Cambiador de tomas bajo carga
VACUTAP® VR-Ex

Instrucciones para el montaje y la puesta en servicio

7545652/00 ES . Irm 700…1 300 A, modelos del selector RC/RD/RDE/RE/RF/RES
© Todos los derechos reservados por Maschinenfabrik Reinhausen

Queda prohibida cualquier reproducción o copia de este documento, así como la utilización y divulgación de su contenido, a no ser que se autorice expresamente.

Las infracciones conllevan una indemnización por daños. Reservados todos los derechos para casos de registro de patente, modelo de utilidad y diseño industrial.

Es posible que tras la redacción de la siguiente documentación se hayan producido modificaciones en el producto.

Nos reservamos expresamente el derecho a realizar modificaciones de los datos técnicos así como en la construcción del aparato y en el volumen de entrega.

Las informaciones proporcionadas y los acuerdos establecidos durante la tramitación de las ofertas y los pedidos en curso son siempre vinculantes.

Las instrucciones de servicio originales han sido redactadas en alemán.
Índice

1 Introducción ... 7
 1.1 Fabricante ... 7
 1.2 Integridad ... 7
 1.3 Lugar de almacenamiento .. 7
 1.4 Convenciones de representación ... 8
 1.4.1 Advertencias ... 8
 1.4.2 Informaciones ... 9
 1.4.3 Procedimiento .. 9

2 Seguridad ... 11
 2.1 Uso adecuado ... 11
 2.2 Uso inadecuado .. 12
 2.3 Instrucciones de seguridad básicas .. 12
 2.4 Normas y disposiciones .. 15
 2.4.1 Ámbito de aplicación del cambiador de tomas bajo carga ... 15
 2.4.2 Normas y disposiciones .. 17
 2.5 Medidas para el cumplimiento de los requisitos de protección Ex ... 17
 2.5.1 Medidas tomadas por el fabricante ... 17
 2.5.2 Medidas que debe tomar el fabricante del transformador/explotador .. 18
 2.6 Cualificación del personal .. 21
 2.7 Equipo de protección personal .. 23

3 Descripción del producto ... 24
 3.1 Volumen de entrega ... 24
 3.2 Cambiador de tomas bajo carga ... 24
 3.2.1 Descripción de la función .. 24
 3.2.2 Diseño/versiones ... 25
 3.2.3 Placa de características y número de serie ... 28
 3.2.4 Dispositivos de protección .. 29
 3.3 Árbol de accionamiento .. 32
 3.3.1 Descripción de la función .. 32
 3.3.2 Estructura/modelo ... 34
 3.3.3 Placa de identificación .. 36
Índice

4 Embalaje, transporte y almacenamiento

<table>
<thead>
<tr>
<th>Sección</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Embalaje</td>
<td>37</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Adecuación</td>
<td>37</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Señalizaciones</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Transporte, recepción y tratamiento de los envíos</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Almacenamiento de envíos</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>Desembalaje de los envíos y control de que no presentan daños de transporte</td>
<td>40</td>
</tr>
</tbody>
</table>

5 Montaje

<table>
<thead>
<tr>
<th>Sección</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Indicaciones para el montaje</td>
<td>41</td>
</tr>
<tr>
<td>5.2</td>
<td>Trabajos de preparación</td>
<td>42</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Colocación de la brida de montaje en la tapa del transformador</td>
<td>42</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Colocación de los espárragos roscados en la brida de montaje</td>
<td>43</td>
</tr>
<tr>
<td>5.3</td>
<td>Montaje del cambiador de tomas bajo carga en el transformador (modelo normal)</td>
<td>45</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Fijación del cambiador de tomas bajo carga en la tapa del transformador</td>
<td>45</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Conexión del devanado de regulación y de la derivación del cambiador de tomas bajo carga</td>
<td>83</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Ejecución de la medición de la relación de transformación antes del secado</td>
<td>90</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Ejecución de la medición de resistencia con corriente continua en el transformador</td>
<td>91</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Secado del cambiador de tomas bajo carga en el horno de secado</td>
<td>91</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Secado del cambiador de tomas bajo carga en la cuba del transformador</td>
<td>99</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Llenado de aceite aislante del recipiente de aceite del cambiador de tomas bajo carga</td>
<td>112</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Ejecución de la medición de la relación de transformación después del secado</td>
<td>114</td>
</tr>
<tr>
<td>5.4</td>
<td>Montaje del cambiador de tomas bajo carga en el transformador (modelo con cuba tipo campana)</td>
<td>115</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Suspensión del cambiador de tomas bajo carga en la estructura soporte</td>
<td>115</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Conexión del devanado de regulación y de la derivación del cambiador de tomas bajo carga</td>
<td>135</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Ejecución de la medición de la relación de transformación antes del secado</td>
<td>142</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Ejecución de la medición de resistencia con corriente continua en el transformador</td>
<td>143</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Secado del cambiador de tomas bajo carga en el horno de secado</td>
<td>143</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Elevación de la parte superior de la cabeza del cambiador de tomas bajo carga de la brida de apoyo</td>
<td>152</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Colocación de la cuba tipo campana y unión del cambiador de tomas bajo carga con la parte superior de la cabeza del cambiador de tomas bajo carga</td>
<td>156</td>
</tr>
<tr>
<td>5.4.8</td>
<td>Secado del cambiador de tomas bajo carga en la cuba del transformador</td>
<td>164</td>
</tr>
<tr>
<td>5.4.9</td>
<td>Llenado de aceite aislante del recipiente de aceite del cambiador de tomas bajo carga</td>
<td>177</td>
</tr>
<tr>
<td>5.4.10</td>
<td>Ejecución de la medición de la relación de transformación después del secado</td>
<td>179</td>
</tr>
</tbody>
</table>
Índice

5.5 Montaje de dispositivos de protección y componentes de accionamiento ... 180
5.5.1 Conexión eléctrica del sensor de temperatura ... 180
5.5.2 Montaje y conexión del relé de protección en la tubería ... 180
5.5.3 Montaje del accionamiento a motor ... 191
5.5.4 Montaje del árbol de accionamiento ... 191
5.5.5 Alineación del cambiador de tomas bajo carga y del accionamiento a motor 217
5.5.6 Conexión eléctrica del accionamiento a motor ... 217

6 Puesta en servicio .. 218
6.1 Puesta en servicio del cambiador de tomas bajo carga por parte del fabricante del transformador 218
6.1.1 Purgado de aire de la cabeza del cambiador de tomas bajo carga y de la tubería de aspiración 218
6.1.2 Puesta a tierra del cambiador de tomas bajo carga ... 220
6.1.3 Comprobación del accionamiento a motor ... 222
6.1.4 Ensayos de alta tensión en el transformador ... 222
6.2 Transporte del transformador al lugar de instalación ... 223
6.2.1 Transporte con el accionamiento desmontado ... 223
6.2.2 Transporte con el depósito del transformador lleno y sin conservador de aceite 224
6.2.3 Transporte con el depósito del transformador vacío .. 224
6.3 Puesta en servicio del transformador en el lugar de instalación ... 225
6.3.1 Llenado de aceite aislante del recipiente de aceite del cambiador de tomas bajo carga 225
6.3.2 Purgado de aire de la cabeza del cambiador de tomas bajo carga y de la tubería de aspiración 227
6.3.3 Comprobación del accionamiento a motor ... 228
6.3.4 Comprobación de relés de protección .. 229
6.3.5 Puesta en servicio del transformador .. 230

7 Solución de averías ... 231
7.1 Excitación del relé de protección y nueva puesta en servicio del transformador 233
7.1.1 Clapeta en posición SERVICIO ... 234
7.1.2 Clapeta en posición DESCONEXION .. 234
7.1.3 Nueva puesta en servicio del transformador .. 235

8 Datos técnicos .. 236
8.1 Datos técnicos del cambiador de tomas bajo carga .. 236
8.1.1 Propiedades de los cambiadores de tomas bajo carga ... 236
8.1.2 Condiciones ambientales admisibles .. 238
8.2 Datos técnicos de los relés de protección ... 239
8.2.1 Relé de protección con varios tubos de conmutación magnéticos de gas protector 241
Índice

8.2.2 Comprobaciones .. 241
8.3 Valores límite para la rigidez dieléctrica y el contenido de agua de líquidos aislantes 242

9 Dibujos .. 243
9.1 Dibujos acotados .. 243
9.1.1 10017720 .. 244
9.1.2 10009917 .. 245
9.2 Cabeza del cambiador de tomas bajo carga .. 246
9.2.1 720847 .. 247
9.2.2 720781 .. 248
9.2.3 895168 .. 249
9.2.4 892916 .. 250
9.2.5 890183 .. 251
9.2.6 723015 .. 252
9.2.7 720845 .. 253
9.2.8 766161 .. 254
9.3 Planos de ajuste .. 255
9.3.1 10017237 .. 256
9.3.2 10017239 .. 257
9.3.3 10017238 .. 258
9.3.4 10017291 .. 259
9.3.5 10017294 .. 260
9.3.6 10017293 .. 261

Glosario ... 262
1 Introducción

Esta documentación técnica incluye descripciones detalladas para montar, conectar y poner en servicio el producto de forma segura y correcta.

Al mismo tiempo, también incluye las indicaciones de seguridad así como indicaciones generales acerca del producto.

La información sobre el servicio se incluye en las instrucciones de servicio.

Esta documentación técnica está exclusivamente dirigida a personal especializado con la autorización y formación necesarias.

1.1 Fabricante

El fabricante del producto es:

Maschinenfabrik Reinhausen GmbH
Falkensteinstraße 8
93059 Regensburg
Tel.: (+49) 9 41/40 90-0
e-mail: sales@reinhausen.com

En caso necesario puede obtener más informaciones sobre el producto y ediciones de esta documentación técnica en esta dirección.

1.2 Integridad

Esta documentación técnica solo se considera completa junto con la documentación obligatoria correspondiente.

Los siguientes documentos se consideran documentación obligatoria:
• instrucciones de desempalaje
• hoja suplementaria
• protocolo de ensayo rutinario
• esquemas de conexiones
• dibujos acotados
• confirmación de pedido

1.3 Lugar de almacenamiento

Guarde esta documentación técnica así como todos los documentos aplicables al alcance de la mano y accesibles en todo momento para su posterior uso.
1.4 Convenciones de representación

1.4.1 Advertencias

Las señales de advertencia de la presente documentación técnica se represen-
tan según sigue.

1.4.1.1 Señales de advertencia relativas a apartados

Las señales de advertencia relativas a apartados hacen referencia a todo un
capítulo o apartado, subapartados o varios párrafos dentro de esta docu-
mentación técnica. Las señales de advertencia relativas a apartados apare-
cen siguiendo el siguiente modelo:

¡Tipo de peligro!

Origen del peligro y consecuencias.

- Medida
- Medida

1.4.1.2 Mensaje de advertencia incorporado

Las señales de advertencia empotradas hacen referencia a una parte con-
creta dentro del apartado. Estas señales de advertencia se aplican para pe-
quenas unidades de información igual que las señales de advertencia relati-
vas a apartados. Las señales de advertencia empotradas aparecen siguien-
do el siguiente modelo:

¡PELIGRO! Instrucción para el manejo para evitar una situación peligro-
sa.

1.4.1.3 Palabras indicativas y pictogramas

Se utilizan las siguientes palabras indicativas:

<table>
<thead>
<tr>
<th>Palabra indicativa</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>PELIGRO</td>
<td>Indica una situación de peligro que en caso de no evitarse conlleva la muerte o lesiones graves.</td>
</tr>
<tr>
<td>ADVERTENCIA</td>
<td>Indica una situación de peligro que en caso de no evitarse puede conllevar la muerte o lesiones graves.</td>
</tr>
<tr>
<td>ATENCIÓN</td>
<td>Indica una situación de peligro que puede provocar lesiones en caso de no evitarse.</td>
</tr>
<tr>
<td>AVISO</td>
<td>Se refiere a medidas para evitar daños materiales.</td>
</tr>
</tbody>
</table>

Tabla 1: Palabras indicativas en señales de advertencia
Los peligros se advierten con los siguientes pictogramas:

<table>
<thead>
<tr>
<th>Pictograma</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advertencia sobre un punto de peligro</td>
</tr>
<tr>
<td></td>
<td>Advertencia sobre tensión eléctrica peligrosa</td>
</tr>
<tr>
<td></td>
<td>Advertencia sobre sustancias inflamables</td>
</tr>
<tr>
<td></td>
<td>Advertencia sobre peligro de vuelco</td>
</tr>
<tr>
<td></td>
<td>Advertencia de peligro de aplastamiento</td>
</tr>
</tbody>
</table>

Tabla 2: Pictogramas en señales de advertencia

1.4.2 Informaciones

Las informaciones sirven para facilitar y comprender mejor procesos concretos. En esta documentación técnica estas informaciones se estructuran según el siguiente modelo:

Información importante.

