ce que l’une des conditions suivantes soit remplie :
• Durée de fonctionnement du moteur réglée atteinte
• Le signal Moteur tourne passe de l’état 1 à 0
• La position de prise prescrite du Maître est atteinte

Après chaque impulsion de manœuvre, une pause est forcée avant que ne soit émise une autre impulsion de manœuvre.

Impulsion de manœuvre temporisée

Si vous sélectionnez l’option « Impulsion de manœuvre temporisée », l’appareil émet l’impulsion de manœuvre pour une durée réglable. Après chaque impulsion de manœuvre, une pause est forcée avant que ne soit émise une autre impulsion de manœuvre.

Si vous utilisez un mécanisme d’entraînement de la société Maschinenfabrik Reinhausen GmbH, vous devez sélectionner l’option « Impulsion de manœuvre temporisée ».
Durée de l'impulsion de manœuvre

Ce paramètre permet de régler la durée maximale de l'impulsion de manœuvre. L'impulsion de manœuvre est réinitialisée après expiration de la durée de l'impulsion de manœuvre ou lorsque l'appareil reçoit auparavant le signal *Moteur tourne* ou lorsque la position de prise est modifiée.

Pause de l'impulsion de manœuvre

Ce paramètre sert à régler la pause de l'impulsion de manœuvre entre deux impulsions de manœuvre. Ce n'est qu'après expiration de la pause de l'impulsion de manœuvre que l'appareil peut émettre une autre impulsion de manœuvre.

9.13.2 Réglage de la surveillance de la durée de fonctionnement du moteur.

La durée de fonctionnement du mécanisme d'entraînement peut être surveillée par l'appareil. Cette fonction sert à identifier les dysfonctionnements du mécanisme d'entraînement durant la manœuvre et, si nécessaire, à déclencher des actions.

Comportement

Pendant la manœuvre, le mécanisme d'entraînement envoie le signal *Mécanisme d'entraînement en marche*. Ce signal perdure jusqu'à la fin de la manœuvre. L'appareil compare la durée de ce signal à la durée de fonctionnement du moteur réglée. Si la durée de fonctionnement du moteur réglée est dépassée, l'appareil déclenche les actions suivantes :

1. Événement *Durée de fonctionnement du moteur dépassée*.
2. Signal d'impulsion via le relais de sortie *Déclencher disjoncteur-protecteur du moteur*.
Notez que les mécanismes d'entraînement avec positions de passage ou les mécanismes d'entraînement sans comportement de commutation pas à pas pourraient fonctionner plus longtemps. Dans ce cas, réglez une durée de fonctionnement du moteur plus longue.

1. Sélectionnez l'option de menu Réglages > Paramètres > Moteur et coffret de contrôle > Commande du moteur
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Durée de fonctionnement du moteur

Ce paramètre est utilisé pour régler la durée de fonctionnement du moteur.

Surveillance de la durée de fonctionnement du moteur

Ce paramètre sert à activer ou désactiver la surveillance de la durée de fonctionnement du moteur.

9.13.3 Régler le sens de manœuvre

Vous pouvez régler le sens de manœuvre du mécanisme d'entraînement.

1. Sélectionnez l'option de menu Réglages > Paramètres > Moteur et coffret de contrôle > Commande du moteur
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Sens de manœuvre U

Ce paramètre sert à régler le sens de manœuvre de la régulation de la tension. Cela permet d'adapter le comportement de l'appareil conformément la configuration de votre changeur de prises en charge et de votre mécanisme d'entraînement. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>L'appareil émet un signal via la sortie Augmenter pour augmenter la tension. L'appareil émet un signal via la sortie Diminuer pour réduire la tension.</td>
</tr>
<tr>
<td>Inversé</td>
<td>L'appareil émet un signal via la sortie Diminuer pour augmenter la tension. L'appareil émet un signal via la sortie Augmenter pour réduire la tension.</td>
</tr>
</tbody>
</table>

Tableau 44: Comportement
Sens de manœuvre Q (en option)

Ce paramètre sert à régler le sens de manœuvre de la régulation de la puissance réactive. Cela permet d'adapter le comportement de l'appareil conformément la configuration de votre changeur de prises en charge et de votre mécanisme d'entraînement. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>L'appareil émet un signal via la sortie Augmenter pour augmenter la puissance réactive.</td>
</tr>
<tr>
<td></td>
<td>L'appareil émet un signal via la sortie Diminuer pour réduire la puissance réactive.</td>
</tr>
<tr>
<td>Inversé</td>
<td>L'appareil émet un signal via la sortie Diminuer pour augmenter la puissance réactive.</td>
</tr>
<tr>
<td></td>
<td>L'appareil émet un signal via la sortie Augmenter pour réduire la puissance réactive.</td>
</tr>
</tbody>
</table>

Tableau 45: Comportement

Surveillance du sens de manœuvre

Ce paramètre permet de régler la surveillance du sens de manœuvre. Cette fonction surveille si un changement de prise a eu lieu dans le sens incorrect (p. ex. en raison d'une erreur de câblage).

Si un changement de prise dans le sens incorrect est détecté, l'appareil émet le message d'événement *Surveillance du sens de manœuvre* et bloque la régulation automatique. La régulation automatique est bloquée jusqu'à ce que vous acquittiez [Section 9.34.1, Page 339] l'événement.

La surveillance du sens de manœuvre est inactive lorsque le mécanisme d'entraînement est commandé par impulsion continue [Section 9.13.1, Page 179].

9.14 Aperçu du mécanisme d'entraînement

L'aperçu du mécanisme d'entraînement affiche les informations suivantes :

- Position de prise actuelle, y compris aiguille entraînée
- Affichage des unités de palier de commutation (SSE, en option)
- Compteur de manœuvres
- Messages d'état
 - Mode de fonctionnement
 - Blocage de commutation (en option)
 - Disjoncteur-protecteur du moteur
 - Porte du coffret de contrôle ouverte/fermée
- Température ambiante (en option)
- Température intérieure du mécanisme d'entraînement (en option)
- Prochaine maintenance (en option)
Cette section décrit les fonctions générales de régulation du changeur de prises en charge.

9.15 Comportement en cas d'interruption du système de conduite (en option)

Si votre appareil est équipé d'une connexion au système de conduite (SCADA), vous pouvez utiliser les paramètres suivants pour régler le comportement de l'appareil lorsque la connexion au système de conduite est interrompue.

Cette fonction agit sur le mode de fonctionnement À DISTANCE.
Figure 130: Régulation

1. Sélectionnez l'option de menu Réglages > Paramètres > Régulateur changeur de prises en charge > Régulation.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Comportement si interruption SCADA

Ce paramètre sert à régler le comportement de l'appareil lorsque la connexion au système de conduite est interrompue. Vous avez le choix parmi les options suivantes :

- Aucune réaction : l'appareil reste dans le mode de fonctionnement actuel.
- Passage mode Auto : l'appareil passe au mode automatique.
- Valeur de consigne 1…5 : l'appareil utilise la valeur de consigne de tension sélectionnée. Cette valeur de consigne est également utilisée lorsque la connexion est rétablie. En fonction de la configuration de l'appareil, vous pouvez sélectionner jusqu'à cinq valeurs de consigne.

Temporisation interruption SCADA

Ce paramètre sert à régler la temporisation pour l'interruption SCADA. Si la durée de l'interruption de la connexion au système de conduite est supérieure à la temporisation, l'appareil déclenche un événement et réagit par le comportement réglé.
9.15.2 Régler la variable de régulation (en option)

Si l'appareil est équipé de la fonction optionnelle de régulation de la puissance, vous pouvez régler la variable de mesure que l'appareil doit réguler.

1. Sélectionnez l'option de menu Réglages > Paramètres > Régulateur changeur de prises en charge > Régulation.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Variable de régulation

Ce paramètre sert à régler la variable de mesure que l'appareil doit réguler. Vous avez le choix parmi les options suivantes :
- Tension
- Puissance réactive
- Puissance active

En fonction de votre sélection, l'appareil utilise le jeu de paramètres correspondant (Valeur de consigne, largeur de bande etc.) pour la régulation.
9.16 Régulation de la tension (en option)

Cette section décrit tous les paramètres nécessaires à la régulation de la tension.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Régulation...ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Valeur de consigne 1</td>
<td>100 V</td>
<td></td>
</tr>
<tr>
<td>Valeur de consigne 2</td>
<td>100 V</td>
<td></td>
</tr>
<tr>
<td>Valeur de consigne 3</td>
<td>100 V</td>
<td></td>
</tr>
<tr>
<td>Sélectionner la valeur de consigne</td>
<td>Valeur de consigne 1</td>
<td></td>
</tr>
<tr>
<td>Largeur de bande</td>
<td>1.0 %</td>
<td></td>
</tr>
<tr>
<td>Temporisation T1</td>
<td>40 s</td>
<td></td>
</tr>
<tr>
<td>Comportement temporal T1</td>
<td>Linéaire</td>
<td></td>
</tr>
<tr>
<td>Activer la temporisation T2</td>
<td>Désactivé</td>
<td></td>
</tr>
<tr>
<td>Temporisation T2</td>
<td>10 s</td>
<td></td>
</tr>
</tbody>
</table>

Figure 132: Régulation de la tension (exemple)

9.16.1 Réglage de la valeur de consigne

Conformément à la commande, l'appareil est équipé de l'une des variantes suivantes en vue du réglage de la valeur de consigne.

9.16.1.1 Valeur de consigne 1

1. Sélectionnez l'option de menu Réglages > Paramètres > Réseau > Régulation > Valeur de consigne.
2. Entrez la valeur de consigne.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

9.16.1.2 Valeur de consigne 1...3

Vous pouvez régler trois valeurs de consigne différentes. L'appareil utilise toujours une des valeurs de consigne réglées pour la régulation. Vous pouvez définir la valeur de consigne utilisée pour la régulation à l'aide du paramètre « Sélectionner valeur de consigne » ou via les entrées numériques.

L'appareil traite les ordres via les entrées numériques ou le système de conduite seulement lorsqu'il est en mode À distance. Qui plus est, vous devez régler le paramètre Comportement à distance [➤ Page 115] en conséquence.
Réglage de la valeur de consigne
1. Sélectionnez l'option de menu Réglages > Paramètres > Réseau > Réglage > Valeur de consigne.
2. Entrez la valeur de consigne.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Sélection de la valeur de consigne
Ce paramètre permet de sélectionner la valeur de consigne utilisée pour la régulation.
1. Sélectionnez l'option de menu Réglages > Paramètres > Réseau > Réglage > Sélectionner valeur de consigne.
2. Sélectionnez la valeur de consigne souhaitée dans la liste.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

9.16.1.3 Valeur de consigne 1...5
Vous pouvez régler cinq valeurs de consigne différentes. L’appareil utilise toujours une des valeurs de consigne réglées pour la régulation. Vous pouvez définir la valeur de consigne utilisée pour la régulation à l'aide du paramètre « Sélectionner valeur de consigne » ou via les entrées numériques.

L'appareil traite les ordres via les entrées numériques ou le système de conduite seulement lorsqu'il est en mode À distance. Qui plus est, vous devez régler le paramètre Comportement à distance [Page 115] en conséquence.

Réglage de la valeur de consigne
1. Sélectionnez l'option de menu Réglages > Paramètres > Réseau > Réglage > Valeur de consigne.
2. Entrez la valeur de consigne.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Sélection de la valeur de consigne
Ce paramètre permet de sélectionner la valeur de consigne utilisée pour la régulation.
1. Sélectionnez l'option de menu Réglages > Paramètres > Réseau > Réglage > Sélectionner valeur de consigne.
2. Sélectionnez la valeur de consigne souhaitée dans la liste.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
9.16.4 Valeur de consigne analogique

Pour ce qui est de la valeur de consigne analogique, vous pouvez adapter au besoin la valeur de consigne pour la régulation automatique de la tension au moyen d'un signal analogique (p. ex. B. 4 à 20 mA).

Figure 133: Valeur de consigne analogique

Pour la configuration de la valeur de consigne analogique, vous pouvez régler les paramètres décrits ci-dessous.

Pour définir la valeur de consigne à l'aide du signal analogique, vous devez créer un signal à l'entrée Validation valeur de consigne. Dans le cas contraire, l'appareil utilise la valeur de consigne réglée 1.

Réglage de la valeur de consigne 1

1. Sélectionnez l'option de menu Réglages > Paramètres > Réseau > Régulation > Valeur de consigne.
2. Entrez la valeur de consigne.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Réglage de la valeur de consigne max.

Ce paramètre permet de régler la valeur de consigne qui correspond au niveau maximal du signal analogique (p. ex. 20 mA pour un signal de 4 à 20 mA).

1. Sélectionnez l'option de menu Réglages > Paramètres > Régulation > Valeur de consigne max.
2. Entrez la valeur de consigne.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
Réglage de la valeur de consigne min.

Ce paramètre permet de régler la valeur de consigne qui correspond au niveau minimal du signal analogique (p. ex. 4 mA pour un signal de 4 à 20 mA).

1. Sélectionnez l’option de menu Réglages > Paramètres > Régulation > Valeur de consigne min..
2. Entrez la valeur de consigne.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

9.16.1.5 Valeur de consigne progressive

Dans le cas de la valeur de consigne progressive, vous pouvez augmenter ou diminuer la valeur de consigne d’un incrément réglable pour la régulation automatique de la tension via les entrées numériques ou les ordres du système de conduite.

À chaque ordre « Augmenter valeur de consigne » ou « Diminuer valeur de consigne » la valeur de consigne active augmente ou diminue de l’incrément réglé. Un réglage des valeurs de consigne en dehors de la plage de réglage admissible (49...140 V) n’est pas possible.

L’appareil traite les ordres via les entrées numériques ou le système de conduite seulement lorsqu’il est en mode À distance. Qui plus est, vous devez régler le paramètre Comportement à distance [Page 115] en conséquence.

Pour la configuration de la valeur de consigne progressive, vous pouvez régler les paramètres décrits ci-dessous.

Réglage de la valeur de consigne 1

1. Sélectionnez l’option de menu Réglages > Paramètres > Réseau > Régulation > Valeur de consigne.
2. Entrez la valeur de consigne.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Réglage de l’incrément de valeur de consigne

Pour régler l’incrément de valeur de consigne, procédez comme suit :

1. Sélectionnez l’option de menu Réglages > Paramètres > Régulation > Incrément valeur cons..
2. Entrez l’incrément de valeur de consigne.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
9.16.6 Adaptation de la valeur de consigne de tension en fonction de la puissance active

La fonction TAPCON® Dynamic Setpoint Control (TDSC) sert à adapter la valeur de consigne de tension dépendante de la puissance active mesurée. Cela permet de compenser une chute de tension en cas de charge accrue ou une augmentation de tension due à une alimentation décentralisée.

Le calcul de la valeur de consigne est effectué sur la base de deux équations de droite (voir l’exemple de la figure ci-dessous), selon la puissance active positive ou négative mesurée.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Fonction</th>
<th>Réglages (voir la figure ci-dessous)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_{\text{max}}) : valeur de consigne maximale</td>
<td>La valeur de consigne maximale réglée est activée lorsque (P_{\text{max}}) est dépassée.</td>
<td>103,0 V</td>
</tr>
<tr>
<td>(U_{\text{min}}) : valeur de consigne minimale</td>
<td>La valeur de consigne minimale réglée est activée lorsque la limite inférieure de (P_{\text{min}}) n’est pas atteinte.</td>
<td>99,0 V</td>
</tr>
<tr>
<td>(U_0) : valeur de consigne si puissance active = 0</td>
<td>La valeur de consigne réglée est activée lorsque la puissance active mesurée est égale à 0 MW.</td>
<td>100,00 V</td>
</tr>
<tr>
<td>(P_{\text{max}}) : puissance active dans le cas d’une valeur de consigne max.</td>
<td>Valeur de puissance active maximale réglée à partir de laquelle la valeur de consigne dépendante de la puissance doit atteindre la valeur maximale (U_{\text{max}}).</td>
<td>20,0 MW</td>
</tr>
<tr>
<td>(P_{\text{min}}) : puissance active dans le cas d’une valeur de consigne min.</td>
<td>Valeur de puissance active minimale réglée à partir de laquelle la valeur de consigne dépendante de la puissance doit atteindre la valeur minimale (U_{\text{min}}).</td>
<td>-20,0 MW</td>
</tr>
</tbody>
</table>

Tableau 46: Paramètres à régler pour une adaptation de la valeur de consigne de tension en fonction de la puissance active

Figure 134: Adaptation de la valeur de consigne de tension en fonction de la puissance active

| \(U_{\text{ref}} \) Valeur de consigne | \(U_{\text{min}} \) Valeur de consigne minimale | \(P_{\text{meas}} \) Puissance active mesurée | \(U_{\text{max}} \) Valeur de consigne maximale |
Comportement en cas de dépassement de la puissance active P_{\max}

Si la puissance active mesurée P_{meas} dépasse le paramètre réglé P_{\max}, la valeur U_{\max} est utilisée comme valeur de consigne.

$$U_{\text{ref}} = U_{\max}$$

Comportement lorsque la limite inférieure de la puissance active P_{\min} n'est pas atteinte

Si la puissance active mesurée P_{meas} n'atteint pas la limite basse du paramètre réglé P_{\min}, la valeur U_{\min} est utilisée comme valeur de consigne.

$$U_{\text{ref}} = U_{\min}$$

Comportement lorsque la puissance active mesurée $P_{\text{meas}} = 0$ MW :

Si la puissance active mesurée $P_{\text{meas}} = 0$, le paramètre réglé U_0 est appliqué.

$$U_{\text{ref}} = U_0$$

Dépendance linéaire lorsque la puissance active est négative :

Si la puissance active mesurée $P_{\min} \leq P_{\text{meas}} \leq 0$, la valeur de consigne est calculée selon la formule suivante :

$$U_{\text{ref}} = U_0 - U_{\min} - P_{\min} \times P_{\text{meas}} + U_0$$

Dépendance linéaire lorsque la puissance active est positive :

Si la puissance active mesurée $0 \leq P_{\text{meas}} \leq P_{\max}$, la valeur de consigne est calculée selon la formule suivante :

$$U_{\text{ref}} = U_{\max} - U_0 - P_{\text{meas}} \times P_{\max} + U_0$$

Pour activer l’adaptation de la valeur de consigne de tension dépendante de la puissance active, vous devez régler les paramètres suivants :

Activer TDSC

La fonction TDSC n’est active que lorsque l’appareil peut calculer la puissance active (mesure du courant et mesure de la tension correctes) et lorsque les paramètres nécessaires sont réglés. Dans le cas contraire, la ré-
gulation de la tension a lieu selon la valeur de consigne [Section 9.16.1.1, Page 186] réglée. Pour activer ou désactiver l’adaptation de la valeur de consigne de tension dépendante de la puissance, procédez comme suit :

- Paramètres
- Entrées numériques TDSC activé et TDSC désactivé (en option)
- Commande du système de conduite (en option)

Si vous activez TDSC, la fonction Compensation de ligne (compensation R-X ou compensation Z) est désactivée.

Pour activer / désactiver TDSC à l’aide d’un paramètre, procédez comme suit :

1. Sélectionnez l’option de menu Réglages > Paramètres > Régulation > Activer TDSC.
2. Sélectionnez l’option souhaitée.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

TDSC Umax/Umin

Ces paramètres servent à régler la valeur de consigne maximale et minimale. La valeur de consigne maximale ou minimale est activée lorsque la puissance active mesurée atteint la puissance active minimale ou maximale réglée.

1. Sélectionnez le point de menu Réglages > Paramètres > Régulation > TDSC Umax/Umin.
2. Entrez la valeur de consigne maximale / minimale.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

TDSC U0

Ce paramètre permet de régler la valeur de consigne à utiliser lorsque la puissance active mesurée est 0.

1. Sélectionnez l’option de menu Réglages > Paramètres > Régulation > TDSC U0.
2. Entrez la valeur de consigne si la puissance active = 0
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

TDSC Pmax/Pmin

Ces paramètres servent à régler la valeur de puissance active maximale et minimale à laquelle la valeur de consigne maximale et minimale dépendante de la puissance active est censée être utilisée pour la régulation.

1. Sélectionnez l’option de menu Réglages > Paramètres > Régulation > TDSC Pmax/Pmin.
2. Entrez la puissance active de valeur de consigne maximale / minimale.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
Adaptation de la valeur de consigne de tension en fonction de la puissance active avec trois valeurs de consigne différentes

La fonction TAPCON® Dynamic Setpoint Control (TDSC) sert à adapter la valeur de consigne de tension dépendante de la puissance active mesurée. Cela permet de compenser une chute de tension en cas de charge accrue ou une augmentation de tension due à une alimentation décentralisée.

L’appareil offre trois jeux de paramètres différents à cet effet. L’appareil utilise pour TDSC le jeu de paramètres 1, 2 ou 3 selon si la valeur de consigne 1, 2 ou 3 a été sélectionnée.

Le calcul de la valeur de consigne est effectué sur la base de deux équations de droite (voir l’exemple de la figure ci-dessous), selon la puissance active positive ou négative mesurée.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Fonction</th>
<th>Réglages (voir la figure ci-dessous)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{max} : valeur de consigne maximale</td>
<td>La valeur de consigne maximale réglée est activée lorsque P_{max} est dépassée.</td>
<td>103,0 V</td>
</tr>
<tr>
<td>U_{min} : valeur de consigne minimale</td>
<td>La valeur de consigne minimale réglée est activée lorsque la limite inférieure de P_{min} n'est pas atteinte.</td>
<td>99,0 V</td>
</tr>
<tr>
<td>U_0 : valeur de consigne si puissance active $= 0$</td>
<td>La valeur de consigne réglée est activée lorsque la puissance active mesurée est égale à 0 MW.</td>
<td>100,00 V</td>
</tr>
<tr>
<td>P_{max} : puissance active dans le cas d'une valeur de consigne max.</td>
<td>Valeur de puissance active maximale réglée à partir de laquelle la valeur de consigne dépendante de la puissance doit atteindre la valeur maximale U_{max}.</td>
<td>20,0 MW</td>
</tr>
<tr>
<td>P_{min} : puissance active dans le cas d'une valeur de consigne min.</td>
<td>Valeur de puissance active minimale réglée à partir de laquelle la valeur de consigne dépendante de la puissance doit atteindre la valeur minimale U_{min}.</td>
<td>-20,0 MW</td>
</tr>
</tbody>
</table>

Tableau 47: Paramètres à régler pour une adaptation de la valeur de consigne de tension en fonction de la puissance active
Figure 135: Adaptation de la valeur de consigne de tension en fonction de la puissance active

<table>
<thead>
<tr>
<th>U_{ref}</th>
<th>Valeur de consigne</th>
<th>U_{min}</th>
<th>Valeur de consigne minimale</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{max}</td>
<td>Puissance active mesurée</td>
<td>U_{max}</td>
<td>Valeur de consigne maximale</td>
</tr>
<tr>
<td>P_{min}</td>
<td>Puissance active en cas de valeur de consigne minimale</td>
<td>U_{0}</td>
<td>Valeur de consigne réglée dans le cas lorsque la puissance active mesurée = 0</td>
</tr>
<tr>
<td>P_{max}</td>
<td>Puissance active en cas de valeur de consigne maximale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comportement en cas de dépassement de la puissance active P_{max}

Si la puissance active mesurée P_{meas} dépasse le paramètre réglé P_{max}, la valeur U_{max} est utilisée comme valeur de consigne.

$$U_{\text{ref}} = U_{\text{max}}$$

Comportement lorsque la limite inférieure de la puissance active P_{min} n'est pas atteinte

Si la puissance active mesurée P_{meas} n'atteint pas la limite basse du paramètre réglé P_{min}, la valeur U_{min} est utilisée comme valeur de consigne.

$$U_{\text{ref}} = U_{\text{min}}$$

Comportement lorsque la puissance active mesurée $P_{\text{meas}} = 0$ MW

Si la puissance active mesurée $P_{\text{meas}} = 0$, le paramètre réglé U_{0} est appliqué.

$$U_{\text{ref}} = U_{0}$$
Dépendance linéaire lorsque la puissance active est négative :
Si la puissance active mesurée P_{meas} est inférieure ou égale à P_{min}, la valeur de consigne est calculée selon la formule suivante :

$$U_{\text{ref}} = U_0 - \frac{U_{\text{min}}}{P_{\text{min}}} P_{\text{meas}} + U_0$$

Dépendance linéaire lorsque la puissance active est positive :
Si la puissance active mesurée P_{meas} est inférieure ou égale à P_{max}, la valeur de consigne est calculée selon la formule suivante :

$$U_{\text{ref}} = U_{\text{max}} - \frac{U_0}{P_{\text{max}}} P_{\text{meas}} + U_0$$

Pour activer l'adaptation de la valeur de consigne de tension dépendante de la puissance active, vous devez régler les paramètres suivants :

Activer TDSC

La fonction TDSC n'est active que lorsque l'appareil peut calculer la puissance active (mesure du courant et mesure de la tension correctes) et lorsque les paramètres nécessaires sont réglés. Dans le cas contraire, la régulation de la tension a lieu selon la valeur de consigne 1/2/3 [Section 9.16.1.2, Page 186] réglée. Pour activer ou désactiver l'adaptation de la valeur de consigne de tension dépendante de la puissance, procédez comme suit :

- Paramètres
- Entrées numériques TDSC activé et TDSC désactivé (en option)
- Commande du système de conduite (en option)

Si vous activez TDSC, la fonction Compensation de ligne (compensation R-X ou compensation Z) est désactivée.

Pour activer / désactiver TDSC à l'aide d'un paramètre, procédez comme suit :

1. Sélectionnez l'option de menu Réglages > Paramètres > Régulation > Activer TDSC.
2. Sélectionnez l'option souhaitée.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
TDSC 1/2/3 Umax/Umin

Ces paramètres servent à régler la valeur de consigne maximale et minimale. La valeur de consigne maximale ou minimale est activée lorsque la puissance active mesurée atteint la puissance active minimale ou maximale réglée.

1. Sélectionnez le point de menu Réglages > Paramètres > Régulation > TDSC Umax/Umin.
2. Entrez la valeur de consigne maximale / minimale.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

TDSC 1/2/3 U0

Ce paramètre permet de régler la valeur de consigne à utiliser lorsque la puissance active mesurée est 0.

1. Sélectionnez l'option de menu Réglages > Paramètres > Régulation > TDSC U0.
2. Entrez la valeur de consigne si la puissance active = 0
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

TDSC 1/2/3 Pmax/Pmin

Ces paramètres servent à régler la valeur de puissance active maximale et minimale à laquelle la valeur de consigne maximale et minimale dépendante de la puissance active est censée être utilisée pour la régulation.

1. Sélectionnez l'option de menu Réglages > Paramètres > Régulation > TDSC Pmax/Pmin.
2. Entrez la puissance active de valeur de consigne maximale / minimale.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

9.16.1.8 Valeur de consigne prédéfinie via BCD

Pour ce qui est de la valeur de consigne prédéfinie via BCD, vous pouvez adapter au besoin la valeur de consigne pour la régulation automatique de la tension par codage BCD via les entrées numériques.

Selon la variante, la valeur de consigne prédéfinie via BCD est toujours active, ou alors vous pouvez l'activer via BCD en appliquant un signal à l'entrée Valeur de consigne BCD.

Les sorties optionnelles ci-après sont disponibles :

- **Défaut val. de consigne prédéfinie** : l'appareil émet un signal si le code BCD pour la valeur de consigne prédéfinie est invalide.
- **Valeur de consigne active** : l'appareil émet un signal si la valeur de consigne prédéfinie est active via BCD.
La plage de réglage admissible est comprise entre 49 et 140 V. La valeur prédéfinie est inscrite dans le paramètre Valeur de consigne 1. Si le codage BCD est invalide, ou si la valeur de consigne prédéfinie via BCD est désactivée, l'appareil utilise la valeur de consigne 1 réglée.

<table>
<thead>
<tr>
<th>Valeur de consigne</th>
<th>Entrée BCD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 80 40 20 10 8 4 2 1</td>
</tr>
<tr>
<td>49 V</td>
<td>0 0 1 0 0 1 0 0 1</td>
</tr>
<tr>
<td>50 V</td>
<td>0 0 1 0 1 0 0 0 0</td>
</tr>
<tr>
<td>51 V</td>
<td>0 0 1 0 1 0 0 0 1</td>
</tr>
<tr>
<td>52 V</td>
<td>0 0 1 0 1 0 0 1 0</td>
</tr>
<tr>
<td>53 V</td>
<td>0 0 1 0 1 0 0 1 1</td>
</tr>
<tr>
<td>54 V</td>
<td>0 0 1 0 1 0 1 0 0</td>
</tr>
<tr>
<td>55 V</td>
<td>0 0 1 0 1 0 1 0 1</td>
</tr>
<tr>
<td>56 V</td>
<td>0 0 1 0 1 0 1 1 0</td>
</tr>
<tr>
<td>57 V</td>
<td>0 0 1 0 1 1 0 1 1</td>
</tr>
<tr>
<td>58 V</td>
<td>0 0 1 0 1 1 0 0 0</td>
</tr>
<tr>
<td>59 V</td>
<td>0 0 1 0 1 1 0 0 1</td>
</tr>
<tr>
<td>60 V</td>
<td>0 0 1 1 0 0 0 0 0</td>
</tr>
<tr>
<td>61 V</td>
<td>0 0 1 1 0 0 0 0 1</td>
</tr>
<tr>
<td>62 V</td>
<td>0 0 1 1 0 0 0 1 0</td>
</tr>
<tr>
<td>63 V</td>
<td>0 0 1 1 0 0 1 1 0</td>
</tr>
<tr>
<td>64 V</td>
<td>0 0 1 1 0 0 1 0 0</td>
</tr>
<tr>
<td>65 V</td>
<td>0 0 1 1 0 0 1 0 1</td>
</tr>
<tr>
<td>66 V</td>
<td>0 0 1 1 0 0 1 1 0</td>
</tr>
<tr>
<td>67 V</td>
<td>0 0 1 1 0 0 1 1 1</td>
</tr>
<tr>
<td>68 V</td>
<td>0 0 1 1 0 1 0 0 0</td>
</tr>
<tr>
<td>69 V</td>
<td>0 0 1 1 0 1 0 0 1</td>
</tr>
<tr>
<td>70 V</td>
<td>0 0 1 1 1 0 0 0 0</td>
</tr>
<tr>
<td>71 V</td>
<td>0 0 1 1 1 0 0 0 1</td>
</tr>
<tr>
<td>72 V</td>
<td>0 0 1 1 1 0 0 1 0</td>
</tr>
<tr>
<td>73 V</td>
<td>0 0 1 1 1 0 0 1 1</td>
</tr>
<tr>
<td>74 V</td>
<td>0 0 1 1 1 0 1 0 0</td>
</tr>
<tr>
<td>75 V</td>
<td>0 0 1 1 1 0 1 0 1</td>
</tr>
<tr>
<td>76 V</td>
<td>0 0 1 1 1 0 1 1 0</td>
</tr>
<tr>
<td>77 V</td>
<td>0 0 1 1 1 0 1 1 1</td>
</tr>
<tr>
<td>78 V</td>
<td>0 0 1 1 1 0 0 0 0</td>
</tr>
<tr>
<td>79 V</td>
<td>0 0 1 1 1 0 0 0 1</td>
</tr>
<tr>
<td>80 V</td>
<td>0 1 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Valeur de consigne</td>
<td>Entrée BCD</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>81 V</td>
<td>0 1 0 0 0 0 0 0 0 1 1</td>
</tr>
<tr>
<td>82 V</td>
<td>0 1 0 0 0 0 0 0 1 0 0</td>
</tr>
<tr>
<td>83 V</td>
<td>0 1 0 0 0 0 0 0 1 1 1</td>
</tr>
<tr>
<td>84 V</td>
<td>0 1 0 0 0 0 0 1 0 0 1</td>
</tr>
<tr>
<td>85 V</td>
<td>0 1 0 0 0 0 1 0 0 1 1</td>
</tr>
<tr>
<td>86 V</td>
<td>0 1 0 0 0 0 1 1 0 0 0</td>
</tr>
<tr>
<td>87 V</td>
<td>0 1 0 0 0 1 0 0 0 1 1</td>
</tr>
<tr>
<td>88 V</td>
<td>0 1 0 0 1 0 0 0 0 1 0</td>
</tr>
<tr>
<td>89 V</td>
<td>0 1 0 0 1 0 0 0 1 0 1</td>
</tr>
<tr>
<td>90 V</td>
<td>0 1 0 1 0 0 0 0 1 0 0</td>
</tr>
<tr>
<td>91 V</td>
<td>0 1 0 1 0 0 0 0 1 1 0</td>
</tr>
<tr>
<td>92 V</td>
<td>0 1 0 1 0 0 0 1 0 0 1</td>
</tr>
<tr>
<td>93 V</td>
<td>0 1 0 1 0 0 1 0 0 1 1</td>
</tr>
<tr>
<td>94 V</td>
<td>0 1 0 1 0 1 0 0 1 0 0</td>
</tr>
<tr>
<td>95 V</td>
<td>0 1 0 1 0 1 0 1 0 1 0</td>
</tr>
<tr>
<td>96 V</td>
<td>0 1 0 1 0 1 0 1 1 0 0</td>
</tr>
<tr>
<td>97 V</td>
<td>0 1 0 1 0 1 1 0 1 1 1</td>
</tr>
<tr>
<td>98 V</td>
<td>0 1 0 1 1 1 0 1 1 0 0</td>
</tr>
<tr>
<td>99 V</td>
<td>0 1 0 1 1 1 1 0 1 0 1</td>
</tr>
<tr>
<td>100 V</td>
<td>1 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>101 V</td>
<td>1 0 0 0 0 0 0 0 1 0 0</td>
</tr>
<tr>
<td>102 V</td>
<td>1 0 0 0 0 0 0 1 0 0 0</td>
</tr>
<tr>
<td>103 V</td>
<td>1 0 0 0 0 0 0 1 0 1 1</td>
</tr>
<tr>
<td>104 V</td>
<td>1 0 0 0 0 0 1 0 0 0 0</td>
</tr>
<tr>
<td>105 V</td>
<td>1 0 0 0 0 0 1 0 0 1 1</td>
</tr>
<tr>
<td>106 V</td>
<td>1 0 0 0 0 0 1 0 1 0 0</td>
</tr>
<tr>
<td>107 V</td>
<td>1 0 0 0 0 0 1 1 0 0 0</td>
</tr>
<tr>
<td>108 V</td>
<td>1 0 0 0 0 1 0 0 0 0 0</td>
</tr>
<tr>
<td>109 V</td>
<td>1 0 0 0 0 1 0 0 0 1 0</td>
</tr>
<tr>
<td>110 V</td>
<td>1 0 0 0 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>111 V</td>
<td>1 0 0 0 1 0 0 0 0 1 0</td>
</tr>
<tr>
<td>112 V</td>
<td>1 0 0 0 1 0 0 0 1 0 1</td>
</tr>
<tr>
<td>113 V</td>
<td>1 0 0 0 1 0 0 1 0 0 0</td>
</tr>
<tr>
<td>114 V</td>
<td>1 0 0 0 1 0 0 1 0 1 0</td>
</tr>
<tr>
<td>115 V</td>
<td>1 0 0 0 1 0 1 0 0 1 0</td>
</tr>
</tbody>
</table>
Tableau 48: Valeur de consigne codée via BCD

<table>
<thead>
<tr>
<th>Valeur de consigne</th>
<th>Entrée BCD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>116 V</td>
<td>1</td>
</tr>
<tr>
<td>117 V</td>
<td>1</td>
</tr>
<tr>
<td>118 V</td>
<td>1</td>
</tr>
<tr>
<td>119 V</td>
<td>1</td>
</tr>
<tr>
<td>120 V</td>
<td>1</td>
</tr>
<tr>
<td>121 V</td>
<td>1</td>
</tr>
<tr>
<td>122 V</td>
<td>1</td>
</tr>
<tr>
<td>123 V</td>
<td>1</td>
</tr>
<tr>
<td>124 V</td>
<td>1</td>
</tr>
<tr>
<td>125 V</td>
<td>1</td>
</tr>
<tr>
<td>126 V</td>
<td>1</td>
</tr>
<tr>
<td>127 V</td>
<td>1</td>
</tr>
<tr>
<td>128 V</td>
<td>1</td>
</tr>
<tr>
<td>129 V</td>
<td>1</td>
</tr>
<tr>
<td>130 V</td>
<td>1</td>
</tr>
<tr>
<td>131 V</td>
<td>1</td>
</tr>
<tr>
<td>132 V</td>
<td>1</td>
</tr>
<tr>
<td>133 V</td>
<td>1</td>
</tr>
<tr>
<td>134 V</td>
<td>1</td>
</tr>
<tr>
<td>135 V</td>
<td>1</td>
</tr>
<tr>
<td>136 V</td>
<td>1</td>
</tr>
<tr>
<td>137 V</td>
<td>1</td>
</tr>
<tr>
<td>138 V</td>
<td>1</td>
</tr>
<tr>
<td>139 V</td>
<td>1</td>
</tr>
<tr>
<td>140 V</td>
<td>1</td>
</tr>
</tbody>
</table>

Règlement de la valeur de consigne 1
2. Entrez la valeur de consigne.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
Largeur de bande

Ce paramètre permet de régler l'écart de tension de mesure maximale admissible $U_{\text{Réelle}}$ par rapport à la valeur de consigne U_{Consigne}.

Les tensions d'échelon et la tension nominale du transformateur doivent être connues afin de garantir un paramétrage de la valeur correcte. Notez qu'une largeur de bande importante entraîne un important écart de tension.

La largeur de bande doit toujours être supérieure à la valeur suivante :

$$|\pm B| \geq 0,6 \times \frac{U_{\text{n}-1} - U_n}{U_N} \times 100\%$$

$U_{\text{n}-1}$	Tension d'échelon de la position de prise n-1
U_n	Tension d'échelon de la position de prise n
U_N	Tension nominale

Pour calculer la largeur de bande minimale, les valeurs caractéristiques suivantes du transformateur sont utilisées :

- Tension nominale $U_N = 11000$ V
- Tension d'échelon dans la position de prise 4 $U_{\text{Prise4}} = 11275$ V
- Tension d'échelon dans la position de prise 5 $U_{\text{Prise5}} = 11000$ V

$$[\pm B\%] \geq 0,6 \times \frac{U_{\text{Step4}} - U_{\text{Step5}}}{U_{\text{nom}}} \times 100\%$$

$$[\pm B\%] \geq 0,6 \times \frac{11275 \text{ V} - 11000 \text{ V}}{11000 \text{ V}} \times 100\%$$

$$[\pm B\%] \geq 1,5\%$$

Temporisation T1

La temporisation T1 temporise l'émission d'une instruction de commande pour une période définie. Elle prévient ainsi les manœuvres inutiles lorsque la plage de largeur de bande est provisoirement quittée.

Si la variable de régulation est à l'intérieur de la largeur de bande réglée, aucune instruction de commande n'est envoyée au mécanisme d'entraînement pour la manœuvre. Aucune instruction de commande n'est non plus envoyée au mécanisme d'entraînement lorsque la variable de régulation se trouvant encore dans la temporisation T1 réglée retourne dans la plage de largeur de bande. Si, toutefois, la variable de régulation sort de la largeur de bande réglée pendant une période prolongée, une instruction de
La commande est générée après écoulement de la temporisation T1 réglée \(D \). Le changeur de prises en charge commute dans le sens Augmenter ou Diminuer pour retourner dans la largeur de bande.

![Figure 136: Comportement de la fonction de régulation avec temporisation T1](image)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Limite supérieure de la largeur de bande</td>
</tr>
<tr>
<td>2</td>
<td>Valeure de consigne</td>
</tr>
<tr>
<td>3</td>
<td>Limite inférieure de la largeur de bande</td>
</tr>
<tr>
<td>4</td>
<td>Temporisation T1 réglée</td>
</tr>
<tr>
<td>5</td>
<td>Valeure mesurée de la variable de régulation</td>
</tr>
<tr>
<td>6</td>
<td>Plage de largeur de bande</td>
</tr>
<tr>
<td>a</td>
<td>La variable de régulation est en dehors de la largeur de bande. La temporisation T1 commence à s'écouler.</td>
</tr>
<tr>
<td>b</td>
<td>La variable de régulation est revenue dans la plage de largeur de bande avant l'expiration de la temporisation T1.</td>
</tr>
<tr>
<td>c</td>
<td>La variable de régulation est en dehors de la largeur de bande. La temporisation T1 commence à s'écouler.</td>
</tr>
<tr>
<td>d</td>
<td>Variable de régulation toujours en dehors de la largeur de bande jusqu'à expiration de la temporisation T1. La manœuvre commence.</td>
</tr>
</tbody>
</table>

Temporisation T2

Ce paramètre sert à régler la temporisation T2. La temporisation T2 sert à compenser plus rapidement les importants écarts de tension.

La temporisation T2 ne devient effective que lorsque plus d'un changement de prise est nécessaire pour corriger l'écart de tension. La première impulsion de sortie a lieu après la temporisation réglée T1. Une fois la temporisation réglée T2 écoulée, des impulsions supplémentaires sont émises dans le but de corriger l'écart de tension actuel.
Les conditions ci-après doivent être remplies pour le réglage de la temporisation T2 :

- la valeur de la temporisation T2 doit être supérieure à la durée de l’impulsion de manœuvre.
- la valeur de la temporisation T2 doit être supérieure au temps de fonctionnement maximal du mécanisme d’entraînement.
- la valeur de la temporisation T2 doit être inférieure à la valeur de la temporisation T1 réglée.

Si la variable de régulation 5 quitte la largeur de bande réglée pour une durée prolongée 4, une impulsion de commande est envoyée au mécanisme d’entraînement après expiration de la temporisation T1 réglée 2. Si la variable de régulation se trouve toujours en dehors de largeur de bande, la temporisation T2 5 commence à s’écouler. Après expiration de la temporisation T2, une impulsion de commande est à nouveau envoyée au mécanisme d’entraînement pour la manœuvre 6 pour le retour dans la largeur de bande.

Figure 137: Comportement de la fonction de régulation avec temporisation T1 et T2

<table>
<thead>
<tr>
<th></th>
<th>Limite supérieure de la largeur de bande</th>
<th>Temporisation T1 et temporisation T2 réglées.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Valeur de consigne</td>
<td>5 Valeur mesurée de la variable de régulation</td>
</tr>
<tr>
<td>3</td>
<td>Limite inférieure de la largeur de bande</td>
<td>6 Plage de largeur de bande</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.17 Régulation de la puissance réactive (en option)

Cette section décrit tous les paramètres nécessaires à la régulation de la puissance réactive.

| Réglages | Paramètres | Régulation...

<table>
<thead>
<tr>
<th>Nom</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val. cons.</td>
<td>0 var</td>
</tr>
<tr>
<td>Largeur de bande</td>
<td>0 var</td>
</tr>
<tr>
<td>Temporisation T1</td>
<td>40 s</td>
</tr>
<tr>
<td>Comportement temporel T1</td>
<td>Linéaire</td>
</tr>
<tr>
<td>Activer la temporisation T2</td>
<td>Désactivé</td>
</tr>
<tr>
<td>Temporisation T2</td>
<td>10 s</td>
</tr>
</tbody>
</table>

Figure 138: Régulation de la puissance réactive

1. Sélectionnez l'option de menu Réglages > Paramètres > Régulateur changeur de prises en charge > Régulation de la puissance réactive.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Valeur de consigne

Le paramètre sert à régler la valeur de consigne de la régulation de la puissance réactive.

Largeur de bande

Ce paramètre permet de régler l'écart de puissance réactive maximal admissible par rapport à la valeur de consigne.

Temporisation T1

La temporisation T1 temporise l'émission d'une instruction de commande pour une période définie. Elle prévient ainsi les manoeuvres inutiles lorsque la plage de largeur de bande est provisoirement quittée.
Comportement avec la temporisation T1

Si la variable de régulation 5 est à l'intérieur de la largeur de bande réglée 6, aucune instruction de commande n'est envoyée au mécanisme d'entraînement pour la manœuvre. Aucune instruction de commande n'est non plus envoyée au mécanisme d'entraînement lorsque la variable de régulation se trouve encore dans la temporisation T1 4 réglée retourne dans la plage de largeur de bande 6. Si, toutefois, la variable de régulation sort de la largeur de bande réglée pendant une période prolongée C, une instruction de commande est générée après écoulement de la temporisation T1 réglée D. Le changeur de prises en charge commute dans le sens Augmenter ou Diminuer pour retourner dans la largeur de bande.

![Diagramme de comportement de la fonction de régulation avec temporisation T1](image)

Figure 139: Comportement de la fonction de régulation avec temporisation T1

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Limite supérieure de la largeur de bande</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Valeur de consigne</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Limite inférieure de la largeur de bande</td>
<td>6</td>
</tr>
</tbody>
</table>

a La variable de régulation est en dehors de la largeur de bande. La temporisation T1 commence à s’écouler.

B La variable de régulation est revenue dans la plage de largeur de bande avant l'expiration de la temporisation T1.

C La variable de régulation est en dehors de la largeur de bande. La temporisation T1 commence à s’écouler.

D Variable de régulation toujours en dehors de la largeur de bande jusqu'à expiration de la temporisation T1. La manœuvre commence.
Comportement temporel T1

Ce paramètre sert à régler le comportement temporel de la temporisation T1. Vous avez le choix parmi les options suivantes :

- Comportement temporel linéaire
- Comportement temporel intégral

Comportement temporel linéaire

En cas de comportement temporel linéaire, l'appareil réagit indépendamment de l'écart de tension par une temporisation constante.

Comportement temporel intégral

En cas de comportement temporel intégral, l'appareil réagit en fonction de l'écart de tension par une temporisation variable. Plus l'écart de tension (ΔU) est grand en référence à la largeur de bande (B) paramétrée, plus la temporisation est courte. L'appareil réagit alors plus vite aux importants changements de tension dans le réseau. La conséquence en est une plus grande précision de régulation et l'augmentation du nombre de manœuvres.

![Diagramme de comportement temporel intégral](image)

Figure 140: Diagramme de comportement temporel intégral

<table>
<thead>
<tr>
<th>ΔU/B</th>
<th>Écart de tension « ΔU » en % de la valeur de consigne par rapport à la largeur de bande paramétrée « B » en % de la valeur de consigne</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Paramètre « Temporisation T1 »</td>
</tr>
</tbody>
</table>

Temporisation T2

Ce paramètre sert à régler la temporisation T2. La temporisation T2 sert à compenser plus rapidement les importants écarts de tension.

La temporisation T2 ne devient effective que lorsque plus d'un changement de prise est nécessaire pour corriger l'écart de tension. La première impulsion de sortie a lieu après la temporisation réglée T1. Une fois la temporisation réglée T2 écoulée, des impulsions supplémentaires sont émises dans le but de corriger l'écart de tension actuel.
Les conditions ci-après doivent être remplies pour le réglage de la temporisation T2 :

▪ la valeur de la temporisation T2 doit être supérieure à la durée de l'impulsion de manœuvre.

▪ la valeur de la temporisation T2 doit être supérieure au temps de fonctionnement maximal du mécanisme d'entraînement.

▪ la valeur de la temporisation T2 doit être inférieure à la valeur de la temporisation T1 réglée.

Si la variable de régulation 5 quitte la largeur de bande réglée pour une durée prolongée 4, une impulsion de commande est envoyée au mécanisme d'entraînement après expiration de la temporisation T1 réglée 6. Si la variable de régulation se trouve toujours en dehors de largeur de bande, la temporisation T2 B commence à s'écouler. Après expiration de la temporisation T2, une impulsion de commande est à nouveau envoyée au mécanisme d'entraînement pour la manœuvre C pour le retour dans la largeur de bande.
La variable de régulation est en dehors de la largeur de bande. La temporisation T1 commence à s’écouler.

Temporisation T1 écoulée. Manœuvre déclenchée.

Temporisation T2 écoulée. Manœuvre déclenchée.

Activer la temporisation T2
Le paramètre sert à activer ou désactiver la temporisation T2.

9.18 Régulation de la puissance active (en option)
Cette section décrit tous les paramètres nécessaires à la fonction de régulation de la puissance active.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val. cons.</td>
<td>0.0 MW</td>
</tr>
<tr>
<td>Largeur de bande</td>
<td>0.0 MW</td>
</tr>
<tr>
<td>Temporisation T1</td>
<td>40 s</td>
</tr>
<tr>
<td>Comportement temporel T1</td>
<td>Linéaire</td>
</tr>
<tr>
<td>Activer la temporisation T2</td>
<td>Désactivé</td>
</tr>
<tr>
<td>Temporisation T2</td>
<td>10 s</td>
</tr>
</tbody>
</table>

Figure 142: Régulation de la puissance active

1. Sélectionnez l’option de menu Régulations > Paramètres > Régulateur changeur de prises en charge > Régulation puissance active.
2. Sélectionnez le paramètre souhaité.
3. Règlez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Valeur de consigne
Ce paramètre sert à régler la valeur de consigne de la régulation de la puissance active.

Largeur de bande
Ce paramètre permet de régler l’écart de puissance réactive maximal admissible par rapport à la valeur de consigne.
Temporisation T1

La temporisation T1 temporise l'émission d'une instruction de commande pour une période définie. Elle prévient ainsi les manœuvres inutiles lorsque la plage de largeur de bande est provisoirement quittée.

Si la variable de régulation est à l'intérieur de la largeur de bande réglée, aucune instruction de commande n'est envoyée au mécanisme d'entraînement pour la manœuvre. Aucune instruction de commande n'est non plus envoyée au mécanisme d'entraînement lorsque la variable de régulation se trouvant encore dans la temporisation T1 réglée retourne dans la plage de largeur de bande. Si, toutefois, la variable de régulation sort de la largeur de bande réglée pendant une période prolongée, une instruction de commande est générée après écoulement de la temporisation T1 réglée. Le changeur de prises en charge commute dans le sens Augmenter ou Diminuer pour retourner dans la largeur de bande.

Figure 143: Comportement de la fonction de régulation avec temporisation T1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Limite supérieure de la largeur de bande</td>
</tr>
<tr>
<td>2</td>
<td>Valeur de consigne</td>
</tr>
<tr>
<td>3</td>
<td>Limite inférieure de la largeur de bande</td>
</tr>
<tr>
<td>4</td>
<td>Temporisation T1 réglée</td>
</tr>
<tr>
<td>5</td>
<td>Valeur mesurée de la variable de régulation</td>
</tr>
<tr>
<td>6</td>
<td>Plage de largeur de bande</td>
</tr>
</tbody>
</table>
Comportement temporel T1

Ce paramètre sert à régler le comportement temporel de la temporisation T1. Vous avez le choix parmi les options suivantes :
- Comportement temporel linéaire
- Comportement temporel intégral

<table>
<thead>
<tr>
<th>Comportement temporel linéaire</th>
<th>Comportement temporel intégral</th>
</tr>
</thead>
<tbody>
<tr>
<td>En cas de comportement temporel linéaire, l'appareil réagit indépendamment de l'écart de tension par une temporisation constante.</td>
<td>En cas de comportement temporel intégral, l'appareil réagit en fonction de l'écart de tension par une temporisation variable. Plus l'écart de tension ((\Delta U)) est grand en référence à la largeur de bande (B) paramétrée, plus la temporisation est courte. L'appareil réagit alors plus vite aux importants changements de tension dans le réseau. La conséquence en est une plus grande précision de régulation et l'augmentation du nombre de manœuvres.</td>
</tr>
</tbody>
</table>

Figure 144: Diagramme de comportement temporel intégral

\[\frac{\Delta U}{B} \]

Écart de tension « \(\Delta U\) » en % de la valeur de consigne par rapport à la largeur de bande paramétrée « B » en % de la valeur de consigne

1 Paramètre « Temporisation T1 »
Temporisation T2

Ce paramètre sert à régler la temporisation T2. La temporisation T2 sert à compenser plus rapidement les importants écarts de tension.

La temporisation T2 ne devient effective que lorsque plus d'un changement de prise est nécessaire pour corriger l'écart de tension. La première impulsion de sortie a lieu après la temporisation réglée T1. Une fois la temporisation réglée T2 écoulée, des impulsions supplémentaires sont émises dans le but de corriger l'écart de tension actuel.

Les conditions ci-après doivent être remplies pour le réglage de la temporisation T2 :

- la valeur de la temporisation T2 doit être supérieure à la durée de l'impulsion de manœuvre.
- la valeur de la temporisation T2 doit être supérieure au temps de fonctionnement maximal du mécanisme d'entraînement.
- la valeur de la temporisation T2 doit être inférieure à la valeur de la temporisation T1 réglée.

Si la variable de régulation quitte la largeur de bande réglée pour une durée prolongée, une impulsion de commande est envoyée au mécanisme d'entraînement après expiration de la temporisation T1 réglée. Si la variable de régulation se trouve toujours en dehors de largeur de bande, la temporisation T2 commence à s'écouler. Après expiration de la temporisation...
sation T2, une impulsion de commande est à nouveau envoyée au méca-
nisme d’entraînement pour la manoeuvre C pour le retour dans la largeur de
bande.

Figure 145: Comportement de la fonction de régulation avec temporisation T1 et T2

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Limite supérieure de la largeur de bande</td>
<td>4</td>
<td>Temporisation T1 et temporisation T2 réglées.</td>
</tr>
<tr>
<td>2</td>
<td>Valeur de consigne</td>
<td>5</td>
<td>Valeur mesurée de la variable de régulation</td>
</tr>
<tr>
<td>3</td>
<td>Limite inférieure de la largeur de bande</td>
<td>6</td>
<td>Plage de largeur de bande</td>
</tr>
<tr>
<td>a</td>
<td>La variable de régulation est en dehors de la largeur de bande. La temporisation T1 commence à s’écouler.</td>
<td>B</td>
<td>Temporisation T1 écoulée. Manœuvre déclenchée.</td>
</tr>
<tr>
<td>C</td>
<td>Temporisation T2 écoulée. Manœuvre déclenchée.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activer la temporisation T2

Le paramètre sert à activer ou désactiver la temporisation T2.

9.19 Données du transformateur de mesure

Les rapports de transformation et l'ensemble de mesure des transformateurs de tension et d'intensité utilisés dans l'installation peuvent être réglés avec les paramètres suivants. L’appareil utilise ces informations pour calculer et
afficher, à partir des valeurs de mesure saisies, les valeurs de mesure correspondantes côté primaire des transformateurs et, par la même, du transformateur.

9.19.1 Réglage des données du transformateur de mesure

Les paramètres suivants servent à régler les données du transformateur de mesure. Notez également les exemples de couplages courants de transformateurs d'intensité et de transformateurs de tension [Section 9.19.2, Page 214].

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Données transformateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Tension primaire du TT</td>
<td>100 kV</td>
<td></td>
</tr>
<tr>
<td>Tension secondaire du TT</td>
<td>100 V</td>
<td></td>
</tr>
<tr>
<td>Intensité primaire du TI</td>
<td>100 a</td>
<td></td>
</tr>
<tr>
<td>Courant secondaire transfo. mesure</td>
<td>1 A</td>
<td></td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>0°</td>
<td></td>
</tr>
<tr>
<td>Couplage du transformateur de tension primaire</td>
<td>Tension de phase monophasée</td>
<td></td>
</tr>
<tr>
<td>Couplage du transformateur d'homéométrie</td>
<td>Courant de phase monophasé</td>
<td></td>
</tr>
</tbody>
</table>

Figure 146: Données transfo. mesure

1. Sélectionnez l'option de menu Réglages > Paramètres > Réseau > Données du transformateur de mesure.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Tension primaire du TT

Ce paramètre sert à définir la tension primaire du transformateur de tension en kV.

Tension secondaire du TT

Ce paramètre sert à régler la tension secondaire du transformateur de tension en V.

Intensité primaire du TI

Ce paramètre sert à définir l'intensité primaire du transformateur d'intensité.

Si vous utilisez la fonction optionnelle « Calcul du point chaud sur 3 enroulements différents (W1, W2, W3) », vous devez alors régler le paramètre respectivement pour W1, W2 et W3.
Courant secondaire transfo. mesure

Ce paramètre sert à régler le courant secondaire du transformateur d’intensité. Vous avez le choix parmi les options suivantes :

- 0,2 A
- 1 A
- 5 A

Si vous utilisez la fonction optionnelle « Calcul du point chaud sur 3 enroulements différents (W1, W2, W3) », le réglage de ce paramètre vaut alors pour les 3 enroulements.

Mode de mesure

Si vous effectuez la mesure de la tension et du courant avec le module de mesure triphasé, vous pouvez utiliser ce paramètre pour définir si vous avez raccordé les transformateurs de tension entre 2 phases ou entre une phase et le neutre.

Correction de l’angle de phase

Ce paramètre permet de régler la correction de l’angle de phase de votre couplage du transformateur de mesure.

Couplage du transformateur de tension

Ce paramètre permet de régler le couplage de votre transformateur de tension. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension de phase monophasée</td>
<td>Mesure dans le réseau monophasé entre le conducteur et le neutre.</td>
</tr>
<tr>
<td>Tension différentielle triphasée</td>
<td>Mesure dans le réseau triphasé entre deux conducteurs</td>
</tr>
<tr>
<td>Tension de phase triphasée</td>
<td>Mesure dans le réseau triphasé entre le conducteur et le neutre</td>
</tr>
</tbody>
</table>

Tableau 49: Couplage du transformateur de tension
Couplage du transformateur d'intensité

Ce paramètre permet de régler le couplage de votre transformateur d'intensité. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courant de phase monophasé</td>
<td>Mesure du courant de phase dans le réseau monophasé.</td>
</tr>
<tr>
<td>Courant cumulé triphasé</td>
<td>Mesure du courant différentiel dans le réseau triphasé.</td>
</tr>
<tr>
<td>Courant de phase triphasé</td>
<td>Mesure du courant de phase dans le réseau triphasé.</td>
</tr>
</tbody>
</table>

Tableau 50: Couplage du transformateur d'intensité

9.19.2 Exemples de couplages pour les transformateurs de tension et les transformateurs d'intensité

Différents exemples de couplages de transformateurs de tension et de transformateurs d'intensité, ainsi que les réglages correspondants, sont cités ci-dessous.

9.19.2.1 Mesure monophasée

Couplage 1-A

- Le transformateur de tension VT est raccordé au conducteur extérieur et au conducteur neutre.
- Le transformateur d'intensité CT est bouclé dans le conducteur extérieur.
- La tension U_{L1} et l'intensité I_{L1} sont en phase.
- La chute de tension sur un conducteur extérieur est déterminée par l'intensité I_{L1}.

Si vous utilisez ce couplage, réglez l’appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>Tension de phase monophasée</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>Courant de phase monophasé</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>0°</td>
</tr>
</tbody>
</table>

Tableau 51: Couplage 1-A

Couplage 1-B

- Le transformateur de tension VT est raccordé au conducteur extérieur L1 et au conducteur neutre.
- Le transformateur d'intensité CT est bouclé dans le conducteur extérieur L1.
- La tension U et l'intensité I sont en phase.
- La chute de tension sur un conducteur extérieur est déterminée par l'intensité \(I_{L1} \).

Si vous utilisez ce couplage, réglez l’appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>Tension de phase triphasée</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>Courant de phase triphasé</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>0°</td>
</tr>
</tbody>
</table>

Tableau 52: Couplage 1-B
Couplage 1-C

- Le transformateur de tension VT est raccordé aux conducteurs extérieurs L1 et L2.
- Le transformateur d'intensité CT1 est bouclé dans le conducteur extérieur L1 et le CT2 dans le conducteur extérieur L2.
- Les transformateurs d'intensité CT1 et CT2 sont commutés en parallèle de manière croisée (courant de somme = \(I_{L1} + I_{L2} \)).
- Le courant de somme \(I_{L1} + I_{L2} \) et la tension \(U_{L1} - U_{L2} \) sont en phase.
- La chute de tension sur un conducteur extérieur est déterminée par l'intensité : \((I_{L1} + I_{L2}) / \sqrt{3} \).

Si vous utilisez ce couplage, réglez l'appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>Tension différentielle triphasée</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>Courant cumulé triphasé</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>0°</td>
</tr>
</tbody>
</table>

Tableau 53: Couplage 1-C

Couplage 1-D

- Le transformateur de tension VT est raccordé aux conducteurs extérieurs L1 et L2.
- Le transformateur d'intensité CT est bouclé dans le conducteur extérieur L3.
9 Visualisation

- L'intensité I_L précède la tension $U_{L_1}-U_{L_2}$ de 90°. Cela correspond à un déphasage de -90°.
- La chute de tension sur un conducteur extérieur est déterminée par l'intensité I_L.

Si vous utilisez ce couplage, réglez l'appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>Tension différentielle triphasée</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>Courant de phase triphasé</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>90°</td>
</tr>
</tbody>
</table>

Tableau 54: Couplage 1-D

Couplage 1-E

- Le transformateur de tension VT est raccordé aux conducteurs extérieurs L1 et L2.
- Le transformateur d'intensité CT est bouclé dans le conducteur extérieur L2.
- L'intensité I_{L_2} précède la tension $U_{L_2}-U_{L_1}$ de 30°. Cela correspond à un déphasage de -30°.
- La chute de tension sur un conducteur extérieur est déterminée par l'intensité I_{L_2}.

Si vous utilisez ce couplage, réglez l’appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>Tension différentielle triphasée</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>Courant de phase triphasé</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>30°</td>
</tr>
</tbody>
</table>

Tableau 55: Couplage 1-E
Le transformateur de tension VT est raccordé aux conducteurs extérieurs L1 et L2.

Le transformateur d'intensité CT est bouclé dans le conducteur extérieur L1.

L'intensité I_{L1} suit la tension U_{L1}-U_{L2} de 30°. Cela correspond à un déphasage de +30° et une valeur de correction de -30°.

La chute de tension sur un conducteur extérieur est déterminée par l'intensité I_{L1}.

Si vous utilisez ce couplage, réglez l'appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>Tension différentielle triphasée</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>Courant de phase triphasé</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>-30°</td>
</tr>
</tbody>
</table>

Tableau 56: Couplage 1-F

9.19.2.2 Mesure triphasée

Les transformateurs de tension sont raccordés entre les phases.

L'intensité suit la tension de 30°.
Si vous utilisez ce couplage, réglez l'appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>-</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>-</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>0°</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
<td>Mesure triphasée (canaux 1, 2, 3)</td>
</tr>
<tr>
<td>Mode de mesure</td>
<td>Phase-phase</td>
</tr>
</tbody>
</table>

Tableau 57: Couplage 3-A

Couplage 3-B

- Mesure triphasée.
- Les transformateurs de tension sont raccordés entre la phase et le conducteur neutre.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>-</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>-</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>0°</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
<td>Mesure triphasée (canaux 1, 2, 3)</td>
</tr>
<tr>
<td>Mode de mesure</td>
<td>Phase-neutre</td>
</tr>
</tbody>
</table>

Tableau 58: Couplage 3-B

Utilisez les couplages 3-C, 3-D et 3-E uniquement dans le cas de réseaux symétriques. Dans le cas contraire, l'appareil calculera des valeurs de puissance incorrectes.
Couplage 3-C

- Mesure triphasée de la tension, mesure monophasée du courant.
- Les transformateurs de tension sont raccordés entre les phases.
- Le transformateur d'intensité est raccordé à la phase L1.

Si vous utilisez ce couplage, réglez l'appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>-</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>-</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>-30°</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
<td>Tension triphasée, courant monophasé</td>
</tr>
<tr>
<td>Mode de mesure</td>
<td>Phase-phase</td>
</tr>
</tbody>
</table>

Tableau 59: Couplage 3-C

Couplage 3-D

- Mesure triphasée de la tension, mesure monophasée du courant.
- Les transformateurs de tension sont raccordés entre les phases.
- Le transformateur d'intensité est raccordé à la phase L2.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>-</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>-</td>
</tr>
</tbody>
</table>

Couplage 3-E

- Mesure triphasée de la tension, mesure monophasée du courant.
- Les transformateurs de tension sont raccordés entre les phases.
- Le transformateur d'intensité est raccordé à la phase L3.

Paramètres

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction de l'angle de phase</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
</tr>
<tr>
<td>Mode de mesure</td>
</tr>
</tbody>
</table>

Tableau 60: Couplage 3-D

Couplage 3-E

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
</tr>
<tr>
<td>Mode de mesure</td>
</tr>
</tbody>
</table>

Tableau 61: Couplage 3-E

Couplage 3-F

Paramètres

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction de l'angle de phase</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
</tr>
<tr>
<td>Mode de mesure</td>
</tr>
</tbody>
</table>

Tableau 61: Couplage 3-E
- Mesure triphasée de la tension, mesure monophasée du courant.
- Les transformateurs de tension sont raccordés entre la phase et le conducteur neutre.
- Le transformateur d'intensité est raccordé à la phase L1.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>Tension de phase triphasée</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>Courant de phase triphasé</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>0°</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
<td>Tension triph, courant monoph</td>
</tr>
<tr>
<td>Mode de mesure</td>
<td>Phase-neutre</td>
</tr>
</tbody>
</table>

Tableau 62: Couplage 3-F

Couplage 3-G

- Mesure triphasée de la tension, mesure monophasée du courant.
- Les transformateurs de tension sont raccordés entre la phase et le conducteur neutre.
- Le transformateur d'intensité est raccordé à la phase L2.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>Tension de phase triphasée</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité</td>
<td>Courant de phase triphasé</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>-120°</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
<td>Tension triph, courant monoph</td>
</tr>
<tr>
<td>Mode de mesure</td>
<td>Phase-neutre</td>
</tr>
</tbody>
</table>

Tableau 63: Couplage 3-G
9.19.2.3 Applications spéciales

Les couplages suivants (S-1, S-2, S-3 et S-4) décrivent des cas d'exception de mesure du courant pour le calcul du point chaud sur 3 enroulements différents (par ex. transforrateur à trois enroulements ou transformateur avec enroulement tertiaire).

Utilisez ces couplages uniquement dans des réseaux symétriques. Notez que la mesure de la tension et la mesure du courant W1 doivent toujours être effectuées sur le côté sous-tension du transformateur.

- W1 : mesure de la tension et mesure du courant pour le calcul de performance et le calcul du point chaud sur l'enroulement 1
- W2 : mesure de la tension pour le calcul du point chaud sur l'enroulement 2
- W3 : mesure de la tension pour le calcul du point chaud sur l'enroulement 3
Si vous utilisez ce couplage, réglez l'appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>-</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité W1</td>
<td>Courant de phase triphasé</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité W2</td>
<td>Courant cumulé</td>
</tr>
<tr>
<td>Couplage transformateur d'intensité W3</td>
<td>Courant de phase</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>0°</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
<td>Tension triph, courant monoph</td>
</tr>
<tr>
<td>Mode de mesure</td>
<td>Phase-neutre</td>
</tr>
</tbody>
</table>

Tableau 65: Couplage S-1
Si vous utilisez ce couplage, réglez l'appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>Tension de phase triphasée</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité W1</td>
<td>Courant de phase triphasé</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité W2</td>
<td>Courant cumulé</td>
</tr>
<tr>
<td>Couplage transformateur d'intensité W3</td>
<td>Courant de phase</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>0°</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
<td>Mesure monophasée : canal 1</td>
</tr>
<tr>
<td>Mode de mesure</td>
<td>-</td>
</tr>
</tbody>
</table>

Tableau 66: Couplage S-2
Si vous utilisez ce couplage, réglez l'appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>-</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité W2</td>
<td>Courant de phase triphasé</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité W3</td>
<td>Courant de phase</td>
</tr>
<tr>
<td>Couplage transformateur d'intensité W3</td>
<td>Courant de phase</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>0°</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
<td>Tension triphasée, courant monophasé</td>
</tr>
<tr>
<td>Mode de mesure</td>
<td>Phase-phase</td>
</tr>
</tbody>
</table>

Tableau 67: Couplage S-3
Si vous utilisez ce couplage, réglez l'appareil comme suit :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplage du transformateur de tension</td>
<td>Tension différentielle triphasée</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité W2</td>
<td>Courant de phase triphasé</td>
</tr>
<tr>
<td>Couplage du transformateur d'intensité W3</td>
<td>Courant de phase</td>
</tr>
<tr>
<td>Correction de l'angle de phase</td>
<td>-30°</td>
</tr>
<tr>
<td>Canaux de mesure UI</td>
<td>Mesure monophasée : canal 1</td>
</tr>
<tr>
<td>Mode de mesure</td>
<td>-</td>
</tr>
</tbody>
</table>

Tableau 68: Couplage S-4
9.20 Mesure

Les paramètres ci-après servent à configurer la mesure du courant et de la tension.

<table>
<thead>
<tr>
<th>Nom</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode de régulation</td>
<td>Monophasé</td>
</tr>
<tr>
<td>Variable réglée</td>
<td>L1N ou L1A,2</td>
</tr>
<tr>
<td>Canaux de mesures UI</td>
<td>Mesure triph : canaux 1, 2, 3</td>
</tr>
</tbody>
</table>

1. Sélectionnez l’option de menu **Réglages > Paramètres > Réseau > Mesure**.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

9.20.1 Canaux de mesure UI

Si vous effectuez la mesure de la tension et du courant avec le module de mesure triphasé UI 3, vous pouvez utiliser ce paramètre pour régler les canaux de mesure à utiliser :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesure monophasée : canal 1</td>
<td>L’appareil utilise un canal pour la mesure de la tension et un canal pour la mesure du courant.</td>
</tr>
<tr>
<td>Mesure triphasée : canal 1, 2, 3</td>
<td>L’appareil utilise trois canaux pour la mesure de la tension et trois pour la mesure du courant.</td>
</tr>
<tr>
<td>Tension triph, courant monoph</td>
<td>L’appareil utilise trois canaux pour la mesure de la tension et un canal pour la mesure du courant.</td>
</tr>
</tbody>
</table>

Tableau 69: Canaux de mesure UI
9.20.2 Variante de régulation

Si vous effectuez la mesure de la tension et du courant avec le module de mesure triphasée UI 3 et utilisez le mode de régulation « Monophasée », vous pouvez utiliser ce paramètre pour sélectionner la phase à utiliser pour la régulation de la tension. Vous avez le choix parmi les options suivantes :

- L1/N ou L1/L2
- L2/N ou L2/L3
- L3/N ou L3/L1

9.20.3 Mode de régulation

Si vous effectuez la mesure de la tension et du courant avec le module de mesure triphasée UI 3, vous pouvez utiliser ce paramètre pour définir si vous voulez effectuer une régulation de la tension monophasée ou une régulation de la tension sur base de la valeur moyenne des trois phases. Vous avez le choix parmi les options suivantes :

- Monophasée : la régulation automatique de la tension repose sur une phase sélectionnée. De même, la surveillance des valeurs limites, la compensation de ligne et la marche en parallèle s'effectuent selon la méthode de minimisation du courant réactif de circulation sur la phase sélectionnée.
- Régulation sur base de la valeur moyenne : la régulation automatique de la tension a lieu sur base de la valeur moyenne des trois phases. De même, la surveillance des valeurs limites, la compensation de ligne et la marche en parallèle s'effectuent selon la méthode de minimisation du courant réactif de circulation sur base de la valeur moyenne des 3 phases.

Si vous activez l'option de régulation sur base de la valeur moyenne, la régulation automatique de la tension est bloquée en cas de panne de la mesure de tension ou de la mesure du courant de l'une des trois phases.

9.20.4 Affichage facteur puissance négatif

Ce paramètre sert à régler l’option d'affichage d'un facteur de puissance négatif par l'appareil. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrêt</td>
<td>L'appareil affiche toujours un facteur de puissance positif.</td>
</tr>
<tr>
<td>P > 0</td>
<td>L'appareil affiche un facteur de puissance négatif lorsque la puissance active est positive.</td>
</tr>
<tr>
<td>P < 0</td>
<td>L'appareil affiche un facteur de puissance négatif lorsque la puissance active est négative.</td>
</tr>
<tr>
<td>Q > 0</td>
<td>L'appareil affiche un facteur de puissance négatif lorsque la puissance réactive est positive.</td>
</tr>
<tr>
<td>Q < 0</td>
<td>L'appareil affiche un facteur de puissance négatif lorsque la puissance réactive est négative.</td>
</tr>
</tbody>
</table>

Tableau 70: Régler l'affichage du facteur de puissance
9.21 Compensation de ligne

La fonction de compensation sert à compenser la chute de tension dépendante de la charge entre le transformateur et le consommateur. L’appareil offre deux méthodes de compensation à cet effet :
- Compensation R-X
- Compensation Z

9.21.1 Compensation R-X

La compensation R-X peut compenser les pertes de tension dans les lignes et de garantir, par là même, la tension correcte du consommateur. Ceci nécessite les données de ligne exactes. Dès que toutes les données de ligne sont entrées, l’appareil calcule automatiquement la chute de tension ohmique et inductive qu’il prend en compte lors de la régulation automatique de la tension.

Figure 148: Couplage équivalent de la compensation R-X

Figure 149: Représentation du curseur de la compensation R-X
Pour utiliser la compensation R-X, vous devez entrer les données de ligne suivantes :

- Exposant linéique de propagation ohmique en mΩ/m
- Exposant linéique de propagation inductif en mΩ/m
- Longueur de câble en km

![Table de réglages](image)

Figure 150: Compensation

1. Sélectionnez l’option de menu **Réglages > Paramètres > Réseau > Compensation**.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.
9.21.2 Compensation Z

Pour maintenir constante la tension du consommateur, vous pouvez activer une augmentation de tension dépendante du courant à l’aide de la compensation Z. Vous pouvez également définir une valeur limite pour éviter des tensions trop élevées dans le transformateur.

![Figure 151: Compensation Z](image)

Pour utiliser la compensation Z, vous devez calculer l’augmentation de tension (ΔU) en tenant compte du courant. Utilisez la formule suivante à cet effet :

$$\Delta U = \frac{U_{Tr} - U_{Load}}{U_{Load}} \times \frac{I_N \times k_{CT}}{I} \times 100\%$$

<table>
<thead>
<tr>
<th>ΔU</th>
<th>Augmentation de tension</th>
<th>I</th>
<th>Courant de service en A</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Tr}</td>
<td>Tension du transformateur en cas d'intensité I</td>
<td>I_N</td>
<td>Courant nominal en A au raccordement du transformateur d'intensité</td>
</tr>
<tr>
<td>U_{Load}</td>
<td>Tension d'extrémité de ligne en cas d'intensité I et de position de service identique du changeur de prises en charge</td>
<td>k_{CT}</td>
<td>Rapport de transformation du transformateur d'intensité</td>
</tr>
</tbody>
</table>

Exemple de calcul : $U_{Tr} = 100,1$ V, $U_{Load} = 100,0$ V, $I_N = 5$ A, $k_{CT} = 200$ A/5 A, $I = 100$ A

Équivaut à une augmentation de tension ΔU de 0,2%
9.22 Marche en parallèle (en option)

La marche en parallèle des transformateurs sert à augmenter la puissance traversante ou la puissance de court-circuit sur un site. L'appareil offre des fonctions spécifiques pour la régulation des transformateurs.

Conditions de la marche en parallèle

Les conditions générales suivantes doivent être respectées pour la marche en parallèle de transformateurs :

- Tensions assignées identiques
- Rapport de puissance du transformateur (< 3 : 1)
- Écart maximal des tensions de court-circuit (U_{K}) des transformateurs en marche en parallèle ≤ 10 %
- Nombre identique de groupes de commande
- Dans le cas de la marche en parallèle avec communication CAN : il faut utiliser des transformateurs d'intensité avec des valeurs de raccordement identiques pour tous les appareils en marche en parallèle.

9.22.1 Méthodes de marche en parallèle

Vous pouvez exécuter la marche en parallèle avec différentes méthodes.
9.22.1.1 Synchronisation de prise

Dans le cas de la méthode de marche en parallèle Synchronisation de prise, un régulateur de tension fonctionne comme Maître et tous les autres régulateurs de tension fonctionnent comme Esclaves.

Le Maître assure la régulation de la tension et envoie ses positions de prise actuelles à tous les Esclaves par le bus CAN. Les Esclaves comparent la position de prise reçue avec leur propre position de prise. Si la position de prise n’est pas identique, les Esclaves commutent sur la position de prise reçue par le Maître. De cette manière, les transformateurs en marche en parallèle se trouvent toujours dans la même position de prise.

Vous pouvez spécifier si le Maître transmet le changement de position de prise avant ou après le changement de prise proprement dit à l’Esclave. Ainsi, les appareils commutent soit de manière séquentielle (d’abord le Maître, ensuite les Esclaves) ou de manière synchrone (Maître et Esclaves simultanément).

En cas de différence de prise entre le Maître et les Esclaves, le Maître n’envoie aucune instruction de commande au mécanisme d’entraînement jusqu’à ce que tous les Esclaves aient atteint la même position de prise. Si la différence de prise persiste plus longtemps que la temporisation réglée pour les messages d’erreur de marche en parallèle, le Maître déclenche l’événement Différence de prise par rapport à l’Esclave.

Vous pouvez définir explicitement les régulateurs de tension comme Maître et Esclaves, ou régler une définition automatique sur la base de l'adresse du bus CAN.

Pour la méthode de marche en parallèle Synchronisation de prise, il faut régler les paramètres suivants :
9.22.1.2 Minimisation du courant réactif de circulation avec communication via le bus CAN

Dans le cas de la méthode de marche en parallèle Courant réactif de circulation, la marche en parallèle se déroule suivant la méthode de minimisation du courant réactif de circulation.

![Diagramme de minimisation du courant réactif de circulation avec communication via le bus CAN](image-url)
Le courant réactif de circulation est calculé à partir des courants des transformateurs et leurs angles de phase. Les régulateurs de tension du groupe de marche en parallèle échangent ces informations via le bus CAN. Un écart de tension proportionnel au courant réactif de circulation est ajouté aux régulateurs de tension à régulation autonome comme correction de l'écart de tension déterminé, en fonction de la tension de mesure. Cet écart de tension supplémentaire peut être réduit ou augmenté à l'aide du paramètre Sensibilité au courant réactif de circulation.

La méthode de courant réactif de circulation se prête aux transformateurs en marche en parallèle avec puissance nominale et tension de court-circuit U_k comparables ainsi qu'aux couplages avec tension de prise identique et différente. Dans ces cas, aucune information sur la position de prise n'est nécessaire.

Notez que les conditions suivantes doivent être remplies pour la méthode de marche en parallèle « Minimisation du courant réactif de circulation » :

- Vous devez utiliser des transformateurs d'intensité avec des valeurs de raccordement identiques pour tous les transformateurs en marche en parallèle.
- Si vous voulez exécuter la marche en parallèle avec des appareils existants, vous devez activer le paramètre Rétrofit TAPCON® 2xx [⇒ Section 9.22.3, Page 242].

Pour la méthode de marche en parallèle Minimisation du courant réactif de circulation avec communication via le bus CAN, il faut régler les paramètres suivants :

- Activer la marche en parallèle
- Méthode de marche en parallèle : Courant réactif de circulation
- Adresse du bus CAN
- Sensibilité au courant réactif de circulation
- Limite blocage cour. réac. circulation
- Erreur en absence de communication
- Comportement en absence de communication
- Temporisation d'erreurs de marche en parallèle
9.22.1.3 **Minimisation du courant réactif de circulation sans communication via le bus CAN**

Cette méthode permet d'exploiter plusieurs régulateurs de tension en marche en parallèle avec minimisation du courant réactif de circulation sans connexion de communication (bus CAN).

![Diagram of circuit](image)

Figure 155: Minimisation du courant réactif de circulation sans communication via le bus CAN

Le courant réactif de circulation est calculé à l'aide des deux paramètres Facteur de puissance de consigne et Type de charge de consigne et du courant de transformateur mesuré. Un écart de tension proportionnel au courant réactif de circulation est ajouté aux régulateurs de tension à régulation auto-nome comme correction de l'écart de tension déterminé, en fonction de la tension de mesure. Cet écart de tension supplémentaire dépend de l'écart du facteur de puissance mesuré par rapport au facteur de puissance de consigne.

Pour la méthode de facteur de puissance, vous devez connaître les conditions de votre réseau pour régler correctement les paramètres de l'appareil.

La méthode de facteur de puissance se prête aux transformateurs en marche en parallèle avec puissance nominale et tension de court-circuit U_K comparables, ainsi qu'aux couplages avec tension d'échelon identique et différente. Dans ces cas, aucune information sur la position de prise n'est nécessaire.

Pour la méthode de marche en parallèle Minimisation du courant réactif de circulation sans communication via le bus CAN, il faut régler les paramètres suivants :

- Activer la marche en parallèle
- Méthode de marche en parallèle : Facteur de puissance
- Sensibilité au courant réactif de circulation
- Limite de blocage du courant réactif de circulation
- Facteur de puissance de consigne
- Type de charge de consigne
- Temporisation d'erreurs de marche en parallèle
Notez que les paramètres « Erreur en l’absence de communication » et « Comportement en l’absence de communication » n’ont aucune fonction avec la méthode de marche en parallèle Minimisation du courant réactif de circulation sans communication via le bus CAN.

9.22.2 Configuration de la marche en parallèle

Dans l'option de menu **Marche en parallèle** vous pouvez régler les paramètres nécessaires à la marche en parallèle des transformateurs.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Marche en parallèle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Activer la marche en parallèle</td>
<td>Marche</td>
<td></td>
</tr>
<tr>
<td>Méthode de marche en parallèle</td>
<td>Maître</td>
<td></td>
</tr>
<tr>
<td>Adresse du bus CAN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sensibilité au courant réactif de...</td>
<td>0.8 %</td>
<td></td>
</tr>
<tr>
<td>Limite de blocage du courant réac...</td>
<td>20.0 %</td>
<td></td>
</tr>
<tr>
<td>Facteur de puissance de consigne</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Type de charge de consigne</td>
<td>Inductif</td>
<td></td>
</tr>
<tr>
<td>Blocage de courant Maître / Esclav...</td>
<td>Amt</td>
<td></td>
</tr>
<tr>
<td>Différence de prise maximale</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Comport. commut. Maître / Esclave</td>
<td>Séquentiel</td>
<td></td>
</tr>
<tr>
<td>Erreur en absence de communication</td>
<td>Pas d’erreur</td>
<td></td>
</tr>
<tr>
<td>Comportement en l’absence de comm.</td>
<td>Régulation indépendante</td>
<td></td>
</tr>
<tr>
<td>Erreur de marche en parallèle tem...</td>
<td>10 s</td>
<td></td>
</tr>
</tbody>
</table>

Figure 156: Marche en parallèle

1. Sélectionnez l’option de menu **Réglages > Paramètres > Réseau > Marche en parallèle**.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

Activer la marche en parallèle

Ce paramètre sert à activer ou désactiver la marche en parallèle.
9.22.2.1 Réglage de la méthode de marche en parallèle

Ce paramètre sert à régler la méthode de marche en parallèle. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maître</td>
<td>L'appareil est défini comme Maître.</td>
</tr>
<tr>
<td>Esclave</td>
<td>L'appareil est défini comme Esclave.</td>
</tr>
<tr>
<td></td>
<td>Si aucun Maître n'est détecté, l'appareil avec la plus petite adresse du bus CAN est automatiquement défini comme Maître. Tous les autres appareils sont définis comme Esclaves.</td>
</tr>
<tr>
<td>Courant réactif circula.</td>
<td>Méthode de marche en parallèle Minimisation du courant réactif de circulation avec communication via le bus CAN</td>
</tr>
<tr>
<td></td>
<td>[► Section 9.22.1.2, Page 235]</td>
</tr>
<tr>
<td>Facteur de puissance</td>
<td>Méthode de marche en parallèle Minimisation du courant réactif de circulation sans communication via le bus CAN</td>
</tr>
<tr>
<td></td>
<td>[► Section 9.22.1.3, Page 237]</td>
</tr>
</tbody>
</table>

Tableau 72: Réglage de la méthode de marche en parallèle

Ne changez la méthode de marche en parallèle que si les changeurs de prises en charge n'effectuent pas de changement de prise.

Pour sélectionner la méthode de marche en parallèle, procédez comme suit :

1. Sélectionnez l’option de menu Réglages > Paramètres > Marche en parallèle > Méthode de marche en parallèle.
2. Sélectionnez l’option souhaitée.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Adresse du bus CAN

Ce paramètre sert à assigner une adresse du bus CAN à l’appareil. Pour permettre une communication entre tous les appareils via le bus CAN Bus CAN, il est nécessaire de définir un identifiant pour chaque appareil. Si la valeur 0 est réglée, une communication ne sera pas possible.
Sensibilité au courant réactif de circulation

Ce paramètre permet de régler l'influence du courant réactif de circulation sur le calcul de l'écart de tension. Plus la valeur réglée est grande, plus l'écart de tension calculé est grand en raison du courant réactif de circulation.

Pour le calcul de la sensibilité du courant réactif de circulation idéal, référez-vous à la section correspondante dans le chapitre Mise en service.

Limite de blocage du courant réactif de circulation

Ce paramètre est utilisé pour le réglage de la valeur limite du courant réactif de circulation maximal admissible. Cette valeur se rapporte au courant nominal du transformateur d'intensité. Si, pendant la marche en parallèle, le courant réactif de circulation dépasse la valeur limite réglée, l'appareil déclenche l'événement Limite de blocage courant réactif de circulation dépassée. Tous les appareils se trouvant dans le groupe de marche en parallèle sont bloqués.

Facteur de puissance de consigne

Ce paramètre sert à régler le facteur de puissance que le transformateur possède dans les conditions de fonctionnement normales. Si le facteur de puissance mesuré diffère du facteur de puissance de consigne, l'appareil calcule une valeur de correction qui est ajoutée à l'écart de tension.

Entrez un facteur de puissance de consigne différent de 0. Si vous entrez un facteur de puissance de consigne égal à 0, l'appareil ne pourra pas calculer la correction de tension.

Type de charge de consigne

Ce paramètre sert à régler le type de charge que le transformateur possède dans les conditions de fonctionnement normales.

Vous pouvez définir le type de charge à l'aide de la différence d'angle de phase entre la tension et le courant. Pour calculer la différence d'angle de phase, procédez comme suit :

\[\phi_{ui} = \phi_U - \phi_I \]

Figure 157: Calcul de la différence d'angle de phase

- \(\phi_{ui} \): Différence d'angle de phase entre la tension et le courant
- \(\phi_U \): Angle de phase de la tension
- \(\phi_I \): Angle de phase du courant
Vous devez sélectionner l'option suivante conformément à la différence d'angle de phase calculée :

- $\varphi_{ui} > 0$: inductif
- $\varphi_{ui} < 0$: capacitif

Blocage de courant Maître / Esclave

Ce paramètre sert à activer la limite de blocage du courant réactif de circulation pour la méthode de marche en parallèle Synchronisation de prise. Il permet à l'appareil de calculer et de surveiller le courant réactif de circulation au même titre que pour la méthode de marche en parallèle Minimisation du courant réactif de circulation, et offre la fonction de sécurité de blocage du courant réactif de circulation. Réglez la valeur limite à l'aide du paramètre Blocage du courant réactif de circulation.

Comport. commut. Maître / Esclave

Ce paramètre sert à régler le comportement de commutation pour la méthode de marche en parallèle Synchronisation de prise. Vous avez le choix parmi les options suivantes :

- Mode séquentiel : lors d'un changement de prise, le Maître transmet sa nouvelle position de prise via le bus CAN aux Esclaves dès qu'il a terminé son changement de prise. Cela entraîne des changements de prise successifs (séquentiels) du Maître et des Esclaves.
- Mode synchrone : lors d'un changement de prise, le Maître transmet sa nouvelle position de prise via le bus CAN aux Esclaves lorsque le changement de prise du Maître commence. Cela entraîne des changements de prise presque simultanés (synchrones) du Maître et des Esclaves.

Différence de prise maximale

Ce paramètre sert à régler sur l'Esclave la différence de prise maximale admissible entre l'Esclave et le Maître.

Si la différence de prise est supérieure à la différence de prise maximale réglée par rapport au Maître, l'Esclave est bloqué et n'essaie plus d'atteindre la position de prise du Maître. Après la temporisation réglée pour les messages d'erreur de marche en parallèle, l'Esclave déclenche le message Dif- férence de prise autorisée par rapport au Maître dépassée.

Erreur en absence de communication

Ce paramètre sert à définir si une erreur existe lorsque l'appareil ne reçoit pas de messages via le bus CAN ou lorsqu'aucun autre participant au bus CAN ne se trouve dans le même groupe de marche en parallèle.

Comportement en l'absence de communication

Ce paramètre sert à régler le comportement du régulateur de tension lorsqu'une communication via le bus CAN n'est pas possible.
Le réglage de ce paramètre a uniquement de l'effet si vous avez sélectionné l'option **Erreur** pour le paramètre **Erreur en l'absence de communication**.

Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Régulation indépendante</td>
<td>L'appareil passe de la marche en parallèle à la régulation automatique de la tension normale</td>
</tr>
<tr>
<td>Blocage auto</td>
<td>La régulation automatique de la tension est bloquée.</td>
</tr>
<tr>
<td>Interpolation cosφ</td>
<td>Poursuite de la marche en parallèle avec valeurs interpolées (possible seulement avec la méthode de marche en parallèle du courant réactif de circulation)</td>
</tr>
<tr>
<td>Facteur de puissance</td>
<td>Méthode de marche en parallèle Minimisation du courant réactif de circulation sans communication via le bus CAN [►Section 9.22.1.3, Page 237]</td>
</tr>
</tbody>
</table>

Tableau 73: Comportement en l'absence de communication

Temporisation d’erreurs de marche en parallèle

Ce paramètre sert à régler la temporisation d'un message d'erreur de marche en parallèle pour ne pas afficher de message de défaut provisoire lorsque les mécanismes d'entraînement en marche en parallèle ont des durées de fonctionnement différentes.

9.22.3 Modernisation TAPCON® 2xx

La fonction Modernisation TAPCON® 2xx sert à exploiter l'appareil en marche en parallèle avec des appareils existants. La marche en parallèle est prise en charge avec les appareils existants suivants :

- TAPCON® 230 pro/expert
- TAPCON® 240
- TAPCON® 250
- TAPCON® 260
- TRAFOGUARD® avec paquet optionnel « Régulation de la tension »
Si vous voulez exploiter plusieurs appareils en marche en parallèle avec des appareils existants, vous devez activer la fonction Modernisation TAPCON® 2xx pour chaque appareil.

Figure 158: Marche en parallèle de 2 appareils avec un TAPCON® 2xx. La fonction Modernisation TAPCON® 2xx doit être activée sur les deux appareils.

1. Sélectionnez l’option de menu Réglages > Paramètres > Réseau > Rétrofit TAPCON® 2xx.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

9.22.4 Détection de marche en parallèle via les entrées de groupe (en option)

Vous pouvez commander jusqu’à 16 transformateurs en marche en parallèle dans un groupe ou dans deux groupes sans identification de la topologie de l’installation.
9 Visualisation

Les appareils en marche en parallèle utilisent exclusivement les informations transmises via le bus CAN par les appareils se trouvant dans le même groupe de marche en parallèle.

Les entrées GROUPE PARALLÈLE 1 et GROUPE PARALLÈLE 2 peuvent être utilisées pour affecter l'appareil à un groupe de marche en parallèle. Si vous appliquez un signal aux deux entrées, l'appareil est alors affecté aux deux groupes de marche en parallèle.

Si aucun groupe de marche en parallèle n'est affecté à un appareil, ce dernier ne participe pas à la marche en parallèle et effectue une régulation de la tension de manière autonome.

9.23 Fonctions de surveillance

Pour différentes valeurs mesurées, vous pouvez définir des valeurs limites qui sont surveillées par l'appareil.

9.23.1 Surveillance de la tension

Pour la surveillance de la tension de sortie actuelle du transformateur, vous pouvez régler quatre valeurs limites :

- Basse tension U<<: Limite inférieure 2
- Basse tension U<: Limite inférieure 1
- Surtension U>: Limite supérieure 1
- Surtension U>>: Limite supérieure 2
Si la valeur mesurée est supérieure à la limite supérieure (> ou >>) ou inférieure à la limite inférieure (< ou <<), l’appareil envoie un message d’événement.

![Diagram showing voltage levels and time intervals](image)

Figure 160: Surveillance de la tension avec exemple de dépassement de la valeur limite Surtension U>>

<table>
<thead>
<tr>
<th>U>></th>
<th>Surtension U>></th>
<th>U></th>
<th>Surtension U></th>
</tr>
</thead>
<tbody>
<tr>
<td>U<</td>
<td>Basse tension U<</td>
<td>U<<</td>
<td>Basse tension U<<</td>
</tr>
<tr>
<td>tₜ</td>
<td>Temporisation</td>
<td>tₑ</td>
<td>Durée événem.</td>
</tr>
<tr>
<td>H</td>
<td>Hystérésis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vous pouvez définir les paramètres suivants pour chaque valeur limite :

- Valeur limite relative/absolue
- Valeur limite [V] : valeur limite absolue
- Valeur limite [%] : valeur limite relative à la valeur de consigne de tension (uniquement pour les appareils avec régulation de la tension)
- Valeur limite hystérésis
- Valeur limite temporisation
- Valeur limite comportement (uniquement pour les appareils avec régulation de la tension)
1. Sélectionnez l'option de menu Réglages > Paramètres > Réseau > Surveillance de la tension.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Mode

Ce paramètre sert à régler la valeur limite que vous souhaitez utiliser :
- Absolue : l'appareil utilise la valeur limite absolue en V.
- Relative : l'appareil utilise la valeur limite relative en %, en référence à la valeur de consigne de tension.

Absolue

Ce paramètre est utilisé pour entrer une valeur limite absolue en V (en référence à la valeur secondaire du transformateur de tension) ou en kV (en référence à la valeur primaire du transformateur de tension). Contrairement à la valeur relative, cette limite n'est pas dépendante d'une valeur de référence.

Pourcentuel

Ce paramètre sert à régler la valeur limite par rapport à la valeur de consigne de tension.

Hystérésis

Ce paramètre sert à régler l'hystérésis. Si la valeur de mesure fluctue autour d'une valeur de seuil, vous pouvez éviter des messages générés inutilement.
9.23.2 Surveillance de l'intensité

Pour la monitorisation du courant de charge actuel du transformateur, vous pouvez régler quatre valeurs limites :

- \(I<< \): Limite inférieure 2
- \(I< \): Limite inférieure 1
- \(I> \): Limite supérieure 1
- \(I>> \): Limite supérieure 2
Si la valeur mesurée est supérieure à la limite supérieure (> ou >>) ou inférieure à la limite inférieure (< ou <<), l'appareil envoie un message d'événement.