1.4.3 Procedimiento

En esta documentación técnica encontrará instrucciones de procedimiento de uno y varios pasos.

Instrucciones de procedimiento de un paso

Las instrucciones de procedimiento que comprenden un solo paso de trabajo aparecen siempre siguiendo el siguiente modelo:
Objetivo del procedimiento
✓ Requisitos (opcional).
► Paso 1 de 1.
 ◦ Resultado del paso del procedimiento (opcional).
 ◦ Resultado del procedimiento (opcional).

Instrucciones de procedimiento de varios pasos
Las instrucciones de procedimiento que comprenden varios pasos de trabajo aparecen siempre siguiendo el siguiente modelo:

Objetivo del procedimiento
✓ Requisitos (opcional).
1. Paso 1.
 ◦ Resultado del paso del procedimiento (opcional).
2. Paso 2.
 ◦ Resultado del paso del procedimiento (opcional).
 ◦ Resultado del procedimiento (opcional).
2 Seguridad

- Lea la documentación técnica para familiarizarse con el producto.
- Esta documentación técnica forma parte del producto.
- Lea y preste atención a las instrucciones de seguridad de este capítulo.
- Lea y preste atención a las indicaciones de advertencia de esta documentación técnica para evitar los peligros relacionados con el funcionamiento.
- El producto se ha fabricado según el estado actual de la técnica. Sin embargo, en caso de un uso no adecuado pueden surgir peligros relacionados con el funcionamiento para la salud y la vida del usuario o producirse daños en el producto y otros bienes materiales.

2.1 Uso adecuado

El producto es un cambiador de tomas bajo carga que adapta la relación de transformación de transformadores sin interrumpir el flujo de carga. El producto está previsto exclusivamente para el uso en instalaciones y dispositivos de ingeniería eléctrica. Siempre que se realice un uso adecuado y se cumplan los requisitos y las condiciones citados en esta documentación técnica así como las advertencias de esta documentación técnica y las colocadas en el producto se evitarán riesgos para las personas, los bienes materiales y el medio ambiente. Esto rige para toda la vida útil, desde el suministro pasando por el montaje y el servicio hasta el desmontaje y la eliminación.

Por uso adecuado se entiende lo siguiente:

- Utilice el producto únicamente para el transformador que sirve de base al pedido.
- Opere el producto únicamente con los modelos autorizados para áreas con peligro de explosión del accionamiento a motor, el árbol de accionamiento y el relé de protección.
- Los números de serie de los cambiadores de tomas bajo carga y de los accesorios de los cambiadores de tomas bajo carga (accionamiento, árbol de accionamiento, reenvío angular, relé de protección, etc.) deben coincidir si el cambiador de tomas bajo carga y los accesorios del cambiador de tomas bajo carga se suministran como un juego para un pedido.
- Encontrará la norma válida para el producto, incluido el año de edición, en la placa de características.
- Accione el producto únicamente según esta documentación técnica, las condiciones de suministro acordadas y los datos técnicos.
- Asegúrese de que todos los trabajos necesarios los realice únicamente personal cualificado.
- Utilice los dispositivos y las herramientas especiales suministrados exclusivamente para el objetivo previsto y de acuerdo con las determinaciones de esta documentación técnica.
2 Seguridad

- No se ha previsto el uso del cambiador de tomas bajo carga con una unidad de filtrado de aceite.
- Para el cumplimiento de los requisitos de protección Ex debe tomar las medidas descritas en esta documentación técnica.

Condiciones de servicio eléctricas admisibles
Además de los datos de dimensionado según la confirmación de pedido, observe los siguientes límites para la corriente pasante y la tensión por escalón:

El cambiador de tomas bajo carga se ha diseñado en el modelo estándar para corriente alterna sinusoidal de 50/60 Hz con forma de la curva simétrica respecto al eje cero y con su tensión por escalón nominal U_r puede conectar la corriente nominal de paso de 1,5 veces I_r.

Se permite un exceso de corta duración de la tensión por escalón nominal U_r de hasta el 10% siempre que no se exceda la corriente nominal de paso I_r.

La máxima tensión para medios de producción U_m está limitada a 245 kV.

2.2 Uso inadecuado

Por uso inadecuado se entiende un uso del producto distinto al descrito en el apartado "Uso adecuado". Tenga en cuenta además lo siguiente:

Condiciones de servicio eléctricas inadmisibles
Todas las condiciones de servicio que no se corresponden con los datos de dimensionado según la confirmación de pedido son inadmisibles.

Las condiciones de servicio inadmisibles pueden darse p. ej. debido a corrientes de cortocircuito así como debido a corrientes de irrupción al conectar transformadores u otras máquinas eléctricas. Esto se aplica para el propio transformador en cuestión así como para transformadores u otras máquinas eléctricas conectados en paralelo o en serie eléctricamente.

Tensiones más elevadas pueden producirse p. ej. por una sobreexcitación del transformador tras una descarga.

Las conexiones fuera de las condiciones de servicio admisibles pueden provocar daños personales y daños materiales.

- Evite mediante medidas adecuadas cualquier conexión fuera de las condiciones de servicio admisibles.

2.3 Instrucciones de seguridad básicas

Para evitar accidentes, fallos y averías, así como efectos inadmisibles sobre el medio ambiente, la persona responsable del transporte, el montaje, el servicio, el mantenimiento y la eliminación del producto o de sus componentes deberá asegurarse de lo siguiente:
2 Seguridad

Equipo de protección personal
La ropa suelta o no adecuada aumenta el peligro de atrapamiento o enrollamiento en las piezas giratorias así como el peligro de aprisionamiento en piezas que sobresalen. Por este motivo, existe peligro para la salud y la vida.

- Para la respectiva actividad utilice el equipo de protección personal, p. ej. un casco, calzado de protección laboral, etc.
- Nunca utilice equipos de protección personal defectuosos.
- Nunca lleve anillos, cadenas ni otras joyas.
- En caso de llevar el pelo largo, utilice una rededilla para el pelo.

Zona de trabajo
El desorden y las zonas de trabajo mal iluminadas pueden provocar accidentes.

- Mantenga el lugar de trabajo limpio y ordenado.
- Asegúrese de que la zona de trabajo está bien iluminada.
- Cumpla la legislación vigente sobre la prevención de accidentes en el respectivo país.

Trabajar durante el servicio
Únicamente debe poner en servicio el producto en estado correcto y apto para funcionar. De lo contrario, existe peligro para la salud y la vida.

- Compruebe periódicamente los dispositivos de seguridad para asegurarse de que funcionan correctamente.
- Cumpla los trabajos de inspección y mantenimiento y los intervalos de mantenimiento descritos en esta documentación técnica.

Protección contra explosión
Los gases, vapores y polvos fácilmente inflamables o explosivos pueden provocar explosiones e incendios graves.

- No monte el producto en zonas con peligro de explosión ni en atmósferas con peligro de explosión.

Identificaciones de seguridad
Los rótulos de advertencia y los rótulos de seguridad son identificaciones de seguridad del producto. Estos rótulos son componentes importantes del concepto de seguridad.

- Observe todas las identificaciones de seguridad del producto.
- Mantenga todas las identificaciones de seguridad del producto completas y legibles.
- Cambie las identificaciones de seguridad dañadas o que ya no estén disponibles.
Condición medioambiental

Con el fin de garantizar un funcionamiento fiable y seguro, el producto únicamente debe accionarse bajo las condiciones ambientales indicadas en los datos técnicos.

- Tenga en cuenta las condiciones de servicio indicadas y los requisitos del lugar de instalación.

Materiales adicionales y medios de producción

Los materiales adicionales y medios de producción no autorizados por el fabricante pueden provocar daños personales, daños materiales y fallos de funcionamiento en el producto.

- Para el recipiente de aceite del cambiador de tomas bajo carga utilice líquidos aislantes que cumplan los requisitos según IEC 60296.
- Siempre que haya sido autorizado por el fabricante del transformador, puede utilizar ésteres sintéticos según IEC 61099.
- Es imprescindible que consulte a Maschinenfabrik Reinhausen GmbH, puesto que para líquidos aislantes alternativos se aplican condiciones de servicio especiales.
- Utilice exclusivamente mangueras, tubos y dispositivos de bombeo conductivos y puestos a tierra homologados para líquidos inflamables.
- Utilice únicamente los lubricantes y materiales adicionales autorizados por el fabricante.
- Póngase en contacto con el fabricante.

Modificaciones y transformaciones

Las modificaciones no permitidas o inadecuadas del producto pueden conllevar daños personales, daños materiales así como fallos de funcionamiento.

- Modifique el producto únicamente previa consulta con Maschinenfabrik Reinhausen GmbH.

Piezas de repuesto

Las piezas de repuesto no autorizadas por Maschinenfabrik Reinhausen GmbH pueden conllevar daños personales, daños materiales y averías de funcionamiento en el producto.

- Utilice únicamente las piezas de repuesto autorizadas por Maschinenfabrik Reinhausen GmbH.
- Póngase en contacto con Maschinenfabrik Reinhausen GmbH.
2.4 Normas y disposiciones

2.4.1 Ámbito de aplicación del cambiador de tomas bajo carga

El cambiador de tomas bajo carga está certificado para II 3G Ex ec oc IIC T3 Gc. El ámbito de aplicación que resulta de ello puede consultarse en el siguiente resumen.

<table>
<thead>
<tr>
<th>Cifra</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Símbolo para protección contra explosión</td>
</tr>
<tr>
<td>2</td>
<td>Grupo de aparatos</td>
</tr>
<tr>
<td>3</td>
<td>Categoría de aparato</td>
</tr>
<tr>
<td>4</td>
<td>Ej.: Símbolo para medio de producción con protección contra explosión.</td>
</tr>
<tr>
<td>5</td>
<td>Tipo de protección "e"</td>
</tr>
<tr>
<td>6</td>
<td>Grupo de explosión</td>
</tr>
<tr>
<td>7</td>
<td>Clase de temperatura</td>
</tr>
<tr>
<td>8</td>
<td>Nivel de protección del aparato EPL (Equipment Protection Level)</td>
</tr>
</tbody>
</table>

Grupos de aparatos (número 2)

<table>
<thead>
<tr>
<th>I</th>
<th>válido para aparatos para el uso en operaciones subterráneas de minas, así como sus plantas de superficie, que pueden estar en peligro a causa del grisú y/o polvos combustibles.</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>válido para aparatos para el uso en el resto de áreas que pueden verse en peligro a causa de una atmósfera con peligro de explosión.</td>
</tr>
</tbody>
</table>

Tabla 3: Ejemplo para el ámbito de aplicación

Tabla 4: Grupos de aparatos
Categoría de aparato/clasificación por zonas (número 3)

<table>
<thead>
<tr>
<th>Denominación en gases</th>
<th>Denominación en polvos</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G (0)</td>
<td>1D (20)</td>
<td>Los aparatos de esta categoría son adecuados para el uso en áreas en las que hay una atmósfera explosiva, que consta de una mezcla de aire y gases, vapores o neblinas o bien de mezclas de polvo/aire, de forma permanente, a largo plazo o con frecuencia.</td>
</tr>
<tr>
<td>2G (1)</td>
<td>2D (21)</td>
<td>Los aparatos de esta categoría son adecuados para el uso en áreas en las que debe contarse con la presencia ocasional de una atmósfera explosiva de gases, vapores, neblinas o mezclas de polvo/aire</td>
</tr>
<tr>
<td>3G (2)</td>
<td>3D (22)</td>
<td>Los aparatos de esta categoría son adecuados para el uso en áreas en las que no debe contarse con la presencia de una atmósfera explosiva a causa de gases, vapores, neblinas o polvo suspendido, pero que en caso de producirse de todos modos, entonces con toda probabilidad será solo de forma ocasional y durante un breve periodo de tiempo.</td>
</tr>
</tbody>
</table>