Vous pouvez définir les paramètres suivants pour chaque valeur limite :

- Valeur limite relative/absolue
- Valeur limite [A] ou [kA] : valeur limite absolue
- Valeur limite [%] : valeur limite relative au courant nominal du transformateur d'intensité. Si la mesure du courant est effectuée via l'entrée analogique (AIO), la valeur se rapporte à la valeur maximale de l'entrée analogique (par ex. 100 % = 20 mA).
- Valeur limite hystérésis
- Valeur limite temporisation
- Valeur limite comportement (uniquement pour les appareils avec régulation de la tension)
Figure 163: Surveillance de l'intensité

1. Sélectionnez l'option de menu **Réglages > Paramètres > Réseau > Surveillance du courant**.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

Mode

Ce paramètre sert à régler la valeur limite que vous souhaitez utiliser :
- **Absolue** : l'appareil utilise la valeur limite absolue en A/kA.
- **Relative** : l'appareil utilise la valeur limite relative en %, en référence au courant nominal du transformateur d'intensité.

Absolue

Ce paramètre est utilisé pour entrer une valeur limite absolue en A (en référence à la valeur secondaire du transformateur d'intensité) ou en kA (en référence à la valeur primaire du transformateur d'intensité).

Pourcentuel

Ce paramètre sert à régler la valeur limite par rapport au courant nominal du transformateur d'intensité. Si la mesure du courant est effectuée via l'entrée analogique (AIO), la valeur se rapporte à la valeur maximale de l'entrée analogique (par ex. 100 % = 20 mA).

Hystérésis

Ce paramètre sert à régler l'hystérésis. Si la valeur de mesure fluctue autour d'une valeur de seuil, vous pouvez éviter des messages générés inutilement.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Surveill...ité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Absolue</td>
<td>Absolue</td>
</tr>
<tr>
<td>Absolue</td>
<td>0.0 a</td>
<td>0.0 a</td>
</tr>
<tr>
<td>Relative</td>
<td>0.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Hystérésis</td>
<td>0.0 a</td>
<td>0.0 a</td>
</tr>
<tr>
<td>Temporisat.</td>
<td>0.0 s</td>
<td>0.0 s</td>
</tr>
<tr>
<td>Comportamientos</td>
<td>Bloque auto</td>
<td>Arrêt</td>
</tr>
</tbody>
</table>
Temporisation

Ce paramètre sert à régler la temporisation d'émission du message d'événement.

Réaction

Ce paramètre vous permet de régler le comportement de l'appareil si la valeur mesurée est supérieure à la limite supérieure (» ou ») ou inférieure à la limite inférieure (« ou »). Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Désactivée</td>
<td>Aucune réaction.</td>
</tr>
<tr>
<td>Blocage Auto</td>
<td>La régulation automatique est bloquée. Des changements de prises restent possibles en mode manuel.</td>
</tr>
<tr>
<td>Blocage Auto-Manuel</td>
<td>La régulation automatique est bloquée. Un changement de prise est impossible en mode Manuel.</td>
</tr>
</tbody>
</table>

Tableau 75: Comportement lorsqu'un message d'événement est émis

9.23.3 Surveillance de la puissance

Pour la surveillance de la puissance actuelle du transformateur, vous pouvez régler les valeurs limites suivantes :

<table>
<thead>
<tr>
<th>Valeur mesurée</th>
<th>Limite inférieure 2</th>
<th>Limite inférieure 1</th>
<th>Limite supérieure 1</th>
<th>Limite supérieure 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puissance apparente</td>
<td>S<<</td>
<td>S<</td>
<td>S></td>
<td>S>></td>
</tr>
<tr>
<td>Puissance active</td>
<td>P<<</td>
<td>P<</td>
<td>P></td>
<td>P>></td>
</tr>
<tr>
<td>Puissance réactive</td>
<td>Q<<</td>
<td>Q<</td>
<td>Q></td>
<td>Q>></td>
</tr>
<tr>
<td>Facteur de puissance (somme)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 76: Valeurs limites de surveillance de la puissance

Vous pouvez définir les paramètres suivants pour chaque valeur limite :
- Valeur limite : valeur limite absolue
- Valeur limite hystérésis
- Valeur limite temporisation
- Valeur limite comportement (uniquement pour les appareils avec régulation de la tension)
Si la valeur mesurée est supérieure à la limite supérieure (> ou >>) ou inférieure à la limite inférieure (< ou <<), l'appareil envoie un message d'événement.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Surveill...net</th>
</tr>
</thead>
<tbody>
<tr>
<td><<</td>
<td><</td>
<td>></td>
</tr>
<tr>
<td>Absolue S</td>
<td>0 VA</td>
<td>10 MVA</td>
</tr>
<tr>
<td>Hystérésis S</td>
<td>100 kVA</td>
<td>100 kVA</td>
</tr>
<tr>
<td>Temporisat. S</td>
<td>5 s</td>
<td>5 s</td>
</tr>
<tr>
<td>Comportem. S</td>
<td>Désactivé</td>
<td>Désactivé</td>
</tr>
<tr>
<td>Absolue P</td>
<td>-10 MW</td>
<td>10 MW</td>
</tr>
<tr>
<td>Hystérésis P</td>
<td>100 kW</td>
<td>100 kW</td>
</tr>
<tr>
<td>Temporisat. P</td>
<td>5 s</td>
<td>5 s</td>
</tr>
<tr>
<td>Comportem. P</td>
<td>Désactivé</td>
<td>Désactivé</td>
</tr>
<tr>
<td>Absolue Q</td>
<td>0 Mvar</td>
<td>10 Mvar</td>
</tr>
</tbody>
</table>

Figure 164: Surveillance de la puissance

1. Sélectionnez l'option de menu Réglages > Paramètres > Réseau > Surveillance de la puissance.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Absolue
Ce paramètre sert à entrer une valeur limite.

Hystérésis
Ce paramètre sert à régler l'hystérésis. Si la valeur de mesure fluctue autour d'une valeur de seuil, vous pouvez éviter des messages générés inutilement.

Temporisation
Ce paramètre sert à régler la temporisation d'émission du message d'événement.
Réaction

Ce paramètre vous permet de régler le comportement de l’appareil si la valeur mesurée est supérieure à la limite supérieure (> ou >>) ou inférieure à la limite inférieure (< ou <<). Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Règlement</th>
<th>Comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Désactivée</td>
<td>Aucune réaction.</td>
</tr>
<tr>
<td>Blocage Auto</td>
<td>La régulation automatique est bloquée. Des changements de prises restent possibles en mode manuel.</td>
</tr>
<tr>
<td>Blocage auto prise -</td>
<td>La fonction de régulation automatique n’exécute pas de changement de prise vers la position de prise Diminuer (prise -). Des changements de prises restent possibles en mode manuel.</td>
</tr>
<tr>
<td>Blocage auto prise +</td>
<td>La fonction de régulation automatique n’exécute pas de changement de prise vers la position de prise Augmenter (prise +). Des changements de prises restent possibles en mode manuel.</td>
</tr>
<tr>
<td>Blocage Auto-Manuel</td>
<td>La régulation automatique est bloquée. Un changement de prise est impossible en mode Manuel.</td>
</tr>
<tr>
<td>Blocage auto manuel prise -</td>
<td>La fonction de régulation automatique n’exécute pas de changement de prise vers la position de prise Diminuer (prise -). Vous ne pouvez pas effectuer de changement de prise en mode manuel vers la position de prise Diminuer (prise -).</td>
</tr>
<tr>
<td>Blocage auto manuel prise +</td>
<td>La fonction de régulation automatique n’exécute pas de changement de prise vers la position de prise Augmenter (prise +). Vous ne pouvez pas effectuer de changement de prise en mode manuel vers la position de prise Augmenter (prise +).</td>
</tr>
</tbody>
</table>

Tableau 77: Comportement lorsqu’un message d’événement est émis

9.23.4 Surveill. retour flux puiss.

Il y a retour du flux de puissance lorsque le courant actif est négatif. Vous pouvez régler les paramètres suivants pour cela :

- Hystérésis
- Temporisation
- Comportement
9 Visualisation

Figure 165: Surveillance du flux de puissance

2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Hystérésis
Ce paramètre sert à régler l’hystérésis. Si la valeur de mesure fluctue autour d’une valeur de seuil, vous pouvez éviter des messages générés inutilement.

Temporisation
Ce paramètre sert à régler la temporisation d’émission du message d’événement.

Comportement retour flux puissance
Ce paramètre permet de régler le comportement en cas de retour du flux de puissance. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrêt</td>
<td>• Le retour du flux de puissance négatif est ignoré.</td>
</tr>
<tr>
<td></td>
<td>• La régulation automatique reste active.</td>
</tr>
<tr>
<td>Événement seulement</td>
<td>• L’événement Retour du flux de puissance est émis.</td>
</tr>
<tr>
<td></td>
<td>• Si la compensation Z est activée, cette fonction est désactivée.</td>
</tr>
<tr>
<td></td>
<td>• La régulation automatique reste active.</td>
</tr>
</tbody>
</table>
Tableau 78: Comportement en cas de retour du flux de puissance

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Comportement</th>
</tr>
</thead>
</table>
| Blocage auto | • L’événement *Retour du flux de puissance* est émis.
• Si la compensation Z est activée, cette fonction est désactivée.
• La régulation automatique est bloquée. |
| Blocage auto-manuel | • L’événement *Retour du flux de puissance* est émis.
• Si la compensation Z est activée, cette fonction est désactivée.
• La régulation automatique est bloquée.
• Un changement de prise est impossible en mode manuel. |
| Prise cible | • L’événement *Retour du flux de puissance* est émis.
• Si la compensation Z est activée, cette fonction est désactivée.
• L’appareil engage un changement de prise vers la position de prise que vous avez définie dans le paramètre « Prise cible » [Section 9.24, Page 268].
• L’appareil bloque des changements de prise supplémentaires.
• Si aucune position n’est enregistrée, le départ sur prise cible est ignoré. La régulation automatique est bloquée. |

9.23.5 Surveillance de la position de prise (option)

Vous pouvez régler deux valeurs limites pour la monitorisation de la position de prise :
- Pos<
- Pos>

Vous pouvez définir les paramètres suivants pour chaque valeur limite.
- Valeur limite temporisation
- Valeur limite comportement
Figure 166: Surveillance de la position de prise

1. Sélectionnez l'option de menu **Réglages > Paramètres > Changeur de prises en charge > Surveillance de la position de prise**.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

Temporisation

Ce paramètre sert à régler la temporisation d'émission du message d'événement.

Valeur limite comportement

Ce paramètre sert à régler le comportement de l'appareil lorsque le message d'événement est émis. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Désactivée</td>
<td>La monitorisation de la position de prise est désactivée.</td>
</tr>
<tr>
<td>Blocage auto prise +</td>
<td>La fonction de régulation automatique n'exécute pas de changement de prise vers la position de prise Augmenter (prise +). Vous pouvez effectuer un changement de prise en mode manuel vers la position de prise Augmenter (prise +).</td>
</tr>
<tr>
<td>Blocage auto prise -</td>
<td>La fonction de régulation automatique n'exécute pas de changement de prise vers la position de prise Diminuer (prise -). Vous pouvez effectuer un changement de prise en mode manuel vers la position de prise Diminuer (prise -).</td>
</tr>
</tbody>
</table>
9 Visualisation

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocage auto manuel prise +</td>
<td>La fonction de régulation automatique n'exécute pas de changement de prise</td>
</tr>
<tr>
<td></td>
<td>vers la position de prise Augmenter (prise +). Vous ne pouvez pas effectuer</td>
</tr>
<tr>
<td></td>
<td>de changement de prise en mode manuel vers la position de prise Augmenter</td>
</tr>
<tr>
<td></td>
<td>(prise +).</td>
</tr>
<tr>
<td>Blocage auto manuel prise -</td>
<td>La fonction de régulation automatique n'exécute pas de changement de prise</td>
</tr>
<tr>
<td></td>
<td>vers la position de prise Diminuer (prise -). Vous ne pouvez pas effectuer</td>
</tr>
<tr>
<td></td>
<td>de changement de prise en mode manuel vers la position de prise Diminuer</td>
</tr>
<tr>
<td></td>
<td>(prise -).</td>
</tr>
</tbody>
</table>

Compteur de manoeuvres

Le compteur de manoeuvres de l'appareil est automatiquement incrémenté à chaque changement de prise. Ce paramètre sert à régler le nombre de changements de prise en vue, par exemple, d'un équilibrage avec le compteur de manoeuvres du mécanisme d'entraînement.

9.23.6 Surveillance de largeur de bande U

La surveillance de la largeur de bande surveille les valeurs limites suivantes sur la base de la largeur de bande [Page 200] réglée de la régulation de la tension.

- Largeur de bande supérieure
- Largeur de bande inférieure

Vous pouvez définir les paramètres suivants pour chaque valeur limite :

- Valeur limite hystérésis : entrée en pourcentage relative à la valeur de consigne de tension.
- Valeur limite temporisation

Comportement

Si la valeur mesurée est supérieure à la limite supérieure ou inférieure à la limite inférieure, l'appareil déclenche le message "Valeur limite largeur de bande sup. / valeur limite largeur de bande inf.".

La fonction « Surveillance du fonctionnement » sert à détecter un dépassement supérieur ou un dépassement inférieur d'une certaine durée de la largeur de bande. Un dépassement supérieur ou un dépassement inférieur d'une certaine durée de la largeur de bande indique un dysfonctionnement de l'appareil, puisque celui-ci ne peut pas corriger l'écart de tension.

Si la limite inférieure de la largeur de bande [Page 200] réglée est dépassée ou n'est pas atteinte, l'événement "Surveillance du fonctionnement" s'affiche après expiration de la temporisation réglée pour la surveillance du fonctionnement. L'événement est automatiquement acquitté dès que la valeur de mesure retourne dans la largeur de bande réglée.
Les paramètres suivants sont disponibles pour le réglage de la surveillance du fonctionnement :

- Surveillance du fonctionnement
- Hystérésis
- Temporisation

Tableau 79: Activer la surveillance du fonctionnement

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrêt</td>
<td>La surveillance du fonctionnement est désactivée.</td>
</tr>
<tr>
<td>Seulement auto</td>
<td>La surveillance du fonctionnement est active en mode AVR AUTO seulement.</td>
</tr>
<tr>
<td>Auto et Manuel</td>
<td>La surveillance du fonctionnement est active dans les modes AVR AUTO et AVR MANUEL</td>
</tr>
</tbody>
</table>

Hystérésis

Ce paramètre sert à régler l'hystérésis. Si la valeur de mesure fluctue autour d'une valeur de seuil, vous pouvez éviter des messages générés inutilement.
9 Temporisation

Ce paramètre sert à régler la temporisation d'émission du message d'événement.

9.23.7 Surveillance de largeur de bande Q (en option)

La surveillance de la largeur de bande surveille les valeurs limites suivantes sur la base de la largeur de bande [Page 200] réglée de la régulation de la puissance réactive.

- Largeur de bande supérieure
- Largeur de bande inférieure

Vous pouvez définir les paramètres suivants pour chaque valeur limite :

- Valeur limite hystérésis
- Valeur limite temporisation

Comportement

Si la valeur mesurée est supérieure à la limite supérieure ou inférieure à la limite inférieure, l'appareil déclenche le message Valeur limite largeur de bande sup./valeur limite largeur de bande inf.

La fonction « Surveillance du fonctionnement » sert à détecter un dépassement supérieur ou un dépassement inférieur d'une certaine durée de la largeur de bande. Un dépassement supérieur ou un dépassement inférieur d'une certaine durée de la largeur de bande indique un dysfonctionnement de l'appareil, puisque celui-ci ne peut pas corriger l'écart de tension.

Si la limite inférieure de la largeur de bande [Page 200] réglée est dépassée ou n'est pas atteinte, l'événement Surveillance du fonctionnement s'affiche après expiration de la temporisation réglée pour la surveillance du fonctionnement. L'événement est automatiquement acquitté dès que la valeur de mesure retourne dans la largeur de bande réglée.

Les paramètres suivants sont disponibles pour le réglage de la surveillance du fonctionnement :

- Surveillance du fonctionnement
- Hystérésis
- Temporisation
Figure 168: Surveillance de largeur de bande Q

1. Sélectionnez l'option de menu Réglages > Paramètres > Régulateur changeur de prises en charge > Surveillance de largeur de bande Q.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Surveillance du fonctionnement

Ce paramètre sert à régler la surveillance du fonctionnement. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrêt</td>
<td>La surveillance du fonctionnement est désactivée.</td>
</tr>
<tr>
<td>Seulement auto</td>
<td>La surveillance du fonctionnement est active en mode AVR AUTO seulement.</td>
</tr>
<tr>
<td>Auto et Manuel</td>
<td>La surveillance du fonctionnement est active dans les modes AVR AUTO et AVR MANUEL</td>
</tr>
</tbody>
</table>

Tableau 80: Activer la surveillance du fonctionnement

Hystérésis

Ce paramètre sert à régler l'hystérésis. Si la valeur de mesure fluctue autour d'une valeur de seuil, vous pouvez éviter des messages générés inutilement.

Temporisation

Ce paramètre sert à régler la temporisation d'émission du message d'événement.
9.23.8 Surveillance de largeur de bande P (en option)

La surveillance de la largeur de bande surveille les valeurs limites suivantes sur la base de la largeur de bande [Page 200] réglée de la régulation de la puissance active.

- Largeur de bande supérieure
- Largeur de bande inférieure

Vous pouvez définir les paramètres suivants pour chaque valeur limite :

- Valeur limite hystérésis
- Valeur limite temporisation

Comportement

Si la valeur mesurée est supérieure à la limite supérieure ou inférieure à la limite inférieure, l’appareil déclenche le message **Valeur limite largeur de bande sup./valeur limite largeur de bande inf.**.

La fonction « Surveillance du fonctionnement » sert à détecter un dépassement supérieur ou un dépassement inférieur d’une certaine durée de la largeur de bande. Un dépassement supérieur ou un dépassement inférieur d’une certaine durée de la largeur de bande indique un dysfonctionnement de l’appareil, puisque celui-ci ne peut pas corriger l’écart de tension.

Si la limite inférieure de la largeur de bande [Page 200] réglée est dépassée ou n’est pas atteinte, l’événement **Surveillance du fonctionnement** s’affiche après expiration de la temporisation réglée pour la surveillance du fonctionnement. L’événement est automatiquement acquitté dès que la valeur de mesure retourne dans la largeur de bande réglée.

Les paramètres suivants sont disponibles pour le réglage de la surveillance du fonctionnement :

- Surveillance du fonctionnement
- Hystérésis
- Temporisation

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Surveillance de largeur de bande P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Surveillance du fonctionnement</td>
<td>Auto et Manuel</td>
<td></td>
</tr>
<tr>
<td>Hystérésis</td>
<td>0,0 MW</td>
<td></td>
</tr>
<tr>
<td>Temporisation</td>
<td>15 min</td>
<td></td>
</tr>
<tr>
<td>Hystérésis largeur de bande inf.</td>
<td>0,0 MW</td>
<td></td>
</tr>
<tr>
<td>Largeur de bande inf. temporis.</td>
<td>2 s</td>
<td></td>
</tr>
<tr>
<td>Hystérésis largeur de bande sup.</td>
<td>0,0 MW</td>
<td></td>
</tr>
<tr>
<td>Largeur de bande sup. temporis.</td>
<td>2 s</td>
<td></td>
</tr>
</tbody>
</table>

Figure 169: Surveillance de largeur de bande P
1. Sélectionnez l’option de menu Réglages > Paramètres > Régulateur changeur de prises en charge > Surveillance de largeur de bande P.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Surveillance du fonctionnement

Ce paramètre sert à régler la surveillance du fonctionnement. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrêt</td>
<td>La surveillance du fonctionnement est désactivée.</td>
</tr>
<tr>
<td>Seulement auto</td>
<td>La surveillance du fonctionnement est active en mode AVR AUTO seulement.</td>
</tr>
<tr>
<td>Auto et Manuel</td>
<td>La surveillance du fonctionnement est active dans les modes AVR AUTO et AVR MANUEL</td>
</tr>
</tbody>
</table>

Tableau 81: Activer la surveillance du fonctionnement

Hystérésis

Ce paramètre sert à régler l’hystérésis. Si la valeur de mesure fluctue autour d’une valeur de seuil, vous pouvez éviter des messages générés inutilement.

Temporisation

Ce paramètre sert à régler la temporisation d’émission du message d’événement.
9.23.9 Surveillance symétrie phases

Si vous effectuez la mesure de la tension et du courant avec le module de mesure triphasé UI 3, vous pouvez régler les différences maximales admissibles de tension et d'angle de phase entre trois phases. La différence est calculée à partir de la valeur mesurée maximale et minimale des trois phases.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Surveill...ses</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔU</td>
<td>Δφ</td>
<td></td>
</tr>
<tr>
<td>Diff. max.</td>
<td>5.0 V</td>
<td>5.0 deg</td>
</tr>
<tr>
<td>Dépasse. comp.</td>
<td>Arrêt</td>
<td>Arrêt</td>
</tr>
<tr>
<td>Temporisat.</td>
<td>0 s</td>
<td>0 s</td>
</tr>
</tbody>
</table>

Figure 170: Surveillance symétrie phases

1. Sélectionnez l'option de menu Réglages > Paramètres > Symétrie de phase.
2. Sélectionnez le paramètre souhaité.
3. Règlez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Différence maximale

Ce paramètre est utilisé pour entrer une valeur limite de différence de tension en V (en référence à la valeur secondaire du transformateur de tension) ou en kV (en référence à la valeur primaire du transformateur de tension) ou la différence d'angle de phase.
Comportement

Ce paramètre sert à régler le comportement de l’appareil lorsque le message d’événement est émis. Vous avez le choix parmi les options suivantes :

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Désactivée</td>
<td>La valeur limite n’est pas surveillée.</td>
</tr>
<tr>
<td>Blocage Auto</td>
<td>La régulation automatique est bloquée. Des changements de prises restent possibles en mode manuel.</td>
</tr>
<tr>
<td>Blocage Auto-Manuel</td>
<td>La régulation automatique est bloquée. Un changement de prise est impossible en mode Manuel.</td>
</tr>
</tbody>
</table>

Tableau 82: Comportement lorsqu’un message d’événement est émis

9.23.10 Surveillance de la température

Vous pouvez régler différentes valeurs limites pour chaque température mesurée/calculée. Si la température mesurée est supérieure à la valeur limite > ou >>, l’appareil déclenche un message d’événement. Si la température mesurée est inférieure à la valeur limite < ou <<, l’appareil déclenche un message d’événement.

Tableau 82: Comportement lorsqu’un message d’événement est émis

Figure 171: Surveillance de la température

1. Sélectionnez l’option de menu Réglages > Paramètres > Surveillance de la température.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
9.23.11 Surveillance de l'intervalle de commutation

Cette fonction sert à surveiller le comportement de commutation typique de votre transformateur.

Intervalle temps

Ce paramètre sert à régler l'intervalle de temps au cours duquel le nombre maximal de commutations ne doit en aucun cas être dépassé.

Nombre maximal admissible de commutations

Si le nombre de commutations maximal admissible dans l'intervalle de temps réglé est dépassé, l'appareil déclenche un événement.

Comportement

Ce paramètre sert à régler le comportement de l'appareil lorsque le nombre maximal admissible de commutations est dépassé :

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Désactivée</td>
<td>La surveillance de l'intervalle de commutation est désactivée.</td>
</tr>
<tr>
<td>Activée</td>
<td>La surveillance de l'intervalle de commutation est activée.</td>
</tr>
</tbody>
</table>

Tableau 83: Comportement

Régler la surveillance de l'intervalle de commutation

Pour régler la surveillance de l'intervalle de commutation, procédez comme suit :

1. Sélectionnez l'option de menu **Réglages > Paramètres > Changeur de prises en charge > Surveillance de l'intervalle de commutation**.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

9.23.12 Surveillance du volume de gaz du relais Buchholz(CPEC)

Lors de l'acquisition du volume de gaz du relais Buchholz du changeur de prises en charge, vous pouvez régler deux valeurs limites pour le volume de gaz. Dans le cas d'une exécution à plusieurs colonnes du changeur de
prises en charge, vous pouvez régler deux valeurs limites pour chaque colonne. Si le volume de gaz mesuré est supérieur à la valeur limite > ou >>, l'appareil déclenche un message d'événement.

1. Sélectionnez l'option de menu Réglages > Paramètres > Changeur de prises en charge > Relais Buchholz.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
9.23.13 Surveillance du volume de gaz du relais Buchholz(transformateur)

Lors de l'acquisition du volume de gaz du relais Buchholz du transformateur, vous pouvez régler deux valeurs limites pour le volume de gaz. Si le volume de gaz mesuré est supérieur à la valeur limite > ou >>, l'appareil déclenche un message d'événement.

1. Sélectionnez l’option de menu **Réglages > Paramètres > Partie active > Relais Buchholz**.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.
9.23.14 Surveillance de la pression d'huile (transformateur)

Lors de l'acquisition de la pression d'huile du transformateur via la soupape de surpression (PRD), vous pouvez régler deux valeurs limites. Si la pression d'huile mesurée est supérieure à la valeur limite > ou >>, l'appareil déclenche un message d'événement.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Limiteur...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>></td>
<td>>></td>
</tr>
<tr>
<td>Press. huile transform.</td>
<td>15 kPa</td>
<td>20 kPa</td>
</tr>
</tbody>
</table>

Figure 174: Valeurs limites de pression d'huile du transformateur

1. Sélectionnez l'option de menu Réglages > Paramètres > Partie active > Soupape de surpression.
2. Sélectionnez le paramètre souhaité.
3. Règlez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

9.23.15 Surveillance de la pression d'huile (changeur de prises en charge)

Lors de l'acquisition de la pression d'huile du changeur de prises en charge via la soupape de surpression (PRD), vous pouvez régler deux valeurs limites. Dans le cas d'une exécution à plusieurs colonnes du changeur de
prises en charge, vous pouvez régler deux valeurs limites pour chaque colonne. Si la pression d'huile mesurée est supérieure à la valeur limite > ou >>, l'appareil déclenche un message d'événement.

9.24 Départ sur prise cible

Si le départ sur prise cible est activé, l'appareil commute automatiquement vers cette prise cible.

Figure 176: Départ sur prise cible définie

1. Sélectionnez l'option de menu Réglages > Paramètres > Changeur de prises en charge > Départ sur prise cible défini.
9 Visualisation

2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

Prise cible

Ce paramètre permet de définir une prise cible.

9.25 Valeurs de mesure

Vous pouvez afficher les valeurs mesurées de l'appareil.

9.25.1 Afficher les valeurs de mesure actuelles

Vous pouvez afficher les valeurs de mesure actuelles dans le masque de valeurs de mesure. Notez que les valeurs mesurées affichées peuvent différer de celles des valeurs brutes affichées dans l'affichage d'information du module UI. Les valeurs mesurées sont préparées comme suit par l'appareil pour l'affichage des valeurs mesurées :

- La commutation réglée du transformateur d'intensité et du transformateur de tension est prise en compte et un décalage de phase correspondant est pris en compte.
- Les modules UI travaillent dans le système de flèche de comptage générateur. L'appareil affiche les valeurs mesurées dans un système de flèche de comptage consommateur.

Vous pouvez commuter l'affichage de valeurs mesurées en système de flèche de comptage générateur en activant le paramètre Modernisation TAPCON® 2xx [⇒ Section 9.22.3, Page 242].

Les valeurs de mesure suivantes s'affichent :

- Tension
- Courant
- Facteur de puissance (cos ϕ)
- Fréquence
- Puissance réactive
- Puissance active
- Puissance apparente
Figure 177: Valeurs mesurées

9.25.2 **Afficher l’enregistreur de valeurs de mesure (en option)**

Avec la fonction optionnelle Enregistreur de valeurs de mesure, vous pouvez afficher les courbes temporelles des valeurs de mesure et des signaux.

Selon la configuration de l’appareil, les valeurs de mesure et les signaux suivants peuvent être sélectionnés pour un affichage :

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_m L1</td>
<td>Puissance active L1 (valeur moyenne)</td>
</tr>
<tr>
<td>P_m L2</td>
<td>Puissance active L2 (valeur moyenne)</td>
</tr>
<tr>
<td>P_m L3</td>
<td>Puissance active L2 (valeur moyenne)</td>
</tr>
<tr>
<td>P_m</td>
<td>Puissance active totale (valeur moyenne)</td>
</tr>
<tr>
<td>S_m L1</td>
<td>Puissance apparente L1 (valeur moyenne)</td>
</tr>
<tr>
<td>S_m L2</td>
<td>Puissance apparente L2 (valeur moyenne)</td>
</tr>
<tr>
<td>S_m L3</td>
<td>Puissance apparente L3 (valeur moyenne)</td>
</tr>
<tr>
<td>S_m</td>
<td>Puissance apparente totale (valeur moyenne)</td>
</tr>
<tr>
<td>U_m Consigne</td>
<td>Valeur de consigne de tension (valeur moyenne)</td>
</tr>
<tr>
<td>f_m</td>
<td>Fréquence (valeur moyenne)</td>
</tr>
<tr>
<td>φ_m U1/I1</td>
<td>Angle de phase U1/I1 (valeur moyenne)</td>
</tr>
<tr>
<td>φ_m U2/I2</td>
<td>Angle de phase U2/I2 (valeur moyenne)</td>
</tr>
<tr>
<td>φ_m U3/I3</td>
<td>Angle de phase U3/I3 (valeur moyenne)</td>
</tr>
<tr>
<td>cos(φ_m) L1</td>
<td>Facteur de puissance L1 (valeur moyenne)</td>
</tr>
<tr>
<td>cos(φ_m) L2</td>
<td>Facteur de puissance L2 (valeur moyenne)</td>
</tr>
<tr>
<td>cos(φ_m) L3</td>
<td>Facteur de puissance L3 (valeur moyenne)</td>
</tr>
<tr>
<td>Signal</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>cos(\varphi_m)</td>
<td>Facteur de puissance total (valeur moyenne)</td>
</tr>
<tr>
<td>_m N</td>
<td>Courant conducteur neutre (valeur moyenne)</td>
</tr>
<tr>
<td>_m L1</td>
<td>Courant L1 (valeur moyenne)</td>
</tr>
<tr>
<td>_m L2</td>
<td>Courant L2 (valeur moyenne)</td>
</tr>
<tr>
<td>_m L3</td>
<td>Courant L3 (valeur moyenne)</td>
</tr>
<tr>
<td>U_m L1</td>
<td>Tension L1 (valeur moyenne)</td>
</tr>
<tr>
<td>U_m L2</td>
<td>Tension L2 (valeur moyenne)</td>
</tr>
<tr>
<td>U_m L3</td>
<td>Tension L3 (valeur moyenne)</td>
</tr>
<tr>
<td>Q_m L1</td>
<td>Puissance réactive L1 (valeur moyenne)</td>
</tr>
<tr>
<td>Q_m L2</td>
<td>Puissance réactive L2 (valeur moyenne)</td>
</tr>
<tr>
<td>Q_m L3</td>
<td>Puissance réactive L3 (valeur moyenne)</td>
</tr>
<tr>
<td>Q_m</td>
<td>Puissance réactive totale (valeur moyenne)</td>
</tr>
<tr>
<td>Blocage auto</td>
<td>Mode automatique bloqué</td>
</tr>
<tr>
<td>PART prise ↓</td>
<td>Positionnement automatique au retour de tension prise Diminuer</td>
</tr>
<tr>
<td>PART prise ↑</td>
<td>Positionnement automatique au retour de tension prise Augmenter</td>
</tr>
<tr>
<td>Req. PART prise ↓</td>
<td>Requête Positionnement automatique au retour de tension pr-</td>
</tr>
<tr>
<td>Req. PART prise ↑</td>
<td>Requête Positionnement automatique au retour de tension pr-</td>
</tr>
<tr>
<td>I>></td>
<td>Valeur limite I>> dépassée</td>
</tr>
<tr>
<td>U>></td>
<td>Valeur limite U>> dépassée</td>
</tr>
<tr>
<td>U Consigne (prim.)</td>
<td>Valeur de consigne de tension [côté primaire]</td>
</tr>
<tr>
<td>U Consigne</td>
<td>Valeur de consigne de tension (côté primaire ou secondaire, conformément à la configuration du paramètre Affichage des valeurs de mesure)</td>
</tr>
<tr>
<td>Prise</td>
<td>Position de prise</td>
</tr>
<tr>
<td>P L1</td>
<td>Puissance active L1</td>
</tr>
<tr>
<td>P L2</td>
<td>Puissance active L2</td>
</tr>
<tr>
<td>P L3</td>
<td>Puissance active L2</td>
</tr>
<tr>
<td>P</td>
<td>Puissance active totale</td>
</tr>
<tr>
<td>S L1</td>
<td>Puissance apparente L1</td>
</tr>
<tr>
<td>S L2</td>
<td>Puissance apparente L2</td>
</tr>
<tr>
<td>S L3</td>
<td>Puissance apparente L3</td>
</tr>
<tr>
<td>S</td>
<td>Puissance apparente totale</td>
</tr>
<tr>
<td>f</td>
<td>Fréquence</td>
</tr>
<tr>
<td>\varphi U1/I1</td>
<td>Angle de phase U1/I1</td>
</tr>
</tbody>
</table>
Tableau 84: Valeurs de mesure et signaux

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ U2/I2</td>
<td>Angle de phase U2/I2</td>
</tr>
<tr>
<td>φ U3/I3</td>
<td>Angle de phase U3/I3</td>
</tr>
<tr>
<td>cos(φ) L1</td>
<td>Facteur de puissance L1</td>
</tr>
<tr>
<td>cos(φ) L2</td>
<td>Facteur de puissance L2</td>
</tr>
<tr>
<td>cos(φ) L3</td>
<td>Facteur de puissance L3</td>
</tr>
<tr>
<td>cos(φ)</td>
<td>Facteur de puissance total</td>
</tr>
<tr>
<td>I N</td>
<td>Courant conducteur neutre</td>
</tr>
<tr>
<td>I L1</td>
<td>Courant L1</td>
</tr>
<tr>
<td>I L2</td>
<td>Courant L2</td>
</tr>
<tr>
<td>I L3</td>
<td>Courant L3</td>
</tr>
<tr>
<td>U L1</td>
<td>Tension L1</td>
</tr>
<tr>
<td>U L2</td>
<td>Tension L2</td>
</tr>
<tr>
<td>U L3</td>
<td>Tension L3</td>
</tr>
<tr>
<td>Q L1</td>
<td>Puissance réactive L1</td>
</tr>
<tr>
<td>Q L2</td>
<td>Puissance réactive L2</td>
</tr>
<tr>
<td>Q L3</td>
<td>Puissance réactive L3</td>
</tr>
<tr>
<td>Q</td>
<td>Puissance réactive totale</td>
</tr>
<tr>
<td>t moteur</td>
<td>Durée de fonctionnement du moteur</td>
</tr>
<tr>
<td>Q1 désactivé</td>
<td>Disjoncteur-protecteur du moteur déclenché</td>
</tr>
<tr>
<td>Grp. mar. par. 1</td>
<td>Groupe de marche en parallèle 1 actif</td>
</tr>
<tr>
<td>Grp. mar. par. 2</td>
<td>Groupe de marche en parallèle 2 actif</td>
</tr>
</tbody>
</table>

Si vous appelez l’enregistreur de valeurs de mesure directement sur l’affichage de l’appareil, vous pouvez sélectionner trois valeurs de mesure au maximum. Si vous y accédez via la visualisation Web, vous pouvez sélectionner dix valeurs de mesure au maximum.
Pour afficher l’enregistreur de valeurs de mesure, procédez comme suit :
1. Sélectionnez le point de menu **Enregistreur**.

![Figure 178: Enregistreur](image178.png)

2. Sélectionnez les signaux à afficher dans la **Liste**.
3. Si nécessaire, réglez l’**axe** souhaité pour chaque signal.
4. Entrez l’**heure de début** et l’**heure de fin** de l’affichage des valeurs de mesure.
5. Sélectionnez le bouton **Affichage** pour appeler l’affichage des valeurs de mesure (Data Log).

![Figure 179: Journal données](image179.png)

La commande décrite ci-dessous est possible seulement si vous appelez la visualisation via un ordinateur.

6. Déplacez le curseur de la souris sur un **Point de mesure** pour obtenir des informations supplémentaires.
7. À l'aide de la souris, faites glisser une fenêtre de sélection pour agrandir le diagramme. Sélectionnez le bouton pour réduire le diagramme à sa taille initiale.

8. Sélectionnez le bouton pour enregistrer les valeurs mesurées affichées sous forme de fichier csv.

Lignes de tendance

Si vous souhaitez afficher l'enregistreur de valeurs mesurées sur un ordinateur personnel, vous pouvez également afficher une ligne de tendance au lieu des valeurs mesurées. La ligne de tendance peut par ex. être une valeur moyenne pondérée sur une période réglable.

Pour régler les lignes de tendance, procédez comme suit :

1. Appelez l'enregistreur de valeurs mesurées et les séries de valeurs mesurées souhaitées.
2. Sélectionnez le bouton **Tendance**.
3. Sélectionnez les **valeurs mesurées** souhaitées.
4. Sélectionnez la **fonction tendance** souhaitée.
5. Indiquez la **période** souhaitée pour le calcul de la ligne de tendance.
6. Sélectionnez le bouton **Appliquer** pour afficher les lignes de tendance.

La courbe de tendance s'affiche. Les valeurs mesurées qui s'affichent sous forme de courbe de tendance sont marquées par le symbole ⬇️.
9.25.3 Réglage de l’enregistreur de valeurs de mesure

L’enregistreur de valeurs mesurées enregistre 500 000 valeurs au maximum par variable de mesure. Selon l'intervalle de valeurs moyennes réglé, l'enregistreur de valeurs mesurées peut afficher les valeurs mesurées à court ou à long terme :

- Intervalle de valeurs moyennes = 1 s : 6 jours env.
- Intervalle de valeurs moyennes = 86400 s (= 24 h) : 1340 ans env.

Notez que pour les variables de mesure via les signaux d'entrée analogiques (p. ex. température) 100 000 valeurs mesurées au maximum sont enregistrées avec un intervalle de valeurs moyennes de 3600 s (= 1 h). Cela correspond à une période de 11 ans environ.

Figure 181: Enregistreur

1. Sélectionnez l'option de menu Réglages > Paramètres > Système > Enregistreur.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
9.25.4 Affichage de la courbe de température (en option)

Vous pouvez afficher la courbe des températures mesurées au cours des dix derniers jours.

Figure 182: Courbe de température

► Sélectionnez l’option de menu Information > Partie active > Températures.

Températures génériques

Si vous utilisez des capteurs de température supplémentaires (température générique 1...8), vous pouvez afficher la courbe de ces températures pour les dix derniers jours.

Figure 183: Températures génériques

► Sélectionnez l’option de menu Information > Système > Températures génér.
9.25.5 **Afficher les températures d’enroulement (en option)**

Si vous saisissez les températures d’enroulement avec un capteur, vous pouvez afficher la courbe des températures d’enroulement mesurées au cours des dix derniers jours. Pour cela, procédez comme suit :

![Figure 184: Temp. enroulement](image)

- Sélectionnez l’option de menu **Information > Partie active > Température d’enroulement 1-12/13-24**.

Au choix, vous pouvez afficher la courbe des valeurs mesurées sur une période définie par vos soins (max. les dix derniers jours). Vous trouverez des informations supplémentaires à ce sujet dans le paragraphe « Enregistreur de valeurs mesurées » [Section 9.25.2, Page 270].

9.25.6 **Affichage des valeurs mesurées du relais Buchholz (en option)**

Vous pouvez afficher la courbe temporelle des valeurs mesurées du relais Buchholz au cours des dix derniers jours.

![Figure 185: Courbe des valeurs mesurées du relais Buchholz](image)
9.25.7 Affichage des valeurs mesurées de la soupape de surpression (en option)

Vous pouvez afficher la courbe temporelle des valeurs mesurées de la soupape de surpression (PRD) au cours des dix derniers jours.

Figure 186: Courbe des valeurs mesurées de la soupape de surpression

► Sélectionnez l'option de menu Information > Dispositifs de protection > Soupape de surpression.
9.25.8 Affichage de la courbe des valeurs mesurées du niveau d'huile et de l'assécheur d'air (en option)

Vous pouvez afficher la courbe temporelle du niveau d'huile et des valeurs mesurées de l'assécheur d'air au cours des dix derniers jours. Pour cela, procédez comme suit :

Figure 187: Courbe des valeurs mesurées du niveau d'huile et des valeurs mesurées de l'assécheur d'air

▲ Sélectionnez l'option de menu Information > Liquides isolants > Niveau d'huile/Assécheur d'air. historique.
9.26 Surveillance du changeur de prises en charge

9.26.1 Modification de la désignation de la position de prise (en option)

Cette fonction permet d’éditer la désignation de la position de prise. Les désignations des différentes positions de prise s’affichent à l’écran d’accueil et sont appliquées pour le système de conduite.

![Tableau des positions de prise](image)

1. Sélectionnez l’option de menu **Réglages > Tableau des positions de prise**.
2. Entrez la désignation de la position de prise et du système de contrôle.
3. Cliquez sur le bouton **Appliquer**.

9.26.2 Réglage du facteur de calcul TCR (en option)

Si vous mesurez la tension et le courant uniquement sur le côté haute tension du transformateur, cette option vous permet de régler le facteur de calcul TCR (Transformer Current Rating) pour chaque position de prise du changeur de prises en charge. Avec ce facteur de calcul, l’appareil calcule le courant sur le côté sous-tension en fonction de la position de prise actuelle.

Le facteur de calcul TCR est défini comme le rapport du courant entre le côté sous-tension (I_{LV}) et le côté haute tension (I_{HV}) :

$$ TCR = \frac{I_{LV}}{I_{HV}} $$
Vous devez indiquer le facteur de calcul pour chaque position de prise. Si vous entrez la valeur 0 pour une position de prise, aucun calcul n’est effectué pour ladite position de prise et l’appareil n’indique aucune valeur pour le courant sur le côté sous-tension.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Tableau pos. prise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val. brute</td>
<td>Position de prise</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Annuler | Appliquer

Figure 189: Tableau des positions de prise

1. Sélectionnez l’option de menu Réglages > Tableau des positions de prise.
2. Indiquez le facteur de calcul pour la position de prise.
3. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

9.26.3 Affichage des statistiques de commutation (en option)

Dans les statistiques de commutation, vous pouvez afficher la fréquence à laquelle le changeur de prises en charge a commuté dans une position de prise donnée et la durée pendant laquelle le changeur de prises en charge s’est trouvé dans une position de prise donnée.
Le diagramme supérieur affiche la fréquence de commutation dans une position de prise donnée et la durée pendant laquelle le changeur de prises en charge s’est trouvé dans une position de prise donnée. Le diagramme inférieur affiche la courbe des positions de prise des dix derniers jours.

Figure 190: Statistiques de commutation

Sélectionnez l’option de menu Information > Changeur de prises en charge > Statistiques de commutation.

9.26.4 Motor Current Index (MCI)

Le Motor Current Index (conformément à IEEE PC57.143) caractérise la surface sous la courbe du courant du moteur durant une opération de changement de prise en charge. Le Motor Current Index est une mesure qui tient compte du courant de mise en marche, des conditions de commutation actuelles et de la durée de commutation.

Figure 191: Illustration à titre d’exemple du déroulement temporel du courant moteur I et du Motor Current Index MCI calculé sur cette base en comparaison aux valeurs MCI pour d’autres changements de prises en charge.
La durée de fonctionnement du moteur et, ainsi, le Motor Current Index changent en fonction du type de commutation. Pour faciliter les comparaisons, le Motor Current Index est de ce fait classé conformément aux types de commutation suivants :

<table>
<thead>
<tr>
<th>Type de commutation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSé/CPré</td>
<td>Le sens de manœuvre est identique au sens de manœuvre précédent. Exemple :</td>
</tr>
<tr>
<td></td>
<td>• commutation précédente : Pos. 2 → Pos. 3</td>
</tr>
<tr>
<td></td>
<td>• commutation actuelle : Pos. 3 → Pos. 4</td>
</tr>
<tr>
<td>Com. inv.</td>
<td>Le sens de manœuvre n’est pas identique au sens de manœuvre précédent. Exemple :</td>
</tr>
<tr>
<td></td>
<td>• commutation précédente : Pos. 2 → Pos. 3</td>
</tr>
<tr>
<td></td>
<td>• commutation actuelle : Pos. 3 → Pos. 2</td>
</tr>
<tr>
<td>Inconnu</td>
<td>Le type de commutation est inconnu. C’est le cas suite à un redémarrage de l’appareil ou lorsque le disjoncteur-protecteur du moteur a été déclenché.</td>
</tr>
</tbody>
</table>

Tableau 85: Types de commutation

Pour déterminer correctement le Motor Current Index, vous devez utiliser un module de signalisation pour la position de prise qui signale également les positions intermédiaires comme la position de prise propre.

9.26.4.1 Réglage la surveillance du MCI

L’appareil peut surveiller le Motor Current Index (MCI) et déclencher un message d’événement lorsque le Motor Current Index se trouve en dehors de la plage admissible. Si vous souhaitez surveiller le Motor Current Index, vous devez régler les paramètres suivants.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Motor Current Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>nom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surveillance des valeurs limites : Désactivé</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intensité primaire du TI : 10 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Affectation des signaux K1/K2 : Standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Circuit sélecteur/Circuit présélection : 1045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Circuit sélecteur/Circuit présélection : 849</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Com. inv. > : 1195</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Com. inv. < : 849</td>
</tr>
</tbody>
</table>

Figure 192: Motor Current Index
1. Sélectionnez l'option de menu Réglages > Paramètres > Mécanisme d'entraînement > Motor Current Index.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Déterminer les valeurs limites

À l'état de livraison, aucune valeur limite n'est déterminée. La société Maschinenfabrik Reinhausen GmbH recommande la procédure suivante afin de déterminer les valeurs limites :

1. Désactiver la surveillance de valeur limite pour la mise en service du produit.
2. Au bout d'un an, faire s'afficher les valeurs minimales et maximales du Motor Current Index (Valeurs MCI extrêmes [⇒ Section 9.26.4.2, Page 285]).
3. Utiliser la valeur maximale du MCI + 20% comme valeur limite supérieure et la valeur minimale du MCI - 20% comme valeur limite inférieure.
4. Répéter l'opération 1 x par an, puis réinitialiser les valeurs MCI extrêmes.

Surveillance des valeurs limites

Ce paramètre sert à activer ou désactiver la surveillance du Motor Current Index.

Circuit sélecteur/Circuit présélect. >

Ce paramètre sert à régler la valeur limite supérieure des commutations du sélecteur de prises/commutations de présélecteur. Si le Motor Current Index est supérieur à la valeur limite supérieure, l'appareil déclenche un message d'événement.

Circuit sélecteur/Circuit présélect. <

Ce paramètre sert à régler la valeur limite inférieure des commutations du sélecteur de prises/commutations de présélecteur. Si le Motor Current Index est inférieur à la valeur limite inférieure, l'appareil déclenche un message d'événement.

Com. inv. >

Ce paramètre sert à régler la valeur limite supérieure des commutations d'inversion. Si le Motor Current Index est supérieur à la valeur limite supérieure, l'appareil déclenche un message d'événement.

Com. inv. <

Ce paramètre sert à régler la valeur limite inférieure des commutations d'inversion. Si le Motor Current Index est inférieur à la valeur limite inférieure, l'appareil déclenche un message d'événement.
Intensité primaire du TI

Ce paramètre sert à régler le courant primaire du transformateur d'intensité pour mesurer le courant moteur. Le courant secondaire est 5 A.

9.26.4.2 Afficher le MCI

Vous pouvez afficher le déroulement et les valeurs extrêmes du Motor Current Index.

Valeurs MCI

Dans l'option de menu Valeurs MCI, vous pouvez faire s'afficher les valeurs enregistrées du Motor Current Index et la position de prise correspondante des 3000 dernières commutations. Les boutons ci-après sont disponibles pour naviguer dans le diagramme :

- ![Replay] : appeler la première page.
- ![Previous] : appeler la page précédente.
- ![Next] : appeler la page suivante.
- ![Last] : appeler la dernière page.
- ![Refresh] : actualiser l'affichage.

![Diagramme des Valeurs MCI](image)

Figure 193: Valeurs MCI

1. Sélectionnez l'option de menu **Information > Changeur de prises en charge > Valeurs MCI**.
2. Si nécessaire, sélectionnez les boutons permettant de changer de page.
Valeurs MCI extrêmes

L’option de menu Valeurs MCI extrêmes permet d’afficher les valeurs minimale et maximale du Motor Current Index ainsi que la date correspondante.

Figure 194: Valeurs MCI extrêmes

1. Sélectionnez l'option de menu Information > Changeur de prises en charge > Valeurs extrêmes MCI.
2. Si nécessaire, sélectionnez le bouton Réinitialiser pour supprimer les valeurs extrêmes enregistrées.

9.26.5 Afficher les informations relatives à l'érosion des contacts (seulement OILTAP®)

Lorsque vous surveillez un changeur de prises en charge de type OILTAP®, vous pouvez afficher les valeurs d'érosion actuelles des contacts de commutation (CCA, CCB) et contacts de résistance (CRA, CRB).
9 Visualisation

Qui plus est, l’appareil affiche les différences d’érosion des différents contacts.

<table>
<thead>
<tr>
<th>Érosion des contacts</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCA</td>
<td>285.720 nm</td>
</tr>
<tr>
<td>CCB</td>
<td>243.381 nm</td>
</tr>
<tr>
<td>CR1A</td>
<td>26.095 mm</td>
</tr>
<tr>
<td>CR1B</td>
<td>20.673 nm</td>
</tr>
<tr>
<td>CR2A</td>
<td>36.263 mm</td>
</tr>
<tr>
<td>CR2B</td>
<td>33.351 mm</td>
</tr>
<tr>
<td>Épaisseur, eros. max.</td>
<td>285.720 nm</td>
</tr>
<tr>
<td>CCA - CR1A</td>
<td>244.768 nm</td>
</tr>
<tr>
<td>CCA - CR2A</td>
<td>230.457 nm</td>
</tr>
<tr>
<td>CR1A - CR2A</td>
<td>-14.311 nm</td>
</tr>
<tr>
<td>CCB - CR1B</td>
<td>222.708 nm</td>
</tr>
<tr>
<td>CCB - CR2B</td>
<td>210.030 nm</td>
</tr>
<tr>
<td>CR1B - CR2B</td>
<td>-12.678 nm</td>
</tr>
<tr>
<td>Diff. eros. max.</td>
<td>244.768 nm</td>
</tr>
<tr>
<td>Erosion max.</td>
<td>285.720 nm</td>
</tr>
</tbody>
</table>

Figure 195: Érosion des contacts

➤ Sélectionnez l’option de menu Information > Changeur de prises en charge > Érosion des contacts.

9.26.6 Informations sur le changeur de prises en charge

Dans l’option de menu « OLTC » vous pouvez afficher les informations relatives au changeur de prises en charge :

• Position de prise actuelle
• Nombre total de manœuvres (compteur de manœuvres)

Figure 196: OLTC

➤ Sélectionnez l’option de menu Information > Changeur de prises en charge > OLTC.
9.27 Surveillance du transformateur (en option)

9.27.1 Calcul de point-chaud (en option)

Dans le menu Point chaud, vous pouvez régler les paramètres de calcul du point chaud. Si vous utilisez l'exécution de l'appareil équipé d'un capteur de température d'enroulement, vous pouvez choisir entre une mesure et un calcul du point chaud.

Mesure du point chaud

Calcul du point chaud

L'appareil peut calculer le point chaud selon les modèles thermiques des normes CEI 60076-7 et IEEE Std C57.91. Pour ce faire, vous devez régler les paramètres de calcul.

![Figure 197: Calcul du point chaud](image)

Si vous utilisez un système de réfrigération, vous devez également entrer les paramètres de calcul pour chaque étage de réfrigération dans l'option de menu « Point chaud ER x ».
Si vous contrôlez un système de réfrigération doté de la fonction optionnelle Contrôle de la réfrigération basée sur la fréquence [Section 9.11.7, Page 167], vous devez régler les paramètres de calcul aussi bien pour la vitesse de rotation minimale des ventilateurs que pour leur vitesse maximale. L'appareil interpole les valeurs des paramètres entre les deux points de fonctionnement.

1. Sélectionnez l'option de menu Réglages > Paramètres > Partie active >Point chaud.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Détermination du point chaud

Ce paramètre sert à régler la méthode de détermination de la température de point chaud par l'appareil. Vous avez le choix parmi les options suivantes :
- Mesure du point chaud
- Calcul du point chaud

Méthode de calcul

Ce paramètre sert à régler la méthode de calcul de la température de point chaud par l'appareil :
- CEI 60076-7
- IEEE Std C57.91

En fonction de la méthode de calcul, vous devez régler en plus différents paramètres de calcul.

CEI : facteur de point chaud

Vous pouvez utiliser ce paramètre pour régler le facteur de point chaud pour le calcul de la température de point chaud conformément à CEI 60076-7.

CEI : gradient

Vous pouvez utiliser ce paramètre pour régler le gradient pour le calcul de la température de point chaud conformément à CEI 60076-7.

CEI : exposant d'enroulement

Vous pouvez utiliser ce paramètre pour régler l'exposant d'enroulement pour le calcul de la température de point chaud conformément à CEI 60076-7.
CEI : constante de temps huile

Vous pouvez utiliser ce paramètre pour régler la constante de temps huile pour le calcul de la température de point chaud conformément à CEI 60076-7.

CEI : k21

Ce paramètre est utilisé pour régler la constante de modèle thermique k21 pour le calcul de la température de point chaud conformément à CEI 60076-7.

CEI : k22

Ce paramètre est utilisé pour régler la constante de modèle thermique k22 pour le calcul de la température de point chaud conformément à CEI 60076-7.

IEEE : gradient

Vous pouvez utiliser ce paramètre pour régler le gradient pour le calcul de la température de point chaud conformément à IEEE Std C57.91.

IEEE : exposant

Vous pouvez utiliser ce paramètre pour régler l'exposant pour le calcul de la température de point chaud conformément à IEEE Std C57.91.

Courant nominal

Vous pouvez utiliser ce paramètre pour régler le courant nominal du transformateur pour le calcul de la température de point chaud conformément à CEI 60076-7 ou IEEE Std C57.91.

Constante de temps enroulement

Vous pouvez utiliser ce paramètre pour régler la constante de temps de l'enroulement pour le calcul de la température de point chaud conformément à CEI 60076-7 ou IEEE Std C57.91.

IEEE : exposant d'huile

Ce paramètre sert à régler l'exposant d'huile du transformateur conformément à IEEE Std C57.91.

Puissance assignée transformateur

Ce paramètre sert à régler la puissance assignée du transformateur. Il est utilisé pour le calcul de la puissance réelle conformément au facteur de charge calculé.
Augmentation temp. huile supérieure

Ce paramètre sert à régler la température d'huile supérieure via la température ambiante (en cas de charge assignée). La valeur à régler dépend du modèle de votre transformateur.

Augmentation de la température de point chaud

Ce paramètre sert à régler l'augmentation de la température de point chaud via la température ambiante conformément à IEEE Std C57.91. La valeur à régler dépend du modèle de votre transformateur.

Rapport puissance dissipée pondérée

Ce paramètre sert à régler le rapport entre les pertes de charge en cas de courant assigné et les pertes à vide du transformateur. La valeur à régler dépend du modèle de votre transformateur.

9.27.2 Pronostic du point chaud (en option)

La fonction pronostic du point chaud en option permet de faire calculer la température de point chaud en fonction du profil de charge et de la température ambiante pour une période de 24 heures. Le calcul est effectué au choix selon CEI 60076-7 ou IEEE Std C57.91 (modèle clause 7). Le diagramme indique en plus le facteur de charge et la vitesse de vieillissement relatif du transformateur.

Figure 198: Pronostic du point chaud

Pour calculer le pronostic du point chaud, vous devez saisir les données souhaitées pour le facteur de charge et la température ambiante pour chaque heure. L'appareil utilise les valeurs actuellement mesurées comme valeurs de départ. Les autres valeurs sont les valeurs de mesure de la veille. En l'absence de toute valeur de mesure, l'appareil utilise le réglage d'usine.

Si vous appelez la visualisation via un ordinateur personnel, vous pouvez alors exporter les valeurs calculées sous forme de fichier csv.
Pour utiliser le pronostic du point chaud, vous devez commencer par régler les paramètres pour les fonctions suivantes :

- Calcul du point chaud (Section 9.27.1, Page 288)
- Limite fonctionnement dynamique

1. Sélectionnez l’option de menu **Information > Partie active > Valeurs de pronostic**.
2. Saisissez les valeurs souhaitées pour la **température ambiante** et le **facteur de charge**.
3. Sélectionnez le bouton **Démarrer le calcul**.
 - Le diagramme s’affiche.
4. En option : sélectionnez le bouton pour enregistrer les valeurs de mesure calculées sous forme de fichier csv.
5. Si nécessaire, sélectionnez le bouton **Ajuster les valeurs** pour effectuer les modifications des valeurs indiquées.

Réglage du calcul de la consommation de durée de vie du transformateur (en option)

Pour le calcul de la consommation de durée de vie du transformateur, vous devez régler les paramètres suivants.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Consommation de durée de vie du transformateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Papier isolant</td>
<td>Sans stabilisation thermique</td>
<td></td>
</tr>
<tr>
<td>Âge du transformateur</td>
<td>6 a</td>
<td></td>
</tr>
<tr>
<td>Prix d'acquisition du transformateur</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Espérance de vie</td>
<td>30 a</td>
<td></td>
</tr>
</tbody>
</table>

1. Sélectionnez l’option de menu **Réglages > Paramètres > Partie active > Vitesse de vieillissement rel.**.
2. Sélectionnez le paramètre souhaité.
3. Règlez les paramètres.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.
CEI : papier isolant
Ce paramètre sert à définir si le transformateur est équipé de papier isolant thermiquement stabilisé ou non. Ce paramètre sert au calcul de la vitesse de vieillissement relatif et ne joue un rôle que lorsque vous effectuez le calcul de la température de point chaud conformément à la norme CEI 60076-7.

Âge du transformateur
Ce paramètre sert à régler l’âge actuel du transformateur en années. Ce paramètre sert au calcul de la consommation de durée de vie.

Prix d’acquisition du transformateur
Ce paramètre vous permet de régler le prix d’acquisition du transformateur.

Espérance de vie
Ce paramètre sert à régler l’espérance de vie du transformateur en années. Ce paramètre sert au calcul de la consommation de durée de vie.

9.27.4 Affichage de l’état des appareils de protection (en option)
L’affichage de synthèse montre l’état actuel des appareils de protection raccordés.

Figure 200: Affichage de synthèse de l’état des appareils de protection

▶ Sélectionnez l’option de menu Information > Dispositifs de protection > État appareils de protection.

9.27.5 Asset Intelligence
La fonction Asset Intelligence sert à diagnostiquer, à partir des données des capteurs raccordés à l’appareil, de possibles états du transformateur à l’aide d’un modèle statistique. Cela est censé vous faciliter l’interprétation des valeurs mesurées saisies et des messages d’événement émis.
Plus le nombre de capteurs raccordés à votre transformateur et à l'appareil est élevé, plus grande est la précision avec laquelle l'appareil effectue le diagnostic. Si l’appareil ne dispose que d’une faible quantité de données de capteurs, un affichage de tous les états est impossible.

L’appareil affiche les informations suivantes pour les états sélectionnés :

- La probabilité déterminée de la survenue d’un état.
- Description de l’état.
- Conséquences possibles pour le transformateur et autres possibilités de clarification de la situation.
- Résultats des capteurs à l’origine de la valeur de probabilité déterminée.

Notez que le diagnostic repose sur un modèle statistique qui est incapable d’analyser les particularités locales, les antécédents du transformateur, ainsi que les états rares et difficiles à diagnostiquer. Si vous avez des doutes, n’hésitez pas à contacter un spécialiste des transformateurs afin d’éviter un endommagement de votre transformateur.

Figure 201: Asset Intelligence

1. Sélectionnez l’option de menu Information > Système > Asset Intelligence.
2. Sélectionnez le Diagnostic souhaité afin d’afficher des informations complémentaires.
9.27.6 Statistiques du transformateur

9.27.6.1 Réglage de la surveillance des statistiques Tx

Vous pouvez régler deux valeurs limites pour la consommation de durée de vie calculée du transformateur. Si la consommation de durée de vie calculée est supérieure à la valeur limite, l’appareil déclenche un événement.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Surveill... Tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consom. durée vie rel.</td>
<td>> 1.5, > 1.6</td>
<td></td>
</tr>
<tr>
<td>Consomm. durée vie</td>
<td>95.0 %, 100.0 %</td>
<td></td>
</tr>
</tbody>
</table>

Figure 202: Surveillance des statistiques Tx

1. Sélectionnez l’option de menu Réglages > Paramètres > Partie active > Surveillance des statistiques Tx.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.

Vitesse de vieillissement relatif >/>>

Ces paramètres servent à régler les valeurs limites de vitesse de vieillissement relatif du transformateur.

Consommation de durée de vie >/>>

Ces paramètres servent à régler les valeurs limites de consommation de durée de vie du transformateur.
9.27.6.2 Affichage des statistiques du transformateur

Vous pouvez afficher la consommation de durée de vie calculée du transformateur.

Figure 203: Statistiques du transformateur

► Sélectionnez l'option de menu Information > Partie active > Statistiques.

9.27.7 Affichage des valeurs actuelles de Niveau d'huile/Assécheur d'air

L'appareil affiche un aperçu du niveau d'huile actuel et des valeurs mesurées de l'assécheur d'air. Dans le cas d'assécheurs d'air à deux cylindres, l'appareil affiche la valeur moyenne ou la valeur du cylindre actif lorsque l'assécheur d'air transmet l'information à l'appareil via le cylindre actif.

L'écran de synthèse relatif au niveau d'huile/à l'assécheur d'air affiche les valeurs suivantes :
• Niveau d'huile dans le transformateur et le changeur de prises en charge (jusqu'à trois valeurs mesurées)
• Valeurs d'état de l'assécheur d'air du transformateur et du changeur de prises en charge
 – État (gris, jaune, rouge)
 – État du chauffage (bleu = chauffage actif)
 – Date de la dernière période de chauffage
 – Humidité de l'air
9.27.8 Affichage de la courbe des valeurs mesurées du niveau d'huile et de l'assécheur d'air (en option)

Vous pouvez afficher la courbe temporelle du niveau d'huile et des valeurs mesurées de l'assécheur d'air au cours des dix derniers jours. Pour cela, procédez comme suit :

Figure 205: Courbe des valeurs mesurées du niveau d'huile et des valeurs mesurées de l'assécheur d'air

▲ Sélectionnez l'option de menu Information > Liquides isolants > Niveau d'huile/Assécheur d'air, historique.
9.28 Analyse des gaz dissous dans l'huile (en option)

La fonction optionnelle « Analyse des gaz dissous dans l'huile » (DGA) permet de surveiller la teneur en gaz et l'humidité de l'huile pour transformateur. En fonction de la configuration de l'appareil, l'appareil saisit les valeurs mesurées des capteurs comme signal analogique (4...20 mA) ou bus de capteurs MR. Pour la configuration des capteurs, observez les paragraphes « Configurer les entrées et sorties analogiques » [Section 9.30, Page 318] et « Bus de capteurs MR » [Section 9.29, Page 307].

Les valeurs définies et calculées avec la fonction « Analyse des gaz dans l'huile » peuvent présenter des imprécisions de mesure, générées par les imprécisions de mesure des capteurs. Observez de ce fait les instructions de service du capteur pour de plus amples informations concernant la précision de mesure et un calibrage éventuellement nécessaire.

En fonction de la configuration de l'appareil, l'analyse des gaz dissous dans l'huile englobe les fonctions partielles suivantes :
- Affichage des valeurs absolues
- Affichage des taux d'augmentation
- Affichage de la courbe des valeurs mesurées
- En option supplémentaire :
 - Analyse selon Duval
 - Analyse selon Rogers
 - Analyse selon Dömenburg
 - Analyse selon CEI 60599

9.28.1 Configurer la surveillance AGD

Pour la surveillance AGD « AGD », vous pouvez régler respectivement 3 valeurs limites pour les valeurs absolues et pour les taux d'augmentation. En fonction de la configuration des appareils, la surveillance peut porter sur 11 signaux AGD au maximum. Vous pouvez de plus régler les paramètres suivants :
- Écart de mesure du capteur
- Réinitialiser l'erreur de diagnostic
- Intervalle d'analyse taux d'augmentation
- Valeur de substitution humidité relative de l'huile
- Utiliser la valeur de substitution humidité relative de l'huile
Figure 206: Configurer la surveillance AGD

Pour régler la surveillance AGD, procédez comme suit :
1. Sélectionnez l’option de menu **Réglages > Paramètres > Surveillance AGD**.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

Précision de mesure du capteur
Ce paramètre vous permet d'indiquer la précision de mesure du capteur en %, Observez les instructions de service du capteur à cet effet.

Réinitialiser l’erreur de diagnostic
Ce paramètre sert à réinitialiser les erreurs de diagnostic enregistrées pour toutes les analyses de gaz dissous dans l'huile. Cela peut être judicieux par ex. suite à une vidange de l'huile pour transformateur.

Intervalle d’analyse taux d’augmentation
Ce paramètre sert à régler l'intervalle dont le taux d'augmentation doit servir de base pour l'observation des valeurs limites.

Valeur de substitution humidité relative de l’huile
Ce paramètre sert à entrer une valeur pour l'humidité de l'huile pour transformateur (par ex. à partir de la dernière analyse de l'huile). Cette valeur peut servir de valeur de substitution si le transformateur n'est pas équipé d'un capteur pour la mesure de l'humidité de l'huile ou si le capteur est défectueux.
Utiliser la valeur de substitution humidité relative de l’huile

Ce paramètre sert à activer la valeur de substitution pour l’humidité relative de l’huile. L’appareil utilise alors la valeur de substitution pour effectuer tous les calculs pour lesquels l’humidité de l’huile pour transformateur est utilisée. Veuillez noter que les calculs risquent d’être moins exacts si vous utilisez la valeur de substitution et si celle-ci diffère de la valeur réelle de l’humidité de l’huile pour transformateur.

Valeurs limites des valeurs absolues

<table>
<thead>
<tr>
<th>Gaz</th>
<th>Paramètres</th>
<th>Limite 1</th>
<th>Limite 2</th>
<th>Limite 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O (%)</td>
<td>H2O></td>
<td>H2O>></td>
<td>H2O>>></td>
<td></td>
</tr>
<tr>
<td>H2 (ppm)</td>
<td>H2></td>
<td>H2>></td>
<td>H2>>></td>
<td></td>
</tr>
<tr>
<td>N2 (ppm)</td>
<td>N2<</td>
<td>N2<<</td>
<td>N2<<</td>
<td></td>
</tr>
<tr>
<td>CO (ppm)</td>
<td>CO></td>
<td>CO>></td>
<td>CO>>></td>
<td></td>
</tr>
<tr>
<td>CO2 (ppm)</td>
<td>CO2></td>
<td>CO2>></td>
<td>CO2>>></td>
<td></td>
</tr>
<tr>
<td>CH4 (ppm)</td>
<td>CH4></td>
<td>CH4>></td>
<td>CH4>>></td>
<td></td>
</tr>
<tr>
<td>C2H2 (ppm)</td>
<td>C2H2></td>
<td>C2H2>></td>
<td>C2H2>>></td>
<td></td>
</tr>
<tr>
<td>C2H4 (ppm)</td>
<td>C2H4></td>
<td>C2H4>></td>
<td>C2H4>>></td>
<td></td>
</tr>
<tr>
<td>C2H6 (ppm)</td>
<td>C2H6></td>
<td>C2H6>></td>
<td>C2H6>>></td>
<td></td>
</tr>
<tr>
<td>O2 (ppm)</td>
<td>O2<</td>
<td>O2<<</td>
<td>O2<<</td>
<td></td>
</tr>
<tr>
<td>TDCG (ppm)</td>
<td>TDCG></td>
<td>TDCG>></td>
<td>TDCG>>></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 86: Valeurs limites pour les valeurs absolues

Valeurs limites des taux d’augmentation

<table>
<thead>
<tr>
<th>Gaz</th>
<th>Paramètres</th>
<th>Limite 1</th>
<th>Limite 2</th>
<th>Limite 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O (%/d)</td>
<td>Taux d'augmentation H2O></td>
<td>Taux d'augmentation H2O>></td>
<td>Taux d'augmentation H2O>>></td>
<td></td>
</tr>
<tr>
<td>H2 (ppm/d)</td>
<td>Taux d'augmentation H2></td>
<td>Taux d'augmentation H2>></td>
<td>Taux d'augmentation H2>>></td>
<td></td>
</tr>
<tr>
<td>N2 (ppm/d)</td>
<td>Taux d'augmentation N2<</td>
<td>Taux d'augmentation N2<<</td>
<td>Taux d'augmentation N2<<</td>
<td></td>
</tr>
<tr>
<td>CO (ppm/d)</td>
<td>Taux d'augmentation CO></td>
<td>Taux d'augmentation CO>></td>
<td>Taux d'augmentation CO>>></td>
<td></td>
</tr>
<tr>
<td>CO2 (ppm/d)</td>
<td>Taux d'augmentation CO2></td>
<td>Taux d'augmentation CO2>></td>
<td>Taux d'augmentation CO2>>></td>
<td></td>
</tr>
<tr>
<td>CH4 (ppm/d)</td>
<td>Taux d'augmentation CH4></td>
<td>Taux d'augmentation CH4>></td>
<td>Taux d'augmentation CH4>>></td>
<td></td>
</tr>
<tr>
<td>C2H2 (ppm/d)</td>
<td>Taux d'augmentation C2H2></td>
<td>Taux d'augmentation C2H2>></td>
<td>Taux d'augmentation C2H2>>></td>
<td></td>
</tr>
</tbody>
</table>
9.28.2 Afficher les valeurs de mesure

L’écran d’aperçu vous indique l’état actuel de l’analyse des gaz dissous dans l’huile.

En fonction de la méthode d’analyse, les valeurs d’état suivantes s’affichent :

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gris</td>
<td>Aucune valeur limite dépassée</td>
</tr>
<tr>
<td>Jaune</td>
<td>Limite jaune dépassée</td>
</tr>
<tr>
<td>Rouge</td>
<td>Limite rouge dépassée</td>
</tr>
</tbody>
</table>

Tableau 88: Valeurs d’état pour les valeurs absolues et taux d’augmentation
Pour les analyses selon Duval, Rogers, Dörnenburg et CEI 60599, les valeurs mesurées du capteur doivent dépasser les seuils de détection suivants. Si les valeurs mesurées sont inférieures au seuil de détection, l'appareil utilisera la valeur du seuil de détection pour le calcul.

<table>
<thead>
<tr>
<th>Gaz</th>
<th>Seuil de détection</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>50 ppm</td>
</tr>
<tr>
<td>CH₄</td>
<td>10 ppm</td>
</tr>
<tr>
<td>C₂H₂</td>
<td>10 ppm</td>
</tr>
<tr>
<td>C₂H₄</td>
<td>10 ppm</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>10 ppm</td>
</tr>
</tbody>
</table>

Tableau 90: Seuils de détection
9.28.2.1 Valeurs absol.
Vous pouvez afficher les valeurs mesurées absolues des capteurs. En outre, un diagramme à barres indique graphiquement la valeur mesurée et les valeurs limites réglées (jaune, rouge).

Vous pouvez afficher les valeurs mesurées absolues des capteurs. En outre, un diagramme à barres indique graphiquement la valeur mesurée et les valeurs limites réglées (jaune, rouge).

Figure 208: Afficher les valeurs absolues

► Sélectionnez l'option de menu Information > Partie active > AGD > Valeurs absolues.

9.28.2.2 Taux d’augm.
Vous pouvez afficher les taux d'augmentation calculés des gaz (ppm/d et ppm/a). Le diagramme à barres indique le taux d'augmentation actuel (ppm/d) et les valeurs limites réglées (jaune, rouge). L'intervalle d'analyse réglé est décisif pour l'affichage des taux d'augmentation.

Vous pouvez afficher les taux d'augmentation calculés des gaz (ppm/d et ppm/a). Le diagramme à barres indique le taux d'augmentation actuel (ppm/d) et les valeurs limites réglées (jaune, rouge). L'intervalle d'analyse réglé est décisif pour l'affichage des taux d'augmentation.

Figure 209: Afficher les taux d'augmentation

► Sélectionnez l'option de menu Information > Partie active > AGD > Taux d'augmentation.
9.28.2.3 Courbe des valeurs mesurées

Vous pouvez afficher la courbe des valeurs AGD mesurées au cours des dix derniers jours. Pour cela, procédez comme suit :

Figure 210: Courbe des valeurs AGD mesurées

► Sélectionnez l'option de menu Information > Partie active > AGD > Graphique.

Au choix, vous pouvez afficher la courbe des valeurs AGD mesurées sur une période définie par vos soins. Vous trouverez des informations supplémentaires à ce sujet dans le paragraphe « Enregistreur de valeurs mesurées » [Section 9.25.2, Page 270].

9.28.2.4 Analyse selon Duval

L'affichage de l'analyse selon Duval donne les informations suivantes :

▪ Triangle Duval avec l'affectation des dix dernières valeurs mesurées aux secteurs des différents types de défauts.
 – Dernière valeur mesurée : carré le plus sombre avec l'affichage du défaut de mesure
 – Valeur mesurée la plus ancienne : carré le plus clair
▪ Affichage des types de défauts. Le type de défaut de la dernière valeur mesurée est en surbrillance blanche.
▪ Concentrations de gaz de la dernière valeur mesurée
Si vous affichez la visualisation sur un ordinateur personnel, les concentrations en gaz et le moment de la mesure s'affichent par info-bulle pour chaque valeur mesurée.

Figure 211: Affichage de l'analyse selon Duval

Selon l'option de menu Information > Partie active > AGD > Duval.

9.28.2.5 Analyse selon Rogers

L'affichage de l'analyse selon Rogers donne les informations suivantes :

- Diagramme 3D avec l'affectation des dix dernières valeurs mesurées aux secteurs des différents types de défauts.
 - Dernière valeur mesurée : carré le plus sombre avec l'affichage du défaut de mesure
 - Valeur mesurée la plus ancienne : carré le plus clair
- Affichage des types de défauts. Le type de défaut de la dernière valeur mesurée est en surbrillance blanche.
- Rapport des concentrations de gaz de la dernière valeur mesurée
Si vous affichez la visualisation sur un ordinateur personnel, les rapports des concentrations en gaz et le moment de la mesure s'afficheront par info-bulle pour chaque valeur mesurée. En outre, vous pouvez tourner le diagramme avec la souris.

Figure 212: Affichage de l'analyse selon Rogers

► Sélectionnez l'option de menu Information > Partie active > AGD > Rogers.

9.28.2.6 Analyse selon Dörnenburg

L'affichage de l'analyse selon Dörnenburg donne les informations suivantes :

▪ Affichage tabulaire des dix derniers défauts
▪ Affichage des types de défauts. Le type de défaut de la dernière valeur mesurée est en surbrillance blanche.
▪ Rapport des concentrations de gaz de la dernière valeur mesurée

Si vous affichez la visualisation sur un ordinateur personnel, les rapports des concentrations en gaz s'afficheront par info-bulle pour chaque valeur mesurée.

Figure 213: Affichage de l'analyse selon Dörnenburg
9.28.2.7 Analyse selon CEI 60599

L'affichage de l'analyse selon CEI 60599 fournit les informations suivantes :

- Diagramme 3D avec l'affectation des dix dernières valeurs mesurées aux secteurs des différents types de défauts.
 - Dernière valeur mesurée : carré le plus sombre avec l'affichage du défaut de mesure
 - Valeur mesurée la plus ancienne : carré le plus clair
- Affichage des types de défauts. Le type de défaut de la dernière valeur mesurée est en surbrillance blanche.
- Rapport des concentrations de gaz de la dernière valeur mesurée

Si vous affichez la visualisation sur un ordinateur personnel, les rapports des concentrations en gaz et le moment de la mesure s'afficheront par info-bulle pour chaque valeur mesurée. En outre, vous pouvez tourner le diagramme avec la souris.

Figure 214: Affichage de l'analyse conformément à CEI 60599

9.29 Bus de capteurs MR

La fonction optionnelle Bus de capteurs MR peut être utilisée pour le raccordement des capteurs numériques et analogiques à l'appareil via Modbus RTU. Le bus de capteurs MR prend en charge le raccordement de 31 capteurs au maximum (Esclaves Modbus). L'appareil ISM® fonctionne comme Maître Modbus.
Assurez-vous qu'aucun autre Maître Modbus n'est raccordé au bus de capteurs MR. Attribuez une adresse Modbus univoque à chaque capteur que vous raccordez via le bus de capteurs MR. Si plusieurs capteurs utilisent la même adresse Modbus, cela peut entraîner un dysfonctionnement du bus de capteurs MR.

9.29.1 Configuration du bus de capteurs MR

Si vous souhaitez utiliser le bus de capteurs MR, vous pouvez configurer le protocole Modbus avec les paramètres suivants.

Notez que la transmission des données dépend étroitement du nombre de capteurs et de points de données, ainsi que des paramètres Taux d'interrogation et Temporisation d'envoi. Par conséquent, la temporisation de la transmission de modifications de valeurs peut s'élever à plusieurs secondes voire quelques minutes.

La validité (valid flag) des valeurs de données de transmission via Modbus n'est pas vérifiée. Il est, par conséquent, impossible de détecter la panne d'une sonde de mesure.

La commande décrite ci-dessous est possible seulement si vous appelez la visualisation via un ordinateur. Vous devez, en outre, avoir le rôle utilisateur Paramétreur ou Administrateur.

1. Sélectionnez l’option de menu Réglages > Paramètres > Système > Bus de capteurs.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
Débit en bauds

Ce paramètre sert à régler le débit en bauds de l'interface série. Vous avez le choix parmi les options suivantes :

▪ 9600 Bauds
▪ 19200 Bauds
▪ 38400 Bauds
▪ 57600 Bauds
▪ 115200 Bauds

Nombre bits de données

Ce paramètre sert à régler le nombre de bits de données.

Parité

Ce paramètre sert à régler la parité. Vous avez le choix parmi les options suivantes :

▪ Aucun
▪ Pair
▪ Impair

Nombre bits d'arrêt

Ce paramètre sert à régler le nombre de bits d'arrêt.

9.29.2 Gestion des capteurs

Les capteurs connectés à l'appareil via le bus de capteurs MR peuvent être gérés dans ce menu. Les informations suivantes s'affichent :

▪ Nom du capteur
▪ Version du capteur
▪ Fabricant du capteur
▪ Adresse Modbus du capteur
▪ État
 – Bleu : le capteur est connecté au bus de capteurs
 – Rouge : le capteur n'est pas connecté au bus de capteurs
Figure 216: Gestion des capteurs

La commande décrite ci-dessous est possible seulement si vous appelez la visualisation via un ordinateur. Vous devez, en outre, avoir le rôle utilisateur Paramétreur ou Administrateur.

Ajouter un capteur

Si vous souhaitez ajouter un capteur, vous devez régler l'adresse Modbus, le nom et la version du capteur. Par ailleurs, vous pouvez définir une éventuelle affectation de fonction automatique des points de données par l'appareil.

Pour ajouter un appareil, procédez comme suit :
1. Sélectionnez l'option de menu **Réglages > Bus de capteurs > Gestion des capteurs**.
2. Sélectionnez le bouton **Nouveau capteur**.

Figure 217: Ajouter un capteur

4. Sélectionnez le nom du capteur.

5. Sélectionnez la version.

7. Sélectionnez le bouton Appliquer.

8. Une fois un capteur ou plusieurs capteurs ajoutés, redémarrez l’appareil pour appliquer les modifications.

Vous pouvez, avant cela, ajouter encore des capteurs ou effectuer d'autres réglages comme l’affectation de fonctions ou la configuration des entrées analogiques ou numériques.

Suppression d'un capteur

Pour supprimer un capteur, procédez comme suit :

1. Sélectionnez l'option de menu Réglages > Gestion des capteurs.

2. Sélectionnez le bouton pour supprimer le capteur.

9.29.3 Affectation d’une fonction

Vous pouvez relier les signaux transmis du capteur aux fonctions de l’appareil. Pour cela, vous devez configurer les fonctions d’appareil souhaitées des entrées numériques et analogiques sur Modbus. Consultez les sections suivantes à cet effet :

- Relier les entrées et sorties numériques [► Section 9.31, Page 322]
- Relier les entrées et sorties analogiques [► Section 9.30, Page 318]

Si les fonctions de l’appareil sont configurées sur Modbus, vous pouvez relier les fonctions aux points de données des capteurs.

![Figure 218: Affecter des fonctions](image-url)
La commande décrite ci-dessous est possible seulement si vous appelez la visualisation via un ordinateur. Vous devez, en outre, avoir le rôle utilisateur Paramétreur ou Administrateur.

Pour affecter les fonctions, procédez comme suit :

1. Sélectionnez l'option de menu Réglages > Bus de capteurs > Affectation d'une fonction.
2. Sélectionnez l'adresse souhaitée du capteur.
3. Sélectionnez le point de données souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer les modifications.
5. Une fois les fonctions affectées, redémarrez l'appareil pour appliquer les modifications.

9.29.4 Définition des capteurs

Dans ce menu, vous pouvez définir vos propres capteurs à connecter à l'appareil via le bus de capteurs MR. Les capteurs définis sont ensuite disponibles dans la gestion des capteurs comme option de sélection.

L'éditeur de capteurs affiche une vue d'ensemble des capteurs définis :
- Nom
- Version
- Fabricant

Vous pouvez ajouter, éditer ou supprimer des définitions de capteurs.

Figure 219: Éditeur de capteurs
Des erreurs de configuration peuvent entraîner un comportement intempestif de l'appareil. Assurez-vous que la configuration des capteurs est effectuée uniquement par des spécialistes disposant de connaissances du système dans son ensemble et vérifiez la configuration selon le principe des quatre yeux.

Ajout d'une définition de capteur

Pour ajouter un capteur, vous devez régler les valeurs suivantes :

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom du capteur</td>
<td>Champ de saisie, 20 caractères max.</td>
</tr>
<tr>
<td>Version du capteur</td>
<td>Format : X.Y.Z (p. ex. 1.5.2), est utilisé avec le nom du capteur pour une identification univoque du capteur dans le menu Gestion des capteurs.</td>
</tr>
<tr>
<td>Fabricant du capteur</td>
<td>Champ de saisie, 15 caractères max.</td>
</tr>
<tr>
<td>Points de données</td>
<td>Configuration des points de données du capteur</td>
</tr>
</tbody>
</table>

Tableau 91: Ajouter des capteurs

La commande décrite ci-dessous est possible seulement si vous appelez la visualisation via un ordinateur. Vous devez, en outre, avoir le rôle utilisateur Paramétreur ou Administrateur.

Pour ajouter un appareil, procédez comme suit :

1. Sélectionnez l'option de menu **Réglages > Bus de capteurs > Éditeur de capteurs**.
2. Sélectionnez le bouton **Nouveau capteur**.

![Figure 220: Définir un nouveau capteur](image)

3. Entrez le nom du capteur, la version du capteur et le fabricant du capteur (en option).
4. Sélectionnez le bouton **Appliquer** pour enregistrer les réglages et configurer les points de données.

Configuration des points de données

Pour configurer un point de données, vous devez régler les valeurs suivantes :

- **Type**
 - IREG : Input Register (entrée analogique)
 - DISC : Discrete Input (entrée numérique)
 - HREG : Holding Register (registre de maintien)
 - COIL : entrée/sortie numérique

- **Registre**

- **Description**

- **Ordre des octets**
 - Little Endian
 - Big Endian

- **Type de données**

- **Multiplicateur** (uniquement pour IREG ou HREG)

- **En option : validation** (uniquement pour IREG ou HREG)
 - DISC ou COIL pour l'identification de la validation
 - Valeurs minimale et maximale autorisées du capteur (liées à la valeur brute déterminée par le capteur, zone de réglage dépendante du type de données)

Figure 221: Configurer les points de données

Pour configurer un point de données, procédez comme suit :

1. Sélectionnez le **type** souhaité.
2. Sélectionnez le bouton + **nouveau** pour ajouter un nouveau point de données ou le bouton **éditer** pour éditer un point de données.

![Figure 222: Ajouter un point de données](image)

3. Entrez une **description**.
4. Sélectionnez un **type de données** et le **Registre**.
5. Sélectionnez l'**ordre des octets** du capteur.
6. Pour IREG ou HREG uniquement : entrez un **multiplicateur**.
7. En option (uniquement pour IREG ou HREG) : entrez le **registre** du DISC ou COIL pour la validation et sélectionnez la valeur de **validité** (haute-ment active : 1 = valable ; peu active : 0 = valable).
8. En option (uniquement pour IREG ou HREG) : entrez la **valeur minimale** et **maximale** pour la validation. Si la valeur brute est située en dehors de la zone réglée, la valeur est interprétée comme non valable.
9. Sélectionnez le bouton **Appliquer** pour enregistrer le point de données.

Édition d'une définition de capteur

L'édition d'une définition de capteur n'a aucun effet sur les capteurs déjà ajoutés dans la gestion des capteurs. La définition de capteur éditée est disponible lorsque vous ajoutez un nouveau capteur dans la gestion des capteurs.

Pour éditer la définition de capteur, procédez comme suit :
1. Sélectionnez l'option de menu **Réglages > Bus de capteurs > Éditeur de capteurs**.
2. Sélectionnez le bouton

![Image of the interface](image.png)

Figure 223: Édition d'une définition de capteur

3. Entrez le nom du capteur, la version du capteur et le fabricant du capteur (en option).

4. En option : sélectionnez le bouton Éditer pour ouvrir la configuration des points de données. Les modifications apportées sont appliquées dans ce cas.

5. Sélectionnez le bouton Appliquer pour enregistrer les réglages.

Suppression d'une définition de capteur

La suppression d'une définition de capteur n'a aucun effet sur les capteurs déjà ajoutés dans la gestion des capteurs.

Pour supprimer la définition de capteur, procédez comme suit :

1. Sélectionnez l'option de menu Réglages > Bus de capteurs > Éditeur de capteurs.

2. Sélectionnez le bouton

9.29.5 Afficher les informations sur les capteurs raccordés

Vous pouvez afficher des informations sur l'état et les valeurs actuelles de tous les capteurs que vous avez ajoutés à la gestion de capteurs. L'écran d'aperçu vous indique les informations suivantes :

- État du capteur
 - Rouge : défaut
 - Bleu : aucun problème
- Nom
- Version
Figure 224: Écran d'aperçu

▶ Sélectionnez l’option de menu Information > Système > Bus de capteurs.

Informations détaillées sur le capteur

Vous pouvez afficher les points de données actuels transmis pour chaque capteur dans l'écran d'aperçu. Les informations suivantes s’affichent :

- Registre (Reg.)
- Description
- Val. brute
- Valeur de fonction
- Fonction
Lorsqu'une valeur est détectée comme « non valide », elle est alors illustrée en rouge. Si vous avez attribué une fonction au capteur, la valeur de la fonction s'affiche en plus.

Figure 225: Informations détaillées

1. Sélectionnez le bouton

2. Sélectionnez le type souhaité.

9.30 **Configuration des entrées et des sorties analogiques (en option)**

Vous pouvez configurer les entrées et sorties analogiques de l'appareil et affecter les fonctions de l'appareil de manière flexible.

L'appareil prend en charge les capteurs analogiques avec courbe caractéristique linéaire et émet des signaux analogiques avec courbe caractéristique linéaire.
Facteur de correction et décalage

Régler une correction permet de compenser les erreurs systématiques des signaux analogiques. La correction est déterminée par la multiplication avec un facteur et la somme du décalage. La valeur minimale et la valeur maximale de la valeur fonctionnelle font office de valeur limite pour la correction. Il n'existe aucune limite pour le décalage de correction.

\[
\begin{align*}
\text{Min.} & \quad \text{Max.} \\
\text{Décalage de correction} & \quad \text{Signal analogique}
\end{align*}
\]

Figure 226: Signal analogique avec courbe caractéristique linéaire, facteur de correction < 1 et décalage de correction

Si vous avez raccordé des capteurs via le bus de capteurs MR, vous devez sélectionner le type de signal Modbus pour les fonctions souhaitées. Observez les indications supplémentaires contenues dans la section Bus de capteurs MR [Section 9.29, Page 307].

AVIS

Endommagement de l’appareil et des capteurs !

Les entrées / sorties analogiques mal raccordées et mal configurées peuvent entraîner des dégâts sur l'appareil et sur le capteur.

► Suivez les indications concernant le raccordement des capteurs analogiques [Section 6.4.4, Page 83].

► Configurez les entrées et les sorties analogiques conformément aux capteurs raccordés.

Les informations suivantes s'affichent sous forme de tableau pour la configuration des entrées et sorties analogiques. Vous ne pouvez pas modifier les éléments affichés en grisé.

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction</td>
<td>Fonction de l'entrée analogique (I : ...) ou de la sortie analogique (O : ...). Vous pouvez personnaliser la désignation.</td>
</tr>
<tr>
<td>Type de signal</td>
<td>Sélectionnez le type de signal du capteur analogique ou désactivez une entrée analogique.</td>
</tr>
<tr>
<td></td>
<td>• 4...20 mA</td>
</tr>
<tr>
<td></td>
<td>• PT100-2/3/4, PT1000-2/3/4</td>
</tr>
<tr>
<td></td>
<td>• Modbus (bus de capteurs MR)</td>
</tr>
</tbody>
</table>

Maschinenfabrik Reinhausen GmbH 2021 6385142/09 FR ETOS® ED 319
Options

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carte/Canal</td>
<td>Sélectionnez l'emplacement et le canal du capteur analogique. Observez, à cet effet, le schéma de connexion livré avec le produit.</td>
</tr>
<tr>
<td>Unité</td>
<td>Réglez l’unité du signal.</td>
</tr>
<tr>
<td>Décimales</td>
<td>Réglez jusqu’à 3 décimales.</td>
</tr>
<tr>
<td>Valeur minimale / valeur maximale</td>
<td>Réglez les valeurs minimales et maximales du capteur, p. ex. pour le signal 4...20 mA la valeur mesurée correspondante pour 4 mA et la valeur correspondante pour 20 mA.</td>
</tr>
<tr>
<td>Facteur de correction</td>
<td>Réglez le facteur de correction (m) pour la correction de valeur fonctionnelle (x). La valeur fonctionnelle corrigée (y) correspond à : (y = (m \cdot x) + t)</td>
</tr>
<tr>
<td>Décalage de correction</td>
<td>Réglez le décalage (t) pour la correction de valeur fonctionnelle (x). La valeur fonctionnelle corrigée (y) correspond à : (y = (m \cdot x) + t)</td>
</tr>
</tbody>
</table>

Tableau 92: Configuration des entrées et sorties analogiques

1) Uniquement disponible pour GPAI.

2) Inexistant dans le cas de capteurs raccordés via le bus de capteurs MR (Modbus).

3) Uniquement disponible pour les entrées.

Vous ne pouvez modifier la configuration des entrées et sorties analogiques que si vous avez le rôle de paramétreur ou d’administrateur.
Dans l’état à la livraison, vous pouvez vous connecter comme administrateur comme suit :

- **Nom d’utilisateur** : admin
- **Mot de passe** : admin

Créer une sauvegarde

Afin de pouvoir restaurer le système suite à une éventuelle erreur de configuration, vous devez créer une sauvegarde. Pour cela, procédez comme suit :

1. Sélectionnez l’option de menu **RÉGLAGES > Exportation**.
2. Sélectionnez l’option **RÉGLAGES** pour exporter une copie de sécurité des réglages actuels.
3. Sélectionnez l’interface (USB ou PC) souhaitée.
4. Sélectionnez le bouton Exportation pour lancer l’exportation.

Configuration AIO

1. Sélectionnez l’option de menu **RÉGLAGES > Configuration AIO**.
2.Configurer les propriétés telles que **Fonction**, **Type de signal** et **Carte/Canal**.
3. Sélectionnez le bouton pour configurer les valeurs de la manière souhaitée.
4. Sélectionnez le bouton *Appliquer*.
5. Confirmez la question de sécurité avec **Enregistrer** pour enregistrer les modifications.
9.31 Configuration des entrées et sorties numériques

À l'état de livraison, les entrées et sorties numériques configurables de l'appareil sont configurées comme suit :

- **Entrée** : high-actif
- **Sortie** : contact à fermeture (NO)

Vous pouvez modifier la configuration si nécessaire.

Si vous avez raccordé des capteurs via le bus de capteurs MR, vous devez sélectionner le type de signal Modbus pour les fonctions souhaitées. Observez les indications supplémentaires contenues dans la section Bus de capteurs MR [Section 9.29, Page 307].

Veillez à ce que la configuration des entrées et sorties numériques corresponde aux fonctions utilisées. Dans le cas contraire, il y a un risque de dérangement de l'appareil ainsi que des périphériques raccordés.

Pour configurer les entrées et sorties numériques, les informations suivantes s'affichent sous forme de tableau. Vous ne pouvez pas modifier les éléments grisés.

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction</td>
<td>Fonction de l'entrée numérique (I : ...) ou de la sortie numérique (O : ...). Vous pouvez personnaliser la désignation.</td>
</tr>
<tr>
<td>Type de signal</td>
<td>Sélectionnez le type de signal :</td>
</tr>
<tr>
<td></td>
<td>▪ Numérique : entrée numérique</td>
</tr>
<tr>
<td></td>
<td>▪ Modbus (bus de capteurs MR)</td>
</tr>
<tr>
<td>Configuration¹)</td>
<td>DI : high-actif ou low-actif</td>
</tr>
<tr>
<td></td>
<td>DO : contact à fermeture (NO), contact à ouverture (NF) ; remarque : lorsque l'appareil est éteint ou en cas de panne, les sorties numériques sont toujours ouvertes (pas de relais bistable).</td>
</tr>
<tr>
<td>Module/Canal¹)</td>
<td>Canal du module DIO avec lequel la fonction est reliée. Les fonctions qui ne sont pas liées à un canal sont indiquées entre guillemets ("."). Observez, à cet effet, le schéma de connexion livré avec le produit.</td>
</tr>
</tbody>
</table>

Tableau 93: Configuration des entrées et sorties numériques
1) Inexistant dans le cas de capteurs raccordés via le bus de capteurs MR (Modbus).