Tabla 5: Categoría de aparato/clasificación por zonas

Tipos de protección contra ignición (número 5)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Encapsulado antideflagrante</td>
</tr>
<tr>
<td>e</td>
<td>Seguridad aumentada</td>
</tr>
<tr>
<td>i</td>
<td>Seguridad intrínseca (ia, ib)</td>
</tr>
<tr>
<td>m</td>
<td>Encapsulado de sellado</td>
</tr>
<tr>
<td>o</td>
<td>Inmersión en líquido</td>
</tr>
<tr>
<td>Nivel de protección "ob": nivel de protección del aparato EPL "Gb" para la zona 1 y la zona 2</td>
<td></td>
</tr>
<tr>
<td>Nivel de protección "oc": nivel de protección del aparato EPL "Gc" para la zona 2</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>Encapsulado de sobrepresión</td>
</tr>
<tr>
<td>q</td>
<td>Encapsulado de arena</td>
</tr>
<tr>
<td>n</td>
<td>Tipo de protección "n"</td>
</tr>
</tbody>
</table>

Tabla 6: Tipos de protección contra ignición

Grupo de explosión (número 6)

<table>
<thead>
<tr>
<th>EN/IEC</th>
<th>Gases, vapores (ejemplos)</th>
<th>Energía de ignición mínima (mJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>Amoniaco</td>
<td>-</td>
</tr>
<tr>
<td>II A</td>
<td>Acetona, etano, éter, gasolina, benceno, diésel, petróleo, ácido acético, fuel-lóleo, hexano, metano, propano</td>
<td>0,18</td>
</tr>
</tbody>
</table>
Tabla 7: Grupos de explosión

<table>
<thead>
<tr>
<th>Clase</th>
<th>Gases, vapores (ejemplos)</th>
<th>Energía de ignición mínima (mJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIB</td>
<td>Etileno, isopreno, gas ciudad</td>
<td>0,06</td>
</tr>
<tr>
<td>IIC</td>
<td>Hidrógeno, acetileno, sulfuro de carbono</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Clases de temperatura (número 7)

<table>
<thead>
<tr>
<th>Clase de temperatura</th>
<th>Temperatura de la superficie máxima de los medios de producción</th>
<th>Temperatura de ignición de las sustancias combustibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>450 °C</td>
<td>> 450 °C</td>
</tr>
<tr>
<td>T2</td>
<td>300 °C</td>
<td>> 300 °C < 450 °C</td>
</tr>
<tr>
<td>T3</td>
<td>200 °C</td>
<td>> 200 °C < 300 °C</td>
</tr>
<tr>
<td>T4</td>
<td>135 °C</td>
<td>> 135 °C < 200 °C</td>
</tr>
<tr>
<td>T5</td>
<td>100 °C</td>
<td>> 100 °C < 135 °C</td>
</tr>
<tr>
<td>T6</td>
<td>85 °C</td>
<td>> 85 °C < 100 °C</td>
</tr>
</tbody>
</table>

Nivel de protección del aparato EPL (número 8)

El nivel de protección del aparato EPL (Equipment Protection Level) hace referencia al nivel de protección fijado para un aparato, para lo cual se toma como base el alcance de la probabilidad de una ignición y se tienen en cuenta las diferencias entre atmósferas de gas explosivas, atmósferas de polvo explosivas y atmósferas explosivas en minas con riesgo de grisú.

2.4.2 Normas y disposiciones

Para cambiadores de tomas bajo carga con protección contra explosión se aplican las siguientes normas y disposiciones:
- EN/IEC 60079-0: Equipo. Requisitos generales
- EN/IEC 60079-6: Protección del equipo por inmersión líquida "o"
- EN/IEC 60079-7: Protección del equipo por seguridad aumentada "e"

2.5 Medidas para el cumplimiento de los requisitos de protección Ex

2.5.1 Medidas tomadas por el fabricante

Las siguientes medidas para el cumplimiento de los requisitos de protección Ex fueron tomadas por Maschinenfabrik Reinhausen. A este respecto, no es necesario que tome medidas especiales.
2.5.1.1 Calidad del aceite aislante en el cambiador de tomas bajo carga

La calidad del aceite aislante exigida por IEC 60296 y la calidad del éster sintético en el recipiente de aceite del cambiador de tomas bajo carga exigida por IEC 61099 se garantizan mediante el uso de celdas de vacío con resistencias de transición.

2.5.1.2 Supervisión de la temperatura del aceite en el recipiente de aceite del ruptor

Para supervisar la temperatura del aceite en el recipiente de aceite del ruptor, en la tapa de la cabeza del cambiador de tomas bajo carga hay una sonda térmica. El relé de supervisión de la temperatura correspondiente se halla en el TAPMOTION® ED-Ex.

La supervisión de la temperatura evita otras conmutaciones del cambiador de tomas bajo carga al alcanzar la temperatura máxima admisible. Esta temperatura máxima admisible se ajusta de fábrica en función del pedido para todos los tipos de cambiador de tomas bajo carga (máximo 130 °C) y se asegura contra un desajuste no intencionado.

2.5.2 Medidas que debe tomar el fabricante del transformador/explotador

El fabricante del transformador/explotador debe tomar las siguientes medidas para el cumplimiento de los requisitos de protección Ex.

2.5.2.1 Componentes de protección y componentes de accionamiento prescritos

Opere el cambiador de tomas bajo carga solo junto con los siguientes componentes:

- relé de protección Ex
- accionamiento a motor Ex
- árbol de accionamiento Ex
2.5.2.2 Construcción de un sistema de aceite del cambiador de tomas bajo carga

Opere el cambiador de tomas bajo carga solo con un sistema de aceite adecuado. Este sistema de aceite del cambiador de tomas bajo carga consta de un recipiente de aceite del ruptor, relé de protección y conservador de aceite del cambiador de tomas bajo carga. Garantiza que siempre haya suficiente aceite aislante en el recipiente de aceite del ruptor.

Figura 1: Sistema de aceite del cambiador de tomas bajo carga

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>recipiente de aceite del ruptor</td>
</tr>
<tr>
<td>2</td>
<td>sonda térmica</td>
</tr>
<tr>
<td>3</td>
<td>relé de protección</td>
</tr>
<tr>
<td>4</td>
<td>indicación del nivel de llenado</td>
</tr>
<tr>
<td>5</td>
<td>contactos de señalización</td>
</tr>
<tr>
<td>6</td>
<td>conservador de aceite</td>
</tr>
<tr>
<td>7</td>
<td>deshumidificador de aire</td>
</tr>
</tbody>
</table>

2.5.2.3 Conservador de aceite que debe utilizarse

El conservador de aceite del cambiador de tomas bajo carga garantiza que durante el funcionamiento siempre haya suficiente aceite aislante en el sistema de aceite del cambiador de tomas bajo carga.
Por ello, opere siempre el cambiador de tomas bajo carga con un conservador de aceite que cumpla los siguientes requisitos:

2.5.2.3.1 Deshumidificador de aire

El conservador de aceite debe estar equipado con un deshumidificador de aire según VDE 0532-216-5 con salida guiada hacia abajo y un grado de protección de como mínimo IP 66 según IEC 60529.

2.5.2.3.2 Indicación del nivel de llenado

El conservador de aceite debe poseer una indicación del nivel de llenado en la que se puede leer la cantidad de aceite mínima necesaria y máxima admisible, así como el nivel de aceite actual.

2.5.2.3.3 Control de nivel de llenado

El nivel de aceite en el conservador de aceite debe controlarse permanentemente durante el funcionamiento. Por tanto, conecte al circuito de disparo del interruptor de potencia el contacto de señalización que indica que el nivel de aceite se encuentra por debajo del nivel mínimo dentro del conservador de aceite del cambiador de tomas bajo carga de modo que al quedar debajo del nivel mínimo de aceite del conservador, la tensión del transformador se desconecte inmediatamente mediante el interruptor de potencia.

2.5.2.3.4 Aceite aislante que debe utilizarse

Para el llenado de aceite del recipiente de aceite del ruptor y del conservador de aceite correspondiente utilice solo aceite aislante mineral nuevo para transformadores según IEC 60296 (Specification for unused mineral insulating oils for transformers and switchgear) o éster sintético según IEC 61099 (Specifications for unused synthetic organic esters for electrical purposes).

2.5.2.3.5 Control de la calidad del aceite aislante en el transformador Ex

Durante las conmutaciones pueden generarse chispas de polaridad (baja energía) en el selector del cambiador de tomas bajo carga en la cuba del transformador. Observe al respecto los apartados 5.1.6 y 5.1.7 en la norma de cambiadore de tomas bajo carga IEC 60214.

Por ello, controle periódicamente la calidad y la rigidez dieléctrica del aceite aislante en la cuba del transformador y mantenga los intervalos de mantenimiento para el cambio de aceite.
2.5.2.4 Medidas para la protección anticorrosión

Puesto que antes del funcionamiento del cambiador de tomas bajo carga se precisan otros pasos de montaje, en algunas interfaces concretas del cambiador de tomas bajo carga al transformador es posible que en la fábrica no pueda establecerse una protección suficiente contra corrosión.

La superficie de junta de la brida de conexión a la tubería está galvanizada de fábrica. Los taladros pasantes están galvanizados y parcialmente pintados.

La superficie de contacto de la cabeza del cambiador de tomas bajo carga está imprimada de fábrica. Los taladros pasantes están imprimados y parcialmente pintados.

La ejecución de las correspondientes superficies opuestas en el transformador y las tuberías así como el diseño de las atornilladuras necesarias para estas fijaciones son responsabilidad del fabricante del transformador.

1. Evite la penetración de electrolito en las superficies de junta y los taladros mediante una correcta obturación.
2. Ejecute los tornillos, las arandelas, las tuercas, etc. en A4 según la norma ISO 3506-1/ISO 3506-2.
3. En caso de daños de las superficies lacadas, consulte las instrucciones de reparación. Estas pueden solicitarse al servicio de asistencia técnica de Maschinenfabrik Reinhausen GmbH.

2.6 Cualificación del personal

La persona responsable del montaje, la puesta en servicio, el manejo, el mantenimiento y la inspección debe garantizar que el personal posea la cualificación suficiente.
Personal electricista

Debido a su formación técnica, el personal electricista posee los conocimientos y la experiencia necesarios y conoce las normas y disposiciones pertinentes. Además, el personal electricista dispone de las siguientes capacidades:

▪ El personal electricista detecta por sí mismo posibles peligros y está capacitado para evitarlos.
▪ El personal electricista puede ejecutar trabajos en instalaciones eléctricas.
▪ El personal electricista se ha formado especialmente para el entorno de trabajo en el que trabaja.
▪ El personal electricista debe cumplir las disposiciones de las normales legales vigentes sobre la prevención de accidentes.

Personas con formación en electrotecnia

Una persona con formación en electrotecnia recibe instrucciones y formación por parte de un técnico electricista sobre las tareas que se le han encargado y los posibles peligros en caso de comportamiento indebido así como sobre los dispositivos de protección y las medidas de protección. La persona con formación en electrotecnia trabaja exclusivamente bajo la dirección y supervisión de un técnico electricista.

Operario

El operario utiliza y maneja el producto en el marco de esta documentación técnica. El explotador se encarga de instruirle y formarle sobre las tareas especiales y los posibles peligros derivados de las mismas en caso de comportamiento indebido.

Servicio de asistencia técnica

Se recomienda encarecidamente encargar los correspondientes mantenimientos, reparaciones y reequipamientos a nuestro servicio de asistencia técnica. De este modo, se garantiza una ejecución técnicamente adecuada de todos los trabajos. Si el mantenimiento no es realizado por nuestro servicio de asistencia técnica se debe garantizar que el personal encargado de ello haya sido formado y autorizado por Maschinenfabrik Reinhausen GmbH.

Personal autorizado

El personal autorizado recibe formación e instrucción para mantenimientos especiales por parte de Maschinenfabrik Reinhausen GmbH.
2.7 **Equipo de protección personal**

Durante el trabajo es necesario utilizar un equipo de protección personal para reducir los riesgos para la salud.

- Durante el trabajo es preciso utilizar siempre el equipo de protección necesario para el trabajo en cuestión.
- Nunca utilice equipos de protección defectuosos.
- Tenga en cuenta las indicaciones sobre el equipo de protección personal colocadas en el área de trabajo.