Figure 229: Configuration des entrées et sorties numériques

La commande décrite ci-dessous est possible seulement si vous appelez la visualisation via un ordinateur. Vous ne pouvez modifier la configuration des entrées et sorties analogiques que si vous avez le rôle d'administrateur ou de paramétreur.

Dans l'état à la livraison, vous pouvez vous connecter comme administrateur comme suit :
- **Nom d'utilisateur** : admin
- **Mot de passe** : admin

Créer une sauvegarde

Afin de pouvoir restaurer le système suite à une éventuelle erreur de configuration, vous devez créer une sauvegarde. Pour cela, procédez comme suit :
1. Sélectionnez l'option de menu **Réglages > Exportation**.
2. Sélectionnez l'option **Réglages** pour exporter une copie de sécurité des réglages actuels.
3. Sélectionnez l'**interface** (USB ou PC) souhaitée.
4. Sélectionnez le bouton **Exportation** pour lancer l'exportation.

Configuration DIO

Pour configurer les entrées et sorties numériques de l'appareil, procédez comme suit :
1. Sélectionnez l'option de menu **Réglages > Configuration DIO**.
2. Si nécessaire, sélectionnez le bouton ▲ ou ▼ pour trier les propriétés par ordre alphabétique dans les colonnes.
3. Configurer les propriétés comme vous le souhaitez.
4. Sélectionnez le bouton **Appliquer**.
5. Confirmez la question de sécurité par **Oui** pour enregistrer les modifications.
9.32 Maintenance (en option)

L'appareil surveille les maintenances suivantes :

<table>
<thead>
<tr>
<th>Maintenance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance OLTC</td>
<td>Une maintenance du changeur de prises en charge doit être effectuée conformément aux normes MR.</td>
</tr>
<tr>
<td>Remplacement OLTC</td>
<td>Le changeur de prises en charge doit être remplacé par un nouveau.</td>
</tr>
<tr>
<td>Remplacement du corps insérable</td>
<td>Le corps insérable doit être remplacé par un nouveau.</td>
</tr>
<tr>
<td>Érosion des contacts</td>
<td>Les contacts de commutation ou les contacts de résistance du changeur de prises en charge doivent être remplacés.</td>
</tr>
<tr>
<td>Vidange d'huile et nettoyage</td>
<td>Une vidange d'huile et un nettoyage du corps insérable, du récipient d'huile et du conservateur d'huile s'imposent.</td>
</tr>
<tr>
<td>Maintenance sélecteur</td>
<td>Le sélecteur du changeur de prises en charge doit faire l'objet d'une maintenance conformément aux normes MR.</td>
</tr>
<tr>
<td>Échantillon d'huile</td>
<td>Un échantillon d'huile doit être prélevé et analysé ; les valeurs limites pour l'huile isolante remplie telles qu'elles sont prescrites par MR doivent être respectées.</td>
</tr>
<tr>
<td>Installation de filtrage d'huile</td>
<td>Le filtre à huile de l'installation de filtrage d'huile doit être remplacé.</td>
</tr>
<tr>
<td>Intervalle exploitant OLTC</td>
<td>Intervalle de maintenance du changeur de prises en charge dépendant du nombre de manœuvres ou du temps, pouvant être prescrit par l'exploitant.</td>
</tr>
<tr>
<td>Intervalle exploitant Transformateur</td>
<td>Intervalle de maintenance du transformateur dépendant du temps, pouvant être prescrit par l'exploitant.</td>
</tr>
</tbody>
</table>

Tableau 94: Maintenances
9.32.1 Réglage de l'intervalle exploitant pour la maintenance OLTC

Vous pouvez définir un intervalle de maintenance personnalisé pour le changeur de prises en charge. Vous pouvez définir l'intervalle de maintenance soit en fonction du temps, soit en fonction du nombre de manœuvres. Si la limite est atteinte (100 %), l'appareil déclenche un message d'événement (rouge).

Figure 230: Maintenance : OLTC exploitant

1. Sélectionner l'option de menu Réglages > Paramètres > Changeur de prises en charge > Maintenance : exploitant OLTC.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
9.32.2 Réglage de l'intervalle exploitant pour la maintenance du transformateur

Vous pouvez définir un intervalle de maintenance personnalisé pour le transformateur. L'intervalle de maintenance dépend du temps. Si la limite est atteinte (100 %), l'appareil déclenche un message d'événement (rouge).

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Maintena...ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Activer intervalle</td>
<td>Désactivé</td>
<td></td>
</tr>
<tr>
<td>Durée</td>
<td>1.0 a</td>
<td></td>
</tr>
<tr>
<td>Date prochaine maint.</td>
<td>17.09.2026 23:59:21</td>
<td></td>
</tr>
<tr>
<td>Événement (jaune)</td>
<td>90.0 %</td>
<td></td>
</tr>
</tbody>
</table>

Figure 231: Maintenance : transfo. exploitant

1. Sélectionnez l'option de menu Réglages > Paramètres > Partie active > Maintenance : exploitant transformateur.
2. Sélectionnez le paramètre souhaité.
3. Réglez le paramètre souhaité.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
9.32.3 Réalisation et confirmation des maintenances

Une fois une maintenance effectuée, vous pouvez la confirmer sur l'appareil et, ainsi, réinitialiser l'intervalle de maintenance. Vous pouvez entrer les paramètres ci-dessous en fonction du type de maintenance :

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Date de la maintenance.</td>
</tr>
<tr>
<td>Compteur de manoeuvres</td>
<td>Niveau du compteur de manoeuvres au moment de la dernière maintenance.</td>
</tr>
<tr>
<td></td>
<td>Vous pouvez entrer le niveau actuel du compteur ou bien un niveau inférieur.</td>
</tr>
<tr>
<td>Erosion des contacts</td>
<td>Somme de l'érosion des contacts du contact fixe et du contact mobile.</td>
</tr>
<tr>
<td>(uniquement OILTAP®)</td>
<td></td>
</tr>
<tr>
<td>• CCA</td>
<td>Si vous avez mesuré l'érosion des contacts lors d'une maintenance et si vous continuez d'utiliser les contacts dans leur position initiale, entrez les valeurs mesurées et sélectionnez « Non » en réponse à l'invite « Contacts permutés / remplacés ». Le système de monitorisation optimise alors son modèle de calcul, ce qui garantit une meilleure précision du calcul de l'érosion des contacts à l'avenir.</td>
</tr>
<tr>
<td>• CCB</td>
<td></td>
</tr>
<tr>
<td>• CR1A</td>
<td>Si vous avez permuté (autre position) ou remplacé les contacts, entrez la valeur d'érosion des contacts montés (0,000 mm pour les nouveaux contacts) et sélectionnez « Oui » en réponse à l'invite « Contacts permutés / remplacés ».</td>
</tr>
<tr>
<td>• CR1B</td>
<td></td>
</tr>
<tr>
<td>• CR2A</td>
<td></td>
</tr>
<tr>
<td>• CR2B</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 95: Paramètres de maintenance
Détermination de l’érosion des contacts (uniquement OILTAP®)

L’épaisseur d’usure à entrer est la somme de l’usure de la pièce de contact mobile et de la pièce de contact fixe.

![Diagram of contact determination](image)

Figure 232: Détermination de l’usure des contacts

<table>
<thead>
<tr>
<th></th>
<th>1 Contact fixe</th>
<th>y₁</th>
<th>Épaisseur du revêtement de contact usé (contact fixe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Contact mobile</td>
<td>x₂</td>
<td>Épaisseur du revêtement de contact à l’état neuf (contact mobile)</td>
</tr>
<tr>
<td>x₁</td>
<td>Épaisseur du revêtement de contact à l’état neuf (contact fixe)</td>
<td>y₂</td>
<td>Épaisseur du revêtement de contact usé (contact mobile)</td>
</tr>
</tbody>
</table>

L’épaisseur d’usure à entrer \(z \) est calculée comme suit :

\[
z = x₁ - y₁ + x₂ - y₂
\]
Confirmation de la maintenance

Pour confirmer une maintenance, procédez comme suit :

1. Sélectionnez l’option de menu Réglages > Assistant de maintenance.

2. Sélectionnez les maintenances à confirmer.

3. Sélectionnez le bouton Suivant.

4. Entrez les paramètres de maintenance.

5. Sélectionnez le bouton Appliquer pour enregistrer les paramètres modifiés.

 ➞ Uniquement dans le cas OILTAP® : le système demande si les contacts ont été permutés ou remplacés.

6. Uniquement dans le cas OILTAP® : sélectionnez Oui ou Non pour confirmer l’invite.
9.32.4 Affichage de l'aperçu de maintenance

L'aperçu de maintenance affiche la progression des différents intervalles de maintenance. En outre, vous pouvez voir les valeurs limites des messages d'événement « jaune » et « rouge ». Pour définir les intervalles de maintenance du changeur de prises en charge, l'appareil se base sur les données de fonctionnement saisies pour pronostiquer la date de la maintenance suivante. La date ne s'affiche que si les données de fonctionnement ont été saisies en nombre suffisant.

Si vous avez désactivé l'intervalle de maintenance « Maintenance exploitant OLTC » ou « Maintenance exploitant transformateur », l'intervalle s'affiche grisé dans l'aperçu de maintenance.

Figure 235: Aperçu de maintenance

► Sélectionnez l'option de menu Information > Système > Maintenance.

9.32.5 Affichage du journal de maintenance

Toutes les maintenances effectuées s'affichent dans le journal de maintenance. Les entrées sont automatiquement générées si vous effectuez une maintenance avec l'assistant de maintenance. Vous pouvez créer des entrées personnalisées.

Le journal de maintenance affiche les informations suivantes :
- Heure de maintenance
- Type mainten.
- Description
Pour afficher le journal de maintenance, procédez comme suit :

► Sélectionnez l’option de menu **Réglages > Journal de maintenance**.

Édition d’une entrée dans le journal de maintenance

Si nécessaire, vous pouvez éditer les entrées dans le journal de maintenance.

1. Sélectionnez l’option de menu **Réglages > Journal de maintenance**.
2. Sélectionnez le bouton pour éditer une entrée.

Pour éditer une entrée dans le journal de maintenance, procédez comme suit :

1. Sélectionnez l’option de menu **Réglages > Journal de maintenance**.
2. Sélectionnez le bouton pour éditer une entrée.
Création d'une entrée dans le journal de maintenance

Pour créer une entrée dans le journal de maintenance sans utiliser l'assistant de maintenance, procédez comme suit :
1. Sélectionnez l'option de menu Réglages > Journal de maintenance.
2. Sélectionnez le bouton Nouvelle entrée.
3. Entrez les données de maintenance.
4. Sélectionnez le bouton Appliquer pour enregistrer l'entrée.

Suppression d'une entrée dans le journal de maintenance

Si nécessaire, vous pouvez supprimer les entrées dans le journal de maintenance. Pour cela, procédez comme suit :
1. Sélectionnez l'option de menu Réglages > Journal de maintenance.
2. Sélectionnez le bouton pour supprimer l'entrée.

9.32.6 Masquer un événement de maintenance

Cette fonction sert à masquer les messages d'événement des maintenances dont la valeur limite a été atteinte, ce pour un nombre déterminé de changements de prise. Lorsque vous acquittez un événement de maintenance sans effectuer la maintenance, l'appareil signale à nouveau le message d'événement une fois le nombre réglé de changements de prise atteint.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>Événements...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Masquer évén. maintenance transf.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Figure 238: Masquer un événement de maintenance

Masquer évén. maintenance

Ce paramètre sert à régler le nombre de changements de prises pour lequel le message d'événement doit être masqué.

Pour régler la fonction Événement de maintenance, procédez comme suit :
1. Sélectionnez l'option de menu Réglages > Paramètres > Événements de maintenance.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton **Appliquer** pour enregistrer le paramètre modifié.

9.33 Surveillance du couple (en option)

La fonction Surveillance du couple sert à surveiller le couple du changeur de prises en charge. Différentes valeurs limites sont définies sur toute la séquence de commutation pour le couple ; si ces valeurs sont dépassées, le système de monitorisation déclenche un message d’événement correspondant.

Vous ne pouvez utiliser la fonction de surveillance du couple que pour le changeur de prises en charge et le mécanisme d’entraînement calibrés en usine. N’hésitez pas à contacter Maschinenfabrik Reinhausen GmbH si vous souhaitez utiliser la surveillance du couple pour un autre changeur de prises en charge.

9.33.1 Plages de commutation (fenêtres) M1...M8

La courbe de couple peut compter jusqu’à huit plages (M1...M8), également appelées fenêtres, selon le type de changeur de prises en charge et le type de commutation. Ces plages décrivent les différents pas de commutation du changeur de prises en charge au cours d’une manœuvre.

Figure 239: Courbe de couple d'une commutation de présélecteur avec la division en huit plages de commutation (M1...M8)
9.33.2 Types de commutation

Le système de monitorisation distingue les types de commutation suivants :

▪ Commutation de présélecteur : le présélecteur commute aussi.
▪ Petit pas de commutation : commutation du sélecteur de prises caractérisée par une petite distance entre les contacts du sélecteur fixes utilisés pour cette commutation.
▪ Pas de commutation moyen : commutation du sélecteur de prises caractérisée par une distance moyenne entre les contacts du sélecteur fixes utilisés pour cette commutation.
▪ Grand pas de commutation : commutation du sélecteur de prises caractérisée par une grande distance entre les contacts du sélecteur fixes utilisés pour cette commutation.
▪ Commutation d’inversion de polarité : commutation qui se déroule dans le sens inverse de la dernière commutation et qui n’implique pas d’actionnement du sélecteur.

9.33.3 Valeurs limites

Le système de monitorisation surveille la séquence de commutation au niveau des limites suivantes :

▪ Valeur limite > (M1...M8 >)
▪ Valeur limite >> (M1...M8 >>)
▪ Couple maximal admissible du changeur de prises en charge ($M_{c,\text{max}}$)

Valeur limite > et valeur limite >>

Deux valeurs limites (> et >>) sont définies pour chaque plage de commutation (fenêtre M1...M8). Ces valeurs limites dépendent du changeur de prises, du type de commutation et des températures actuelles de l’huile du commutateur en charge et de l’huile pour transformateur.

Une fois la commutation terminée, le système de monitorisation surveille les valeurs limites de la courbe de couple. Si une valeur limite a été dépassée, le système de monitorisation génère un message d’événement correspondant. Tout changement de prise supplémentaire est bloqué en cas de dépassement de la valeur limite >>, selon la configuration de l’appareil. Dans ce cas, l’événement Blocage actif est déclenché. Vous devez acquitter les événements pour en stopper l’affichage et lever tout blocage connexe.

Couple maximal admissible du changeur de prises en charge ($M_{c,\text{max}}$)

Le couple maximal admissible du changeur de prises en charge est surveillé pendant la commutation. Cette surveillance a pour but d’éviter un endommagement mécanique du changeur de prises en charge. Si la valeur limite du couple maximal admissible du changeur de prises en charge est dépassée, le système de monitorisation déclenche le disjoncteur-protecteur du moteur Q1. Le système de monitorisation déclenche, en outre, l’événement Valeur
limite Md-Max dépassée. Il ne se produit pas de déclenchement du disjoncteur-protecteur du moteur Q1 dans les fenêtres M3...M5 dans le cas d’une commutation de présélecteur.

Une fois le disjoncteur-protecteur du moteur déclenché, le système de monitoring reçoit un signal correspondant du mécanisme d’entraînement, Le système de monitoring déclenche alors l’événement 85 Disjoncteur-protecteur du moteur ouvert !

Vous ne pouvez réenclencher le disjoncteur-protecteur du moteur qu’après avoir acquitté l’événement Valeur limite Md-Max dépassée. Observez les consignes de dépannage contenues dans les instructions de service du mécanisme d’entraînement.

9.33.4 Surveillance de commutation

La surveillance de commutation sert à la surveillance de la tringlerie d’entraînement entre changeur(s) de prise en charge et mécanisme d’entraînement ; elle sert également à surveiller la commutation correcte du commutateur. La surveillance de commutation a également lieu lorsque le mécanisme d’entraînement est actionné à l’aide de la manivelle.

Si le changeur de prise en charge est équipé d’un dispositif de surveillance de commutation, le système de monitoring utilise l’état des contacts de surveillance S80 et S81 pour les analyses suivantes :

- Si les deux contacts de surveillance signalent « DÉSACTIVÉ » (aucun signal présent) et si aucune commutation n’a actuellement lieu, le système de monitoring déclenche l’événement Tous les deux contacts de surveillance de commutation DÉSACTIVÉ.

- Si les deux contacts de surveillance signalent « ACTIVÉ » (signal présent) et si aucune commutation n’a actuellement lieu, le système de monitoring déclenche l’événement Tous les deux contacts de surveillance de commutation ACTIVÉ.

- Si une commutation a été effectuée alors qu’aucun changement des signaux des contacts de surveillance n’a eu lieu (p. ex. de 1 à 2), le système de monitoring déclenche l’événement Changement de prise sans commutation en charge.

- Surveillance du raccordement correct de la surveillance de commutation et du calibrage correct du capteur de position. Dans le cas contraire, le système de monitoring déclenche l’événement Erreur de câblage surveillance de commutation.

- Si le signal d’un contact de surveillance passe de « ACTIVÉ » à « DÉSACTIVÉ » au cours d’un changement de prise, cette position est marquée par un trait vertical dans la courbe de couple comme indication qu’une commutation a eu lieu.
9 Visualisation

- Surveillance de la commutation. Si la commutation n’a pas lieu au bon moment, le système de monitorisation déclenche le message d’événement *Certrage OLTC et MD insuffisant*.

- Dans le cas de jeux de changeurs de prises en charge ou de combinaisons de changeurs de prises en charge (exécutions multicolonne), le système de monitorisation surveille la commutation synchrone des changeurs de prises en charge. Si la synchronisation est insuffisante, le système de monitorisation déclenche l’événement *Synchronisation OLTC insuffisant*.

9.33.5 Changements de prises analysés et non analysés

Le système de monitorisation distingue les changements de prise analysés et les changements de prise non analysés. Un changement de prise est qualifié d’analysé lorsqu’une commutation a été détectée et lorsque les limites de couple ont pu être contrôlées. Les limites de couple M1...M8 >/>> ne sont pas contrôlées dans le cas d’un changement de prise non analysé.

La courbe de couple est mémorisée dans son ensemble dans la base de données tant dans le cas de changements de prise analysés que dans celui de changements de prise non analysés.

Dans les cas suivants, un changement de prise n’est pas analysé :

- La tension du moteur, le courant du moteur ou la fréquence du moteur sont en dehors de la plage admissible.
- Les températures enregistrées sont en dehors de la plage admissible.
- Signal du codeur rotatif défectueux
- Aucune commutation n’a été détectée. Dans le cas de changeurs de prises en charge avec surveillance de commutation, il ne s’est produit aucun changement des contacts de surveillance de commutation et l’événement *Changement de prise sans commutation en charge* est déclenché. Dans le cas de changeurs de prises sans surveillance de commutation, la commutation est calculée à partir de la courbe de couple. Si un calcul correct de la commutation n’a pas été possible, la commutation ne sera pas non plus analysée.
- S’il existe des applications multicolonne : erreur de synchronisation.

Le couple moteur maximal admissible ($C_{m,\text{max}}$) est contrôlé si aucune commutation n’a été détectée.

9.33.6 Affichage de la surveillance du couple

Vous pouvez afficher la courbe de couple pour chaque changement de prise. Un écran d’aperçu affiche les informations suivantes concernant chaque changement de prise :

- Type de commutation
- Sens de manœuvre (d’une position à une autre)
9 Visualisation

- Température ambiante
- Heure du changement de prise
- Message d'événement
 - Bleu : changement de prise analysé sans dépassement des valeurs limites
 - Jaune : changement de prise analysé avec dépassement de la valeur limite >
 - Rouge : changement de prise analysé avec dépassement de la valeur limite >>
 - Gris : changement de prise non analysé

Vous pouvez filtrer les types de commutation souhaités dans un champ de sélection correspondant. Dans l'en-tête du tableau, vous pouvez choisir d'afficher la colonne souhaitée par ordre croissant ou décroissant.

![Tableau de surveillance du couple](image)

Figure 240: Aperçu de la surveillance du couple

► Sélectionnez l'option de menu **Information > Changeur de prises en charge > Surveillance de couple.**
Affichage de la courbe de couple

Vous pouvez afficher la courbe de couple pour chaque changement de prise enregistré. Les valeurs limites > et >>, ainsi que l'heure de la commutation (ligne verticale), s'affichent pour chaque plage de commutation (M1...M8).

Figure 241: Courbe de couple

Vous pouvez sélectionner plusieurs courbes de couple à des fins de comparaison (dix courbes de couple au maximum à l'écran de l'appareil ; 100 courbes de couple au maximum via la visualisation Web sur l'ordinateur). Si vous sélectionnez plusieurs courbes de couple de différents types de commutation, les valeurs limites ne s'afficheront pas.

Si vous ouvrez la courbe de couple, les données de la surveillance du couple sont mises en mémoire tampon dans le cache du navigateur. Si vous quittez la courbe de couple pour revenir à l'aperçu du couple, les données sont chargées depuis le cache du navigateur. Par conséquent, les changements de prise qui ont été effectués entretemps ne s'affichent pas dans l'aperçu. Sélectionnez le bouton Home pour supprimer les données du cache du navigateur, puis rouvrez la surveillance du couple.
9 Visualisation

Figure 242: Comparaison des courbes de couple

1. Sélectionnez l'option de menu Information > Changeur de prises en charge > Surveillance de couple.
2. Sélectionnez les changements de prise souhaités.
3. Sélectionnez le bouton Afficher.

9.34 Gestion d'événements

L'appareil est doté d'une fonction de gestion d'événements servant à déte-
cter différents états de service de l'appareil et d'adapter le comportement de
l'appareil. Vous trouverez un aperçu des événements possibles dans le cha-
pitre Messages d'événement.

9.34.1 Afficher et acquitter les événements

Pour afficher les événements actuellement présents, procédez comme suit :
► Sélectionnez l'option de menu Événements.
 ⇒ Une liste des événements actuellement présents s'affiche.
Figure 243: Aperçu des événements actuellement présents

Acquittement des événements

Vous devez acquitter les événements acquittables dans l’aperçu des événements afin qu’ils ne s’affichent plus. Tous les autres événements sont automatiquement supprimés une fois la cause éliminée (par ex. dépassement de valeur limite levé).

Pour acquitter les événements, procédez comme suit :
► Pour acquitter les événements, marquez les événements souhaités dans la colonne puis sélectionnez le bouton Acquitter.
⇒ Les événements sont acquittés.

9.34.2 Configurer les événements

Les événements présentent les propriétés suivantes :

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom de l'événement</td>
<td>Abréviation de l'événement. Si vous effacez complètement le texte, le texte standard s’affiche.</td>
</tr>
<tr>
<td>Description de l'événement</td>
<td>Description de l'événement. Si vous effacez complètement le texte, le texte standard s’affiche.</td>
</tr>
<tr>
<td>Élimination d'événement</td>
<td>Indications relatives à l'élimination de la cause de l'événement. Si vous effacez complètement le texte, le texte standard s’affiche.</td>
</tr>
</tbody>
</table>
| Catégorie | • Erreur (rouge)
 • Avertissement (jaune)
 • Info (gris) |

Ce réglage influence la couleur de la DEL Alarme et de l’icône d’événement dans la navigation primaire.
Tableau 96: Propriétés des événements

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signaler</td>
<td>Si vous activez cette option, l'événement s'affiche à l'écran et est émis via une sortie et le protocole poste de conduite si la configuration s'y prête.</td>
</tr>
<tr>
<td>Enregistrer</td>
<td>Si vous activez cette option, l'événement est stocké dans la mémoire d'événements.</td>
</tr>
<tr>
<td>Réglage multiple (non configurable)</td>
<td>L'événement peut être déclenché à plusieurs reprises sans avoir été désactivé entre temps.</td>
</tr>
<tr>
<td>High actif (non configurable)</td>
<td>High-actif : l'appareil émet un signal lorsque l'événement est présent.</td>
</tr>
<tr>
<td></td>
<td>Low-actif : l'appareil émet un signal tant que l'événement n'est pas présent. Le signal est réinitialisé lorsque l'événement est présent.</td>
</tr>
<tr>
<td>Acquittable (non configurable)</td>
<td>Vous devez acquitter les événements acquittables dans l'aperçu des événements afin qu'ils ne s'affichent plus. Tous les autres événements sont automatiquement supprimés une fois la cause éliminée (par ex. dépassement de valeur limite levé).</td>
</tr>
<tr>
<td>Bloquant (non configurable)</td>
<td>Si l'événement est actif, la régulation automatique de la tension est bloquée.</td>
</tr>
</tbody>
</table>

Figure 244: Configurer les événements

Pour configurer un événement, procédez comme suit :
1. Sélectionnez l'option de menu Réglages > Événements.
2. Sélectionnez l'événement à modifier dans la liste.
4. Sélectionnez le bouton Appliquer pour enregistrer la modification.
9.34.3 Affichage de la mémoire d'événements

Les événements passés sont stockés dans la mémoire d'événements. Les informations suivantes s'affichent :

<table>
<thead>
<tr>
<th>Co-lonne</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Numérotation séquentielle des événements</td>
</tr>
<tr>
<td>Nº</td>
<td>Numéro d'événement pour une identification univoque</td>
</tr>
</tbody>
</table>
| | Catégorie d'événement :
| | ▪ Erreur (rouge) |
| | ▪ Avertissement (jaune) |
| | ▪ Info (gris) |
| Événement | Texte événement |
| Heure | Date et heure de l'événement (JJ.MM.AAAA, HH:MM:SS/ms) |
| | L'événement apparaît/disparaît :
| | ☀ L'événement apparaît |
| | ☀ L'événement disparaît |

Tableau 97: Mémoire d'événements

Pour afficher la mémoire d'événements, procédez comme suit :
1. Sélectionnez l'option de menu Événements.
2. Sélectionnez le bouton Journal.

Filtrage d'événements

Vous pouvez définir un filtre pour personnalisé l'affichage. Pour cela, procédez comme suit :
1. Sélectionnez le bouton Filtre.
2. Entrez le laps de temps souhaité.

4. Sélectionnez les événements souhaités dans la liste **Événements**.

5. Sélectionnez le bouton **Rechercher** pour afficher les événements souhaités.

Exportation d’événements

Vous pouvez exporter sous forme de fichier csv les entrées de la mémoire d'événements qui s'affichent actuellement. Si vous avez créé un filtre auparavant, seules les entrées filtrées sont exportées.

Pour exporter les événements, procédez comme suit :

- Tout d'abord, raccordez l'ordinateur ou connectez un support d'enregistrement au port USB du module CPU [Section 4.5.7.2, Page 39].

1. Sélectionnez le bouton **Exportation**.

2. Sélectionnez l'option souhaitée (ordinateur ou USB) pour la transmission des données.

Les données sont exportées.

9.35 Gestion d'utilisateurs

La gestion d'utilisateurs repose sur un système de rôles. Vous devez assigner un rôle à chaque utilisateur. Vous pouvez définir les droits d'accès aux paramètres et événements pour chaque rôle.

9.35.1 Rôles utilisateur

Les droits d'accès aux fonctions et réglages de l'appareil sont commandés via un système de rôles hiérarchique. Le système comporte cinq rôles différents possédant des droits d'accès distincts. Une partie de ces droits d'accès est attribuée de manière fixe, les droits d'accès à des paramètres et événements donnés peuvent toutefois être configurés. Consultez à ce propos la section **Régler les droits d'accès aux paramètres et événements** [Section 9.35.4, Page 348].

Si vous n'êtes pas connecté sur l'appareil, vous vous trouvez dans le rôle utilisateur « Data-Display ».
Les rôles suivants sont prévus par défaut à la livraison :

<table>
<thead>
<tr>
<th>Rôle</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affichage des données</td>
<td>L'utilisateur qui a le droit de voir uniquement les données d'exploitation.</td>
</tr>
<tr>
<td></td>
<td>• Afficher tous les paramètres</td>
</tr>
<tr>
<td></td>
<td>• Afficher tous les événements</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>L'utilisateur qui a le droit de voir les données d'exploitation et de connexion.</td>
</tr>
<tr>
<td></td>
<td>• Afficher tous les paramètres</td>
</tr>
<tr>
<td></td>
<td>• Afficher tous les événements</td>
</tr>
<tr>
<td></td>
<td>• Exporter les données de journal</td>
</tr>
<tr>
<td>Opérateur</td>
<td>L'utilisateur qui a le droit de voir les données d'exploitation et d'acquitter les événements. L'utilisateur peut effectuer des changements de prise manuels à l'aide des éléments de commande de l'appareil.</td>
</tr>
<tr>
<td></td>
<td>• Afficher tous les paramètres</td>
</tr>
<tr>
<td></td>
<td>• Afficher et acquitter tous les événements</td>
</tr>
<tr>
<td>Paramétreur</td>
<td>L'utilisateur qui a le droit de voir et de modifier les données d'exploitation.</td>
</tr>
<tr>
<td></td>
<td>• Afficher et modifier tous les paramètres</td>
</tr>
<tr>
<td></td>
<td>• Importer et exporter les paramètres</td>
</tr>
<tr>
<td></td>
<td>• Afficher, modifier et acquitter tous les événements</td>
</tr>
<tr>
<td>Administrateur</td>
<td>L'utilisateur qui a le droit de voir et de modifier toutes les données.</td>
</tr>
<tr>
<td></td>
<td>• Lire tous les paramètres</td>
</tr>
<tr>
<td></td>
<td>• Afficher, modifier et acquitter tous les événements</td>
</tr>
</tbody>
</table>

Tableau 98: Rôles par défaut à la livraison

L'accès aux zones suivantes de l'appareil est indissociablement lié aux rôles :

<table>
<thead>
<tr>
<th>Fonction</th>
<th>Affichage des données</th>
<th>Diagnostic</th>
<th>Opérateur</th>
<th>Paramétreur</th>
<th>Administrateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Redémarrage de l'appareil</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Importation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Exportation</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Réglage de la date et de l'heure</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Appeler l'assistant de mise en service</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Calibrage de la rangée de contacts potentiométrique</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
9.35.2 Changer le mot de passe

Chaque utilisateur peut changer son mot de passe, si le compte utilisateur n’est pas créé comme compte de groupe. Vous ne pouvez changer le mot de passe d’un compte de groupe que si vous êtes connecté en tant qu’administrateur.

Notez que le mot de passe doit satisfaire aux exigences ci-après :

- Huit caractères minimum
- Au mois trois des quatre types de caractère suivants
 - Lettres majuscules
 - Lettres minuscules
 - Chiffres
 - Caractères spéciaux
Pour changer le mot de passe, procédez comme suit :

1. Sélectionnez le **nom d’utilisateur** dans la barre d’état.

2. Entrez le nouveau **mot de passe** à deux reprises.

3. Sélectionnez le bouton **Appliquer** pour enregistrer le mot de passe modifié.

9.35.3 Créer, éditer et supprimer un utilisateur

Vous pouvez régler les options suivantes pour chaque utilisateur :

- **Nom d’utilisateur et mot de passe**
- **Rôle** : vous pouvez assigner un rôle à chaque utilisateur. Les droits d’accès aux paramètres ou aux événements sont liés aux rôles.
- **Accès de groupe** : cette option vous permet de déclarer un compte utilisateur comme compte de groupe (par ex. pour l’accès de plusieurs personnes). Les utilisateurs avec accès de groupe ne peuvent pas changer leur propre mot de passe. Seul l'administrateur peut changer le mot de passe.
- **Actif** : vous pouvez activer ou désactiver l'utilisateur. Les utilisateurs désactivés ne peuvent pas se connecter. Les données utilisateur restent enregistrées dans l’appareil.
- **Connexion auto** : vous pouvez activer la fonction de connexion automatique pour un utilisateur. Cet utilisateur est directement connecté au redémarrage du système ou lorsqu'un autre utilisateur se déconnecte.
Vous ne pouvez créer, éditer ou supprimer des utilisateurs que si vous appartenez au rôle Administrateur.

Dans l'état à la livraison, vous pouvez vous connecter comme administrateur comme suit :

- Nom d'utilisateur : admin
- Mot de passe : admin

Créer un utilisateur

Pour créer un nouvel utilisateur, procédez comme suit :
1. Sélectionnez l'option de menu Réglages > Administration > Utilisateur.
2. Sélectionnez le bouton Créer un utilisateur.
3. Entrez le nom d'utilisateur et le mot de passe à deux reprises.
4. Sélectionnez le rôle souhaité.
5. Si nécessaire, activez les options Compte de groupe, Actif ou Connexion auto.
6. Sélectionnez le bouton Appliquer pour enregistrer l'utilisateur.

Éditer un utilisateur

Pour éditer un utilisateur existant, procédez comme suit :
1. Sélectionnez l'option de menu Réglages > Administration > Utilisateur.
2. Sélectionnez le bouton utilisateur souhaité dans la liste.
3. Effectuez les changements souhaités.
4. Sélectionnez le bouton Appliquer pour enregistrer l'utilisateur.
Supprimer un utilisateur

Pour supprimer un utilisateur existant, procédez comme suit :
1. Sélectionnez l’option de menu Réglages > Administration > Utilisateur.
2. Sélectionnez le bouton de l’utilisateur souhaité dans la liste.

9.35.4 Régler les droits d'accès aux paramètres et événements

Vous pouvez configurer les droits d'accès aux paramètres et aux événements pour les rôles disponibles. Les options ci-après sont disponibles à cet effet :
- Lecture : affichage du paramètre/de l'événement autorisé.
- Écriture : modification du paramètre/de l'événement autorisée.
- Acquittement : acquittement de l'événement autorisé.

Vous ne pouvez modifier les droits d'accès que si vous appartenez au rôle administrateur.

Dans l'état à la livraison, vous pouvez vous connecter comme administrateur comme suit :
- Nom d'utilisateur : admin
- Mot de passe : admin

Pour régler les droits d'accès aux paramètres et événements, procédez comme suit :
1. Sélectionnez l’option de menu Réglages > Administration > Paramètres/Événements.
 - Une liste de tous les paramètres ou événements s'affiche.
2. Sélectionnez l'entrée souhaitée dans la liste.
4. Sélectionnez le bouton **Appliquer** pour enregistrer la modification.

9.35.5 Authentification utilisateur via RADIUS (en option)

L'appareil prend en charge l'authentification utilisateur via RADIUS conformément à RFC 2865. Il fonctionne, à cet effet, comme client RADIUS. Pour utiliser RADIUS, vous devez créer un dictionnaire pour les appareils ISM® sur votre serveur RADIUS et régler les paramètres RADIUS sur l'appareil.

Observez les avis suivants :

- Utilisez RADIUS exclusivement dans un réseau sécurisé en raison du caractère sensible des données transmises.
- Si un identifiant utilisateur a été créé aussi bien sur le serveur RADIUS que localement sur l'appareil, ce dernier essaie, dans un premier temps, d'établir la connexion via le serveur RADIUS. Si une connexion est impossible, l'appareil utilise les données de connexion enregistrées localement.
- Si aucun identifiant utilisateur n'a été créé sur le serveur RADIUS, l'appareil utilise les données de connexion enregistrées localement.

9.35.5.1 Création d'un dictionnaire sur le serveur RADIUS

Vous devez créer un dictionnaire pour les appareils ISM® sur votre serveur RADIUS selon la spécification ci-après.

```
VENDOR MR 34559
BEGIN-VENDOR MR
# Attributes
ATTRIBUTE MR-ISM-User-Group 1 integer
# Predefined values for attribute 'MR-ISM-User-Group'
VALUE MR-ISM-User-Group Administrator 1
VALUE MR-ISM-User-Group Parameter-configurator 2
VALUE MR-ISM-User-Group Operator 3
VALUE MR-ISM-User-Group Diagnostics 4
VALUE MR-ISM-User-Group Data-display 5
END-VENDOR MR
```

Si votre serveur RADIUS prend en charge l'importation d'un dictionnaire, vous pouvez exporter le dictionnaire pour les appareils ISM® depuis l'appareil et l'importer vers votre serveur RADIUS. Observez, à cet effet, les avis contenus dans la section Exportation des données [▶ Section 9.37.1, Page 354].

Les groupes d'utilisateurs du dictionnaire correspondent aux rôles utilisateurs [▶ Section 9.35.1, Page 343] de l'appareil et aux droits associés.
9.35.2 Configuration RADIUS

Pour établir une connexion au serveur RADIUS, vous devez régler les paramètres ci-après.

<table>
<thead>
<tr>
<th>Réglages</th>
<th>Paramètres</th>
<th>RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom</td>
<td>Valeur</td>
<td></td>
</tr>
<tr>
<td>Activer le client RADIUS</td>
<td>Désactivé</td>
<td></td>
</tr>
<tr>
<td>Serveur RADIUS</td>
<td>0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>Port serveur RADIUS</td>
<td>1812</td>
<td></td>
</tr>
<tr>
<td>Protocoles d'authentification</td>
<td>CHAP</td>
<td></td>
</tr>
<tr>
<td>Clé (Shared Secret)</td>
<td>défaut</td>
<td></td>
</tr>
</tbody>
</table>

Figure 249: Configuration RADIUS

Vous ne pouvez configurer RADIUS que si vous appartenez au rôle administrateur.

Dans l'état à la livraison, vous pouvez vous connecter comme administrateur comme suit :

- Nom d'utilisateur : admin
- Mot de passe : admin

1. Sélectionnez l'option de menu Réglages > Paramètres > Système > RADIUS.
2. Sélectionnez le paramètre souhaité.
3. Réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer le paramètre modifié.
9.36 Informations relatives à l'appareil

9.36.1 Matériel

Dans l'option de menu Matériel, vous pouvez afficher les informations relatives au matériel de l'appareil. Concernant les modules, vous trouverez des informations sur le niveau de signal des différents canaux.

1. Sélectionnez l'option de menu Information > Système > Matériel.
2. Sélectionnez le Module souhaité pour afficher le niveau de signal des canaux.

9.36.1.1 État du module DIO

Vous pouvez afficher l'état des entrées et des sorties numériques du module DIO.

- Broche de la borne
- État de l'entrée (E : ...) ou de la sortie (S : ...)
 - Bleu : un signal est présent (logique 1) à l'entrée ou à la sortie.
 - Gris : aucun signal n'est présent (logique 0) à l'entrée ni à la sortie.
- Fonction reliée
9.36.1.2 État du module AIO

Vous pouvez afficher l’état des entrées et des sorties analogiques du module AIO. Si la valeur est située en dehors de la plage admissible, elle s’affiche en rouge.

<table>
<thead>
<tr>
<th>Information</th>
<th>Système</th>
<th>AIO4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val. brute</td>
<td>Valeur fct.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10.8 mA</td>
<td>62.5 °C</td>
</tr>
<tr>
<td>2</td>
<td>11.6 mA</td>
<td>69.9 °C</td>
</tr>
<tr>
<td>3</td>
<td>12.3 mA</td>
<td>61.7 %</td>
</tr>
<tr>
<td>4</td>
<td>13.1 mA</td>
<td>65.7 %</td>
</tr>
</tbody>
</table>

Figure 251: État du module DIO

Figure 252: État du module AIO
9.36.2 Logiciel
Dans le menu Logiciel, vous pouvez afficher les différentes versions des composants logiciels de l'appareil.

![Figure 253: Informations relatives au logiciel de l'appareil](image)

► Sélectionnez l'option de menu Information > Système > Logiciel.

9.36.3 Marche en parallèle
Dans le menu Marche en parallèle, vous pouvez afficher les informations sur les appareils raccordés via le bus CAN.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>État de marche en parallèle :</td>
</tr>
<tr>
<td>▪ Gris = mode individuel</td>
</tr>
<tr>
<td>▪ Bleu = la marche en parallèle est active</td>
</tr>
<tr>
<td>▪ Rouge = erreur de marche en parallèle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adresse du bus CAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupe de marche en parallèle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Méthode de marche en parallèle active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position de prise actuelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cour. actif</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cour. réact.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocage :</td>
</tr>
<tr>
<td>▪ Gris : marche en parallèle non bloquée</td>
</tr>
<tr>
<td>▪ Rouge : marche en parallèle bloquée</td>
</tr>
</tbody>
</table>

Tableau 100: Informations relatives à la marche en parallèle
9.37 Gestionnaire d'importation/d'exportation

L'appareil est équipé d'un gestionnaire d'importation/d'exportation grâce auquel vous pouvez exporter et importer différentes données.

Les options ci-après sont disponibles pour la transmission des données :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td>Transmission des données via l'interface USB arrière du sous-ensemble CPU I.</td>
</tr>
<tr>
<td>PC</td>
<td>Transmission des données par ordinateur via la visualisation Web.</td>
</tr>
</tbody>
</table>

Tableau 101: Options de transmission des données

9.37.1 Exporter des données

L'appareil arrête l'enregistrement des données par l'enregistreur des données mesurées pendant le temps que dure l'exportation.

Vous pouvez exporter les données suivantes depuis l'appareil en fonction de la configuration de votre appareil :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image système</td>
<td>Image complète du système (logiciel et configuration). Si vous utilisez l'option « avec historique », toutes les entrées de la mémoire d'événements sont également exportées.</td>
</tr>
<tr>
<td>Configuration du système</td>
<td>Configuration du système</td>
</tr>
</tbody>
</table>
Option

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme client</td>
</tr>
<tr>
<td>Exportation du programme client (TPLE).</td>
</tr>
<tr>
<td>Mémoire d'événements</td>
</tr>
<tr>
<td>Toutes les entrées de la mémoire d'événements.</td>
</tr>
<tr>
<td>Enregistreur</td>
</tr>
<tr>
<td>Exportation de la mémoire de valeurs de mesure.</td>
</tr>
<tr>
<td>Liste de paramètres</td>
</tr>
<tr>
<td>Liste de paramètres avec textes descriptifs et valeurs (min, max, actuel).</td>
</tr>
<tr>
<td>Liste d'événements</td>
</tr>
<tr>
<td>Liste exhaustive de tous les événements possibles.</td>
</tr>
<tr>
<td>Configuration SCADA</td>
</tr>
<tr>
<td>Configuration du système de conduite (p. ex. fichier ICD pour CEI 61850).</td>
</tr>
<tr>
<td>Instructions de service</td>
</tr>
<tr>
<td>Instructions de service, descriptions de protocole.</td>
</tr>
<tr>
<td>Paramètres</td>
</tr>
<tr>
<td>Configuration des paramètres et des événements.</td>
</tr>
<tr>
<td>Configuration des points de données</td>
</tr>
<tr>
<td>Configuration des points de données du système de conduite.</td>
</tr>
<tr>
<td>Descr. périph. bus de capteurs</td>
</tr>
<tr>
<td>Description capteur des capteurs pour le bus de capteurs MR, que vous avez créé avec l'éditeur de capteurs.</td>
</tr>
<tr>
<td>Données de maintenance</td>
</tr>
<tr>
<td>Données de l'appareil à des fins d'assistance par le service technique de Maschinenfabrik Reinhausen GmbH</td>
</tr>
<tr>
<td>Journal de sécurité</td>
</tr>
<tr>
<td>Journal contenant tous les accès et modifications relevant de la sécurité.</td>
</tr>
<tr>
<td>Dictionnaire RADIUS</td>
</tr>
<tr>
<td>Dictionnaire pour l'importation vers un serveur RADIUS.</td>
</tr>
</tbody>
</table>

Tableau 102: Exporter des données

Ne retirez la clé USB qu'une fois la transmission des données terminée. Dans le cas contraire, il y a risque de perte de données.

Pour exporter les données, procédez comme suit :

1. Sélectionnez l'option de menu **Réglages > Exportation**.
2. Sélectionnez l'option souhaitée pour l'exportation.
9.37.2 Importation des données (à partir de la version logicielle 3.44)

Vous pouvez importer les données suivantes :

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image système</td>
<td>Image complète du système (logiciel et configuration) avec ou sans historique.</td>
</tr>
<tr>
<td>Paramètres</td>
<td>Tous les réglages de l'appareil :</td>
</tr>
<tr>
<td></td>
<td>▪ Définition des paramètres</td>
</tr>
<tr>
<td></td>
<td>▪ Réglages des événements</td>
</tr>
<tr>
<td></td>
<td>▪ Réglages administratifs (utilisateurs, droits d'accès)</td>
</tr>
<tr>
<td></td>
<td>Vous pouvez également importer les réglages depuis un autre appareil.</td>
</tr>
<tr>
<td>Langue</td>
<td>Importation de langues supplémentaires. Vous pouvez installer cinq langues maximum sur l'appareil. Si cinq langues sont déjà installées, vous serez invité, pendant l'importation, à supprimer une langue.</td>
</tr>
<tr>
<td>Certificat SSL</td>
<td>Importation d'un certificat SSL avec clé correspondante :</td>
</tr>
<tr>
<td></td>
<td>▪ Certificat serveur (.crt + .pem)</td>
</tr>
<tr>
<td></td>
<td>▪ Certificat client (.crt + .pem)</td>
</tr>
<tr>
<td></td>
<td>▪ Client CA (.crt)</td>
</tr>
<tr>
<td></td>
<td>Pour l'importation, vous devez comprimer le certificat (.crt) et la clé (.pem) dans une archive Zip.</td>
</tr>
<tr>
<td></td>
<td>Vous pouvez importer les certificats avec l'authentification de clé suivante :</td>
</tr>
<tr>
<td></td>
<td>▪ RSA avec 1024 bits</td>
</tr>
<tr>
<td></td>
<td>▪ ECDSA avec 256 Bit (courbe « secp256r1 » ou « prime256v1 »).</td>
</tr>
<tr>
<td>Configuration des</td>
<td>Importation de la configuration des points de données</td>
</tr>
<tr>
<td>points de données</td>
<td></td>
</tr>
<tr>
<td>Importation SCD</td>
<td>Importation de la configuration du système de contrôle</td>
</tr>
<tr>
<td>TPLE</td>
<td>Importation du programme client (TPLE).</td>
</tr>
</tbody>
</table>

Tableau 103: Importer des données

AVIS

Endommagement du système de données !

Une erreur de transfert des données peut endommager le système de données. Un système de données endommagé peut provoquer un arrêt du fonctionnement de l'appareil.

► Ne débranchez pas l'appareil de l'alimentation électrique pendant l'importation.

► Ne retirez pas la clé USB ou ne coupez pas la connexion au réseau pendant l'importation.

Pour importer les données, procédez comme suit :

1. Sélectionner l'option de menu Réglages > Importation.
2. Sélectionnez l'option souhaitée (ordinateur ou USB) pour la transmission des données.
3. Sélectionnez le fichier à importer.
 ⇒ La vérification du fichier est en cours.
4. Sélectionnez le bouton **Importer**.
 ⇒ Les données sont importées, à la suite de quoi l'appareil redémarre.

9.38 Configuration du convertisseur de support avec Managed Switch

Observez les consignes suivantes concernant la configuration du convertisseur de média avec commutateur géré SW 3-3. Utilisez le navigateur suivant pour accéder à la visualisation web :

- Version de micrologiciel 02.0.01 : Internet Explorer 11
- Version de micrologiciel 07.1.00 ou ultérieure : navigateur compatible HTML5, par ex. Google Chrome

9.38.1 Mise en service

Avant d'intégrer le commutateur Ethernet dans votre réseau, vous devez vérifier les principaux réglages et les adapter si besoin est. Notez, à cet effet, les consignes décrites dans cette section et relatives à la mise en service du commutateur Ethernet.

Établir la connexion à la visualisation web

Le commutateur Ethernet est livré avec le réglage d'usine suivant : adresse IP 192.168.1.1 ; masque de sous-réseau 255.255.255.0 ; adresse Gateway 0.0.0.0.

Pour la mise en service du commutateur Ethernet, procédez comme suit :
1. établissez une connexion à un PC via un raccordement Ethernet
2. configurez le PC de sorte qu'il se trouve dans le même sous-réseau que le commutateur Ethernet
3. appelez l'adresse IP 192.168.1.1 via un navigateur web
4. connectez-vous avec les données utilisateur (identifiant = admin ; mot de passe = private). Changez la langue si nécessaire (allemand/anglais).

AVIS

Endommagement de l'appareil

Si vous désactivez tous les services, vous ne pourrez plus accéder à l'appareil pour une configuration ou pour une mise à jour plus tard.

➤ Laissez au moins un service activé pour une communication sécurisée (par ex. SNMPv3, SSH ou HTTPS).

1. Sélectionnez l'option de menu **Sécurité de l'appareil > Management Access**.

2. Sélectionnez l'onglet du service souhaité.

3. Sélectionnez l'option **Désactivé** pour désactiver un service ou pour décocher les cases de fonctions partielles d'un service.

4. Sélectionnez le bouton ✔ ou **Écrire** pour enregistrer la modification.
Effectuer des réglages réseau

1. Sélectionnez le menu Réglages de base > Réseau > Global.

![Figure 257: Réglages réseau](image)

2. Personnalisez les réglages réseau et sélectionnez le bouton **Écrire** pour enregistrer la modification.

3. Dans le menu Réglages de base > Charger/Enregistrer cliquez sur le bouton **Enregistrer** pour enregistrer les réglages de façon permanente.

4. Si nécessaire, établissez la connexion avec la nouvelle adresse IP pour effectuer des réglages supplémentaires. Cliquez sur le bouton **Aide** pour obtenir de plus amples informations.

5. Raccordez le câble de connexion à votre réseau.

9.38.2 Configuration

Vous pouvez configurer le commutateur Ethernet via l'interface web. De plus amples informations relatives à la configuration sont disponibles via l'aide en ligne de l'interface web.

Appeler l'interface web

Pour afficher l'interface web, procédez comme décrit au chapitre Mise en service [Section 9.38.1, Page 357].

Sélection du protocole de redondance

Pour sélectionner le protocole de redondance, procédez comme suit :

1. Sélectionnez l'option de menu **Redondance**.

2. Sélectionnez l'option de menu souhaitée pour le protocole de redondance.
3. Procédez à la configuration et sélectionnez dans le champ de groupe **Fonction** l'option **Activé**.

4. Dans le menu **Réglages de base > Charger/Enregistrer** cliquez sur le bouton **Enregistrer** pour enregistrer les réglages de façon permanente.

Sélectionnez dans le champ de groupe **Fonction** l'option **Désactivé** pour désactiver les protocoles de redondance non utilisés.

Réinitialiser aux réglages d'usine

Pour réinitialiser le commutateur Ethernet aux réglages d'usine, procédez comme suit :

1. Sélectionnez l'option de menu **Réglages de base > Charger/Enregistrer** et cliquez sur le bouton **Réinitialiser aux réglages d'usine**.

2. Si nécessaire, établissez une nouvelle connexion avec l'adresse IP 192.168.1.1.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Paramètres</th>
<th>Réglage d'usine MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redondance</td>
<td>Protocole de redondance</td>
<td>PRP</td>
</tr>
<tr>
<td>Sécurité > Pre-login banner</td>
<td>Login banner</td>
<td>Spécifique à MR</td>
</tr>
<tr>
<td>Réglage de base > Configuration du port</td>
<td>Ports 5+6</td>
<td>désactivé</td>
</tr>
</tbody>
</table>

Tableau 104: Réglage d'usine MR

9.38.3 Mise à jour du micrologiciel

Afin de garantir la sécurité de l'infrastructure TI de l'appareil, nous recommandons de toujours maintenir à jour le logiciel du module SW 3-3. Le module SW 3-3 repose sur le produit EES-25 de Belden/Hirschmann. Observez par conséquent les consignes du Bulletin de sécurité de Belden/Hirschmann :

- https://www.belden.com/security-assurance

Les mises à jour du micrologiciel peuvent être téléchargées directement sur le site du fabricant Belden/Hirschmann à l'adresse :

Installez les mises à jour en suivant la description fournie par le fabricant Belden/Hirschmann.

Installer la mise à jour du micrologiciel

Pour effectuer une mise à jour du logiciel, procédez comme suit :

- Vous avez téléchargé la mise à jour du micrologiciel.

1. Établissez une connexion à un PC via un raccordement Ethernet.
2. Configurez le PC de sorte qu'il se trouve dans le même sous-réseau que le commutateur Ethernet.
5. Dans le menu Réglages de base > Logiciel sélectionnez le bouton […] ou

![Figure 258: Charger la mise à jour du micrologiciel](image)

6. Sélectionnez le fichier de mise à jour du micrologiciel téléchargé tout en veillant à sélectionner la variante correcte (HSR ou PRP).

 Le fichier est chargé vers le module.
7. Sélectionnez le bouton **update** ou **start** pour démarrer la mise à jour.

 La mise à jour du micrologiciel est en cours.
8. Une fois la mise à jour terminée : dans l'option de menu **Réglages de base > Redémarrage** sélectionnez le bouton **Cold start** pour redémarrer le module.

![Figure 259: Redémarrer le module](image)

9. Coupez la connexion du PC via le raccordement Ethernet et rétablissez le raccordement à votre réseau.

9.39 Transformer Personal Logic Editor (TPLE)

La fonction Transformer Personal Logic Editor (TPLE) permet de programmer des interconnexions logiques simples via la visualisation web. Pour cela, vous pouvez connecter les entrées et les sorties disponibles de l'appareil au moyen de modules fonctionnels.

Notez que l'appareil ne satisfait pas aux exigences d'un appareil de protection. Par conséquent, n’utilisez pas le TPLE pour reproduire les fonctions de protection.

9.39.1 Mode de fonctionnement

9.39.1.1 Groupes fonctionnels

Dix groupes fonctionnels sont disponibles pour regrouper différentes sous-tâches d’une fonction. Vous pouvez connecter jusqu’à 12 modules fonctionnels avec des variables par groupe fonctionnel. Vous pouvez renommer les groupes fonctionnels et les activer ou désactiver séparément.
9.39.1.2 Variables

Les types de variables suivants sont disponibles pour le traitement des informations pour le TPLE:

- Entrées d'événements: tous les événements de l'appareil peuvent être utilisés comme entrée pour une fonction.
- Sorties d'événements: 100 événements génériques sont disponibles comme sortie pour les fonctions.
- Entrées binaires: toutes les entrées numériques configurées de l'appareil et jusqu'à 42 entrées génériques de l'appareil peuvent être utilisées comme entrée pour une fonction.
- Sorties binaires: toutes les sorties numériques configurées de l'appareil et jusqu'à 20 sorties génériques de l'appareil peuvent être utilisées comme sortie pour une fonction. En présence d'un système de conduite, 10 messages de poste de conduite génériques sont disponibles.
- Entrées analogiques: toutes les entrées analogiques configurées de l'appareil peuvent être utilisées comme entrée pour une fonction.
- Drapeaux binaires: vous pouvez utiliser jusqu'à 100 drapeaux binaires comme variable pour enregistrer les valeurs intermédiaires. Les drapeaux binaires peuvent être utilisés comme entrée et comme sortie pour une fonction.
- Drapeaux analogiques: vous pouvez utiliser jusqu'à 50 drapeaux analogiques comme variable pour enregistrer les valeurs intermédiaires. Les drapeaux analogiques peuvent être utilisés comme entrée et comme sortie pour une fonction.
- Entrées discrètes: toutes les entrées discrètes disponibles de l'appareil peuvent être utilisées comme entrée pour une fonction.

9.39.1.3 Modules fonctionnels

TPLE offre différents modules fonctionnels pour le traitement des informations.

9.39.1.3.1 AND

<table>
<thead>
<tr>
<th>Désignation</th>
<th>AND, connexion ET logique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Input 1…4 (BOOL)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Output (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>Aucun</td>
</tr>
<tr>
<td>Fonction</td>
<td>Si toutes les entrées configurées sont TRUE, alors la sortie est TRUE, sinon FALSE.</td>
</tr>
<tr>
<td>État initial</td>
<td>Toutes les entrées et sorties sont FALSE. Les entrées non configurées sont considérées comme TRUE. Si aucune entrée n’est configurée, le module n’est pas exécuté et reste par conséquent à l’état initial</td>
</tr>
</tbody>
</table>

Tableau 105: Module fonctionnel AND
9.39.1.3.2 NAND

<table>
<thead>
<tr>
<th>Désignation</th>
<th>NAND, connexion NON-ET logique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Input 1…4 (BOOL)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Output (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>aucune</td>
</tr>
<tr>
<td>Fonction</td>
<td>Si toutes les entrées configurées sont TRUE, alors la sortie passe à FALSE, sinon TRUE.</td>
</tr>
<tr>
<td>État initial</td>
<td>Toutes les entrées et sorties sont FALSE. Les entrées non configurées sont considérées comme TRUE pour les empêcher d’avoir une influence sur la sortie. Si aucune entrée n’est configurée, la sortie demeure par conséquent à l’état initial FALSE.</td>
</tr>
</tbody>
</table>

Tableau 106: Module fonctionnel NAND

9.39.1.3.3 OR

<table>
<thead>
<tr>
<th>Désignation</th>
<th>OR, connexion OU logique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Input 1…4 (BOOL)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Output (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>aucune</td>
</tr>
<tr>
<td>Fonction</td>
<td>Si l’une des entrées configurées est TRUE, alors la sortie est TRUE, sinon FALSE.</td>
</tr>
<tr>
<td>État initial</td>
<td>Toutes les entrées et sorties sont FALSE. Les entrées non configurées sont considérées comme FALSE.</td>
</tr>
</tbody>
</table>

Tableau 107: Module fonctionnel OR

9.39.1.3.4 NOR

<table>
<thead>
<tr>
<th>Désignation</th>
<th>NOR, connexion NON-OU logique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Input 1…4 (BOOL)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Output (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>aucune</td>
</tr>
<tr>
<td>Fonction</td>
<td>Si toutes les entrées configurées sont FALSE, alors la sortie passe à TRUE, sinon FALSE.</td>
</tr>
<tr>
<td>État initial</td>
<td>Toutes les entrées et sorties sont FALSE. Les entrées non configurées sont considérées comme FALSE pour les empêcher d’avoir une influence sur la sortie. Si aucune entrée n’est configurée, la sortie est néanmoins maintenue à l’état initial FALSE.</td>
</tr>
</tbody>
</table>

Tableau 108: Module fonctionnel NOR
9.39.1.3.5 **XOR**

<table>
<thead>
<tr>
<th>Désignation</th>
<th>XOR, connexion EXCLUSIF-OU logique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Input 1…2 (BOOL)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Output (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>aucune</td>
</tr>
<tr>
<td>Fonction</td>
<td>Si un nombre impair d'entrées est TRUE, alors la sortie est TRUE, sinon FALSE.</td>
</tr>
<tr>
<td>État initial</td>
<td>Toutes les entrées et sorties sont FALSE. Les entrées non configurées sont considérées comme FALSE pour les empêcher d'avoir une influence sur la sortie. Si aucune entrée n'est configurée, la sortie demeure par conséquent à l'état initial FALSE.</td>
</tr>
</tbody>
</table>

Tableau 109: Module fonctionnel XOR

9.39.1.3.6 **NOT**

<table>
<thead>
<tr>
<th>Désignation</th>
<th>NOT, connexion NON logique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Input (BOOL)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Output (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>aucune</td>
</tr>
<tr>
<td>Fonction</td>
<td>Si l'entrée configurée est TRUE, alors la sortie est FALSE, sinon TRUE.</td>
</tr>
<tr>
<td>État initial</td>
<td>Toutes les entrées et sorties sont FALSE. Si l'entrée n'est pas configurée, elle est considérée comme TRUE afin que la sortie demeure à l'état initial FALSE.</td>
</tr>
</tbody>
</table>

Tableau 110: Module fonctionnel NOT

9.39.1.3.7 **Relais à impulsion**

<table>
<thead>
<tr>
<th>Désignation</th>
<th>RS, relais à impulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Trigger (BOOL)</td>
</tr>
<tr>
<td></td>
<td>Set (BOOL)</td>
</tr>
<tr>
<td></td>
<td>Reset (BOOL)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Output (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>aucune</td>
</tr>
</tbody>
</table>

Fonction

Si l'entrée Reset est TRUE, Output passe forcément à FALSE.
Si l'entrée Reset est FALSE et l'entrée Set est TRUE, Output passe forcément à TRUE.
Si les entrées Reset et Set sont FALSE, l'état de Output change en cas de flanc montant à l'entrée Trigger.
Sans flanc à l'entrée Trigger, Output reste inchangée.

État initial

Toutes les entrées et sorties sont FALSE.
Les entrées non configurées sont considérées comme FALSE pour les empêcher d'avoir une influence sur la sortie.

Tableau 111: Module fonctionnel Relais à impulsion

![Diagram of relay function]

Figure 260: Exemple de RS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trigger</td>
</tr>
<tr>
<td>2</td>
<td>Set</td>
</tr>
<tr>
<td>3</td>
<td>Reset</td>
</tr>
<tr>
<td>4</td>
<td>Output</td>
</tr>
</tbody>
</table>

9.39.1.3.8 Temporisation d'activation

<table>
<thead>
<tr>
<th>Désignation</th>
<th>TON, temporisation d'activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Input (BOOL)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Output (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>Time ms (UINT32), 1...1.000.000, Default = 1000</td>
</tr>
</tbody>
</table>
Fonction

En cas de flanc montant sur Input, le compteur interne est défini sur zéro et commence à tourner. Lorsque le compteur interne atteint la valeur paramétrée ou l’a dépassée, Output passe à TRUE, le compteur s’arrête. Lorsque Input passe à FALSE, Output passe aussi immédiatement à FALSE. Si la valeur de Time_ms est inférieure au temps de cycle, alors c’est le temps de cycle qui s’applique à la place.

État initial
Toutes les entrées et sorties sont FALSE.

Tableau 112: Module fonctionnel Temporisation d'activation

9.39.1.3.9 Temporisation de désactivation

Désignation
TOFF, temporisation de désactivation

Entrées
Trigger (BOOL)
Reset (BOOL)

Sorties
Output (BOOL)

Paramètres
Time ms (UINT32), 1...1.000.000, Default = 1000

Fonction
Lorsque Input passe à TRUE, Output passe aussi immédiatement à TRUE, cette condition est prioritaire. En cas de flanc descendant sur Input, le compteur interne est défini sur zéro et commence à tourner. Lorsque le compteur interne atteint la valeur paramétrée ou l’a dépassée, Output passe à FALSE. Si Input est FALSE et l’entrée Reset passe à TRUE, alors Output passe immédiatement forcément à FALSE et le compteur interne est défini sur la valeur de consigne configurée. Si la valeur de Time_ms est inférieure au temps de cycle, alors c’est le temps de cycle qui s’applique à la place.

État initial
Toutes les entrées et sorties sont FALSE.

Tableau 113: Module fonctionnel Temporisation de désactivation

9.39.1.3.10 Impulsion

Désignation
PLSE, impulsion

Entrées
Trigger (BOOL)

Sorties
Output (BOOL)

Paramètres
Time ms (UINT32), 1...1.000.000, Default = 1000
Fonction
En cas de flanc montant à l’entrée Trigger à un moment quelconque, le compteur interne est défini sur zéro et commence à tourner, la sortie passe à TRUE.
Si l’entrée Trigger repasse à FALSE pendant la durée d’impulsion, cela n’a aucune influence sur le déroulement de la durée d’impulsion.
Une fois que le compteur interne a expiré, la sortie passe à FALSE.
Si la valeur de Time_ms est inférieure au temps de cycle, alors c’est le temps de cycle qui s’applique à la place.

État initial
Toutes les entrées et sorties sont FALSE.

Tableau 114: Module fonctionnel Impulsion

9.39.1.3.11 Générateur d’impulsions symétrique

<table>
<thead>
<tr>
<th>Désignation</th>
<th>CLCK, générateur d’impulsions symétrique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Enable (BOOL)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Output (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>Time ms (UINT32), 1...1.000.000, Default = 1000</td>
</tr>
<tr>
<td>Fonction</td>
<td>Tant que Enable est TRUE, le compteur interne tourne. Lorsque le compteur interne atteint la valeur temporelle configurée ou l’a dépassé, l'état de la sortie change et le compteur redémarre. La durée configurée correspond ainsi à la moitié de la durée du signal résultant. Lorsque l’entrée Enable passe à FALSE, la sortie passe aussi immédiatement à FALSE et le compteur interne est réinitialisé. Si la valeur de Time_ms est inférieure au temps de cycle, alors c’est le temps de cycle qui s’applique à la place.</td>
</tr>
<tr>
<td>État initial</td>
<td>Toutes les entrées et sorties sont FALSE.</td>
</tr>
</tbody>
</table>

Tableau 115: Module fonctionnel Générateur d’impulsions symétrique

9.39.1.3.12 Compteur (en avant / en arrière)

<table>
<thead>
<tr>
<th>Désignation</th>
<th>COUNT, compteur incrémental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Trigger (BOOL)</td>
</tr>
<tr>
<td></td>
<td>Direction (BOOL)</td>
</tr>
<tr>
<td></td>
<td>Reset (BOOL)</td>
</tr>
<tr>
<td></td>
<td>Lock (BOOL)</td>
</tr>
<tr>
<td>Sorties</td>
<td>SINT32 (SINT32)</td>
</tr>
<tr>
<td></td>
<td>REAL32 (REAL32)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>Reset value (SINT32), -10.000.000… +10.000.000, Default = 0</td>
</tr>
</tbody>
</table>

Toutes les entrées et sorties sont FALSE.
Fonction
En cas de flanc montant sur Reset, la valeur initiale est définie sur la valeur du paramètre Reset value. Un flanc montant sur Reset a la priorité sur toutes les autres entrées.
Tant que Lock est TRUE, le signal d’impulsion n’est pas évalué, le niveau du compteur ne change pas. Si aucune entrée n’est assignée, la valeur par défaut FALSE est supposée.
À l’entrée Direction = FALSE, la valeur initiale est incrémentée de un avec chaque flanc montant à l’entrée Trigger.
À l’entrée Direction = TRUE la valeur initiale est décrémentée de un avec chaque flanc montant à l’entrée Trigger.

État initial
Toutes les entrées et sorties sont nulles ou FALSE.

Tableau 116: Module fonctionnel Compteur (en avant / en arrière)

<table>
<thead>
<tr>
<th>Tableau 116: Module fonctionnel Compteur (en avant / en arrière)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Trigger</td>
</tr>
</tbody>
</table>

Figure 261: Exemple de COUNT

9.39.1.3.13 Commutateur à seuil analogique avec hystérésis

Désignation
THRES, commutateur à seuil analogique avec hystérésis

Entrées
Input (REAL32)

Sorties
Output (BOOL)
Error (BOOL)

Paramètres
On Limit (REAL32), -10.000.000… +10.000.000, Default = 10.000.000
Off Limit (REAL32), -10.000.000 … +10.000.000, Default = -10.000.000
Fonction Réglage On Limit ≥ Off Limit :
- Si la valeur de Input est supérieure à On Limit, Output passe à TRUE.
- Si la valeur de Input est inférieure ou égale à Off Limit, Output passe à FALSE.

Réglage On Limit < Off Limit :
- Si la valeur de Input est supérieure à On Limit et simultanément inférieure à Off Limit, Output passe à TRUE. Dans le cas contraire, Output est FALSE.

État initial Toutes les entrées et sorties sont nulles ou FALSE.

Tableau 117: Module fonctionnel Commutateur à seuil analogique avec hystérésis

<table>
<thead>
<tr>
<th>On</th>
<th>Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Output</td>
</tr>
<tr>
<td>FALSE</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

Figure 262: Commutateur à seuil analogique avec le réglage On Limit > Off Limit

Figure 263: Commutateur à seuil analogique avec le réglage On Limit < Off Limit
9.39.1.3.14 Multiplication analogique

<table>
<thead>
<tr>
<th>Désignation</th>
<th>MUL, multiplication analogique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Value (REAL32)</td>
</tr>
<tr>
<td></td>
<td>Multiplier (REAL32)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Result (REAL32)</td>
</tr>
<tr>
<td></td>
<td>Overflow (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>Constant multiplier (REAL32), -1.000.000...+1.000.000; Default = 1</td>
</tr>
<tr>
<td>Fonction</td>
<td>Result = Value * Multiplier * Constant multiplier</td>
</tr>
<tr>
<td></td>
<td>En cas de dépassement de la plage de nombres REAL32, la sortie Overflow passe à TRUE.</td>
</tr>
<tr>
<td>État initial</td>
<td>Toutes les entrées et sorties sont nulles ou FALSE.</td>
</tr>
</tbody>
</table>

Tableau 118: Module fonctionnel Multiplication analogique

9.39.1.3.15 Division analogique

<table>
<thead>
<tr>
<th>Désignation</th>
<th>DIV, Division analogique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Dividend (REAL32)</td>
</tr>
<tr>
<td></td>
<td>Divisor (REAL32)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Result (REAL32)</td>
</tr>
<tr>
<td></td>
<td>DivByZero (BOOL)</td>
</tr>
<tr>
<td></td>
<td>Overflow (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>Constant divisor (REAL32), -1.000.000...+1.000.000, Default = 1</td>
</tr>
<tr>
<td>Fonction</td>
<td>Result = Dividend / Divisor / Constant Divisor</td>
</tr>
<tr>
<td></td>
<td>En cas de division par zéro, la sortie DivByZero passe à TRUE et Result est défini sur zéro.</td>
</tr>
<tr>
<td></td>
<td>En cas de dépassement de la plage de nombres REAL32 la sortie Overflow passe à TRUE et Result est défini sur zéro.</td>
</tr>
<tr>
<td>État initial</td>
<td>Toutes les entrées et sorties sont nulles ou FALSE.</td>
</tr>
</tbody>
</table>

Tableau 119: Module fonctionnel Division analogique

9.39.1.3.16 Addition analogique

<table>
<thead>
<tr>
<th>Désignation</th>
<th>ADD, addition analogique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Input 1 (REAL32)</td>
</tr>
<tr>
<td></td>
<td>Input 2 (REAL32)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Result (REAL32)</td>
</tr>
<tr>
<td></td>
<td>Overflow (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>Offset (REAL32), -1.000.000...+1.000.000; Default = 0</td>
</tr>
</tbody>
</table>

Tableau 119: Module fonctionnel Division analogique
Fonction

Result = Input 1 + Input 2 + Offset
En cas de dépassement de la plage de nombres REAL32, la sortie Overflow passe à TRUE.

État initial

Toutes les entrées et sorties sont nulles ou FALSE.

Tableau 120: Module fonctionnel Addition analogique

9.39.1.3.17 Soustraction analogique

Désignation

SUB, soustraction analogique

Entrées

Input 1 (REAL32)
Input 2 (REAL32)

Sorties

Result (REAL32)
Overflow (BOOL)

Paramètres

Offset (REAL32), -1.000.000...+1.000.000; Default = 0

Fonction

Result = Input 1 - Input 2 – Offset
En cas de dépassement de la plage de nombres REAL32, la sortie Overflow passe à TRUE.

État initial

Toutes les entrées et sorties sont nulles ou FALSE.

Tableau 121: Module fonctionnel Soustraction analogique

9.39.1.3.18 Flanc montant

Désignation

RTRG, rising edge trigger, flanc montant

Entrées

Input (BOOL)

Sorties

Output (BOOL)

Paramètres

-

Fonction

Si l'entrée passe de FALSE à TRUE, la sortie pour un cycle de passage du groupe fonctionnel passe à TRUE puis repasse à FALSE.

État initial

Toutes les entrées et sorties sont FALSE.

Tableau 122: Module fonctionnel Flanc montant

9.39.1.3.19 Flanc descendant

Désignation

FTRG, falling edge trigger, flanc descendant

Entrées

Input (BOOL)

Sorties

Output (BOOL)

Paramètres

-

Fonction

Si l'entrée passe de TRUE à FALSE, la sortie pour un cycle de passage du groupe fonctionnel passe à TRUE puis repasse à FALSE.

État initial

Toutes les entrées et sorties sont FALSE.

Tableau 123: Module fonctionnel Flanc descendant
9.39.1.3.20 Valeur moyenne

<table>
<thead>
<tr>
<th>Désignation</th>
<th>AVRG, valeur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Input (REAL32)</td>
</tr>
<tr>
<td></td>
<td>Enabled (BOOL)</td>
</tr>
<tr>
<td></td>
<td>Reset (BOOL)</td>
</tr>
<tr>
<td></td>
<td>Autorepeat(BOOL)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Average (REAL32)</td>
</tr>
<tr>
<td></td>
<td>Done (BOOL)</td>
</tr>
<tr>
<td></td>
<td>Started (BOOL)</td>
</tr>
<tr>
<td></td>
<td>SampleCount(UINT32)</td>
</tr>
<tr>
<td>Paramètres</td>
<td>Time ms (UINT32): 1...2.000.000.000, Default = 10.000</td>
</tr>
<tr>
<td></td>
<td>Sample time ms (UINT32): 1...10.000.000, Default = 1.000</td>
</tr>
<tr>
<td>Fonction</td>
<td>Un flanc montant sur Enable démarre la formation d'une valeur moyenne. Cela n'influence pas une formation de valeur moyenne déjà en cours. Les valeurs initiales existantes restent inchangées. La sortie Done passe à FALSE, la sortie Started passe à TRUE. Un flanc montant sur Reset annule une formation de valeur moyenne en cours. Average est défini sur zéro, Done et Started passent à FALSE. Si Enable est aussi TRUE pendant le flanc montant Reset, une nouvelle formation de valeur moyenne démarre. Done passe à TRUE et Started à FALSE une fois la formation de valeur moyenne complète. Done reste TRUE jusqu'à détection d'un Reset ou jusqu'à ce qu'une nouvelle formation de valeur moyenne soit déclenchée par un flanc montant sur Enable. Si AutoRepeat et Enable sont TRUE, alors une nouvelle formation de valeur moyenne démarre automatiquement après chaque formation de valeur moyenne. Done est défini pendant un cycle à chaque fois qu'une formation de valeur moyenne est terminée. La sortie SampleCount indique le nombre d'échantillons déjà enregistrés. Sample time ms est le temps d'échantillonnage souhaité en millièmes de secondes. Il est arrondi vers le bas au multiple entier supérieur du temps de cycle d'horloge et limité vers le bas à un temps de cycle d'horloge au minimum. Time ms est la durée souhaitée pour la formation d'une valeur moyenne. Elle est arrondie vers le bas au multiple entier supérieur du temps d'échantillonnage et limitée vers le bas à un temps d'échantillonnage au minimum.</td>
</tr>
<tr>
<td>État initial</td>
<td>Toutes les entrées et sorties sont FALSE.</td>
</tr>
</tbody>
</table>

Tableau 124: Module fonctionnel Valeur moyenne
9.39.1.3.21 Mise à l'échelle

<table>
<thead>
<tr>
<th>Désignation</th>
<th>SCAL, mise à l'échelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées</td>
<td>Input (REAL32)</td>
</tr>
<tr>
<td>Sorties</td>
<td>Output (REAL32)</td>
</tr>
<tr>
<td></td>
<td>Error (BOOL)</td>
</tr>
<tr>
<td>Paramètres</td>
<td></td>
</tr>
<tr>
<td>Min In (REAL32):</td>
<td>-10.000.000...+10.000.000, Default = -10.000.000</td>
</tr>
<tr>
<td>Max In (REAL32):</td>
<td>-10.000.000...+10.000.000, Default = +10.000.000</td>
</tr>
<tr>
<td>Min Out (REAL32):</td>
<td>-10.000.000...+10.000.000, Default = -10.000.000</td>
</tr>
<tr>
<td>Max Out (REAL32):</td>
<td>-10.000.000...+10.000.000, Default = +10.000.000</td>
</tr>
</tbody>
</table>

Figure 264: AVRG

- **1 Input**
- **2 Enable**
- **3 Reset**
- **4 AutoRepeat**
- **5 Average**
- **6 Done**
- **7 Started**
- **8 SampleCount**
Fonction | Output est calculé selon la formule suivante :
| Output = Min Out + (Max Out - Min Out) x (Input - Min In) / (Max In - Min In) |
| Output est défini sur 0 et Error = TRUE, si :
| ▪ Input ne se trouve pas à l'intérieur des paramètres Min In et Max In
| ▪ Min In est supérieur à Max In
| ▪ Min Out est supérieur à Max Out
| ▪ Max In est égal à Min In (division par zéro) |

État initial | Toutes les entrées et sorties sont FALSE.

Tableau 125: Module fonctionnel Mise à l'échelle

9.39.1.3.22 Pont

Désignation	BRDG, Bridge, pont
Entrées	Analog Input (REAL32)
	Digital Input (BOOL)
Sorties	Analog Output (REAL32)
	Digital Output (BOOL)
Paramètres	-
Fonction	Copie la valeur de Analog Input vers Analog Output et de digital Input vers digital Output.
État initial	Toutes les entrées et sorties sont nulles ou FALSE.

Tableau 126: Module fonctionnel Pont

9.39.1.3.23 RTOI

Désignation	RTOI, conversion Real-to-Integer
Entrées	Analog Input (REAL32)
Sorties	Analog Output (SINT32)
Paramètres	-
Fonction	Copie la valeur de Analog Input vers Analog Output tout en convertissant de REAL32 à SINT32.
État initial	Toutes les entrées et sorties sont nulles.

Tableau 127: Module fonctionnel RTOI

9.39.1.3.24 ITOR

Désignation	ITOR, conversion Integer-to-real
Entrées	UINT32 (UINT32)
	SINT32 (SINT32)
Sorties	Output U (REAL32)
	Output S (REAL32)
9.39.2 Configuration TPLE

Dans l'état à la livraison, vous pouvez vous connecter comme administrateur comme suit :
- **Nom d'utilisateur** : admin
- **Mot de passe** : admin

9.39.2.1 Édition des variables

Vous pouvez personnaliser la désignation et la description des variables suivantes :
- Entrées binaires
- Sorties binaires
- Entrées analogiques
- Drapeaux binaires
- Drapeaux analogiques
- Entrées discrètes

Les désignations et les descriptions des événements génériques peuvent être personnalisées à l'instar de tous les autres événements de l'appareil. Veuillez vous reporter à la section Gestion des événements [► Section 9.34, Page 339] à cet effet.

Le nombre admissible de caractères est limité :
- **Nom** : 20 caractères maximum
- **Description** : 80 caractères maximum
Figure 265: Édition de variable

Pour éditer une variable, procédez comme suit :
1. Sélectionnez l’option de menu Réglages > TPLE > Variables.
2. Sélectionnez la variable souhaitée.
3. Entrez le nom et la description.
4. Sélectionnez le bouton Appliquer pour enregistrer la variable modifiée.

9.39.2.2 Création des fonctions

Vous pouvez créer jusqu’à 12 modules fonctionnels à l’intérieur d’un groupe fonctionnel pour reproduire une fonction. Pour créer, éditer ou supprimer une fonction, vous devez appeler le groupe fonctionnel souhaité. Pour cela, procédez comme suit :
1. Sélectionnez l’option de menu Réglages > TPLE > Groupe fonctionnel.
2. Sélectionnez le groupe fonctionnel souhaité.
Création de modules fonctionnels

Pour créer un module fonctionnel, procédez comme suit :
► Sélectionnez le bouton + pour créer un nouveau module fonctionnel.

Suppression de modules fonctionnels

Pour supprimer un module fonctionnel, procédez comme suit :
► Glissez le module fonctionnel souhaité sur la corbeille par glisser-déposer.

Classement des modules fonctionnels

Pour classer un module fonctionnel, procédez comme suit :
► Glissez le module fonctionnel souhaité à l'endroit souhaité par glisser-déposer.

Édition d'un module fonctionnel

Pour éditer un module fonctionnel, procédez comme suit :
1. Sélectionnez le module fonctionnel souhaité.
2. Sélectionnez le bouton Éditer.
3. Sélectionnez les entrées et les sorties souhaitées et réglez les paramètres.
4. Sélectionnez le bouton Appliquer pour enregistrer la modification du module fonctionnel.

9.39.2.3 Renommage d'un groupe fonctionnel

Si nécessaire, vous pouvez renommer le groupe fonctionnel afin de pouvoir mieux l'assigner.
Pour renommer un groupe fonctionnel, procédez comme suit :
1. Sélectionnez l'option de menu Réglages > TPLE > Groupe fonctionnel.
2. Sélectionnez le groupe fonctionnel souhaité.
3. Sélectionnez la zone de texte contenant la désignation du groupe fonctionnel et entrez la désignation souhaitée.

9.39.2.4 Activation / Désactivation d'un groupe fonctionnel

Vous pouvez activer ou désactiver entièrement un groupe fonctionnel. Si vous désactivez un groupe fonctionnel, aucun module fonctionnel du groupe fonctionnel ne sera traité.

Pour activer / désactiver un groupe fonctionnel, procédez comme suit :
1. Sélectionnez l'option de menu Réglages > TPLE > Groupe fonctionnel.
2. Sélectionnez le groupe fonctionnel souhaité.
3. Sélectionnez le bouton Inactif.

⇒ X rouge : le groupe fonctionnel est inactif ; X gris : le groupe fonctionnel est actif.

9.40 Calibrage du capteur de position

Cette fonction sert à calibrer le capteur de position lorsque le capteur de position du mécanisme d'entraînement a été remplacé ou incorrectement calibré. Observez les consignes contenues dans les instructions de maintenance.

Calibrez le capteur de position uniquement s'il a été remplacé et en concertation avec l'entreprise Maschinenfabrik Reinhausen GmbH. Un calibrage erroné peut entraîner un dysfonctionnement du mécanisme d'entraînement.
Figure 269: Calibrer le capteur de position

Pour calibrer le capteur de position, procédez comme suit :

- Le capteur de position a été remplacé conformément aux instructions de maintenance et le mécanisme d'entraînement est en position d'ajustage (repère rouge du volant moteur).

1. Sélectionnez l'option de menu Réglages > Calibrer le capteur de position > Capteur de position.

2. Sélectionnez le bouton Calibrer.

3. Sélectionnez Oui pour confirmer l'invite.

4. Sélectionnez l'option de menu Information > Mécanisme d'entraînement et comparez l'affichage de la position de prise et des unités de pâliers de commutation (UPC) à celle du mécanisme d'entraînement. Les valeurs doivent concorder.

9.41 Réalisation de tests de commutation

Pour achever la mise en service du système de monitorisation, vous devez effectuer des tests de commutation. Pour cela vous pouvez activer le mode « Test de commutation ». Dans ce mode, l'érosion et la formation de suie sur les manœuvres effectuées ne sont pas calculées et la surveillance de l'intervalle de commutation est désactivée. Tant que le mode est actif, l'appareil signale l'événement Tests de commutation actifs.

Le mode « Tests de commutation » est automatiquement désactivé dans les circonstances suivantes :

- Huit heures après l'activation du mode.
- Si vous redémarrez l'appareil.
Pour activer le mode Tests de commutation, procédez comme suit :

1. Sélectionnez l’option de menu Réglages > Tests de commutation.
2. Sélectionnez le bouton Activer.
 ⇒ Le mode Tests de commutation est actif.
3. Une fois les tests de commutation terminés, sélectionnez le bouton Dé-sactiver pour terminer le mode Tests de commutation.
10 Dépannage

Ce chapitre décrit l’élimination de dysfonctionnements simples.

10.1 Consignes de sécurité

⚠️ AVERTISSEMENT

Danger de mort et risque de blessures graves !

Danger de mort et risque de blessures graves dus aux gaz explosifs dans le changeur de prises en charge / changeur de prises hors tension, dans le système de conduites, à l’entrée de l’assécheur d’air, ainsi qu’aux pièces projetées et aux projections d’huile chaude !

► Si un dispositif de protection se déclenche ou si vous suspectez un défaut, commencez par contrôler le transformateur, puis le changeur de prises en charge / changeur de prises hors tension et le mécanisme d’entraînement. Ne commencez jamais par actionner le mécanisme d’entraînement électriquement ou par manivelle tant que le transformateur est sous tension.

► Ne remettez en service que lorsque l’élimination du défaut est terminée.

► Veillez à ce que les travaux soient effectués exclusivement par un personnel qualifié et formé.

► Utilisez des équipements de protection individuelle adéquats.

► Assurez-vous de l’absence de flammes nues, de surfaces chaudes ou d’étincelles (par exemple en raison d’une charge statique) dans l’environnement direct.

► Assurez-vous que tous les dispositifs de sécurité du changeur de prises en charge / changeur de prises hors tension sont opérationnels.

► Assurez-vous que le récipient d’huile du changeur de prises en charge est correctement rempli d’huile conformément aux instructions.

10.2 Consignes générales

Documentez chaque dérangement, même si le défaut peut être facilement éliminé.

Si le changeur de prises en charge / changeur de prises hors tension ou le mécanisme d’entraînement présentent des dérangements ne pouvant pas être facilement et immédiatement éliminés sur place et si un dispositif de protection se déclenche, veuillez en informer le représentant MR compétent, le fabricant du transformateur ou alors directement :

Maschinenfabrik Reinhausen GmbH
Service technique
Postfach 12 03 60
93025 Regensburg
Allemagne
10.3 Dérangement à proximité du mécanisme d'entraînement

<table>
<thead>
<tr>
<th>Défaut</th>
<th>Mesure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pas de changement de la tension du transformateur malgré le changement de position du mécanisme d'entraînement</td>
<td>▪ Contacter MR</td>
</tr>
</tbody>
</table>
| L’arbre d’entraînement ou le mécanisme d’entraînement fait du bruit pendant le changement de la position de prise. | ▪ Vérifiez le montage du mécanisme d’entraînement conformément au chapitre Montage [⇒ Section 6, Page 64].
▪ Vérifiez le montage de l’arbre d’entraînement et du capot de protection conformément aux instructions de service du changeur de prises en charge / changeur de prises hors tension. |

Tableau 129: Dérangement à proximité du mécanisme d'entraînement

10.4 Dérangement dans le mécanisme d'entraînement après un changement de prise non terminé

Si l'indicateur de l'affichage des unités de paliers de commutation ne se trouve pas dans la zone grise lorsque le mécanisme d'entraînement est à l'arrêt (voir la section Champ d'affichage, position 3), la manœuvre n'est pas terminée correctement.

Ceci n'est pas un état stationnaire autorisé et doit être immédiatement éliminé. Si vous ne pouvez pas éliminer immédiatement le dérangement, mettez le transformateur hors tension. Contactez immédiatement le service technique de la société Maschinenfabrik Reinhausen GmbH.
Dès que vous remarquez le dérangement dans le mécanisme d'entraînement, procédez immédiatement à son élimination à l'aide du tableau suivant.

Tableau 130: Dérangement dans le mécanisme d'entraînement dans le cas d'un changement de prise non terminé

<table>
<thead>
<tr>
<th>Défaut</th>
<th>Mesure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déclenchement disjoncteur-protecteur du moteur Q1</td>
<td>• Actionnement par manivelle interdit</td>
</tr>
<tr>
<td></td>
<td>• Enclenchez Q1 1 seule fois</td>
</tr>
<tr>
<td></td>
<td>• Si Q1 ne se déclenche pas à nouveau et si aucun autre défaut n'est présent, le mécanisme d'entraînement termine automatiquement le changement de prise commencé.</td>
</tr>
<tr>
<td></td>
<td>• Si Q1 se déclenche à nouveau, n'effectuez aucune autre tentative de changement de prise et contactez MR.</td>
</tr>
<tr>
<td>Interruption de la tension d'alimentation ou de la commande du mécanisme d'entraînement</td>
<td>• Actionnement par manivelle interdit</td>
</tr>
<tr>
<td></td>
<td>• Rétablir l'alimentation en tension</td>
</tr>
<tr>
<td></td>
<td>• Le mécanisme d'entraînement termine automatiquement le changement de prise commencé, après le retour de l'alimentation en tension.</td>
</tr>
<tr>
<td>Défectuosité d'un composant dans le mécanisme d'entraînement</td>
<td>• Actionnement par manivelle interdit</td>
</tr>
<tr>
<td></td>
<td>• Contacter MR</td>
</tr>
</tbody>
</table>

Tableau 131: Dérangement dans le mécanisme d'entraînement après un changement de prise correctement terminé

<table>
<thead>
<tr>
<th>Défaut</th>
<th>Mesure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déclenchement disjoncteur-protecteur du moteur Q1</td>
<td>• Allumer Q1</td>
</tr>
<tr>
<td>Interruption de la tension d'alimentation ou de la commande du mécanisme d'entraînement</td>
<td>• Rétablir l'alimentation en tension</td>
</tr>
<tr>
<td>Défectuosité d'un composant dans le mécanisme d'entraînement</td>
<td>• Contacter MR</td>
</tr>
</tbody>
</table>

10.5 Dérangement dans le mécanisme d'entraînement après un changement de prise correctement terminé

10.6 Actionnement par manivelle en cas de dérangement

Actionnement par manivelle en cas de dérangement

S'il est impératif de procéder à un changement de prise en présence d'un défaut dans le mécanisme d'entraînement alors que le transformateur est sous tension, on parle alors de mode d'urgence.
Risque d'explosion !

Un actionnement non autorisé du mécanisme d'entraînement avec la manivelle peut entraîner la mort ou des blessures graves !

► N'actionnez jamais le mécanisme d'entraînement électriquement ou par manivelle avant que le transformateur ne soit mis hors tension si vous suspectez un défaut au niveau du transformateur ou du changeur de prises en charge / changeur de prises hors tension.

► Ne terminez jamais par la manivelle un changement de prise entamé électriquement mais pas entièrement terminé.

► Ne tournez plus la manivelle si elle est difficile à tourner.

► N'inversez jamais le sens de rotation lors de l'actionnement du mécanisme d'entraînement à l'aide de la manivelle.

► En cas de doutes concernant l'état du changeur de prises en charge / changeur de prises hors tension ou l'origine du défaut, contactez immédiatement le service technique de la société Maschinenfabrik Reinhausen GmbH.

► Utilisez uniquement la manivelle fixée dans le mécanisme d'entraînement pour actionner manuellement le mécanisme d'entraînement.

Vous trouverez une description détaillée de l'actionnement par manivelle dans le chapitre Fonctionnement [♀ Section 8, Page 107].