<table>
<thead>
<tr>
<th>Ropa de protección de trabajo</th>
<th>Ropa de trabajo ajustada, con poca resistencia a la rotura, con mangas ajustadas y sin partes salientes. Sirve principalmente para evitar quedarse enganchado en las piezas móviles de la máquina.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calzado de seguridad</td>
<td>Para proteger de la caída de piezas pesadas y no resbalar en superficies resbaladizas.</td>
</tr>
<tr>
<td>Gafas de protección</td>
<td>Para proteger los ojos de piezas que puedan salir disparadas o de salpicaduras de líquido.</td>
</tr>
<tr>
<td>Visor</td>
<td>Para proteger el rostro de piezas que puedan salir disparadas o de salpicaduras de líquido, así como de otras sustancias peligrosas.</td>
</tr>
<tr>
<td>Casco de protección</td>
<td>Para proteger de piezas o materiales que puedan caer o salir disparados.</td>
</tr>
<tr>
<td>Protección auditiva</td>
<td>Para proteger de posibles daños en los oídos.</td>
</tr>
<tr>
<td>Guantes protectores</td>
<td>Para proteger de peligros mecánicos, térmicos y eléctricos.</td>
</tr>
</tbody>
</table>
3 Descripción del producto

3.1 Volumen de entrega
El producto viene embalado de manera que está protegido contra la humedad y por lo general se suministra de la siguiente manera:

- recipiente de aceite con cabeza del cambiador de tomas bajo carga y cuerpo insertable del ruptor integrado
- selector
- accionamiento a motor Ex
- árbol de accionamiento Ex con elementos de acoplamiento y reenvío angular
- relé de protección Ex
- documentación técnica

Puede consultar el volumen de entrega exacto en el albarán de entrega.

Los cambiadores de tomas bajo carga también pueden suministrarse como juego de cambiadores de tomas bajo carga con un accionamiento a motor común.

Tenga en cuenta las siguientes indicaciones:

- compruebe la integridad de la remesa, basándose en los documentos de expedición
- los componentes deben almacenarse en un lugar seco hasta su montaje
- el producto debe conservarse empaquetado en su protección hermética y solo se debe extraer poco antes de su montaje.

Encontrará más información en el capítulo "Embalaje, transporte y almacenamiento" [Apartado 4, Página 37].

3.2 Cambiador de tomas bajo carga

3.2.1 Descripción de la función
Los cambiadores de tomas bajo carga sirven para adaptar la relación de transformación de transformadores sin interrumpir el flujo de carga. De este modo, pueden compensarse por ejemplo las oscilaciones de tensión que se produzcan en la red de transmisión de energía. Para ello, se montan cambiadores de tomas bajo carga en transformadores y se conectan a la parte activa del transformador.

Un accionamiento a motor, que recibe un impulso de control (p. ej. de un regulador de tensión), modifica la posición de servicio del cambiador de tomas bajo carga, de forma que la relación de transformación del transformador se adapta a los correspondientes requisitos empresariales.
3 Descripción del producto

3.2.2 Diseño/versiones

La siguiente representación muestra los componentes principales del cambiador de tomas bajo carga.

Encontrará una representación detallada del cambiador de tomas bajo carga en el capítulo “Dibujos” [Apartado 9, Página 243].
Figura 4: Estructura del cambiador de tomas bajo carga

<table>
<thead>
<tr>
<th></th>
<th>1 cabeza del cambiador de tomas bajo carga</th>
<th>2 engranaje reductor superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>codo de la tubería</td>
<td>4 recipiente de aceite</td>
</tr>
<tr>
<td>5</td>
<td>selector de tomas</td>
<td>6 preselector (opcional)</td>
</tr>
<tr>
<td>7</td>
<td>tapa de la cabeza del cambiador de tomas bajo carga</td>
<td>8 disco de reventamiento</td>
</tr>
</tbody>
</table>
3.2.2.1 Conexiones para tubería

La cabeza del cambiador de tomas bajo carga presenta 4 conexiones para tubería para diferentes propósitos.

Según el pedido, algunas o todas estas conexiones para tubería están equipadas de fábrica con codos de la tubería. Todos los codos de la tubería pueden girarse libremente tras soltar el anillo de presión.

Figura 5: Conexiones para tubería con codos de la tubería

Conexión para tubería Q

La conexión para tubería Q está cerrada con una tapa ciega.

Desde el punto de vista de su funcionamiento, las conexiones para tubería R y Q son intercambiables.

Conexión para tubería S

El codo de la tubería en la conexión para tubería S está provisto de un tornillo de purga de aire y debe conectarse a una tubería que, bajando por el costado de la cuba del transformador, acaba en un grifo de descarga a una altura de hombre. Si el cambiador de tomas bajo carga está equipado con una tubería de aspiración de aceite, el cambiador de tomas bajo carga puede vaciarse completamente a través de esta conexión para tubería S.

Conexión para tubería R

La conexión para tubería R se ha previsto para el montaje del relé de protección así como para la conexión del conservador de aceite del cambiador de tomas bajo carga y puede cambiarse con la conexión para tubería Q.
Conexión para tubería E2

La conexión para tubería E2 está cerrada con una tapa ciega. Esta conduce directamente debajo de la cabeza del cambiador de tomas bajo carga al interior de la cuba del transformador, y puede, en caso de ser requerido, conectarse a una tubería colectora hacia el relé de Buchholz. Además, esta conexión para tubería sirve para establecer la compensación de presión entre la cuba del transformador y el recipiente de aceite del cambiador de tomas bajo carga, que es necesaria durante el secado y el llenado con líquido aislante y el transporte del transformador.

3.2.3 Placa de características y número de serie

La placa de características con número de serie se halla en la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 6: Placa de características
Además, en el selector también se encuentra el número de serie.

Figura 7: Número de serie

3.2.4 Dispositivos de protección

El cambiador de tomas bajo carga está equipado con los siguientes dispositivos de protección.

3.2.4.1 Relé de protección

3.2.4.1.1 Descripción de la función

El relé de protección se inserta en bucle en el circuito de disparo del interruptor de potencia y de este modo protege el cambiador de tomas bajo carga y el transformador en caso de fallo dentro del recipiente de aceite del cambiador de tomas bajo carga. El relé reacciona cuando, debido a un fallo, la velocidad del flujo entre la cabeza del cambiador de tomas bajo carga y el conservador de aceite sobrepasa el valor establecido. El flujo de líquido aislante actúa sobre la clapeta y la hace bascular a la posición DESCONEXIÓN. Esto hace que se accione el contacto en los tubos de conmutación magnéticos con gas protector, se disparen los interruptores de potencia y se desconecte el transformador.

El relé de protección es parte constitutiva de un cambiador de tomas bajo carga llenado con líquido aislante que corresponde en cuanto a sus características a la publicación IEC 60214-1 en su versión vigente.
Las conmutaciones del ruptor que se efectúan bajo potencia de conmutación nominal o bajo sobrecarga admisible no provocan la activación del relé de protección.

El relé de protección reacciona al flujo y no a la acumulación de gas en el relé de protección. El relé de protección no precisa purga de aire durante el llenado de aceite del transformador con líquido aislante. La acumulación de gas en el relé de protección es normal.

3.2.4.1.2 Diseño/versiones

Vista frontal

![Figura 8: RS 2001-Ex](image)

<table>
<thead>
<tr>
<th>1</th>
<th>mirilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>elemento compensador de presión</td>
</tr>
</tbody>
</table>

Vista posterior

![Figura 9: RS 2001-Ex](image)

<table>
<thead>
<tr>
<th>1</th>
<th>conexión a tierra</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Placa de características</td>
</tr>
</tbody>
</table>
3 Descripción del producto

Vista desde arriba

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Junta</td>
</tr>
<tr>
<td>2</td>
<td>guía del potencial</td>
</tr>
<tr>
<td>3</td>
<td>Tapa de la caja de bornes</td>
</tr>
<tr>
<td>4</td>
<td>tornillo de cabeza ranurada para guía del potencial</td>
</tr>
<tr>
<td>5</td>
<td>pulsador de prueba SERVICIO (reposición)</td>
</tr>
<tr>
<td>6</td>
<td>tornillo de cabeza ranurada para cubierta de protección</td>
</tr>
<tr>
<td>7</td>
<td>pulsador de prueba DESCONEXIÓN (disparo de prueba)</td>
</tr>
<tr>
<td>8</td>
<td>conexión del conductor de tierra</td>
</tr>
<tr>
<td>9</td>
<td>Cubierta de protección</td>
</tr>
<tr>
<td>10</td>
<td>Tapón roscado</td>
</tr>
<tr>
<td>11</td>
<td>borne de conexión</td>
</tr>
</tbody>
</table>

3.2.4.1.3 Placa de características

La placa de características del relé de protección protegido contra explosión se halla en la parte trasera del producto.

Figura 11: Posición de la placa de características
3 Descripción del producto

3.2.4.2 Disco de reventamiento
El disco de reventamiento consiste en un dispositivo de descarga de presión conforme a IEC 60214-1 sin contacto de señalización y se encuentra en la tapa de la cabeza del cambiador de tomas bajo carga.

El disco de reventamiento reacciona cuando se supera la presión definida en el recipiente de aceite del cambiador de tomas bajo carga.

3.2.4.3 Supervisión de la temperatura
La supervisión de la temperatura sirve para controlar la temperatura del líquido aislante en el recipiente de aceite del cambiador de tomas bajo carga.

3.3 Árbol de accionamiento

3.3.1 Descripción de la función
El árbol de accionamiento es la unión mecánica entre el accionamiento y la cabeza del cambiador de tomas bajo carga.

El cambio de dirección de vertical a horizontal se lleva a cabo a través del reenvío angular.

Consecuentemente, durante el montaje debe instalarse el árbol de accionamiento vertical entre el accionamiento y el reenvío angular, mientras que el árbol de accionamiento horizontal se instala entre el reenvío angular y el cambiador de tomas bajo carga o cambiador de tomas sin tensión.
El árbol de accionamiento con protección contra explosión consiste en un tubo cuadrado con aislante acoplado en ambos extremos mediante dos casquillos de acoplamiento y un perno de acoplamiento al extremo del árbol impulsante o impulsado del aparato a conectar.

Figura 12: Árbol de accionamiento con protección contra explosión con aislante
3.3.2 Estructura/modelo

En este apartado se describe la estructura del árbol de accionamiento con protección contra explosión.

![Diagrama de componentes del árbol de accionamiento con protección contra explosión]

Figura 13: Componentes del árbol de accionamiento con protección contra explosión

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

1 reenvío angular 2 abrazadera para manguera
3 tornillos 4 tubo protector telescópico
5 casquillo de acoplamiento 6 aislante
7 casquillo de acoplamiento doble 8 tubo cuadrado
9 bulón 10 anillo adaptador
11 chapa protectora
Configuración del producto

<table>
<thead>
<tr>
<th>Configuración</th>
<th>V 1 min</th>
<th>Cojinete intermedio</th>
</tr>
</thead>
</table>
| Centro manivela: centro reenvío angular (desplazamiento axial máximo admisible 2°) | 706 mm | Si se excede del valor máximo de 2472 mm es necesario utilizar un cojinete intermedio.
V 1 ≤ 2472 mm (sin cojinete intermedio)
V 1 > 2472 mm (con cojinete intermedio) |
3.3.3 Placa de identificación

La placa de identificación se encuentra en el tubo protector telescópico.

Figura 14: Posición de la placa de identificación
4 Embalaje, transporte y almacenamiento

4.1 Embalaje

El suministro de los productos se produce según la necesidad parcialmente con un embalaje hermético y parcialmente en estado seco de forma adicional.

Un embalaje hermético envuelve completamente el material embalado con una lámina de plástico.

Los productos secados adicionalmente se identifican con un rótulo indicador amarillo en el embalaje hermético. En estado seco también es posible un suministro en un recipiente de transporte.

Deben aplicarse según corresponda las respectivas indicaciones de los siguientes apartados.

4.1.1 Adecuación

¡Daños materiales a causa de un apilado incorrecto de las cajas!

Un apilado incorrecto de las cajas puede provocar daños en el material embalado.

► En la identificación exterior del embalaje podrá ver p. ej. si hay cambiadores de tomas bajo carga o selectores embalados en posición vertical. En ningún caso apile estas cajas.

► Principalmente se aplica: no apilar las cajas a partir de una altura de 1,5 m.

► Para otros casos se aplica: apilar una encima de otra como máximo 2 cajas del mismo tamaño.

El embalaje es adecuado para medios de transporte no dañados y con plena capacidad de funcionamiento teniendo en cuenta la legislación sobre transporte y las directivas de transporte locales.

Este producto está embalado en una caja resistente. Esta garantiza que el material embalado esté bien fijado en la posición de transporte prevista para evitar modificaciones de la posición no permitidas y que ninguno de sus componentes entre en contacto con la superficie de carga del medio de transporte o con el suelo.