10.7 Dépannage ISM (matériel et logiciel)

10.7.1 Dérangements généraux

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aucune fonction</td>
<td>Aucune alimentation électrique</td>
<td>Vérifiez la tension d'alimentation</td>
</tr>
<tr>
<td>• L'appareil ne démarre pas</td>
<td>Fusible déclenché</td>
<td>Contacter la société Maschinenfabrik Reinhausen GmbH</td>
</tr>
<tr>
<td>Aucune fonction</td>
<td>Les interrupteurs rotatifs du module CPU sont déréglés</td>
<td>Corrigez la position des interrupteurs rotatifs :</td>
</tr>
<tr>
<td>• La DEL ERR du module CPU est allumée</td>
<td></td>
<td>• Position 0</td>
</tr>
<tr>
<td></td>
<td>Erreur de configuration</td>
<td>Contacter la société Maschinenfabrik Reinhausen GmbH</td>
</tr>
<tr>
<td>Claquement relais</td>
<td>Contrainte CEM élevée</td>
<td>Utiliser des câbles blindés ou des filtres externes</td>
</tr>
<tr>
<td></td>
<td>Mise à la terre incorrecte</td>
<td>Vérifier la mise à la terre fonctionnelle</td>
</tr>
</tbody>
</table>

Tableau 132: Dérangements généraux
10.7.2 Interface homme-machine

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aucun affichage / Le masque n'est pas chargé</td>
<td>Alimentation en tension interrompue.</td>
<td>Vérifier la tension d'alimentation.</td>
</tr>
<tr>
<td></td>
<td>Erreur de chargement du masque actuel dans le navigateur.</td>
<td>Appuyez sur la touche [F5] pour mettre le masque à jour.</td>
</tr>
<tr>
<td></td>
<td>Fusible défectueux.</td>
<td>Contactez la société Maschinenfabrik Reinhausen.</td>
</tr>
<tr>
<td>Aucun établissement de connexion à la visualisation possible</td>
<td>Câble de raccordement défectueux.</td>
<td>Vérifiez le câble de raccordement.</td>
</tr>
<tr>
<td></td>
<td>Les adresses IP de la visualisation et SCADA se trouvent dans le même sous-réseau.</td>
<td>Vérifiez et, si nécessaire, corrigez le réglage des adresses IP de l'appareil.</td>
</tr>
<tr>
<td></td>
<td>Le PC ne se trouve pas dans le même sous-réseau que la visualisation.</td>
<td>Vérifiez et, si nécessaire, corrigez le réglage des adresses IP de l'appareil et du PC.</td>
</tr>
<tr>
<td>Le navigateur affiche un avertissement SSL lors de l'établissement de la connexion à la visualisation.</td>
<td>Le navigateur n'accepte pas de connexion SSL avec un certificat non signé publiquement (correspond à l'état de l'appareil à la livraison).</td>
<td>Importez le certificat SSL signé ou personnalisez les paramètres du navigateur.</td>
</tr>
<tr>
<td></td>
<td>Le certificat SSL de l'appareil a expiré.</td>
<td>Importez le certificat SSL.</td>
</tr>
<tr>
<td></td>
<td>La date / l'heure de l'appareil sont mal réglées.</td>
<td>Réglez la date et l'heure.</td>
</tr>
<tr>
<td></td>
<td>L'adresse IP de l'interface ETH2.2 a été modifiée.</td>
<td>Importez le certificat SSL avec une nouvelle adresse IP (« Autre nom du demandeur »).</td>
</tr>
</tbody>
</table>

Tableau 133: Interface homme-machine

10.7.3 Surveillance du couple

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur limite M1...M6 > dépassée</td>
<td>Erreur d'alimentation du mécanisme d'entraînement</td>
<td>Vérifiez s'il y a eu interruption de la tension ou une chute de tension dans une ou plusieurs phases de l'alimentation pendant le changement de prise. Si oui, vous pouvez acquitter l'événement. Si l'événement ne se reproduit pas, vous pouvez continuer à exploiter le changeur de prises en charge.</td>
</tr>
<tr>
<td>Numéro d'événement 1819, 1821, 1823, 1825, 1827 ou 1829</td>
<td>Arbres d'entraînement grippés</td>
<td>Vérifiez si la souplesse des arbres d'entraînement et du réducteur.</td>
</tr>
<tr>
<td>Autre cause ou si l'événement se reproduit</td>
<td>Exportez les données de maintenance et contactez la société Maschinenfabrik Reinhausen GmbH.</td>
<td></td>
</tr>
<tr>
<td>Manifestation/Détail</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Valeur limite M7 / M8 > dépassée
- Numéro d'événement 1831 ou 1833 | Erreur d'alimentation du mécanisme d'entraînement | Vérifiez s'il y a eu interruption de la tension ou une chute de tension dans une ou plusieurs phases de l'alimentation pendant le changement de prise. Si oui, vous pouvez acquitter l'événement. Si l'événement ne se reproduit pas, vous pouvez continuer à exploiter le changeur de prises en charge. |
| | Arbres d'entraînement grippés | Vérifiez si la souplesse des arbres d'entraînement et du réducteur. |
| | Dans le cas du changeur de prises en charge OILTAP® M, OILTAP® R ou VACUTAP® VR : dispositif de maintien de la pression défectueux. | Exportez les données de maintenance et contactez la société Maschinenfabrik Reinhausen GmbH. |
| Autre cause ou si l'événement se reproduit | | Exportez les données de maintenance et contactez la société Maschinenfabrik Reinhausen GmbH. |
| Valeur limite M1...M6 >> dépassée
- Numéro d'événement 1820, 1822, 1824, 1826, 1828 ou 1830 | Erreur d'alimentation du mécanisme d'entraînement | Vérifiez s'il y a eu interruption de la tension ou une chute de tension dans une ou plusieurs phases de l'alimentation pendant le changement de prise. Si oui, vous pouvez acquitter l'événement. Si l'événement ne se reproduit pas, vous pouvez continuer à exploiter le changeur de prises en charge. |
<p>| | Arbres d'entraînement grippés | Vérifiez si la souplesse des arbres d'entraînement et du réducteur. |
| Autre cause ou si l'événement se reproduit | Ne pas acquitter l'événement. | Exportez les données de maintenance et contactez la société Maschinenfabrik Reinhausen GmbH. |</p>
<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur limite M7 / M8 >> dépassée</td>
<td>Erreur d'alimentation du mécanisme d'entraînement</td>
<td>Vérifiez s'il y a eu interruption de la tension ou une chute de tension dans une ou plusieurs phases de l'alimentation pendant le change-ment de prise. Si oui, vous pouvez acquitter l'événement. Si l'événement ne se reproduit pas, vous pouvez continuer à exploiter le changeur de prises en charge.</td>
</tr>
<tr>
<td>- Numéro d'événement 1832 ou 1834</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbres d'entraînement grippés</td>
<td>Vérifiez si la souplesse des arbres d'entraînement et du réducteur.</td>
<td></td>
</tr>
<tr>
<td>Dans le cas du changeur de prises en charge OILTAP® M, OILTAP® R ou VACUTAP® VR : dispositif de maintien de la pression défec-tueux.</td>
<td>Exportez les données de maintenance et contactez la société Maschinenfabrik Reinhausen GmbH.</td>
<td></td>
</tr>
<tr>
<td>Autre cause ou si l'événement se reproduit</td>
<td>Ne pas acquitter l'événement. Exportez les données de maintenance et contactez la société Maschinenfabrik Reinhausen GmbH.</td>
<td></td>
</tr>
<tr>
<td>Valeur limite Md-Max dépassée</td>
<td>Erreur d'alimentation du mécanisme d'entraînement</td>
<td>Vérifiez si toutes les trois phases d'alimentation du mécanisme d'entraînement sont sous tension.</td>
</tr>
<tr>
<td>- Numéro d'événement 1801</td>
<td>Erreur de câblage du mécanisme d'entraînement</td>
<td>Vérifier le câblage des relais Augmenter / Dimi-nuer. Vérifier le circuit de commande du mécanisme d'entraînement.</td>
</tr>
<tr>
<td>Autre cause (p. ex. changeur de prises en charge défectueux)</td>
<td>Ne pas actionner le changeur de prises en charge. Exportez les données de maintenance et contactez la société Maschinenfabrik Reinhausen GmbH.</td>
<td></td>
</tr>
<tr>
<td>Action immédiate nécessaire</td>
<td>Il y a une action immédiate néces-saire.</td>
<td>Vérifiez les événements présents. Procédez au dépannage suivant les instruc-tions de la section Dérangement dans le méca-nisme d'entraînement dans le cas d'un change-ment de prise non terminé [Û Section 10.4, Page 383].</td>
</tr>
<tr>
<td>- Numéro d'événement 1884</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changement de prise électrique non terminé</td>
<td>Le changeur de prises se trouve dans une position non définie.</td>
<td>Vérifier disjoncteur-protecteur du moteur et ten-sion d'alimentation du mécanisme d'entraîne-ment. Procédez au dépannage suivant les instruc-tions de la section Dérangement dans le méca-nisme d'entraînement dans le cas d'un change-ment de prise non terminé [Û Section 10.4, Page 383].</td>
</tr>
<tr>
<td>- Numéro d'événement 1817</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manifestation/Détail</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Commutation de présélecteur non terminé | Valeur limite Md-Max dépassée. Le changeur de prises se trouve dans une position non définie. | Vérifier disjoncteur-protecteur du moteur et tension d'alimentation du mécanisme d'entraînement.
Procédez au dépannage suivant les instructions de la section Dérangement dans le mécanisme d'entraînement dans le cas d'un changement de prise non terminé [► Section 10.4, Page 383]. |
| Numéro d'événement 1885 | | |
| Déclenchement disjoncteur-protecteur moteur défect. | Le disjoncteur-protecteur du moteur a été déclenché, mais aucun déclenchement n'a été détecté. | Vérifier le câblage et le réglage du disjoncteur-protecteur du moteur. |
| Numéro d'événement 1886 | | |
| Blocage défectueux | Les changements de prise ont été bloqués, mais un changement de prise a été détecté. | Vérifier le câblage et le contacteur K53. |
| Numéro d'événement 1887 | | |
| Surveillance du couple Md-Max impossible | La surveillance du couple Md-Max est actuellement impossible. | L'événement est déclenché en même temps que d'autres événements. Vérifiez les autres événements pour limiter la recherche d'erreurs. |
| Numéro d'événement 1904 | | |
| Surveillance du couple 8 fenêtres impossible | La surveillance du couple 8 fenêtres est actuellement impossible. | L'événement est déclenché en même temps que d'autres événements. Vérifiez les autres événements pour limiter la recherche d'erreurs. |
| Numéro d'événement 1864 | | |
| Blocage actif | Les changements de prise sont bloqués. | L'événement est déclenché en même temps que d'autres événements. Vérifiez les autres événements pour limiter la recherche d'erreurs. |
| Numéro d'événement 1870 | | |
| OLTC et MD insuffisamment centrés | Le changeur de prises en charge et le mécanisme d'entraînement sont insuffisamment centrés. | Centrez le changeur de prises en charge et le mécanisme d'entraînement conformément aux instructions de service. |
| Numéro d'événement 1808 | | |
| Défaut d'alimentation du mécanisme d'entraînement | Tension trop élevée ou trop basse | Vérifiez l'alimentation du mécanisme d'entraînement.
Prenez des mesures de stabilisation de la tension pendant le fonctionnement du mécanisme d'entraînement (par ex. longueur de câble, section de câble). |
| Numéro d'événement 1871, 1872, 1881, 1882 | | |
| MD : fréquence réseau incorrecte | Fréquence réseau incorrecte | Vérifiez l'alimentation du mécanisme d'entraînement. |
| Numéro d'événement 1883 | | |
| Interruption de tension pendant la commutation | Absence de tension | Recherchez la cause de l'absence de tension. |
| Numéro d'événement 1903 | | |
| MD : différence de tension | Différence de tension entre les phases supérieure à 10 V | Vérifiez l'alimentation du mécanisme d'entraînement. |
| Numéro d'événement 1803 | | |
| MD : différence électrique | Différence de courant entre les phases supérieure à 0,4 A (ED100) ou 0,8 A (ED200) | Vérifiez l'alimentation du mécanisme d'entraînement. |
| Numéro d'événement 1804 | | |

Tableau 134: Surveillance du couple
10.7.4 Surveillance de la température

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur limite température interne MD</td>
<td>La température interne du mécanisme d'entraînement est supérieure à la valeur limite >.</td>
<td>Vérifiez si la valeur mesurée est plausible. L’événement est automatiquement réinitialisé lorsque la valeur mesurée redevient inférieure à la valeur limite.</td>
</tr>
<tr>
<td></td>
<td>La température interne du mécanisme d'entraînement est supérieure à la valeur limite >>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La température interne du mécanisme d'entraînement est inférieure à la valeur limite <.</td>
<td>Vérifiez si la valeur mesurée est plausible. L’événement est automatiquement réinitialisé lorsque la valeur mesurée redevient supérieure à la valeur limite.</td>
</tr>
<tr>
<td></td>
<td>La température interne du mécanisme d'entraînement est inférieure à la valeur limite <<.</td>
<td></td>
</tr>
<tr>
<td>Erreur de configuration</td>
<td>Vérifier la configuration de l’entrée analogique [► Section 9.30, Page 318].</td>
<td>Vérifiez le réglage de la valeur limite.</td>
</tr>
<tr>
<td></td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion.</td>
</tr>
<tr>
<td></td>
<td>▪ Capteur CT373, borne X6.1:1/4</td>
<td></td>
</tr>
<tr>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
<td></td>
</tr>
<tr>
<td>Température interne MD invalide</td>
<td>Erreur de configuration</td>
<td>Vérifier la configuration de l’entrée analogique [► Section 9.30, Page 318].</td>
</tr>
<tr>
<td></td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion.</td>
</tr>
<tr>
<td></td>
<td>▪ Capteur CT373, borne X6.1:1/4</td>
<td></td>
</tr>
<tr>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
<td></td>
</tr>
<tr>
<td>Capteur de température interne MD défectueux</td>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
</tr>
<tr>
<td></td>
<td>Numéro d’événement 1837</td>
<td></td>
</tr>
<tr>
<td>Valeur limite de température ambiante</td>
<td>La température ambiante est supérieure à la valeur limite >.</td>
<td>Vérifiez si la valeur mesurée est plausible. L’événement est automatiquement réinitialisé lorsque la valeur mesurée redevient inférieure à la valeur limite.</td>
</tr>
<tr>
<td></td>
<td>La température ambiante est supérieure à la valeur limite >>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La température ambiante est inférieure à la valeur limite <.</td>
<td>Vérifiez si la valeur mesurée est plausible. L’événement est automatiquement réinitialisé lorsque la valeur mesurée redevient supérieure à la valeur limite.</td>
</tr>
<tr>
<td></td>
<td>La température ambiante est inférieure à la valeur limite <<.</td>
<td></td>
</tr>
<tr>
<td>Erreur de configuration</td>
<td>Vérifier la configuration de l’entrée analogique [► Section 9.30, Page 318].</td>
<td>Vérifiez le réglage de la valeur limite.</td>
</tr>
<tr>
<td></td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion.</td>
</tr>
<tr>
<td></td>
<td>▪ Capteur CT372, borne X6.1:5/8</td>
<td></td>
</tr>
<tr>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
<td></td>
</tr>
<tr>
<td>Manifestation/Détail</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Température ambiante invalide • Numéro d'événement 1001</td>
<td>Erreur de configuration</td>
<td>Vérifier la configuration de l'entrée analogique [► Section 9.30, Page 318].</td>
</tr>
<tr>
<td></td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion. • Capteur CT372, borne X6.1:5/8</td>
</tr>
<tr>
<td></td>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
</tr>
<tr>
<td>Sonde température ambiante défectueuse • Numéro d'événement 1844</td>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
</tr>
<tr>
<td>Valeur limite température d'huile supérieure • Numéro d'événement 1112, 1113, 1114 ou 1115</td>
<td>La température d'huile supérieure dépasse la valeur limite >.</td>
<td>Vérifiez si la valeur mesurée est plausible. L'événement est automatiquement réinitialisé lorsque la valeur mesurée redevient inférieure à la valeur limite.</td>
</tr>
<tr>
<td></td>
<td>La température d'huile supérieure dépasse la valeur limite >>.</td>
<td>Vérifiez si la valeur mesurée est plausible. L'événement est automatiquement réinitialisé lorsque la valeur mesurée redevient supérieure à la valeur limite.</td>
</tr>
<tr>
<td></td>
<td>La température d'huile supérieure est au-dessous de la valeur limite <.</td>
<td>Vérifiez si la valeur mesurée est plausible. L'événement est automatiquement réinitialisé lorsque la valeur mesurée redevient supérieure à la valeur limite.</td>
</tr>
<tr>
<td></td>
<td>La température d'huile supérieure est au-dessous de la valeur limite <<.</td>
<td>Vérifiez si la valeur mesurée est plausible. L'événement est automatiquement réinitialisé lorsque la valeur mesurée redevient supérieure à la valeur limite.</td>
</tr>
<tr>
<td></td>
<td>Erreur de configuration</td>
<td>Vérifier la configuration de l'entrée analogique [► Section 9.30, Page 318]. Vérifiez le réglage de la valeur limite.</td>
</tr>
<tr>
<td></td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion. • Capteur CT375, borne X6.1:9-12</td>
</tr>
<tr>
<td></td>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
</tr>
<tr>
<td>Température d'huile supérieure invalide • Numéro d'événement 1123</td>
<td>Erreur de configuration</td>
<td>Vérifier la configuration de l'entrée analogique [► Section 9.30, Page 318].</td>
</tr>
<tr>
<td></td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion. • Capteur CT375, borne X6.1:9-12</td>
</tr>
<tr>
<td></td>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
</tr>
<tr>
<td>Sonde temp. huile maximale défectueuse • Numéro d'événement 1845</td>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
</tr>
<tr>
<td>Manifestation/Détail</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Valeur limite Température d’huile OLTC</td>
<td>La température d’huile dans le changeur de prises en charge est supérieure à la valeur limite >.</td>
<td>Vérifiez si la valeur mesurée est plausible. L’événement est automatiquement réinitialisé lorsque la valeur mesurée redevient inférieure à la valeur limite.</td>
</tr>
<tr>
<td>Numéro d’événement 1106, 1107, 1108, ou 1109</td>
<td>La température d’huile dans le changeur de prises en charge est supérieure à la valeur limite >>.</td>
<td>Vérifiez si la valeur mesurée est plausible. L’événement est automatiquement réinitialisé lorsque la valeur mesurée redevient inférieure à la valeur limite.</td>
</tr>
<tr>
<td>Numéro d’événement 1395, 1396, 1397 ou 1398 (colonne A)</td>
<td>La température d’huile dans le changeur de prises en charge est inférieure à la valeur limite <.</td>
<td>Vérifiez si la valeur mesurée est plausible. L’événement est automatiquement réinitialisé lorsque la valeur mesurée redevient supérieure à la valeur limite.</td>
</tr>
<tr>
<td>Numéro d’événement 1332, 1334, 1336, ou 1338 (colonne B)</td>
<td>La température d’huile dans le changeur de prises en charge est inférieure à la valeur limite <<.</td>
<td>Vérifiez si la valeur mesurée est plausible. L’événement est automatiquement réinitialisé lorsque la valeur mesurée redevient supérieure à la valeur limite.</td>
</tr>
<tr>
<td>Numéro d’événement 1333, 1335, 1337, ou 1339 (colonne C)</td>
<td>Erreur de configuration</td>
<td>Vérifier la configuration de l’entrée analogique [► Section 9.30, Page 318]. Vérifiez le réglage de la valeur limite.</td>
</tr>
<tr>
<td>Température d’huile OLTC invalide</td>
<td>Erreur de configuration</td>
<td>Vérifier la configuration de l’entrée analogique [► Section 9.30, Page 318]. Vérifiez le réglage de la valeur limite.</td>
</tr>
<tr>
<td>Application monocolonne :</td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion. Application monocolonne :</td>
</tr>
<tr>
<td>Numéro d’événement 1399 (colonne A)</td>
<td></td>
<td>Colonne C : capteur CT389, borne X6.2:5-8</td>
</tr>
<tr>
<td>Numéro d’événement 1326 (colonne B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numéro d’événement 1327 (colonne C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
<td></td>
</tr>
<tr>
<td>Erreur de câblage</td>
<td>Erreur de câblage</td>
<td>Vérifier le câblage selon le schéma de connexion. Application monocolonne :</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colonne C : capteur CT389, borne X6.2:5-8</td>
</tr>
<tr>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
<td></td>
</tr>
<tr>
<td>Manifestation/Détail</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Sonde temp. huile OLTC défect.</td>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
</tr>
<tr>
<td>Application monocolonne :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application multicollone :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1402 (colonne A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1839 (colonne B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1840 (colonne C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur limite de la température d'huile du sélecteur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application monocolonne :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1846, 1847, 1848 ou 1849</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application multicollone :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ 1876, 1877, 1878 ou 1879 (colonne A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ 1850, 1851, 1852 ou 1853 (colonne B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ 1854, 1855, 1856 ou 1857 (colonne C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température d'huile sélecteur invalide</td>
<td>Erreur de configuration</td>
<td>Vérifier la configuration de l'entrée analogique [► Section 9.30, Page 318]. Vérifiez le réglage de la valeur limite.</td>
</tr>
<tr>
<td>Application monocolonne :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application multicollone :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1875 (colonne A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1329 (colonne B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1330 (colonne C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion.</td>
<td></td>
</tr>
<tr>
<td>▪ Capteur CT390, borne X6.1:9-12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erreur de configuration</td>
<td></td>
<td>Vérifier la configuration de l'entrée analogique [► Section 9.30, Page 318]. Vérifiez le réglage de la valeur limite.</td>
</tr>
<tr>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion.</td>
<td></td>
</tr>
<tr>
<td>▪ Capteur CT390, borne X6.1:9-12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion.</td>
<td></td>
</tr>
<tr>
<td>▪ Capteur CT390, borne X6.1:9-12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
<td></td>
</tr>
<tr>
<td>Manifestation/Détail</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Sonde temp. huile sélecteur défect.</td>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
</tr>
<tr>
<td>Application monocolonne :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1841</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application multicolonne :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1880 (colonne A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1842 (colonne B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1843 (colonne C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur limite différence de température d'huile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application monocolonne :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1890 ou 1891</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application multicolonne :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1892 ou 1893 (colonne A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1894 ou 1895 (colonne B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Numéro d'événement 1896 ou 1897 (colonne C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La différence de température d'huile entre le sélecteur et le commutateur en charge est supérieure à la valeur limite >.</td>
<td>Vérifiez si la valeur mesurée est plausible. L'événement est automatiquement réinitialisé lorsque la valeur mesurée redevient inférieure à la valeur limite.</td>
<td></td>
</tr>
<tr>
<td>Erreur de configuration</td>
<td>Vérifier la configuration de l'entrée analogique [► Section 9.30, Page 318]. Vérifiez le réglage de la valeur limite.</td>
<td></td>
</tr>
<tr>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion.</td>
<td></td>
</tr>
<tr>
<td>Application monocolonne :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Capteur CT387, borne X6.1:13-16 et capteur CT390, borne X6.1:9-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application multicolonne :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Colonne A : capteur CT387, borne X6.1:13-16 et capteur CT390, borne X6.1:9-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Colonne B : capteur CT388, borne X6.2:1-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Colonne C : capteur CT389, borne X6.2:5-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonde temp. huile minimale défect.</td>
<td>Capteur défectueux</td>
<td>Remplacer le capteur</td>
</tr>
<tr>
<td>▪ Numéro d'événement 1862</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 135: Surveillance de la température
10.7.5 Messages de maintenance

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance OLTC nécessaire</td>
<td>La valeur limite de maintenance est atteinte.</td>
<td>Effectuez la maintenance et confirmez-la ensuite dans la visualisation.</td>
</tr>
<tr>
<td>• Numéro d’événement 1146</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la visualisation.</td>
<td>Confirmez la maintenance dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>Le compteur de manoeuvres de la visualisation est déréglé.</td>
<td>Comparez le compteur de manoeuvres de la visualisation à celui du mécanisme d'entraînement et corrigez-le si nécessaire.</td>
</tr>
<tr>
<td></td>
<td>Données de maintenance erronées</td>
<td>Ouvrez le journal de maintenance et vérifiez les données de la dernière maintenance.</td>
</tr>
<tr>
<td>Planifier la maintenance OLTC</td>
<td>La valeur limite de planification de la maintenance est atteinte.</td>
<td>Planifiez la maintenance et effectuez-la sous peu, puis confirmez-la dans la visualisation.</td>
</tr>
<tr>
<td>• Numéro d’événement 1145</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la visualisation.</td>
<td>Confirmez la maintenance dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>Le compteur de manoeuvres de la visualisation est déréglé.</td>
<td>Comparez le compteur de manoeuvres de la visualisation à celui du mécanisme d'entraînement et corrigez-le si nécessaire.</td>
</tr>
<tr>
<td></td>
<td>Données de maintenance erronées</td>
<td>Ouvrez le journal de maintenance et vérifiez les données de la dernière maintenance.</td>
</tr>
<tr>
<td>Vidange huile et nettoyage nécessaires</td>
<td>La valeur limite de maintenance est atteinte.</td>
<td>Effectuez la maintenance et confirmez-la ensuite dans la visualisation.</td>
</tr>
<tr>
<td>• Numéro d’événement 1171</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la visualisation.</td>
<td>Confirmez la maintenance dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>Le compteur de manoeuvres de la visualisation est déréglé.</td>
<td>Comparez le compteur de manoeuvres de la visualisation à celui du mécanisme d'entraînement et corrigez-le si nécessaire.</td>
</tr>
<tr>
<td></td>
<td>Données de maintenance erronées</td>
<td>Ouvrez le journal de maintenance et vérifiez les données de la dernière maintenance.</td>
</tr>
<tr>
<td>Planifier vidange huile et nettoyage</td>
<td>La valeur limite de planification de la maintenance est atteinte.</td>
<td>Planifiez la maintenance et effectuez-la sous peu, puis confirmez-la dans la visualisation.</td>
</tr>
<tr>
<td>• Numéro d’événement 1170</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la visualisation.</td>
<td>Confirmez la maintenance dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>Le compteur de manoeuvres de la visualisation est déréglé.</td>
<td>Comparez le compteur de manoeuvres de la visualisation à celui du mécanisme d'entraînement et corrigez-le si nécessaire.</td>
</tr>
<tr>
<td></td>
<td>Données de maintenance erronées</td>
<td>Ouvrez le journal de maintenance et vérifiez les données de la dernière maintenance.</td>
</tr>
<tr>
<td>Manifestation/Détail</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Rempl. corps ins. requis</td>
<td>La valeur limite de maintenance est atteinte.</td>
<td>Effectuez la maintenance et confirmez-la ensuite dans la visualisation.</td>
</tr>
<tr>
<td>• Numéro d’événement 1150</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la visualisation.</td>
<td>Confirmez la maintenance dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>Le compteur de manœuvres de la visualisation est déréglé.</td>
<td>Comparez le compteur de manœuvres de la visualisation à celui du mécanisme d'entraînement et corrigez-le si nécessaire.</td>
</tr>
<tr>
<td></td>
<td>Données de maintenance erronées</td>
<td>Ouvrez le journal de maintenance et vérifiez les données de la dernière maintenance.</td>
</tr>
<tr>
<td>Planifier rempl. corps ins.</td>
<td>La valeur limite de planification de la maintenance est atteinte.</td>
<td>Planifiez la maintenance et effectuez-la sous peu, puis confirmez-la dans la visualisation.</td>
</tr>
<tr>
<td>• Numéro d’événement 1149</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la visualisation.</td>
<td>Confirmez la maintenance dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>Le compteur de manœuvres de la visualisation est déréglé.</td>
<td>Comparez le compteur de manœuvres de la visualisation à celui du mécanisme d'entraînement et corrigez-le si nécessaire.</td>
</tr>
<tr>
<td></td>
<td>Données de maintenance erronées</td>
<td>Ouvrez le journal de maintenance et vérifiez les données de la dernière maintenance.</td>
</tr>
<tr>
<td>Maint. sél. requise</td>
<td>La valeur limite de maintenance est atteinte.</td>
<td>Effectuez la maintenance et confirmez-la ensuite dans la visualisation.</td>
</tr>
<tr>
<td>• Numéro d’événement 1152</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la visualisation.</td>
<td>Confirmez la maintenance dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>Le compteur de manœuvres de la visualisation est déréglé.</td>
<td>Comparez le compteur de manœuvres de la visualisation à celui du mécanisme d'entraînement et corrigez-le si nécessaire.</td>
</tr>
<tr>
<td></td>
<td>Données de maintenance erronées</td>
<td>Ouvrez le journal de maintenance et vérifiez les données de la dernière maintenance.</td>
</tr>
<tr>
<td>Planifier maint. sél.</td>
<td>La valeur limite de planification de la maintenance est atteinte.</td>
<td>Planifiez la maintenance et effectuez-la sous peu, puis confirmez-la dans la visualisation.</td>
</tr>
<tr>
<td>• Numéro d’événement 1151</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la visualisation.</td>
<td>Confirmez la maintenance dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>Le compteur de manœuvres de la visualisation est déréglé.</td>
<td>Comparez le compteur de manœuvres de la visualisation à celui du mécanisme d'entraînement et corrigez-le si nécessaire.</td>
</tr>
<tr>
<td></td>
<td>Données de maintenance erronées</td>
<td>Ouvrez le journal de maintenance et vérifiez les données de la dernière maintenance.</td>
</tr>
<tr>
<td>Manifestation/Détail</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Rempl. filtre hui. requis</td>
<td>La valeur limite de maintenance est atteinte.</td>
<td>Effectuez la maintenance et confirmez-la en-</td>
</tr>
<tr>
<td>• Numéro d'événement 1166</td>
<td>• Signal sur X1:105 et 1000 changements de prise effectués</td>
<td>suite dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la</td>
<td></td>
</tr>
<tr>
<td></td>
<td>visualisation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage des bornes X1:105 / 106.</td>
</tr>
<tr>
<td>Planifier le remplacement du filtre</td>
<td>La valeur limite de maintenance est atteinte.</td>
<td>Effectuez la maintenance et confirmez-la en-</td>
</tr>
<tr>
<td>d'huile</td>
<td>• Signal sur X1:105 et 900 changements de prise effectués</td>
<td>suite dans la visualisation.</td>
</tr>
<tr>
<td>• Numéro d'événement 1165</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la</td>
<td></td>
</tr>
<tr>
<td></td>
<td>visualisation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage des bornes X1:105 / 106.</td>
</tr>
<tr>
<td>Remplacement contacts nécessaire</td>
<td>La valeur limite de maintenance est atteinte.</td>
<td>Effectuez la maintenance et confirmez-la en-</td>
</tr>
<tr>
<td>• Numéro d'événement 1168</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la</td>
<td>suite dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>Mesure du courant de charge erronée.</td>
<td>Vérifiez les valeurs de mesure.</td>
</tr>
<tr>
<td></td>
<td>Données de maintenance erronées</td>
<td>Vérifiez le câblage du module vers la mesure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>du courant de charge (UI ou AIO)</td>
</tr>
<tr>
<td>Planifier remplacement des contacts</td>
<td>La valeur limite de planification de la maintenance est atteinte.</td>
<td>Planifiez la maintenance et effectuez-la sou-</td>
</tr>
<tr>
<td>• Numéro d'événement 1167</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la</td>
<td>peu, puis confirmez-la dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>Mesure du courant de charge erronée.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Données de maintenance erronées</td>
<td>Ouvrez le journal de maintenance et vérifiez</td>
</tr>
<tr>
<td></td>
<td></td>
<td>les données de la dernière maintenance.</td>
</tr>
<tr>
<td>Remplacement OLTC nécessaire</td>
<td>La valeur limite de maintenance est atteinte.</td>
<td>Effectuez la maintenance et confirmez-la en-</td>
</tr>
<tr>
<td>• Numéro d'événement 1148</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la</td>
<td>suite dans la visualisation.</td>
</tr>
<tr>
<td></td>
<td>Données de maintenance erronées</td>
<td>Ouvrez le journal de maintenance et vérifiez</td>
</tr>
<tr>
<td></td>
<td></td>
<td>les données de la dernière maintenance.</td>
</tr>
</tbody>
</table>
10.7.6 Surveillance du fonctionnement

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planifier rempl. OLTC</td>
<td>La valeur limite de planification de la maintenance est atteinte.</td>
<td>Planifiez la maintenance et effectuez-la sous peu, puis confirmez-la dans la visualisation.</td>
</tr>
<tr>
<td>Numéro d'événement 1147</td>
<td>La maintenance a été effectuée mais n'a pas été confirmée dans la visualisation.</td>
<td>Confirmez la maintenance dans la visualisation.</td>
</tr>
<tr>
<td>Données de maintenance erronées</td>
<td></td>
<td>Ouvrez le journal de maintenance et vérifiez les données de la dernière maintenance.</td>
</tr>
</tbody>
</table>

Tableau 136: Messages de maintenance

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deux contacts surveillance de commutation MARCHE</td>
<td>Les contacts de surveillance de commutation S80 / S81 collent.</td>
<td>Vérifiez le fonctionnement des contacts de surveillance de commutation S80 / S81</td>
</tr>
<tr>
<td>Numéro d'événement 1805</td>
<td>Relais K80 / K81 défectueux.</td>
<td>Vérifier le fonctionnement des relais K80 / K81.</td>
</tr>
<tr>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage entre les contacts de surveillance de commutation S80 / S81 et les relais K80 / K81 selon le schéma de connexion.</td>
<td></td>
</tr>
</tbody>
</table>

Les deux contacts surveillance de commutation sont DÉSACTIVÉS

<table>
<thead>
<tr>
<th>Manifestation/Détail</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numéro d'événement 1806</td>
<td>Défaillance d'une ou de plusieurs phases de l'alimentation électrique du mécanisme d'entraînement pendant le dernier changement de prise.</td>
<td>Dans le cas d'applications multicolonne : vérifiez si tous les changeurs de prises en charge sont dans la même position de prise. Si oui, vous pouvez acquitter l'événement. et continuer à exploiter le changeur de prises en charge.</td>
</tr>
<tr>
<td>Rupture de l'arbre d'entraînement</td>
<td>Vérifiez les arbres d'entraînement.</td>
<td>En cas de rupture de l'arbre d'entraînement vous devez vérifier le corps insérable. Contactez la société Maschinenfabrik Reinhausen GmbH.</td>
</tr>
<tr>
<td>Coupure de la tension de commande des contacts de surveillance de commutation S80 / S81.</td>
<td>Vérifiez la tension de commande des contacts de surveillance de commutation S80 / S81.</td>
<td></td>
</tr>
<tr>
<td>Relais K80 / K81 défectueux.</td>
<td>Vérifier le fonctionnement des relais K80 / K81.</td>
<td></td>
</tr>
<tr>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage entre les contacts de surveillance de commutation S80 / S81 et les relais K80 / K81 selon le schéma de connexion.</td>
<td></td>
</tr>
<tr>
<td>Surveillance de commutation erreur de câblage</td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage entre les contacts de surveillance de commutation S80 / S81 et les relais K80 / K81 selon le schéma de connexion.</td>
</tr>
<tr>
<td>Numéro d'événement 1810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Détectection position erronée.</td>
<td>Le capteur de position n'est pas calibré ou défectueux.</td>
<td>Vérifiez le câblage du capteur de position B30 selon le schéma de connexion. Exportez les données de maintenance. Contactez MR. En cas de remplacement : calibrez le capteur de position.</td>
</tr>
<tr>
<td>Manifestation/Détail</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Position de prise invalide</td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion.</td>
</tr>
<tr>
<td>• Numéro d'événement 51</td>
<td>Le capteur de position est défectueux.</td>
<td>Exportez les données de maintenance. Contacbez MR. En cas de remplacement : calibrez le capteur de position.</td>
</tr>
<tr>
<td>Calcul du courant du changeur de prises en charge</td>
<td>Erreur de configuration</td>
<td>Vérifiez la configuration de l'entrée analogique [► Section 9.30, Page 318].</td>
</tr>
<tr>
<td>• Numéro d'événement 1899</td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage selon le schéma de connexion.</td>
</tr>
<tr>
<td>Disjoncteur-protecteur du moteur</td>
<td>Le disjoncteur-protecteur du moteur a été désactivé manuellement (position O).</td>
<td>Réenclenchez le disjoncteur-protecteur du moteur (position I).</td>
</tr>
<tr>
<td>• Numéro d'événement 156</td>
<td>Le disjoncteur-protecteur du moteur a été déclenché par le système de monitrion</td>
<td>Vérifiez les messages d'événement du système de monitrion. Vérifiez la cause du déclenchement du disjoncteur-protecteur du moteur.</td>
</tr>
<tr>
<td></td>
<td>Le disjoncteur-protecteur du moteur a été déclenché à la suite d'un court-circuit ou d'une surcharge du circuit moteur.</td>
<td>Vérifiez le circuit moteur.</td>
</tr>
<tr>
<td></td>
<td>Le disjoncteur-protecteur du moteur a été déclenché par un interrupteur externe sur les bornes X1:14/15.</td>
<td>Vérifiez la cause du déclenchement du disjoncteur-protecteur du moteur par l'interrupteur externe.</td>
</tr>
<tr>
<td>Entrée mode d'urgence (X100)</td>
<td>Pont X100 activé, la fonction de blocage est supprimée.</td>
<td>Retirez le pont X100 pour quitter le mode d'urgence.</td>
</tr>
<tr>
<td>• Numéro d'événement 1869</td>
<td>Le contacteur auxiliaire K100 est défectueux.</td>
<td>Vérifiez le bon fonctionnement du contacteur auxiliaire K100.</td>
</tr>
<tr>
<td>Entrée surintensité de courant</td>
<td>Un signal est présent sur l'entrée surintensité de courant.</td>
<td>Vérifiez la source du signal.</td>
</tr>
<tr>
<td>• Numéro d'événement 1868</td>
<td>Erreur de câblage</td>
<td>Vérifiez le câblage.</td>
</tr>
<tr>
<td>MD : fréquence réseau incorrecte lors de la commutat.</td>
<td>Durant la commutation, la fréquence réseau ne correspondait pas à la fréquence nominale du mécanisme d'entraînement.</td>
<td>Vérifiez la plaque signalétique du mécanisme d'entraînement. Raccordez la tension d'alimentation avec la fréquence adaptée.</td>
</tr>
<tr>
<td>• Numéro d'événement 1802</td>
<td>Impossible de calculer l'érosion des contacts.</td>
<td>Exportez les données de maintenance et contactez la société Maschinenfabrik Reinhausen GmbH.</td>
</tr>
<tr>
<td>Calcul érosion des contacts</td>
<td>Les changeurs de prise ne commutent pas de manière suffisamment synchronisées.</td>
<td>Régler la commutation synchrone des changeurs de prise cf. aux instructions de service.</td>
</tr>
<tr>
<td>• Numéro d'événement 1169</td>
<td>Aucune commutation en charge n'a été détectée lors du changement de prise</td>
<td>Vérifiez l'arbre d'entraînement, les contacts de surveillance de commutation S80 / S81, les relais K16 / K17 et les câblages du capteur de position. Exportez les données de maintenance. Contactez MR.</td>
</tr>
</tbody>
</table>

Tableau 137: Surveillance du fonctionnement
10.7.7 Autres défauts

En l'absence de solution pour un défaut, contactez Maschinenfabrik Reinhausen. Tenez prêtes les informations suivantes :

- Numéro de série
 – Plaque signalétique (se trouve sur le sous-ensemble CPU)
- Version du logiciel [▶ Section 9.36, Page 351]

Préparez-vous à répondre aux questions suivantes :

- Y a-t-il eu une mise à jour du logiciel ?
- Avez-vous rencontré des problèmes avec cet appareil par le passé ?
- Avez-vous déjà contacté Maschinenfabrik Reinhausen à ce sujet ? Si oui, qui fut votre interlocuteur ?
11 Inspection et maintenance

Ce chapitre contient les consignes d'inspection et de maintenance du produit.

11.1 Entretien

Vous pouvez nettoyer l'extérieur du boîtier de protection du mécanisme d'entraînement avec un chiffon humide. Vous pouvez nettoyer l'intérieur du boîtier de protection avec un chiffon sec.

11.2 Inspection

Procédez aux inspections ci-après sur le mécanisme d'entraînement dans les intervalles indiqués :

<table>
<thead>
<tr>
<th>Intervalle</th>
<th>Mesure</th>
<th>Détail</th>
</tr>
</thead>
<tbody>
<tr>
<td>En cas de travaux de contrôle sur le transformateur</td>
<td>Contrôles visuels</td>
<td>• Vérifiez les joints d'étanchéité du boîtier de protection du mécanisme d'entraînement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vérifiez le bon fonctionnement du chauffage électrique intégré dans le boîtier de protection du mécanisme d'entraînement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contactez la société Maschinenfabrik Reinhausen GmbH si les joints ou le chauffage ne sont pas en parfait état.</td>
</tr>
<tr>
<td>Une fois par an</td>
<td>Vérification du disjoncteur-protecteur du moteur</td>
<td>✓ Le disjoncteur-protecteur du moteur Q1 est enclenché (position I).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Déclenchez le disjoncteur-protecteur du moteur depuis le poste de conduite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>△ Le disjoncteur-protecteur du moteur se déclenche (position 0). Si le disjoncteur-protecteur du moteur ne se déclenche pas, vérifiez le raccordement du disjoncteur-protecteur du moteur sur le poste de conduite et, si nécessaire, contactez la société Maschinenfabrik Reinhausen GmbH.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Réenclenchez le disjoncteur-protecteur du moteur (position I).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>△ Le déclenchement du disjoncteur-protecteur du moteur depuis le poste de conduite est contrôlé.</td>
</tr>
<tr>
<td>Tous les quatre ans</td>
<td>Contrôle</td>
<td>• Vérifiez la présence de saleté, de dommages et de corrosion sur le coffret de contrôle et nettoyez-le.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Faire contrôler les mises au potentiel et les mises à la terre par un électricien qualifié.</td>
</tr>
</tbody>
</table>

Tableau 138: Plan d'inspection
11.3 Maintenance

Une maintenance du mécanisme d'entraînement n'est pas nécessaire. Il est cependant impératif de contrôler l'état du mécanisme d'entraînement, ainsi que son bon fonctionnement, après chaque maintenance du changeur de prises en charge / changeur de prises hors tension / de l'ARS conformément à la section « Contrôles effectués sur le mécanisme d'entraînement ».

En outre, certains composants du mécanisme d'entraînement (p. ex. interrupteur à cames, relais, contacteur) doivent être remplacés tous les 1 million de changements de prise. Veuillez pour cela contacter le service technique de la société Maschinenfabrik Reinhausen GmbH.

Nous recommandons vivement de faire effectuer la maintenance du changeur de prises en charge et le contrôle du mécanisme d'entraînement par notre service technique. Ceci permet de garantir non seulement l'exécution de tous les travaux selon les règles de l'art, mais aussi de rééquiper certains composants en tenant compte des acquis les plus récents de la technique et du niveau de fabrication le plus actuel.

Si la maintenance et le contrôle ne sont pas effectués par notre service technique, il faut veiller à ce que le personnel ait été formé par MR ou ait reçu, d'une autre manière, la qualification le rendant apte à effectuer ces travaux spécifiques. Dans ce cas, nous vous prions de nous faire parvenir un rapport concernant l'entretien effectué, ce qui nous permettra de compléter notre fichier d'entretien. Pour les demandes de pièces de rechange, nous vous prions de bien vouloir nous communiquer le numéro de fabrication (cf. la plaque signalétique du changeur de prises en charge et du mécanisme d'entraînement) et le nombre de manœuvres.

Service technique
Maschinenfabrik Reinhausen GmbH
Technischer Service
Postfach 12 03 60
93025 Regensburg
Allemagne
Téléphone : +49 94140 90-0
Télécopie : +49 9 41 40 90-7001
E-mail : service@reinhausen.com
Internet : www.reinhausen.com
12 Démontage

Le démontage en toute sécurité du coffret de contrôle est décrit ci-dessous.

⚠️ AVERTISSEMENT

Danger de mort et risque de blessures graves !

Un transformateur sous tension, ainsi que des composants du changeur de prises en charge / changeur de prises hors tension / de l'ARS et du mécanisme d'entraînement sous tension, peuvent présenter un danger de mort ou de blessures graves pendant le démontage !

► Coupez l'alimentation électrique.
► Protégez l'alimentation électrique contre une remise en marche.
► Assurez-vous que l'appareil est hors tension.
► Recouvrez les pièces avoisinantes sous tension ou barrez-en l'accès.

⚠️ AVERTISSEMENT

Danger de mort et risque de dommages matériels !

Danger de mort et risque de dommages matériels dus au basculement ou à la chute de la charge !

► Seules les personnes autorisées et ayant été formées en la matière sont habilitées à sélectionner les moyens d'accrochage et à procéder à l'accrochage de la charge.
► Ne vous placez pas sous la charge suspendue.
► Utilisez des moyens de transport et des engins de levage d'une force suffisante conformément aux indications de poids mentionnées dans la section Caractéristiques techniques.
Pour démonter le coffret de contrôle, procédez comme suit :

► Démontez l'arbre d'entraînement vertical et le tube de protection entre le renvoi d'angle et le coffret de contrôle.

AVERTISSEMENT ! Blessures graves et endommagement du coffret de contrôle dus à une chute. Fixez l'engin de levage de manière à ce que l'angle du câble mesuré par rapport à la verticale soit toujours inférieur à 45 °.
1. Desserrez les écrous de fixation du coffret de contrôle.
2. Soulevez le coffret de contrôle pour le démonter du transformateur.
3. **AVERTISSEMENT** ! Blessures graves provoquées par le basculement du coffret de contrôle et endommagement du presse-étoupe si le coffret de contrôle est posé, transporté et entreposé à la verticale. Assurez-vous de poser, de transporter et d'entreposer le coffret de contrôle uniquement à l'horizontale.

Figure 272: Angle de câble maximal admissible pour la butée de l'engin de levage du coffret de contrôle
13 Élimination

Observez les prescriptions de mise au rebut nationales en vigueur dans le pays d'utilisation respectif.

Veuillez contacter le service technique de Maschinenfabrik Reinhausen GmbH si vous avez des questions relatives au démontage et à la mise au rebut.
14 Caractéristiques techniques

14.1 Mécanisme d’entraînement

Les caractéristiques techniques correspondent à la version standard et peuvent différer de l’exécution livrée. Sous réserve de modifications.

<table>
<thead>
<tr>
<th>Puissance du moteur</th>
<th>0,75 kW</th>
<th>2,0 kW</th>
<th>2,2 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentation en tension du circuit moteur</td>
<td>3 CA/N 230/400 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courant</td>
<td>1,9 A env.</td>
<td>5,2 A env.</td>
<td>6,2 A env.</td>
</tr>
<tr>
<td>Fréquence</td>
<td></td>
<td>50 Hz</td>
<td></td>
</tr>
<tr>
<td>Vitesse synchrone</td>
<td>1 500 tr/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tours de l’arbre d’entraînement par manœuvre</td>
<td>16,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durée de chaque changement de prise</td>
<td>5,4 s env.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couple assigné sur l’arbre d’entraînement</td>
<td>45 Nm</td>
<td>90 Nm</td>
<td>125 Nm</td>
</tr>
<tr>
<td>Tours de manivelle par manœuvre</td>
<td>33</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Nombre maximal de positions de service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alimentation en tension du circuit de contrôle et du circuit de chauffage</td>
<td>CA 230 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puissance absorbée du circuit de contrôle (commande/fonctionnement)</td>
<td>100 VA/25 VA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résistance des microrupteurs</td>
<td>Pouvoir de coupure : 100 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tension alternative/intensité de courant : 250 V CA 100 mA…4 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tension continue/intensité de courant : 220 V CC 10 mA…250 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degré de protection</td>
<td>IP 66 conformément à DIN EN 60529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension d’essai contre la terre</td>
<td>2 kV/60 s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 139: Caractéristiques techniques ETOS® ED

14.2 Coffret de contrôle

<table>
<thead>
<tr>
<th>Coffret de contrôle</th>
<th>ETOS® ED L</th>
<th>ETOS® ED L-S</th>
<th>ETOS® ED XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (largeur x hauteur x profondeur)</td>
<td>710 x 1368,4 x 464 mm</td>
<td>710 x 1876,4 x 464 mm</td>
<td></td>
</tr>
<tr>
<td>Courant absorbé</td>
<td>14 A max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alimentation électrique</td>
<td>3 CA/N</td>
<td>380…440 V</td>
<td></td>
</tr>
<tr>
<td>Fréquence</td>
<td>50 Hz ou 60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alimentation électrique circuit de commande et de chauffage</td>
<td>220…240 VCA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14 Caractéristiques techniques

<table>
<thead>
<tr>
<th>Coffret de contrôle</th>
<th>ETOS® ED L</th>
<th>ETOS® ED L-S</th>
<th>ETOS® ED XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puissance de chauffage</td>
<td>60 W (commandée)</td>
<td>Standard: 140 W (commandée)</td>
<td>Arctique: 175 W (commandée)</td>
</tr>
<tr>
<td>Prise</td>
<td>220...240 VCA, 10 A max.</td>
<td>IP66</td>
<td></td>
</tr>
<tr>
<td>Degré de protection</td>
<td>C4 high ; C4 very high</td>
<td>C5 high</td>
<td></td>
</tr>
<tr>
<td>Catégorie de corrosivité possible conformément à ISO 12944-2:2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poids total admissible</td>
<td>155 kg</td>
<td>200 kg</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 140: Caractéristiques techniques du coffret de contrôle

1) Observez les informations indiquées sur la plaque signalétique.
14 Caractéristiques techniques

14.2.1 Schémas

14.2.1.1 ETOS® ED L/ETOS® ED L-S
ARRANGEMENT OF FIXING HOLES ON PROTECTIVE HOUSING
(VIEWED FROM BEHIND)

THE COVER CAN BE OPENED
TO THE LEFT OR TO THE RIGHT
DEPENDING ON THE ARRANGEMENT
OF THE PINS.

APPROX. 569 IF OPENED
THE COVER CAN BE OPENED TO THE LEFT OR TO THE RIGHT DEPENDING ON THE ARRANGEMENT OF THE PINS.

ARRANGEMENT OF FIXING HOLES ON PROTECTIVE HOUSING (VIEWED FROM BEHIND)
14 Caractéristiques techniques

14.2.1.2 ETOS® ED XL
The cover can be opened to the left or to the right depending on the arrangement of the pins.

Arrangement of fixing holes on protective housing (viewed from behind)

Dimensions in mm
14.3 Caractéristiques techniques du dispositif de signalisation de position

Module signalisation de position, modèle à résistance

Résistance standard : 10,0 Ω (0,6 W, +/-1 %) par prise

Le nombre de positions de service souhaitées détermine le nombre de résistances en charge.

La puissance de perte déterminante du module de signalisation de position est de 0,6 W étant donné qu'une seule résistance est câblée dans le pire des cas. La tension d'alimentation ne devrait pas excéder CC 220 V. Prière de bien vouloir contacter la société Maschinenfabrik Reinhausen en cas d'exigences plus élevées.

Module signalisation de position, type à contact à fermeture (commutation avec interruption)

CA : 250 V, 0,5 A (charge ohmique)

CC : 220 V, 0,2 A (charge ohmique)

Niveau de tension minimum pour le traitement des signaux et des données : 24 V

Module signalisation de position, type à contact à fermeture (commutation sans interruption)

CA, CC : 250 V, 0,02 A (charge ohmique)

CA, CC : 24 V, 0,20 A (charge ohmique)

Niveau de tension minimum pour le traitement des signaux et des données : 24 V

Module signalisation de position, modèle 10 A, à contact de fermeture (commutation sans interruption) pour la commande de transformateurs d'intensité pour applications industrielles.

CA, CC : 250 V, 10 A (charge ohmique)

Module signalisation de position, matrice à diodes

CC : 220 V, 0,2 A (charge ohmique)

Niveau de tension minimum pour le traitement des signaux et des données : 24 V
14.4 Conditions ambiantes admissibles

<table>
<thead>
<tr>
<th>Température ambiante en service admissible</th>
<th>Standard</th>
<th>-25...+50 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctique avec chauffage additionnel commandé par thermostat</td>
<td>-40...+50 °C</td>
<td>Tous les chauffages doivent fonctionner en continu dans la plage de température de -40...+50 °C.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Température de stockage</th>
<th>Standard</th>
<th>-25...+70 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctique avec chauffage additionnel commandé par thermostat</td>
<td>-40...+70 °C</td>
<td>Tous les chauffages doivent fonctionner en continu dans la plage de température de -40...-25 °C.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>HiTemp</th>
<th>-25...+55 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HiTemp</td>
<td>-25...+70 °C</td>
</tr>
</tbody>
</table>

Pression d’air
Correspond à 2000 m au-dessus du niveau de la mer

Tableau 141: Conditions ambiantes admissibles

14.5 Modules ISM®

14.5.1 Alimentation électrique

<table>
<thead>
<tr>
<th></th>
<th>G1 PULS QS3.241</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plage de tension admissible</td>
<td>85...276 VCA</td>
</tr>
<tr>
<td></td>
<td>88...375 VCC</td>
</tr>
<tr>
<td></td>
<td>U_n : 100...240 VCA</td>
</tr>
<tr>
<td></td>
<td>U_n : 110...300 VCC</td>
</tr>
<tr>
<td>Plage de fréquence admissible</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Puissance absorbée nominale</td>
<td>55 W</td>
</tr>
<tr>
<td>Puissance absorbée maximale (continue)</td>
<td>70 W</td>
</tr>
</tbody>
</table>

Tableau 142: Alimentation électrique

14.5.2 Alimentation électrique

<table>
<thead>
<tr>
<th></th>
<th>OT1205 (MR/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plage de tension admissible</td>
<td>85...265 VCA/VCC</td>
</tr>
<tr>
<td></td>
<td>U_n : 100...240 VCA</td>
</tr>
<tr>
<td></td>
<td>U_n : 100...220 VCC</td>
</tr>
<tr>
<td>Plage de fréquence admissible</td>
<td>50/60 Hz</td>
</tr>
</tbody>
</table>
Tableau 143: Exécution standard avec bloc d'alimentation à grande portée

<table>
<thead>
<tr>
<th>OT1205 (MR/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puissance absorbée</td>
</tr>
<tr>
<td>Fusible interne (2x)</td>
</tr>
</tbody>
</table>

Figure 273: Fusible interne (2x) du bloc d'alimentation à grande portée dans le module OT1205

Tableau 144: Exécution spéciale avec bloc d'alimentation à courant continu

<table>
<thead>
<tr>
<th>OT1205 (MR/48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plage de tension admissible</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Puissance absorbée</td>
</tr>
<tr>
<td>Fusible interne</td>
</tr>
</tbody>
</table>

Figure 274: Fusible interne et fusible de rechange du bloc d'alimentation à courant continu dans le module OT1205
14.5.3 Mesure de la tension et mesure du courant

<table>
<thead>
<tr>
<th></th>
<th>UI 1</th>
<th>UI 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesure</td>
<td>Monophasée</td>
<td>Triphasée</td>
</tr>
<tr>
<td>Mesure de tension</td>
<td>U_n (RMS) : 100 VAC</td>
<td>U_n (RMS) : 100 VAC</td>
</tr>
<tr>
<td></td>
<td>Plage de mesure (RMS) : 19,6...150 VCA</td>
<td>Plage de mesure (RMS) : 19,6...150 VCA</td>
</tr>
<tr>
<td></td>
<td>Précision de mesure (pour U_n, -25...+ 70 °C) : < ± 0,3 %</td>
<td>Précision de mesure (pour U_n, -25...+ 70 °C) : < ± 0,3 %</td>
</tr>
<tr>
<td></td>
<td>Consommation propre : < 1 VA</td>
<td>Consommation propre : < 1 VA</td>
</tr>
<tr>
<td></td>
<td>Catégorie de mesure III conformément à CEI 61010-2-30</td>
<td>Catégorie de mesure III conformément à CEI 61010-2-30</td>
</tr>
<tr>
<td>Mesure du courant</td>
<td>I_n: 0,2 / 1 / 5 A</td>
<td>I_n: 0,2 / 1 / 5 A</td>
</tr>
<tr>
<td></td>
<td>Plage de mesure : 0,01...2,1 · I_n</td>
<td>Plage de mesure : 0,01...2,1 · I_n</td>
</tr>
<tr>
<td></td>
<td>Capacité de charge : 12,5 A (continue), 500 A (pour 1 s)</td>
<td>Capacité de charge : 12,5 A (continue), 500 A (pour 1 s)</td>
</tr>
<tr>
<td></td>
<td>Précision de mesure (pour I_n, -25...+70 °C) : <± 0,5 %</td>
<td>Précision de mesure (pour I_n, -25...+70 °C) : <± 0,5 %</td>
</tr>
<tr>
<td></td>
<td>Consommation propre : < 1 VA</td>
<td>Consommation propre : < 1 VA</td>
</tr>
<tr>
<td>Angle de phase</td>
<td>Précision de mesure (-25...+70 °C) : U_x/I_x <± 0,5° ; U_y/U_y <± 0,3°</td>
<td>Précision de mesure (-25...+70 °C) : U_x/I_x <± 0,5° ; U_y/U_y <± 0,3°</td>
</tr>
<tr>
<td>Mesure de fréquence</td>
<td>f_n: 50 / 60 Hz</td>
<td>f_n: 50 / 60 Hz</td>
</tr>
<tr>
<td></td>
<td>Plage de mesure : 45...65 Hz</td>
<td>Plage de mesure : 45...65 Hz</td>
</tr>
<tr>
<td></td>
<td>Précision de mesure (-25 à +70 °C) : <± 0,03 %</td>
<td>Précision de mesure (-25 à +70 °C) : <± 0,03 %</td>
</tr>
</tbody>
</table>

| **Tableau 145: Caractéristiques techniques des modules UI 1 et UI 3** |

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI 1</td>
<td>N</td>
<td>Entrée de tension conducteur neutre</td>
</tr>
<tr>
<td>UI 1</td>
<td>L, L1</td>
<td>Entrée de tension phase L (UI 1) ou L1 (UI 3)</td>
</tr>
<tr>
<td>UI 3</td>
<td>N, L1</td>
<td>Entrée de tension phase L2 (UI 3 seulement)</td>
</tr>
<tr>
<td>UI 3</td>
<td>L2</td>
<td>Entrée de tension phase L3 (UI 3 seulement)</td>
</tr>
</tbody>
</table>

| **Tableau 146: Mesure de tension** |
14 Caractéristiques techniques

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI 1</td>
<td>k, k1</td>
<td>Entrée de courant phase L (UI 1) ou L1 (UI 3)</td>
</tr>
<tr>
<td></td>
<td>l, l1</td>
<td>Sortie de courant phase L (UI 1) ou L1 (UI 3)</td>
</tr>
<tr>
<td>UI 3</td>
<td>k2</td>
<td>Entrée de courant phase L2 (UI 3 seulement)</td>
</tr>
<tr>
<td></td>
<td>l2</td>
<td>Sortie de courant phase L2 (UI 3 seulement)</td>
</tr>
<tr>
<td></td>
<td>k3</td>
<td>Entrée de courant phase L3 (UI 3 seulement)</td>
</tr>
<tr>
<td></td>
<td>l3</td>
<td>Sortie de courant phase L3 (UI 3 seulement)</td>
</tr>
</tbody>
</table>

Tableau 147: Mesure du courant

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI 1</td>
<td>k, k1</td>
<td>Entrée de courant phase L (UI 1) ou L1 (UI 3)</td>
</tr>
<tr>
<td></td>
<td>l, l1</td>
<td>Sortie de courant phase L (UI 1) ou L1 (UI 3)</td>
</tr>
<tr>
<td>UI 3</td>
<td>k2</td>
<td>Entrée de courant phase L2 (UI 3 seulement)</td>
</tr>
<tr>
<td></td>
<td>l2</td>
<td>Sortie de courant phase L2 (UI 3 seulement)</td>
</tr>
<tr>
<td></td>
<td>k3</td>
<td>Entrée de courant phase L3 (UI 3 seulement)</td>
</tr>
<tr>
<td></td>
<td>l3</td>
<td>Sortie de courant phase L3 (UI 3 seulement)</td>
</tr>
</tbody>
</table>

Figure 275: Dimensions UI 1 et UI 3

14.5.4 Mesure de la tension et mesure du courant UI 5-4

<table>
<thead>
<tr>
<th>Mesure</th>
<th>Triphasée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesure de tension</td>
<td>U_n (RMS) : 230 VAC</td>
</tr>
<tr>
<td></td>
<td>Plage de mesure (RMS) : 10...300 VAC</td>
</tr>
<tr>
<td></td>
<td>Précision de mesure (pour U_n, -25...+70 °C) : $\pm 0,2 %$</td>
</tr>
<tr>
<td></td>
<td>Consommation propre : < 1 VA</td>
</tr>
<tr>
<td></td>
<td>Catégorie de mesure III conformément à CEI 61010-2-30</td>
</tr>
<tr>
<td>Mesure du courant</td>
<td>I_n : 5 A</td>
</tr>
<tr>
<td></td>
<td>Plage de mesure : 10 mA...15 A</td>
</tr>
<tr>
<td></td>
<td>Capacité de charge : 15 A (continue), 100 A (pour 1 s)</td>
</tr>
<tr>
<td></td>
<td>Précision de mesure (pour I_n, -25...+70 °C) : $\pm 0,4 %$</td>
</tr>
<tr>
<td></td>
<td>Consommation propre : < 1 VA</td>
</tr>
</tbody>
</table>
Caractéristiques techniques des modules UI 5-4

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>NC</td>
<td>Entrée de tension phase L1</td>
</tr>
<tr>
<td>L1</td>
<td>NF</td>
<td>non utilisé</td>
</tr>
<tr>
<td>L2</td>
<td>NC</td>
<td>Entrée de tension phase L2</td>
</tr>
<tr>
<td>L2</td>
<td>NF</td>
<td>non utilisé</td>
</tr>
<tr>
<td>L3</td>
<td>N</td>
<td>Entrée de tension conducteur neutre</td>
</tr>
</tbody>
</table>

Mesure de tension

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k1</td>
<td>l1</td>
<td>Entrée de courant phase L1</td>
</tr>
<tr>
<td>I1</td>
<td>l1</td>
<td>Sortie de courant phase L1</td>
</tr>
<tr>
<td>k2</td>
<td>l2</td>
<td>Entrée de courant phase L2</td>
</tr>
<tr>
<td>I2</td>
<td>l2</td>
<td>Sortie de courant phase L2</td>
</tr>
<tr>
<td>k3</td>
<td>l3</td>
<td>Entrée de courant phase L3</td>
</tr>
<tr>
<td>I3</td>
<td>l3</td>
<td>Sortie de courant phase L3</td>
</tr>
</tbody>
</table>

Mesure du courant

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A, 1B, 1C, 2A, 2B, 2C</td>
<td>1A, 1B, 1C, 2A, 2B, 2C</td>
<td>Aucune fonction</td>
</tr>
</tbody>
</table>

Tableau 148: Caractéristiques techniques des modules UI 5-4

Tableau 149: Mesure de tension

Tableau 150: Mesure du courant

Tableau 151: Relais
14 Caractéristiques techniques

![Diagram of ETOS® ED UI 5 modules](image)

14.5.5 Entrées et sorties numériques

<table>
<thead>
<tr>
<th></th>
<th>DIO 28-15</th>
<th>DIO 42-20</th>
<th>DIO 42-20 HL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrées (à séparation galvanique par connecteur)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre</td>
<td>28</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Logique 0</td>
<td>0...10 VCA (RMS)</td>
<td>0...40 VCA (RMS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0...10 VCC</td>
<td>0...40 VCC</td>
<td></td>
</tr>
<tr>
<td>Logique 1</td>
<td>18...260 VCA (RMS)</td>
<td>170...260 VCA (RMS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18...260 VCC</td>
<td>170...260 VCC</td>
<td></td>
</tr>
<tr>
<td>Courant d'entrée</td>
<td>Type 1,3 mA (indépendamment de U)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facteur de simultanéité</td>
<td>à 70 °C et $U \geq 230$ V : max. 50 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorties (sorties relais libres de potentiel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre (dont des contacts inverseurs)</td>
<td>15 (9)</td>
<td>20 (12)</td>
<td></td>
</tr>
<tr>
<td>Capacité de charge des contacts</td>
<td>Min. : 5 V, 10 mA</td>
<td>CA max. : 230 VCA; 5 A</td>
<td>CC max. : voir diagramme</td>
</tr>
<tr>
<td>Facteur de simultanéité</td>
<td>jusqu'à 60 °C : 100 %, > 60 °C : -5 %/K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 152: Caractéristiques techniques des modules DIO 28-15 et DIO 42-20
ATTENTION !

Choc électrique !

Les entrées du module DIO sont séparées galvaniquement par connecteur. Un mélange de plages de tension (p. ex. très basse tension et basse tension) ou de différentes phases à l'intérieur d'un connecteur peut réduire la protection contre les chocs électriques.

► Utilisez des plages de tension identiques à l'intérieur d'un connecteur.
► Utilisez la même phase à l'intérieur d'un connecteur.

Tableau 153: Entrées numériques

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>9 17 25 33 41</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10 18 26 34 42</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11 19 27 35 43</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12 20 28 36 44</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>13 21 29 37 45</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>14 22 30 38 46</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>15 23 31 39 47</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>16 24 32 40 48</td>
</tr>
</tbody>
</table>

Figure 277: Capacité de charge des sorties numériques en cas de charge ohmique
14 Caractéristiques techniques

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A 6 A 11 A</td>
<td>16 A</td>
<td>Contact de repos</td>
</tr>
<tr>
<td>1C 6C 11C</td>
<td>16C</td>
<td>Contact commun</td>
</tr>
<tr>
<td>1B 6B 11B</td>
<td>16B</td>
<td>Contact de travail</td>
</tr>
<tr>
<td>2 A 7 A 12 A</td>
<td>17 A</td>
<td>Contact de repos</td>
</tr>
<tr>
<td>2C 7C 12C</td>
<td>17C</td>
<td>Contact commun</td>
</tr>
<tr>
<td>2B 7B 12B</td>
<td>17B</td>
<td>Contact de travail</td>
</tr>
<tr>
<td>3 A 8 A 13 A</td>
<td>18 A</td>
<td>Contact de repos</td>
</tr>
<tr>
<td>3C 8C 13C</td>
<td>18C</td>
<td>Contact commun</td>
</tr>
<tr>
<td>3B 8B 13B</td>
<td>18B</td>
<td>Contact de travail</td>
</tr>
<tr>
<td>4C 9C 14C</td>
<td>19C</td>
<td>Contact commun</td>
</tr>
<tr>
<td>4B 9B 14B</td>
<td>19B</td>
<td>Contact de travail</td>
</tr>
<tr>
<td>5C 10C 15C</td>
<td>20C</td>
<td>Contact commun</td>
</tr>
<tr>
<td>5B 10B 15B</td>
<td>20B</td>
<td>Contact de travail</td>
</tr>
</tbody>
</table>

Tableau 154: Sorties numériques

Figure 278: Dimensions DIO 28-15

Figure 279: Dimensions DIO 42-20
14 Caractéristiques techniques

14.5.6 Entrées et sorties analogiques

<table>
<thead>
<tr>
<th></th>
<th>AIO 2</th>
<th>AIO 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canaux (entrée ou sortie)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Entrées</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plage de mesure</td>
<td>0 à 10 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 à 20 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4...20 mA</td>
<td></td>
</tr>
<tr>
<td>Charge (0/4...20 mA)</td>
<td>300 Ω max.</td>
<td></td>
</tr>
<tr>
<td>Sorties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plage de signal</td>
<td>0 à 10 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 à 20 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4...20 mA</td>
<td></td>
</tr>
<tr>
<td>Charge (0/4...20 mA)</td>
<td>500 Ω max.</td>
<td></td>
</tr>
</tbody>
</table>

Rangée de contacts potentiométrique

Résistance maximale 100 Ω...10 kΩ, 35 positions de prise max.

Tableau 155: Caractéristiques techniques des modules AIO 2 et AIO 4

Interface	Broche	Description
1 | 6 11 16 | I OUT (+) : sortie de courant +
2 | 7 12 17 | I/U IN (+) U OUT (+) : entrée de tension +, entrée de courant +, sortie de tension +
3 | 8 13 18 | I/U IN (-) : entrée de tension -, entrée de courant -
4 | 9 14 19 | I/U OUT (-) : sortie de tension -, sortie de courant -
5 | 10 15 20 | non utilisé

Tableau 156: Entrées et sorties analogiques

![Figure 280: Dimensions AIO 2 et AIO 4](image-url)
14 Caractéristiques techniques

14.5.7 Entrées et sorties analogiques AIO 8

<table>
<thead>
<tr>
<th>AIO 8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canaux (entrée)</td>
<td>Huit, dont quatre entrées de courant maximum (canaux 1, 2, 7, 8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entrées</th>
<th>Plage de mesure</th>
<th>Charge (0/4...20 mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 à 10 V</td>
<td>300 Ω max.</td>
</tr>
<tr>
<td></td>
<td>0 à 20 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4...20 mA</td>
<td></td>
</tr>
</tbody>
</table>

| Séparation galvanique des canaux et du système | 500 V |

Tableau 157: Caractéristiques techniques du module AIO 8

<table>
<thead>
<tr>
<th>Interface</th>
<th>Canal / broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 6 11 16 21 26 31 36</td>
<td>I OUT (+) : sortie de courant +</td>
</tr>
<tr>
<td>2</td>
<td>7 12 17 22 27 32 37</td>
<td>I/U IN (+) U OUT (+) : entrée de tension +, entrée de courant +, sortie de tension +</td>
</tr>
<tr>
<td>3</td>
<td>8 13 18 23 28 33 38</td>
<td>I/U IN (-) : entrée de tension -, entrée de courant -</td>
</tr>
<tr>
<td>4</td>
<td>9 14 19 24 29 34 39</td>
<td>I/U OUT (-) : sortie de tension -, sortie de courant -</td>
</tr>
<tr>
<td>5</td>
<td>10 15 20 25 30 35 40</td>
<td>non utilisé</td>
</tr>
</tbody>
</table>

Tableau 158: Entrées et sorties analogiques

Figure 281: Dimensions AIO 8

14.5.8 Unité centrale de calcul CPU I

<table>
<thead>
<tr>
<th>CPU I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Processeur</td>
<td>266 MHz</td>
</tr>
<tr>
<td>Mémoire RAM</td>
<td>256 Mo</td>
</tr>
</tbody>
</table>
14 Caractéristiques techniques

CPU I

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x série RS232/485 (à séparation galvanique)</td>
<td></td>
</tr>
<tr>
<td>3x Ethernet 10/100Mbits</td>
<td></td>
</tr>
<tr>
<td>1x USB 2.0</td>
<td></td>
</tr>
<tr>
<td>1x CAN (à séparation galvanique)</td>
<td></td>
</tr>
<tr>
<td>1x CAN</td>
<td></td>
</tr>
</tbody>
</table>

NVRAM (SRAM avec accumulateur tampon)	256 ko
Mémoire d’application	1 Go
Alimentation	+24 V CC (18...36 VCC)

Tableau 159: Caractéristiques techniques du module CPU I

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM2 (RS232, RS485)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>Broche</td>
<td>Description</td>
</tr>
<tr>
<td>1</td>
<td>VCC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Masse</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 160: COM2 (RS232, RS485)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Broche</td>
<td>Description</td>
</tr>
<tr>
<td>1</td>
<td>TxD+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TxD-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RxD+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NF</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NF</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RxD-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NF</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NF-</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 161: USB 2.0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Broche</td>
<td>Description</td>
</tr>
<tr>
<td>1</td>
<td>TxD+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TxD-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RxD+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NF</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NF</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RxD-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NF</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NF-</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 162: ETH1, ETH 2.1, ETH 2.2 (RJ45)
Interface, Broche, Description

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>CAN-L</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>CAN-masse</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>CAN-H</td>
</tr>
</tbody>
</table>

Tableau 163: CAN1, CAN2

![Figure 282: Dimensions CPU](image)

Accessoires en option

- **Bus CAN**: Résistance de terminaison
 - Connecteur D-SUB (9 pôles)
 - R = 120 Ω
 - Connecteur avec bornier pour le raccordement direct des câbles CAN

- **Convertisseur de support pour l'interface COM2 (RS232 uniquement)**
 - Adaptateur D-SUB (9 pôles) sur fibre optique :
 - ACF660/ST: F-ST, 660 nm, portée 60 m max. pour 40 kBauds
 - ACF660/SMA: F-SMA, 660 nm, portée 60 m max. pour 40 kBauds
 - ACF850/ST: F-ST, 850 nm, portée 1000 m max. pour 40 kBauds
 - ACF850/SMA: F-SMA, 850 nm, portée 1000 m max. pour 40 kBauds

Tableau 164: Accessoires en option

14.5.9 Mise en réseau du système

<table>
<thead>
<tr>
<th>MC 2-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Interfaces</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
14 Caractéristiques techniques

Tableau 165: Caractéristiques techniques du sous-ensemble MC 2-2

<table>
<thead>
<tr>
<th>Description</th>
<th>Managed Fast Ethernet Switch conformément à IEEE 802.3, store-and-forward-switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>Convertisseur de supports :</td>
</tr>
<tr>
<td></td>
<td>• 1x RJ45</td>
</tr>
<tr>
<td></td>
<td>• 1x Duplex-LC (SFP)</td>
</tr>
<tr>
<td></td>
<td>Managed Switch avec fonction de redondance :</td>
</tr>
<tr>
<td></td>
<td>• 2x RJ45</td>
</tr>
<tr>
<td></td>
<td>• 2x Duplex-LC (SFP)</td>
</tr>
<tr>
<td>Protocoles de redondance</td>
<td>PRP, RSTP</td>
</tr>
<tr>
<td>Synchronisation temporelle</td>
<td>PTPv2 (IEEE 1588-2008)</td>
</tr>
<tr>
<td>RJ45</td>
<td>100 m max. (par phase)</td>
</tr>
<tr>
<td></td>
<td>10/100 MBit/s</td>
</tr>
<tr>
<td></td>
<td>Impédance de câble 100 Ω</td>
</tr>
<tr>
<td>Fibre optique</td>
<td>2000 m max.</td>
</tr>
<tr>
<td></td>
<td>100 Mbit/s</td>
</tr>
<tr>
<td></td>
<td>Diode électroluminescente : classe 1</td>
</tr>
<tr>
<td></td>
<td>Longueur d'onde : 1310 mm</td>
</tr>
<tr>
<td></td>
<td>Puissance de sortie optique max. : <1 mW (conformément à CEI 60825-1:2014)</td>
</tr>
</tbody>
</table>

Tableau 166: Caractéristiques techniques du module SW 3-3

1) Réglage usine
14 Caractéristiques techniques

Tableau 167: ETHxx (RJ45)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Broche</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>TxD+</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>TxD-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>RxD+</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>NF</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>NF</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>RxD-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>NF</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>NF-</td>
</tr>
</tbody>
</table>

Tableau 168: ETHxx (Duplex-LC SFP)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fibre de verre 50/125 et 62,5/125 multimode</td>
</tr>
</tbody>
</table>

Figure 283: Dimensions MC2-2 et SW3-3

14.5.10 Conditions ambiantes

<table>
<thead>
<tr>
<th>Condition</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température de service</td>
<td>-25...+70 °C</td>
</tr>
<tr>
<td>Température de stockage</td>
<td>-40...+85 °C</td>
</tr>
<tr>
<td>Humidité relative</td>
<td>10...95 % sans condensation</td>
</tr>
<tr>
<td>Pression d'air</td>
<td>Correspond à 2000 m niveau de la mer</td>
</tr>
<tr>
<td>Distance minimale par rapport aux autres appareils / à l'armoire électrique</td>
<td>Haut / bas : 88,9 mm (3,5 pouces ; correspond à 2 HE), arrière 30 mm (1,2 pouces)</td>
</tr>
</tbody>
</table>

Tableau 169: Conditions ambiantes admissibles
14 Caractéristiques techniques

14.5.11 Normes et directives

Sécurité électrique

<table>
<thead>
<tr>
<th>Norme/Signe</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEI 61010-1</td>
<td>Dispositions de sécurité pour les appareils électriques de mesure, de commande, de régulation et de laboratoire</td>
</tr>
</tbody>
</table>
| CEI 61010-2-030 | • Classe de protection 1
 • Catégorie de surtension III
 • Degré d’encrassement 2 |
| CEI 60950-1 | Équipements de la technique de l’information – Sécurité |

Tableau 170: Sécurité électrique

###Compatibilité électromagnétique

<table>
<thead>
<tr>
<th>Norme/Signe</th>
<th>Description</th>
</tr>
</thead>
</table>
| CEI 61000-4-2 | Immunité à la décharge d’électricité statique (ESD)
 • Panneau frontal et éléments de commande
 • Contact : ± 8 kV
 • Air : ± 15 kV
 • Bornes, connecteurs et interfaces :
 • Contact : ± 6 kV
 • Air : ± 8 kV |
| CEI 61000-4-3 | Immunité aux champs électromagnétiques à haute fréquence
 • 20 V/m ; 80...4000 MHz ; 80 % AM
 • 20 V/m ; 900 MHz ±5 MHz ; PM |
| CEI 61000-4-4 | Immunité aux transitoires électriques rapides en salves (burst)
 • Alimentation : 4 kV
 • Mesure (U1/3) : 4 kV
 • E/S numérique : 4 kV
 • E/S analogique, blindage des deux côtés : 4 kV
 • Interfaces de communication, blindage des deux côtés : 4 kV |
| CEI 61000-4-5 | Immunité aux tensions de choc (surge)
 • Alimentation CA : 4 kV CM, 2 kV DM
 • Alimentation CC : 2 kV CM, 1 kV DM
 • Mesure (U1/3) : 4 kV CM, 2 kV DM
 • E/S numérique : 2 kV CM, 1 kV DM
 • E/S analogique, blindage des deux côtés : 2 kV CM
 • Interfaces de communication, blindage des deux côtés : 2 kV CM |
| CEI 61000-4-6 | Immunité aux perturbations conduites induites par les champs à haute fréquence
 • 10 V, 150 kHz... 80 MHz, 80 % AM |
Caractéristiques techniques

<table>
<thead>
<tr>
<th>CEI 61000-4-8</th>
<th>Immunité aux champs magnétiques à fréquence de puissance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 100 A/m, 50/60 Hz, continue</td>
</tr>
<tr>
<td></td>
<td>• 1000 A/m, 50/60 Hz, pour 1 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CEI 61000-4-11</th>
<th>Immunité aux creux de tension, coupures brèves et variations de tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEI 61000-4-29</td>
<td>• 40 % U_N pour 300 ms</td>
</tr>
<tr>
<td></td>
<td>• 0 % U_N pour 100 ms</td>
</tr>
</tbody>
</table>

Tableau 171: Immunité aux perturbations conformément à CEI 61000-6-2

<table>
<thead>
<tr>
<th>CISPR 11 (EN 55011)</th>
<th>Appareils industriels, scientifiques et médicaux – Interférences radioélectriques – Valeurs limites et procédé de mesure : classe A</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISPR 16-2-1</td>
<td>Procédé de mesure d’émission de perturbations à haute fréquence (interférences radioélectriques) et d’immunité - Mesure de l’émission de perturbations conduites : classe A</td>
</tr>
<tr>
<td>CISPR 16-2-3</td>
<td>Procédé de mesure d’émission de perturbations à haute fréquence (interférences radioélectriques) et d’immunité - Mesure de l’émission de perturbations rayonnées : classe A</td>
</tr>
<tr>
<td>CISPR 22 (EN 55022)</td>
<td>Équipements dans la secteur de la technologie de l'information – Caractéristiques des perturbations radioélectriques – Valeurs limites et procédé de mesure : classe A</td>
</tr>
</tbody>
</table>

Tableau 172: Émission de perturbations conformément à CEI 61000-6-4

Tests de durabilité pour l'environnement

<table>
<thead>
<tr>
<th>CEI 60529</th>
<th>Avec OT1205 : degré de protection IP52 à l'avant, IP20 à l'arrière</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sans OT1205 : IP20</td>
</tr>
</tbody>
</table>

CEI 60068-2-1	Froid sec - 25 °C / 96 heures
CEI 60068-2-2	Chaleur sèche + 70 °C / 96 heures
CEI 60068-2-78	Chaleur humide constante + 40 °C / 93 % / 4 jours, pas de condensation

<table>
<thead>
<tr>
<th>ASTM D 4169-09</th>
<th>Standard Practice for Performance Testing of Shipping Containers and Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DC 3, niveau de sécurité II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CEI 60255-21-1 Classe 1</th>
<th>Vibrations (3 cycles, 0,5 g 1 octave/min ; 60 cycles, 1,0 g, 1 octave/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEI 60255-21-2 Classe 1</td>
<td>Chocs (11 ms, 5 g, 15 g, 3 axes)</td>
</tr>
<tr>
<td>CEI 60255-21-3 Classe 1</td>
<td>Séisme (1..35 Hz ; 3,5 mm/1 g horizontal ; 1,5 mm/0,5 g vertical ; 1 octave/min, 10 min/axe)</td>
</tr>
</tbody>
</table>

Tableau 173: Tests de durabilité pour l'environnement
Glossaire

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CEI</td>
<td>La Commission électrotechnique internationale, en abrégé CEI, est une organisation internationale de normalisation chargée d'établir les normes dans les domaines de l'électrotechnique et de l'électronique.</td>
</tr>
<tr>
<td>CEM</td>
<td>Compatibilité électromagnétique</td>
</tr>
<tr>
<td>Com. inv.</td>
<td>Commutation à inversion de polarité</td>
</tr>
<tr>
<td>CPré</td>
<td>Commutation de présélecteur</td>
</tr>
<tr>
<td>CSé</td>
<td>Commutation du sélecteur de prises</td>
</tr>
<tr>
<td>DGA</td>
<td>Analyse des gaz dissous dans l'huile (Dissolved Gas Analysis)</td>
</tr>
<tr>
<td>EN</td>
<td>Norme européenne</td>
</tr>
<tr>
<td>GPI</td>
<td>General Purpose Input (Entrée à usage général)</td>
</tr>
<tr>
<td>GPO</td>
<td>General Purpose Output (Sortie à usage général)</td>
</tr>
<tr>
<td>ICD</td>
<td>IED Capability Description</td>
</tr>
<tr>
<td>IEEE</td>
<td>Association professionnelle mondiale des ingénieurs, essentiellement des secteurs électrotechnique et technologies de l'information (Institut des ingénieurs électriens et électroniciens)</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>Motor Current Index</td>
<td>Intégrale (surface en dessous) de la courbe de courant moteur pendant la durée du changement de prise</td>
</tr>
<tr>
<td>MQTT</td>
<td>Message Queuing Telemetry Transport (transport de données de télémétrie par file de messages). Un protocole de réseau pour la communication Machine-to-Machine qui permet la transmission de données ISM® sous forme de messages entre les appareils.</td>
</tr>
<tr>
<td>MR</td>
<td>Maschinenfabrik Reinhausen GmbH</td>
</tr>
<tr>
<td>Point chaud</td>
<td>Position de la température maximale dans l'enroulement du transformateur.</td>
</tr>
<tr>
<td>PRD</td>
<td>Souape de surpression (Pressure Relief Device)</td>
</tr>
<tr>
<td>PRP</td>
<td>Protocole de redondance conformément à CEI 62439-3 (Parallel Redundancy Protocol)</td>
</tr>
<tr>
<td>PTP</td>
<td>PTP (Precision Time Protocol - protocole temporel haute précision) est une norme pour la synchronisation des horloges dans un réseau d'ordinateurs. La synchronisation est effectuée avec une précision élevée.</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Protocole d'authentification d'utilisateurs dans les réseaux d'ordinateurs conformément à RFC 2865 (Remote Authentication Dial-In User Service).</td>
</tr>
<tr>
<td>RSTP</td>
<td>Protocole de redondance conformément à IEEE 802.1D-2004 (Rapid Spanning Tree Protocol)</td>
</tr>
</tbody>
</table>
SCADA

Surveillance et la commande des processus techniques par le biais d'un système informatique (Supervisory Control and Data Acquisition)

SNTP

NTP (Network Time Protocol) est une norme de synchronisation des horloges dans les systèmes informatiques via les réseaux de communication par paquets. SNTP (Simple Network Time Protocol) est la version NTP simplifiée.

Système de flèche de comptage consommateur

Définition pour la description de circuits élec- triques. Les flèches d'intensité électrique et de tension sur un "consommateur" qui absorbe une puissance électrique (par ex. résistance) pointent dans la même direction. La taille U*I représente la puissance absorbée par l'élément.

Système de flèche de comptage générateur

Définition pour la description de circuits électriques. Les flèches d'intensité électrique et de tension sur un "consommateur" qui absorbe une puissance électrique (par ex. résistance) pointent dans différentes directions. La taille U*I est la puissance créée dans l'élément et -U*I la puissance absorbée par l'élément.

TDSC

TAPCON® Dynamic Set Point Control

TPLE

Transformer Personal Logic Editor

URL

Uniform Resource Locator (localisateur uniforme de ressources)
Index

Symboles

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durée de fonctionnement du moteur</td>
<td>180</td>
</tr>
<tr>
<td>Fichier ICD</td>
<td>129</td>
</tr>
<tr>
<td>Fonctions de surveillance</td>
<td>244</td>
</tr>
</tbody>
</table>
A

Absolue 246, 249, 251
Accès utilisateur maintenance 117
Accès Web 110
Actif en cas d'erreur 163
Activation accès utilisateur maintenance 117
Activation Syslog 125
Activer 122, 161
Activer la marche en parallèle 238
Activer le mode alternant 167
Activer le mode dépendant de la charge 164
Activer le mode périodique 165
Activer tempor. T2 207, 211
Adaptation de la valeur de consigne dépendante de la puissance active 190, 193
Adresse agent de messages 121
Adresse ASDU 131, 134, 136
Adresse cible 141
Adresse de destination passerelle 119
Adresse de l'appareil 141
Adresse de lien 131
Adresse Gateway 118
Adresse IP 118
Adresse IP client 137
Adresse Modbus 138
Adresse serveur de synchronisation 122
Affichage de la puissance frigorifique 174
Affichage de la tension entre phases 114
Affichage de la valeur mesurée 114
Affichage facteur de puissance négatif 229
AGD 298
CEI 60599 307
Dörmenburg 306
Duval 304
Rogers 305
Taux d'augmentation 303
Valeurs absolues 303
Âge du transformateur 293
Agent de messages 120
Mot de passe 121
Nom d'utilisateur client 121
Port 121
AIO 2 42
AIO 4 42
AIO 8 43
Asset Intelligence 293
Assistant de mise en service 104, 114
Augmentation de la température de point chaud 291
Augmentation de la température d'huile supérieure 291
Autorisation visualisation 119

B

Basse tension 244
Bits d'arrêt 131, 134, 139, 309
Bits de données 131, 134, 139, 309
Blocage de courant Maître / Esclave 241
Bus de capteurs 311
Relier les fonctions 311
Bus de capteurs MR 78, 307
Configurer 308

C

câbler 90
Câbles recommandés 75, 93
Calcul du point chaud 289
Canal (AIO) 84
Canaux de mesure UI 228
CEI : constante de temps huile 290
CEI : exposant d'enroulement 289
CEI : facteur de point chaud 289
CEI : gradient 289
CEI : papier isolant 293
CEI 60599 307
CEI 60870-5-101 130
CEI 60870-5-103 133
CEI 60870-5-104 136
CEI 61850 128
CEI: k21 290
CEI: k22 290
Changement d'utilisateur 54
changements de prise analysés 336
non analysés 336
Circuit sélecteur/Circuit présélect. < 284
Circuit sélecteur/Circuit présélect. > 284
Com. inv. < 284
Com. inv. > 284
Compatibilité DFC 135
Compatibilité électromagnétique 86
Compensation 230
Compensation Z 232
Compensation R-X 230
Compensation Z 232
Comport. commut. Maître / Esclaves 241
Comportement 263
Comportement à distance 115
Comportement en l'absence de communication 241
Comportement retour flux puisance 253
Comportement si interruption SCADA 184
Comportement temporel T1 205, 209
Compteur de manoeuvres 182, 256
Configuration des points de données 147
Index

Confirmation par caractère individuel ASDU 132
Connexion 54
Connexions TCP 138
Consommation de durée de vie afficher 295
Régler calcul 292
Consommation de durée de vie/> >> 295
Constante de temps enroulement 290
Contrôle de bit RES 132
Contrôle de la réfrigération basé sur la fréquence 167
Correction de l’angle de phase 213
Couplage du transformateur de tension 213
Couplage du transformateur d’intensité 214
Courant nominal 290
Courant pompe à eau 177
Courant pompe à huile 177
Courant réactif de circulation 235
CPU I 39
Cryptage SSL/TLS 119, 121

D
Date de l’usure des contacts 104, 122
Détermination 328
Débit d’eau 177
Débit d’huile 177
Débit en bauds 130, 134, 139, 141, 309
Décalage horaire 123
Déconnexion 54
Déconnexion automatique 116
Degré de gravité 126
Délai avant déconnexion automatique 116
Dépannage 382
Dépassement de délai 141
Dépassement du délai de confirmation de réponse 141
Désignation d’appareil 125
Désignation de transformateur 114
Deuxième serveur de synchronisation 123
DGA 298
Courbe 304
Différence de prise Esclave 241
Différence de prise maximale 241
Différence de température d’huile 176
Différence maximale 262
DIO 28-15 41
DIO 42-20 41
DIO 42-20 HL 41
Disjoncteur-protecteur du moteur État 182
DNP3 140
DNS activier 119
Données Importation/exportation 354
Données du transformateur de mesure 211
Court secondaire 213
Dörnburg 306
Droits d’accès 348
Durée de fonctionnement 172
Durée de fonctionnement du moteur 181
Durée de l’impulsion de manoeuvre 180
Durée fonct. min. ventil. après erreur 170
Duval 304, 305

E
Écran d’accueil 48
Écran de veille 126, 127
Édition 129
Engin de levage Points d’arrimage 63
Enregistreur 270
Entrées analogiques 318
Entrées et sorties analogiques 318
Entrées et sorties numériques 322
Érosion des contacts 286
Erreur en absence de communication 241
Espérance de vie 293
État des appareils de protection 293
Événements 339
Acquitter 339
Afficher 339
Configurer 340
Exporter 343
Filtrer 342
Exportation 354

F
Facteur de puissance 237
Facteur de puissance de consigne 240
Flux de puissance négatif 252
Fuseau horaire 123

G
Généralités 113
Comportement à distance 115
Gestion d’utilisateurs 343
GPI 157
GPO 157
Index

H
- Heure 104, 122
- Heure de référence 133, 135, 137, 142
- Heure d'été/Heure d'hiver autom. 123
- Hops PTP 124
- Hotspot 288
- Hystérésis 162

I
- Identifiant de l'appareil 128
- IEEE : exposant 290
- IEEE : gradient 290
- IEEE: exposant d'huile 290
- Importation 354
- Incrément valeur cons. 189
- Intensité primaire du TI 212, 285
- Interface PTP 124
- Interface série 130, 134, 139, 140
- Intervalle de synchronisation 123

L
- Langue 103
- Largeur de bande 200, 203, 207
- l'étage de réfrigération X 161
- Limite de blocage du courant réactif de circulation 240
- Logiciel
 - Information 353

M
- Mappage E/S 157
- Marche en parallèle 233, 238
 - Bus CAN 239
 - Courant réactif de circulation 235
 - Facteur de puissance 237
 - Information 353
 - Message d'erreur de marche en parallèle 242
 - Synchronisation de prise 234
- Matériel 351
 - max. 188
 - MC 2-2 44
 - Mécanisme d'entraînement 182
 - Aperçu 182
- Mémoire d'événements 342
- Message SCADA générique 160
- Messages 339
- Messages spontanés 141
- Méthode de calcul 289
- Méthode de marche en parallèle 239
 - min. 189
 - Modbus 138
 - Mode 246, 249
 - Mode alternant 162
 - Intervalle d'alternance 167
 - Mode de fonctionnement 162
 - État 182
 - Mode de mesure 213
 - Mode de régulation 229
 - Mode dépendant de la charge 164
 - Point de coupure 164
 - Temporisation d'activation 164
 - Temps de marche par inertie 165
 - Mode d'urgence 47
 - Mode Expert 57
 - Mode périodique 163
 - Durée d'activation 166
 - Intervalle 165

N
- Navigation 54
- Nom IED 128
- Nombre de démarrages 172
- Nombre de manoeuvres 256
- Nombre d'octets de la cause de la transmission 131
- Nombre octets adresse ASDU 131
- Nombre octets adresse de lien 131
- Nombre octets adresse objet d'information 131
- Norme Syslog 125
- numériques
 - Entrées 322
 - Sorties 322

O
- OLTC Information 287
- Optimisation de séquence ASDU 132, 136
- OT1205 39
Index

<table>
<thead>
<tr>
<th>P</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramètres de régulation</td>
<td>RADIUS</td>
<td>SCADA</td>
</tr>
<tr>
<td>Parité</td>
<td>Rapport de puissance dissipée</td>
<td>Sélectionner valeur de consigne</td>
</tr>
<tr>
<td>Pause de l'impulsion de manœuvre</td>
<td>pondérée</td>
<td></td>
</tr>
<tr>
<td>Pertes à vide transformateur</td>
<td>Réaction</td>
<td>Sens de manoeuvre régulation de la tension</td>
</tr>
<tr>
<td>Pertes dues à la charge transformateur</td>
<td>Recherche rapide</td>
<td>Sens de manoeuvre régulation puissance réactive</td>
</tr>
<tr>
<td>Plaque signalétique</td>
<td>Réfrigération</td>
<td>Sensibilité au courant réactif de circulation</td>
</tr>
<tr>
<td>Point chaud</td>
<td>Configuration groupe réfrigération</td>
<td>Serveur de synchronisation SNTP</td>
</tr>
<tr>
<td>Pronostic</td>
<td>État</td>
<td>Serveur de synchronisation SNTP</td>
</tr>
<tr>
<td>Point d'accès</td>
<td>Mode alternant</td>
<td>Serveur DNS</td>
</tr>
<tr>
<td>Point de coupure</td>
<td>Mode dépendant de la charge</td>
<td>Adresse IP</td>
</tr>
<tr>
<td>Port agent de messages</td>
<td>163</td>
<td>Serveur Syslog</td>
</tr>
<tr>
<td>Port serveur Syslog</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Port TCP</td>
<td>Régulation</td>
<td>Seuil inférieur facteur de charge</td>
</tr>
<tr>
<td>port USB</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>activer / désactiver</td>
<td>Régulation puissance active</td>
<td>Seuil inférieur température d'huile supérieure</td>
</tr>
<tr>
<td>Pos comportement</td>
<td>207</td>
<td>Seuil supérieur facteur de charge</td>
</tr>
<tr>
<td>Position de prise</td>
<td>Répétitions des messages spontanés</td>
<td>Seuil supérieur température d'huile supérieure</td>
</tr>
<tr>
<td>Affichage</td>
<td>un nombre de fois illimité</td>
<td>SNTP</td>
</tr>
<tr>
<td>Modifier la désignation</td>
<td>Répétitions des messages spontanés</td>
<td>Sorties analogiques</td>
</tr>
<tr>
<td>Pourcentuel</td>
<td>141</td>
<td>Sous-ensemble</td>
</tr>
<tr>
<td>Pression d'eau</td>
<td></td>
<td>AIO</td>
</tr>
<tr>
<td>Pression d'huile</td>
<td></td>
<td>Statistiques de commutation</td>
</tr>
<tr>
<td>Prise cible</td>
<td></td>
<td>Statistiques Tx</td>
</tr>
<tr>
<td>Prix d'acquisition du transformateur</td>
<td></td>
<td>Surtension</td>
</tr>
<tr>
<td>Procédure de transmission</td>
<td></td>
<td>Surveillance de commutation</td>
</tr>
<tr>
<td>progressive</td>
<td></td>
<td>Surveillance de la durée de fonctionnement du moteur</td>
</tr>
<tr>
<td>Valeur de consigne</td>
<td></td>
<td>Surveillance de la puissance</td>
</tr>
<tr>
<td>pronostic du point chaud</td>
<td></td>
<td>Surveillance de la tension</td>
</tr>
<tr>
<td>PTP</td>
<td></td>
<td>Surveillance de largeur de bande</td>
</tr>
<tr>
<td>Puissance assignée du transformateur</td>
<td></td>
<td>Surveillance de l'intervalle de commutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surveillance des valeurs limites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surveillance du flux de puissance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surveillance du fonctionnement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surveillance du sens de manoeuvre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW 3-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuration</td>
</tr>
<tr>
<td>Index</td>
<td>page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Synchronisation de prise</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>Synchronisation temporelle</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Heure de référence</td>
<td>133, 135, 137, 142</td>
<td></td>
</tr>
<tr>
<td>SNTP</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Syslog</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Système de contrôle</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAPCON® Dynamic Setpoint Control</td>
<td>190, 193</td>
<td></td>
</tr>
<tr>
<td>TCP Keepalive</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>Température COURBE</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>Surveillance</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>Température d'eau départ</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>Température d'eau refoulement</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>Température d'ensevellement</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>Température d'huile départ</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Température d'huile refoulement</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Temporisation d'activation</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Temporisation interruption SCADA</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Temporisation Reconnect</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Temporisation T1</td>
<td>200, 203, 208</td>
<td></td>
</tr>
<tr>
<td>Temporisation T2</td>
<td>201, 205, 210</td>
<td></td>
</tr>
<tr>
<td>Temps d'attente Écran de veille</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Temps d'attente Variation</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Temps de préparation analyse</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>Tension primaire du TT</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>Tension secondaire du TT</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>TPLE</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td>Transformateur Aperçu</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Transformateur d'intensité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courant secondaire</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>Type de charge de consigne</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Type de transmission DNP3</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Type d'impulsion de manœuvre</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Type Modbus</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UI 1</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>UI 3</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>UI 5-4</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Unsolicited Messages</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>User ID Code</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur de consigne</td>
<td>186, 187, 188, 189, 199, 203, 207</td>
<td></td>
</tr>
<tr>
<td>Valeur de consigne prédéfinie</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>Valeurs de mesure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enregistreur</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Valeurs mesurée</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>Valeurs mesurées</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Réglage de l'affichage</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Variable de régulation</td>
<td>185, 229</td>
<td></td>
</tr>
<tr>
<td>Variable d'entrée Activation</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Variable d'entrée Désactivation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variation</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Variation de luminosité</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Version PTP</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Version TLS</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Visualisation</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Vitesse de vieillissement relatifs//>></td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>Vitesse rotation maximale ventilateurs</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Vitesse rotation minimale ventilateurs</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X100</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>