Un embalaje hermético envuelve completamente el material embalado con una lámina de plástico. El material embalado está protegido frente a la humedad mediante agentes secantes. La lámina de plástico se ha soldado tras la colocación del agente secante.
4.1.2 Señalizaciones

El embalaje cuenta con una signatura con advertencias para el transporte seguro y el almacenamiento adecuado. Para el envío de mercancías no peligrosas se aplican los siguientes símbolos gráficos. Estos símbolos deben tenerse en cuenta de forma imprescindible.

<table>
<thead>
<tr>
<th>Símbolo Gráfico</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteger de la humedad</td>
<td></td>
</tr>
<tr>
<td>Arriba</td>
<td></td>
</tr>
<tr>
<td>Frágil</td>
<td></td>
</tr>
<tr>
<td>Levantar por aquí</td>
<td></td>
</tr>
<tr>
<td>Centro de gravedad</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 10: Símbolos gráficos válidos para el envío

4.2 Transporte, recepción y tratamiento de los envíos

¡Peligro de muerte y de lesiones graves!

Peligrro de muerte y peligro de lesiones graves por carga que se vuelca o se cae.

- Transporte la caja únicamente cerrada.
- Durante el transporte, no retire el material de fijación utilizado en la caja.
- Si el producto se transporta sobre una paleta, asegure una fijación suficiente.
- La selección de los topes de sujeción de carga y el anclaje de la misma queda estrictamente reservado a personal instruido y autorizado.
- No se coloque bajo la carga en suspensión.
- Utilice medios de transporte y dispositivos de elevación con una capacidad portante suficiente según las indicaciones de peso del albarán de entrega.

Además de las solicitudes de oscilación, durante el transporte debe contarse también con que pueden existir solicitudes de choque. Con el fin de excluir posibles daños, debe evitarse la caída, la inclinación, el vuelco y el rebote.

En caso de que la caja vuelque, se caiga de una determinada altura (p. ej. porque se rompa uno de los topes) o caiga sin frenarse, debe contarse con que se dañará en cualquier caso independientemente del peso.

Antes de la aceptación (confirmación de recepción), el destinatario deberá controlar lo siguiente en todos los envíos suministrados:

- que esté completo conforme al albarán y
- que no presente daños externos de ningún tipo.

Los controles se deben realizar tras descargar la caja, cuando se pueda acceder a la misma o al contenedor de transporte desde todos los lados.
4 Embalaje, transporte y almacenamiento

Daños visibles

Si al recibir el envío usted detecta daños de transporte externos visibles, proceda como se indica a continuación:

- Anote inmediatamente los daños de transporte detectados en los documentos de transporte y solicite al transportista que los firme.
- En caso de daños graves, pérdida total y costes por daños elevados informe inmediatamente al fabricante y a la aseguradora responsable.
- Una vez detectado el daño, procée no modificar su estado y guarde el material de embalaje hasta que se tome la decisión sobre una inspección por parte del transportista o de la aseguradora de transporte.
- Anote los daños in situ junto con la empresa de transporte implicada en la incidencia. Esto es indispensable para reclamar la indemnización por daños y perjuicios.
- Fotografía los daños del embalaje y el producto embalado. Asimismo, fotografía los indicios de corrosión en el producto causados por la penetración de humedad (lluvia, nieve, agua condensada).
- **¡AVISO!** Daños en el material embalado a causa de un embalaje hermético dañado. Compruebe inmediatamente el embalaje hermético si el producto se suministra dentro de un embalaje hermético. Si el embalaje hermético está dañado, no utilice ni ponga en funcionamiento bajo ningún concepto el material embalado. Seque de nuevo el producto embalado secado según las instrucciones de servicio o bien póngase en contacto con el fabricante para acordar cómo proceder.
- Especifique los componentes dañados.

Daños ocultos

En caso de daños no aparentes, es decir, daños que solo pueden apreciarse una vez recibida y desembalada la entrega (daños ocultos), proceda como se indica a continuación:

- Contacte al posible causante del daño de inmediato telefónicamente y por escrito haciendo hincapié en su responsabilidad y elabore un registro de los daños.
- Tenga en cuenta los plazos válidos para ello en el correspondiente país. A continuación, informe de ello en el plazo estipulado.

En el caso de daños no visibles, es difícil hacer responsable a la empresa de transporte (u otros causantes de los daños). Por motivos técnicos del seguro, un caso de daños de este tipo con perspectivas de prosperar solo podrá resolverse si se ha detallado expresamente en las condiciones de seguro.

4.3 Almacenaje de envíos

Material embalado secado por Maschinenfabrik Reinhausen

Extraiga inmediatamente tras la recepción del envío el material embalado secado por Maschinenfabrik Reinhausen de la empaquetadura hermética y guárdealo herméticamente en líquido aislante secado hasta que vaya a utilizarse definitivamente, en caso de que el material embalado no se haya suministrado ya bajo líquido aislante.
Material embalado no secado

El material embalado no secado con empaquetadura hermética funcional se puede almacenar al aire libre siempre y cuando se respeten las siguientes estipulaciones.

Al seleccionar y preparar el lugar de almacenamiento asegúrese de lo siguiente:

- El material almacenado debe estar protegido contra la humedad (inundación, nieve derretida y hielo), la suciedad, plagas como ratas, ratones, termitas etc., así como contra un acceso no autorizado.
- Coloque las cajas para protegerlas frente a la humedad del suelo y para una mejor ventilación sobre tablones y maderas escuadradas.
- Asegúrese de que la superficie posea suficiente capacidad de carga.
- Procure que los caminos de acceso estén libres.
- Controle periódicamente el producto almacenado, y, adicionalmente, después de vendavales, fuertes lluvias, abundante nieve, etc., y tome las medidas adecuadas.

Proteja la lámina de embalaje contra la radiación solar directa para evitar que los rayos UV la deterioren y, consecuentemente, pierda la hermeticidad.

Si el montaje del producto se realiza en un plazo superior a 6 meses tras el suministro, se deberán tomar las medidas pertinentes en el momento adecuado. En este caso, se considera lo siguiente:

- Regeneración a cargo de un especialista del agente secante y restitución de la empaquetadura.
- Desembalaje del producto embalado y almacenaje en un recinto adecuado (bien ventilado, a ser posible libre de polvo y con una humedad inferior al 50 %).

4.4 Desembalaje de los envíos y control de que no presentan daños de transporte

- ¡AVISO! Daños en el material embalado a causa de un embalaje hermético defectuoso. Transporte la caja embalada hasta el lugar donde se realizará el montaje del producto embalado. Abra el embalaje hermético justo antes de proceder al montaje.
- ¡ADVERTENCIA! Lesiones graves y daños en el material embalado a causa del vuelco del material embalado. Asegure el producto embalado en una caja en posición vertical para evitar que vuelque.
- Desembale el material embalado y compruebe su estado.
- Compruebe la integridad del producto embalado basándose en los documentos de expedición.
5 Montaje

En este capítulo se describe cómo montar y conectar el aparato correctamente.

¡Peligro de explosión!

¡Peligro de muerte o lesiones graves debido a un montaje del cambiador de tomas bajo carga en un entorno con peligro de explosión, así como debido a un montaje en un transformador que se halla bajo tensión!

► Ejecute los trabajos de montaje únicamente en un entorno sin peligro de explosión.
► Garantice que el transformador se halla sin tensión durante el montaje del cambiador de tomas bajo carga.

¡Peligro de aplastamiento!

Durante una conmutación del cambiador de tomas bajo carga se mueven componentes en el selector, el preselector y la unidad para guía de potencial a los que en parte puede accederse libremente. La intervención en el selector, el preselector y la unidad para guía de potencial durante una conmutación puede provocar lesiones graves.

► Durante una conmutación debe mantenerse como mínimo 1 m de distancia de seguridad.
► Durante la conmutación no debe intervenirse en el selector, en el preselector ni en la unidad para guía de potencial.
► Durante los trabajos en el selector, en el preselector o en la unidad para guía de potencial no debe conectarse el cambiador de tomas bajo carga.

5.1 Indicaciones para el montaje

Tenga en cuenta las siguientes indicaciones para el montaje:

1. Para el desembalaje y el transporte con grúa deben utilizarse las cintas elevadoras suministradas.
2. Al realizar el montaje debe procederse con cuidado en general para evitar daños en la capa de pintura.
3. No debe dañarse la superficie pintada del cambiador de tomas bajo carga a causa de los elementos de fijación.
4. Antes de que aplique una capa de protección en los cantos de corte y los puntos de unión, debe limpiar los respectivos puntos según la siguiente descripción.
5. ¡AVISO! Realice la preparación de la superficie de forma técnicamente correcta. De lo contrario, puede aparecer corrosión prematura con la consecuencia de daños materiales. Para la limpieza es imprescindible renunciar al uso de isopropanol concentrado, alcohol (etanol) o sustancias similares.
6. Retire las sustancias que reducen la capacidad de adhesión, p. ej. suciedad, polvo, grasa o componentes sueltos, mediante lijado con un paño de nylon o perlón y limpie previamente la superficie mediante soplado con aire seco.

7. A continuación, limpie la superficie con una solución acuosa del 25 % de etanol.

8. Antes del revestimiento asegúrese de que las superficies tratadas estén completamente secas.

9. Aplique una protección anticorrosión adecuada en los cantos de corte de la chapa protectora del árbol de accionamiento.

10. Tras el montaje, obture los puntos de unión p. ej. mediante sobrebarnizado.

Encontrará más indicaciones sobre el tratamiento de superficies así como información detallada para la reparación de daños de la capa de protección en las instrucciones de reparación. Bajo demanda, puede facilitársele el servicio de asistencia técnica de Maschinenfabrik Reinhausen GmbH.

5.2 Trabajos de preparación

Ejecute los trabajos que se indican a continuación antes de montar el cambiador de tomas bajo carga en el transformador.

5.2.1 Colocación de la brida de montaje en la tapa del transformador

Para montar la cabeza del cambiador de tomas bajo carga en la tapa del transformador se requiere una brida de montaje. Esta puede pedirse opcionalmente o su fabricación puede correr a cargo del cliente. Si la fabricación de la brida de montaje corre a cargo del cliente, deberá realizarla conforme a los planos de montaje del anexo.

► **¡AVISO!** Coloque la brida de montaje en la tapa del transformador a prueba de presión. Asegúrese de que la superficie de junta esté en posición plana y no esté dañada.
5.2.2 Colocación de los espárragos roscados en la brida de montaje

Para colocar los espárragos roscados en la brida de montaje utilice una plantilla de trazado, que se suministra gratuitamente para la primera instalación del cambiador de tomas bajo carga, si el cliente así lo solicita.

1. Coloque la plantilla de trazado en la brida de montaje y alínéela conforme a las cuatro marcas.
2. Coloque los espárragos roscados en la brid de montaje.

Figura 16: Plantilla de trazado, espárrago roscado
5.3 Montaje del cambiador de tomas bajo carga en el transformador (modelo normal)

5.3.1 Fijación del cambiador de tomas bajo carga en la tapa del transformador

5.3.1.1 Fijación del recipiente de aceite en la tapa del transformador: cabeza del cambiador de tomas bajo carga en modelo normal

En cambiadores de tomas bajo carga con $U_m < 362$ kV puede bajar el recipiente de aceite a través del orificio de la brida de montaje sin separar la parte superior de la cabeza del cambiador de tomas bajo carga de la parte inferior.

1. ¡ATENCIÓN! Un recipiente de aceite colocado de forma inestable se podría volcar provocando así lesiones o daños materiales. Coloque el recipiente de aceite sobre una superficie plana y asegúrelo para impedir que vuelque.

2. Retire el material de embalaje y el material de transporte marcado en color rojo del recipiente de aceite.
3. **AVISO** Las juntas no adecuadas provocan la salida de aceite y con ello daños en el cambiador de tomas bajo carga. Coloque una junta adecuada para el medio aislante utilizado en la brida de montaje. Limpie las superficies de junta de la brida de montaje y de la cabeza del cambiador de tomas bajo carga.

Figura 17: Superficies de junta, junta
4. **AVISO** Debido a una bajada imprudente del recipiente de aceite este puede colisionar con la tapa del transformador y resultar dañado. Levante el recipiente de aceite por la cabeza del cambiador de tomas bajo carga y bajelo con cuidado y en posición vertical por el orificio de la tapa del transformador.

![Figura 18: Bajada del recipiente de aceite](image)

5. Compruebe si la posición de montaje de la cabeza del cambiador de tomas bajo carga se halla en la posición de montaje predeterminada en el diseño.
6. Atornille la cabeza del cambiador de tomas bajo carga en la brida de montaje.

Figura 19: Cabeza del cambiador de tomas bajo carga con brida de montaje

7. Retire la cinta de bloqueo del acoplamiento del fondo del recipiente de aceite.

Figura 20: Fondo del recipiente de aceite con cinta de bloqueo
5.3.1.2 Fijación del recipiente de aceite en la tapa del transformador: cabeza del cambiador de tomas bajo carga divisible

En cambiadores de tomas bajo carga con $U_m \geq 362$ kV no puede bajar el recipiente de aceite desde arriba a través del orificio de la brida de montaje, porque el diámetro de los anillos pantalla es mayor que el diámetro interior de la brida de montaje. En este caso, primero debe elevar la parte superior de la cabeza del cambiador de tomas bajo carga de la parte inferior y fijar la parte superior en la tapa del transformador. A continuación, fije el recipiente de aceite en la parte superior de la cabeza del cambiador de tomas bajo carga.

5.3.1.2.1 Elevación de la parte superior de la cabeza del cambiador de tomas bajo carga de la brida de apoyo (parte inferior)

5.3.1.2.1.1 Desmontaje de la tapa de la cabeza del cambiador de tomas bajo carga

¡Daños en el cambiador de tomas bajo carga!

Las piezas pequeñas en el recipiente de aceite pueden bloquear el cuerpo insertable del ruptor dañando así el cambiador de tomas bajo carga.

► Asegúrese de que no caigan piezas en el recipiente de aceite.
► Controle el número total de las piezas pequeñas.

1. ¡ATENCIÓN! Un recipiente de aceite colocado de forma inestable se podría volcar provocando así lesiones o daños materiales. Coloque el recipiente de aceite sobre una superficie plana y asegúrelo para impedir que vuelque.
2. Retire el material de embalaje y el material de transporte marcado en color rojo del recipiente de aceite.
3. Asegúrese de que la mirilla esté cerrada con la tapa.
4. Retire los tornillos con arandelas de la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 21: Tapa de la cabeza del cambiador de tomas bajo carga
5. Retire la tapa de la cabeza del cambiador de tomas bajo carga.

![Figura 22: Tapa de la cabeza del cambiador de tomas bajo carga](image)

5.3.1.2.1.2 Desmontaje del disco de indicación de posición

► Quite el clip elástico del extremo del árbol y retire el disco de indicación de posición.

![Figura 23: Disco de indicación de posición](image)

5.3.1.2.1.3 Desmontaje del dispositivo de vigilancia de conmutación

⚠️ PELIGRO

¡Choque eléctrico!
Si en el dispositivo de vigilancia de conmutación hay tensión de alimentación, puede producirse un choque eléctrico.

► Desconecte el dispositivo de vigilancia de conmutación de la tensión de alimentación y asegúrelo contra reconexión.

⚠️ AVISO

¡Daños en el dispositivo de vigilancia de conmutación!
Si se retira el dispositivo de vigilancia de conmutación de manera descuidada, el dispositivo de vigilancia de conmutación podría dañarse provocando así daños en el cambiador de tomas bajo carga.

► Retire con cuidado el dispositivo de vigilancia de conmutación para no dañar o arrancar los conductores de conexión.
1. Desconecte la conexión de enchufe del dispositivo de vigilancia de conmutación y extráigala del soporte.

Figura 24: Conexión de enchufe

2. Quite las tuercas y los elementos de seguridad de la placa soporte.

Figura 25: Placa soporte
3. Quite la placa soporte con el dispositivo de vigilancia de conmutación y el árbol de accionamiento.

Figura 26: Placa soporte con dispositivo de vigilancia de conmutación y árbol de accionamiento

4. Eleve la línea del dispositivo de vigilancia de conmutación del perno distanciador.

Figura 27: Perno distanciador y línea del dispositivo de vigilancia de conmutación
5. Gire hacia fuera la línea del dispositivo de vigilancia de conmutación de la cabeza del cambiador de tomas bajo carga.

![Figura 28: Línea del dispositivo de vigilancia de conmutación](image)

6. Quite el perno distanciador con elemento de seguridad.

![Figura 29: Pernos distanciadores](image)

5.3.1.2.1.4 Retirada de la tubería de aspiración de aceite

1. Retire el sujetacables de la tubería de aspiración de aceite.

![Figura 30: Tubería de aspiración de aceite](image)
2. Saque la tubería de aspiración de aceite de la cabeza del cambiador de tomas bajo carga.

Figura 31: Tubería de aspiración de aceite

3. Quite la escuadra de sujeción.

Figura 32: Escuadra de sujeción

5.3.1.2.1.5 Elevación de la parte superior de la cabeza del cambiador de tomas bajo carga de la parte inferior

1. Quite las tuercas y los elementos de seguridad situados entre la parte superior y la parte inferior de la cabeza del cambiador de tomas bajo carga.

Figura 33: Desmontaje de las tuercas y los elementos de seguridad situados entre la parte superior y la parte inferior de la cabeza del cambiador de tomas bajo carga
2. Eleve la parte superior de la cabeza del cambiador de tomas bajo carga de la parte inferior.

Figura 34: Parte superior de la cabeza del cambiador de tomas bajo carga
5.3.1.2.2 Posicionamiento de la parte superior de la cabeza del cambiador de tomas bajo carga en la tapa del transformador

1. ¡AVISO! Las juntas no adecuadas provocan la salida de aceite y con ello daños en el cambiador de tomas bajo carga. Coloque una junta adecuada para el medio aislante utilizado en la brida de montaje. Limpie las superficies de junta de la brida de montaje y de la parte superior de la cabeza del cambiador de tomas bajo carga.

![Figura 35: Brida de montaje con junta](image)

2. ¡ATENCIÓN! Un recipiente de aceite colocado de forma inestable se podría volcar provocando así lesiones o daños materiales. Asegure el recipiente de aceite contra vuelco, élévelo desde abajo a la tapa del transformador y alínieelo de forma correspondiente a la ulterior posición de montaje. Para la elevación no utilice en ningún caso el anillo pantalla circular ni los tornillos de fijación de la brida de apoyo.

![Figura 36: Elevación del recipiente de aceite](image)
3. Baje y posicione la parte superior de la cabeza del cambiador de tomas bajo carga en la brida de montaje de forma que coincidan las marcas de triángulo, los pernos y los orificios de taladrado en la parte superior y la parte inferior de la cabeza del cambiador de tomas bajo carga.

Figura 37: Marcas y pernos de ajuste

5.3.1.2.3 Unión del recipiente de aceite con la parte superior de la cabeza del cambiador de tomas bajo carga

5.3.1.2.3.1 Unión del recipiente de aceite con la parte superior de la cabeza del cambiador de tomas bajo carga

AVISOS

¡Daños en el cambiador de tomas bajo carga por elevarlo incorrectamente!

¡Si el cambiador de tomas bajo carga se eleva por los tornillos de fijación de la brida de apoyo, esto podría dañar los tornillos de manera que no se podría atornillar correctamente el cambiador de tomas bajo carga ni la cabeza del cambiador de tomas bajo carga!

► Eleve siempre el cambiador de tomas bajo carga sirviéndose de la traversa de elevación prevista a tal efecto, jamás tirando de los tornillos de fijación de la brida de apoyo.
Puede utilizar un dispositivo elevador o bien un dispositivo de elevación para unir el recipiente de aceite con la parte superior de la cabeza del cambiador de tomas bajo carga. A continuación, se describe el procedimiento con el dispositivo de elevación.

1. Coloque con cuidado el dispositivo de elevación con las garras replegadas en el recipiente de aceite.

![Figura 38: Dispositivo de elevación](image)

2. ¡AVISO! Si se alinea incorrectamente la cabeza del cambiador de tomas bajo carga con respecto a la brida de apoyo, al elevar el cambiador de tomas bajo carga se producirán daños en el mismo. Gire hacia afuera las garras del dispositivo de elevación y eleve el recipiente de aceite con el dispositivo de elevación. Asegúrese de que las marcas de triángulo estén alineadas y de que todos los espárragos roscados de la brida de apoyo pasen fácilmente a través de los orificios de fijación de la cabeza del cambiador de tomas bajo carga.

![Figura 39: Elevación del cambiador de tomas bajo carga](image)
Al atornillar la parte superior y la parte inferior de la cabeza del cambiador de tomas bajo carga, deje libres los pernos para la placa soporte del dispositivo de vigilancia de conmutación, los pernos para la escuadra de sujeción de la tubería de aspiración de aceite y los pernos distanciadores para la línea del dispositivo de vigilancia de conmutación.

1. Atornille con tuercas y elementos de seguridad la parte superior y la parte inferior de la cabeza del cambiador de tomas bajo carga.

![Figura 40: Atornillado de la parte superior de la cabeza del cambiador de tomas bajo carga con la parte inferior](image)

2. Retire el dispositivo de elevación con las garras replegadas.

![Figura 41: Desmontaje del dispositivo de elevación](image)
3. Atornille la cabeza del cambiador de tomas bajo carga en la brida de montaje.

Figura 42: Atornillado de la cabeza del cambiador de tomas bajo carga con la brida de montaje

4. Retire la cinta de bloqueo del acoplamiento del fondo del recipiente de aceite.

Figura 43: Fondo del recipiente de aceite con cinta de bloqueo
5.3.1.2.3.2 Colocación de la tubería de aspiración de aceite

1. Fije la escuadra de sujeción.

Figura 44: Escuadra de sujeción

2. Coloque la tubería de aspiración de aceite en la cabeza del cambiador de tomas bajo carga.

Figura 45: Colocación de la tubería de aspiración de aceite

3. Fije la tubería de aspiración de aceite con los sujetacables suministrados en la escuadra de sujeción. Gire el cierre del sujetacables hacia la escuadra de sujeción.

Figura 46: Sujetacables
5.3.1.2.3.3 Colocación del dispositivo de vigilancia de conmutación

1. Coloque la placa soporte con dispositivo de vigilancia de conmutación y árbol de accionamiento.

Figura 47: Placa soporte con dispositivo de vigilancia de conmutación y árbol de accionamiento

2. Compruebe que el árbol de accionamiento esté bien situado en la conexión de enchufe.

Figura 48: Árbol de accionamiento y conexión de enchufe
3. Fije la placa soporte.

Figura 49: Placa soporte

4. Fije los pernos distanciadores para la línea del dispositivo de vigilancia de conmutación.

Figura 50: Pernos distanciadores

5. Fije la línea del dispositivo de vigilancia de conmutación en los pernos distanciadores.

Figura 51: Pernos distanciadores
6. Acople la conexión de enchufe fuera de su soporte.

Figura 52: Conexión de enchufe

7. Inserte la conexión de enchufe en su soporte.

Figura 53: Conexión de enchufe en soporte

5.3.1.2.3.4 Colocación del disco de indicación de posición

El montaje del disco de indicación de posición es posible únicamente en la posición correcta mediante un perno de arrastre.
5 Montaje

► Encaje el disco de indicación de posición en el eje para indicador y deslice el clip elástico sobre el extremo del árbol.

![Figura 54: Disco de indicación de posición](image)

5.3.1.2.3.5 Fijación de la tapa de la cabeza del cambiador de tomas bajo carga

AVISOS

¡Daños en el cambiador de tomas bajo carga!

La falta de una junta tórica o una junta tórica dañada así como superficies de junta sucias provocan la salida de líquido aislante y con ello daños en el cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica se inserte sin torcerse en la tapa de la cabeza del cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica no se dañe durante el montaje de la tapa.

► Asegúrese de que las superficies de junta en la tapa de la cabeza del cambiador de tomas bajo carga y la cabeza del cambiador de tomas bajo carga estén limpias.

1. Compruebe que los muelles de ajuste estén bien fijados en el eje adaptador. Dado el caso, asegure los muelles de ajuste con vaselina para que no caigan.

![Figura 55: Muelles de ajuste](image)
2. Coloque la tapa de la cabeza del cambiador de tomas bajo carga sobre la cabeza del cambiador de tomas bajo carga de forma que las marcas de triángulo rojas de la cabeza del cambiador de tomas bajo carga y de la tapa de la cabeza del cambiador de tomas bajo carga coincidan.

Figura 56: Tapa de la cabeza del cambiador de tomas bajo carga con junta tórica

3. Atornille la tapa de la cabeza del cambiador de tomas bajo carga con la cabeza del cambiador de tomas bajo carga.

Figura 57: Tapa de la cabeza del cambiador de tomas bajo carga
5.3.1.3 Fijación de la unidad para guía de potencial en el selector

1. Eleve la unidad para guía de potencial en las eslingas de suspensión pre-montadas y colóquela sobre el preselector.

Figura 58: Elevación de la unidad para guía de potencial
2. Baje despacio la unidad para guía de potencial hasta el soporte premontado de forma que las espigas de los soportes se engranen en las escaladuras de la unidad para guía de potencial y los orificios de los soportes y de la unidad para guía de potencial estén alineados.

Figura 59: Descenso de la unidad para guía de potencial

3. Gire con cuidado los pernos de seguridad suministrados desde la parte exterior hasta que se hallen en el centro.

Figura 60: Fijación de la unidad para guía de potencial
5 Montaje

4. Retire las eslingas de suspensión de la unidad para guía de potencial.

Figura 61: Desmontaje de las eslingas de suspensión

5. Solo en el modelo sin contacto para resistencia de guía: atornille 3 o 6 conductores de unión de potencial con el preselector. Para ello, coloque calotas de apantallamiento. El material de fijación y las calotas de apantallamiento están incluidos en el volumen de entrega.

Figura 62: Conductores de unión de potencial
5.3.1.4 Fijación del selector en el recipiente de aceite

1. **¡ATENCIÓN!** Un selector colocado de forma inestable se podría volcar provocando así lesiones o daños materiales. Coloque el selector con la paleta de transporte sobre una superficie plana y asegúrelo para impedir que vuelque.

2. Retire el material de embalaje y el material de transporte marcado en color rojo del selector. Retire los pies de apoyo rojos (si están disponibles), pero solo tras fijar el selector en el recipiente de aceite.

3. Quite la bolsa de plástico con material de fijación del selector y prepárelo.

Figura 63: Bolsa de plástico con material de fijación
Figura 64: Bolsa de plástico con material de fijación
4. Retire la cinta de bloqueo del acoplamiento del selector. A continuación, no vuelva a girar el acoplamiento del selector.

Figura 65: Acoplamiento del selector con cinta de bloqueo
5. Ponga el selector sobre el dispositivo elevador. El peso del selector es de como máximo 420 kg.

6. **AVISO** Debido a una subida imprudente del selector, el selector y el recipiente de aceite pueden colisionar y resultar dañados. Eleve con cuidado el selector debajo del recipiente de aceite y asegúrese de que las derivaciones del selector y la unidad para guía de potencial (si están disponibles) pasen libremente al lado del recipiente de aceite sin tocarlo al elevar el selector.

7. Haga coincidir la posición de los dos elementos de acoplamiento y los puntos de fijación del recipiente de aceite y del selector. En los planos de ajuste suministrados viene representada la posición correcta de los dos elementos de acoplamiento.
8. Atornille el selector con el recipiente de aceite.

Figura 67: Selector con recipiente de aceite
Figura 68: Atornillado del selector con el recipiente de aceite
9. **AVISO** Los pares de torsión incorrectos así como atornilladuras no aseguradas pueden provocar daños en el cambiador de tomas bajo carga. Atornille con cuidado las derivaciones del selector en la pieza de unión. Respete el par de torsión indicado, asegure la atornilladura y pliegue las calotas de apantallamiento sobre la cabeza del tornillo.

Figura 69: VACUTAP® VRS
Figura 70: VACUTAP® VRS
Figura 71: VACUTAP® VRM/VRH/VRX
Figura 72: VACUTAP® VRM/VRH/VRX
Figura 73: VACUTAP® VRL/VRH
Figura 74: VACUTAP® VRL/VRH

M12

19

80 Nm
10. Retire los pies de apoyo rojos del fondo del selector (si dispone de los mismos).

5.3.1.5 Fijación de la unidad para guía de potencial en el recipiente de aceite

Solo tiene que fijar la unidad para guía de potencial en el recipiente de aceite si en la unidad para guía de potencial se dispone de una escuadra de fijación.
Atornille la unidad para guía de potencial con el anillo de derivación del recipiente de aceite.

Figura 76: Fijación de la unidad para guía de potencial

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tuerca</td>
</tr>
<tr>
<td>2</td>
<td>arandela</td>
</tr>
<tr>
<td>3</td>
<td>manguito distanciador</td>
</tr>
<tr>
<td>4</td>
<td>escuadra de fijación</td>
</tr>
<tr>
<td>5</td>
<td>disco de sujeción</td>
</tr>
<tr>
<td>6</td>
<td>calota de apantallamiento</td>
</tr>
<tr>
<td>7</td>
<td>tornillo</td>
</tr>
</tbody>
</table>

5.3.2 Conexión del devanado de regulación y de la derivación del cambiador de tomas bajo carga

AVISOS

¡Daños en el cambiador de tomas bajo carga!

Los conductores de conexión que someten al cambiador de tomas bajo carga a cargas mecánicas lo pueden dañar.

- Cree las conexiones con cuidado.
- No tuerza los terminales.
- Conecte los conductores de conexión sin ejercer esfuerzo mecánico.
- En caso necesario, los conductores de conexión deben presentar un bucle elástico.
- Coloque las calotas de apantallamiento suministradas en las uniones atornilladas.

La conexión del devanado de regulación y de la derivación del cambiador de tomas bajo carga se debe realizar de acuerdo con el esquema de conexiones que acompaña la remesa.
5.3.2.1 Terminales del selector

1. Fije los conductores de conexión con devanados de regulación con terminales y tornillos M12 (los terminales y el material de fijación no forman parte del volumen de entrega) según el esquema de conexiones suministrado. Los taladros pasantes de los terminales se encuentran horizontales de serie.

2. Asegúrese de que los conductores de conexión con devanados de regulación no carguen mecánicamente el selector.

3. Asegure todos los atornillados mediante las medidas adecuadas (p. ej. utilizando discos de sujeción) para evitar que se suelten y desplacen. Para ello, fije las calotas de apantallamiento según la figura.

4. Cierre las calotas de apantallamiento y procure que estén bien fijadas. La cabeza del tornillo y la tuerca deben estar completamente cubiertas.

![Figura 77: Terminales del selector](image)
5 Montaje

5.3.2.2 Terminales del preselector en conexión con inversor

¡Daños en el cambiador de tomas bajo carga!

Los conductores de conexión con devanado de regulación con muy poca distancia a las piezas móviles del preselector lo bloquean dañando así el cambiador de tomas bajo carga.

► Coloque los conductores de conexión con devanados de regulación próximos al preselector con suficiente distancia a las partes móviles del preselector.

Figura 78: Terminales del preselector en conexión con inversor
5.3.2.3 Terminales del preselector en conexión con paso grueso

¡Daños en el cambiador de tomas bajo carga!

Los conductores de conexión con devanado de regulación con muy poca distancia a las piezas móviles del preselector lo bloquean dañando así el cambiador de tomas bajo carga.

- Coloque los conductores de conexión con devanados de regulación próximos al preselector con suficiente distancia a las partes móviles del preselector.
5 Montaje

Figura 80: Terminales del preselector en conexión con paso grueso

Figura 81: Tendido de los conductores de conexión con devanados de regulación con suficiente distancia
5.3.2.4 Conexión de la unidad para guía de potencial

> Fije las líneas en las escuadras de conexión de la unidad para guía de potencial con terminales y tornillos M8 (los terminales y el material de fijación no forman parte del volumen de entrega) según el esquema de conexiones suministrado. Asegúrese de que las líneas no carguen mecánicamente la unidad para guía de potencial.

Figura 82: Escuadra de conexión de la unidad para guía de potencial

1 escuadra de conexión para conexión por parte del cliente

5.3.2.5 Conexión de la derivación del cambiador de tomas bajo carga

1. Conecte la derivación del cambiador de tomas bajo carga con terminal y tornillo en cualquier taladro pasante en el anillo de derivación. El terminal y el material de fijación no se incluyen en el volumen de entrega.
2. Asegure el atornillado mediante las medidas adecuadas (p. ej. utilizando discos de sujeción) para evitar que se suelten y desplacen.

Figura 83: Anillo de derivación en el recipiente de aceite
5.3.3 Ejecución de la medición de la relación de transformación antes del secado

AVISO

¡Daños en el cambiador de tomas bajo carga!

Daños en el cambiador de tomas bajo carga a causa de una ejecución incorrecta de la medición de la relación de transformación.

- Opere el cambiador de tomas bajo carga como máximo 250 veces. En caso de más de 250 conmutaciones llene el recipiente de aceite completamente con líquido aislante y lubrique con líquido aislante las superficies de rodadura de los contactos en el selector y el engranaje del selector.

- Opere el cambiador de tomas bajo carga únicamente mediante el engranaje reductor superior de una posición de servicio a la siguiente. Para ello puede usar p. ej. un tubo corto (diámetro 25 mm) con un perno de acoplamiento atornillado (diámetro 12 mm) y un volante de mano o una manivela. Si se utiliza un taladro, no supere la velocidad máxima de 250 rpm.

- Compruebe siempre la posición de servicio alcanzada mediante la mirilla de la tapa de la cabeza del cambiador de tomas bajo carga. Las posiciones finales que figuran en el esquema de conexiones suministrado no deberán sobrepasarse en ningún caso.

- En el caso de aplicaciones de varias columnas con accionamiento común una todas las cabezas del cambiador de tomas bajo carga entre sí a través de las piezas horizontales del árbol de accionamiento.

Al accionar el preselector se requiere un aumento del par.

1. Opere el cambiador de tomas bajo carga a la posición de servicio deseada. La conmutación del ruptor es perfectamente audible.

2. **AVISO** Si la operación de conmutación no ha finalizado completamente podría dañarse el cambiador de tomas bajo carga. Tras la conmutación del ruptor, siga girando con la manivela 2,5 vueltas el árbol de accionamiento del engranaje reductor superior en el mismo sentido para finalizar correctamente la operación de conmutación.

3. Ejecute la medición de la relación de transformación.

4. Repita la medición de la relación de transformación en todas las posiciones de servicio.

5. Conecte el cambiador de tomas bajo carga en la posición de ajuste (véase el esquema de conexiones suministrado del cambiador de tomas bajo carga).
Tras la medición de la relación de transformación, abra el tornillo de salida de keroseno del recipiente de aceite cuando deba secarse el cambiador de tomas bajo carga con keroseno en la cuba del transformador. Tras el secado, debe desmontarse el cuerpo insertable del ruptor, cerrarse el tornillo de salida de keroseno del recipiente de aceite y volverse a montar el cuerpo insertable del ruptor.

5.3.4 Ejecución de la medición de resistencia con corriente continua en el transformador

La corriente continua de medición se limita normalmente al 10 % de la corriente asignada del arrollamiento del transformador para evitar un calentamiento excesivo del devanado.

Ejecute la medición de resistencia con corriente continua en las distintas posiciones de servicio del cambiador de tomas bajo carga. Para ello, debe distinguir si la corriente medida debe interrumpirse o no durante el cambio de la posición de servicio.

<table>
<thead>
<tr>
<th>Estado del recipiente de aceite</th>
<th>sin interrupción de la corriente medida</th>
<th>con interrupción (corriente medida = 0 A antes de cambiar la posición de servicio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipiente de aceite vacío</td>
<td>máximo 10 A CC</td>
<td>máximo 50 A CC</td>
</tr>
<tr>
<td>Recipiente de aceite llenado con líquido aislante</td>
<td>máximo 50 A CC</td>
<td>máximo 50 A CC</td>
</tr>
</tbody>
</table>

Tabla 11: Corrientes medidas máximas admitidas en la medición de resistencia con corriente continua en el transformador

5.3.5 Secado del cambiador de tomas bajo carga en el horno de secado

¡Daños en el cambiador de tomas bajo carga!

La humedad en el recipiente de aceite disminuye la rigidez dieléctrica del líquido aislante y con ello provoca daños en el cambiador de tomas bajo carga.

- Tras el secado, en el plazo de 10 horas cierre el recipiente de aceite con la tapa de la cabeza del cambiador de tomas bajo carga.

Seque el cambiador de tomas bajo carga según las siguientes normativas con el fin de garantizar los valores dieléctricos asegurados por MR para el cambiador de tomas bajo carga.

En un secado en el horno de secado son posibles los siguientes tipos:

- secado al vacío
- secado con vapor de keroseno
Como alternativa al secado en el horno de secado también puede secar el cambiador de tomas bajo carga en la cuba del transformador.

5.3.5.1 Secado al vacío en horno de secado

En caso de que tras el secado desee realizar de nuevo una medición de la relación de transformación, proceda según se describe en el apartado “Ejecución de la medición de la relación de transformación tras el secado” [► Apartado 5.3.8, Página 114].

5.3.5.1.1 Conmutación del cambiador de tomas bajo carga a la posición de ajuste

- Conmute el cambiador de tomas bajo carga a la posición de ajuste La posición de ajuste está indicada en el esquema de conexiones suministrado con el cambiador de tomas bajo carga.

5.3.5.1.2 Desmontaje de la tapa de la cabeza del cambiador de tomas bajo carga

¡Peligro de explosión!

Los gases explosivos debajo de la tapa de la cabeza del cambiador de tomas bajo carga pueden deflagrar o explotar y con ello provocar la muerte o lesiones graves.

- Asegúrese de que en la cercanía no haya ni se produzcan fuentes de ignición como fuego abierto, superficies calientes o chispas (p. ej. por carga estática).
- Desconecte la tensión de todos los circuitos auxiliares (p. ej. dispositivo de vigilancia de conmutación, válvula de alivio de presión, dispositivo supervisor de presión) antes de quitar la tapa de la cabeza del cambiador de tomas bajo carga.
- No ponga en funcionamiento aparatos eléctricos durante los trabajos (p. ej. formación de chispas a causa de atomilladores de percusión).

¡Daños en el cambiador de tomas bajo carga!

Las piezas pequeñas en el recipiente de aceite pueden bloquear el cuerpo insertable del ruptor dañando así el cambiador de tomas bajo carga.

- Asegúrese de que no caigan piezas en el recipiente de aceite.
- Controle el número total de las piezas pequeñas.

1. Asegúrese de que la mirilla esté cerrada con la tapa.
2. Retire los tornillos con arandelas de la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 84: Tapa de la cabeza del cambiador de tomas bajo carga

3. Retire la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 85: Tapa de la cabeza del cambiador de tomas bajo carga

5.3.5.1.3 Secado del cambiador de tomas bajo carga

AVISO
¡Daños en la tapa de la cabeza del cambiador de tomas bajo carga y en los accesorios del cambiador de tomas bajo carga!

La tapa de la cabeza del cambiador de tomas bajo carga y los accesorios del cambiador de tomas bajo carga se dañan en caso de secarse.

► Nunca seque la tapa de la cabeza del cambiador de tomas bajo carga ni los siguientes accesorios: accionamiento a motor, árbol de accionamiento, relé de protección, dispositivo supervisor de presión, válvula de alivio de presión, reenvío angular, sonda térmica, unidad de filtrado de aceite.

1. Caliente el cambiador de tomas bajo carga en aire a presión atmosférica con un aumento de temperatura de aprox. 10 °C/h hasta una temperatura final de máximo 110 °C.

2. Seque previamente el cambiador de tomas bajo carga en circulación de aire a como máximo 110 °C durante 20 horas como mínimo.

3. Seque al vacío el cambiador de tomas bajo carga a una temperatura de 105 °C hasta máx. 125 °C durante al menos 50 horas de secado al vacío.
4. Presión residual máxima 10^{-3} bar.

5.3.5.1.4 Fijación de la tapa de la cabeza del cambiador de tomas bajo carga

AVISO

¡Daños en el cambiador de tomas bajo carga!

La falta de una junta tórica o una junta tórica dañada así como superficies de junta sucias provocan la salida de líquido aislante y con ello daños en el cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica se inserte sin torcerse en la tapa de la cabeza del cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica no se dañe durante el montaje de la tapa.

► Asegúrese de que las superficies de junta en la tapa de la cabeza del cambiador de tomas bajo carga y la cabeza del cambiador de tomas bajo carga estén limpias.

1. Compruebe que los muelles de ajuste estén bien fijados en el eje adaptador. Dado el caso, asegure los muelles de ajuste con vaselina para que no caigan.

![Figura 86: Muelles de ajuste](image)
2. Coloque la tapa de la cabeza del cambiador de tomas bajo carga sobre la cabeza del cambiador de tomas bajo carga de forma que las marcas de triángulo rojas de la cabeza del cambiador de tomas bajo carga y de la tapa de la cabeza del cambiador de tomas bajo carga coincidan.

3. Atornille la tapa de la cabeza del cambiador de tomas bajo carga con la cabeza del cambiador de tomas bajo carga.

5.3.5.2 Secado con vapor de keroseno en horno de secado

En caso de que tras el secado desee realizar de nuevo una medición de la relación de transformación, proceda según se describe en el apartado “Ejecución de la medición de la relación de transformación tras el secado” [Apartado 5.3.8, Página 114].
5.3.5.2.1 Conmutación del cambiador de tomas bajo carga a la posición de ajuste

► Conmute el cambiador de tomas bajo carga a la posición de ajuste. La posición de ajuste está indicada en el esquema de conexiones suministrado con el cambiador de tomas bajo carga.

5.3.5.2.2 Desmontaje de la tapa de la cabeza del cambiador de tomas bajo carga

⚠️ ADVERTENCIA

¡Peligro de explosión!

Los gases explosivos debajo de la tapa de la cabeza del cambiador de tomas bajo carga pueden deflagrar o explotar y con ello provocar la muerte o lesiones graves.

► Asegúrese de que en la cercanía no haya ni se produzcan fuentes de ignición como fuego abierto, superficies calientes o chispas (p. ej. por carga estática).

► Desconecte la tensión de todos los circuitos auxiliares (p. ej. dispositivo de vigilancia de conmutación, válvula de alivio de presión, dispositivo supervisor de presión) antes de quitar la tapa de la cabeza del cambiador de tomas bajo carga.

► No ponga en funcionamiento aparatos eléctricos durante los trabajos (p. ej. formación de chispas a causa de atornilladores de percusión).

⚠️ AVISO

¡Daños en el cambiador de tomas bajo carga!

Las piezas pequeñas en el recipiente de aceite pueden bloquear el cuerpo insertable del ruptor dañando así el cambiador de tomas bajo carga.

► Asegúrese de que no caigan piezas en el recipiente de aceite.

► Controle el número total de las piezas pequeñas.

1. Asegúrese de que la mirilla esté cerrada con la tapa.
2. Retire los tornillos con arandelas de la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 89: Tapa de la cabeza del cambiador de tomas bajo carga
3. Retire la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 90: Tapa de la cabeza del cambiador de tomas bajo carga

5.3.5.2.3 Apertura del tornillo de salida de keroseno

► ¡AVISO! Nunca retire completamente el tornillo de salida de keroseno. Abra en sentido horario el tornillo de salida de keroseno entre el fondo del recipiente de aceite y el engranaje del selector solo hasta encontrar una cierta resistencia.

Figura 91: Tornillo de salida de keroseno

5.3.5.2.4 Secado del cambiador de tomas bajo carga

¡Daños en la tapa de la cabeza del cambiador de tomas bajo carga y en los accesorios del cambiador de tomas bajo carga!

La tapa de la cabeza del cambiador de tomas bajo carga y los accesorios del cambiador de tomas bajo carga se dañan en caso de secarse.

► Nunca seque la tapa de la cabeza del cambiador de tomas bajo carga ni los siguientes accesorios: accionamiento a motor, árbol de accionamiento, relé de protección, dispositivo supervisor de presión, válvula de alivio de presión, reenvío angular, sonda térmica, unidad de filtrado de aceite.
1. Suministre vapor de keroseno a una temperatura de aprox. 90 °C. Mantenga la temperatura constante durante aprox. 3...4 horas.
2. Aumente la temperatura del vapor de keroseno unos 10 °C/h hasta la temperatura final deseada de como máx. 125 °C en el cambiador de tomas bajo carga.
3. Seque al vacío el cambiador de tomas bajo carga a una temperatura de 105 °C hasta máx. 125 °C durante al menos 50 horas de secado al vacío.
4. Presión residual máxima 10⁻³ bar.

5.3.5.2.5 Cierre del tornillo de salida de keroseno
► ¡AVISO! Un tornillo de salida de keroseno provoca la salida de líquido aislante del recipiente de aceite y con ello daños en el cambiador de tomas bajo carga. Cierre el tornillo de salida de keroseno (par de torsión 20 Nm).

5.3.5.2.6 Fijación de la tapa de la cabeza del cambiador de tomas bajo carga

¡Daños en el cambiador de tomas bajo carga!
La falta de una junta tórica o una junta tórica dañada así como superficies de junta sucias provocan la salida de líquido aislante y con ello daños en el cambiador de tomas bajo carga.
► Asegúrese de que la junta tórica se inserte sin torcerse en la tapa de la cabeza del cambiador de tomas bajo carga.
► Asegúrese de que la junta tórica no se dañe durante el montaje de la tapa.
► Asegúrese de que las superficies de junta en la tapa de la cabeza del cambiador de tomas bajo carga y la cabeza del cambiador de tomas bajo carga estén limpias.

1. Compruebe que los muelles de ajuste estén bien fijados en el eje adaptador. Dado el caso, asegure los muelles de ajuste con vaselina para que no caigan.

Figura 92: Muelles de ajuste
2. Coloque la tapa de la cabeza del cambiador de tomas bajo carga sobre la cabeza del cambiador de tomas bajo carga de forma que las marcas de triángulo rojas de la cabeza del cambiador de tomas bajo carga y de la tapa de la cabeza del cambiador de tomas bajo carga coincidan.

3. Atornille la tapa de la cabeza del cambiador de tomas bajo carga con la cabeza del cambiador de tomas bajo carga.

5.3.6 Secado del cambiador de tomas bajo carga en la cuba del transformador

Seque el cambiador de tomas bajo carga según las siguientes normativas con el fin de garantizar los valores dieléctricos asegurados por MR para el cambiador de tomas bajo carga.
Si desea secar el cambiador de tomas bajo carga en la cuba del transformador, en primer lugar debe finalizar el ensamblaje del transformador y a continuación llevar a cabo el secado.

En un secado en la cuba del transformador son posibles los siguientes tipos:
- secado al vacío
- secado con vapor de keroseno

Como alternativa al secado en la cuba del transformador también puede secar el cambiador de tomas bajo carga en el horno de secado.

5.3.6.1 Secado al vacío en la cuba del transformador

¡La tapa de la cabeza del cambiador de tomas bajo carga permanece cerrada durante todo el proceso de secado!

1. Prepare la tubería de comunicación en la cabeza del cambiador de tomas bajo carga opcionalmente entre las conexiones E2 y Q o E2 y R.
2. Obsture con una tapa ciega adecuada las conexiones para tubería que no se utilizan.

Figura 95: Tubería de comunicación

Secado al vacío en la cuba del transformador

1. Caliente el cambiador de tomas bajo carga en aire a presión atmosférica con un aumento de temperatura de aprox. 10 °C/h hasta una temperatura final de máximo 110 °C.
2. Seque previamente el cambiador de tomas bajo carga en circulación de aire a como máximo 110 °C durante 20 horas como mínimo.
3. Seque al vacío el cambiador de tomas bajo carga a una temperatura de 105 °C hasta máx. 125 °C durante al menos 50 horas de secado al vacío.
4. Presión residual máxima 10^{-3} bar.
En caso de que tras el secado desee realizar de nuevo una medición de la relación de transformación, proceda según se describe en el apartado “Ejecución de la medición de la relación de transformación tras el secado” [► Apartado 5.3.8, Página 114].

5.3.6.2 Secado con vapor de keroseno en la cuba del transformador

En caso de que ya haya abierto previamente el tornillo de salida de keroseno (p. ej. tras la medición de la relación de transformación), puede empezar directamente con el secado [► Apartado 5.3.6.2.4, Página 111].

De lo contrario, primero deberá abrir el tornillo de salida de keroseno antes de iniciar el secado.

5.3.6.2.1 Desmontaje del cuerpo insertable del ruptor

5.3.6.2.1.1 Conmutación del cambiador de tomas bajo carga a la posición de ajuste

► Conmute el cambiador de tomas bajo carga a la posición de ajuste La posición de ajuste está indicada en el esquema de conexiones suministrado con el cambiador de tomas bajo carga.

5.3.6.2.1.2 Desmontaje de la tapa de la cabeza del cambiador de tomas bajo carga

¡Peligro de explosión!

Los gases explosivos debajo de la tapa de la cabeza del cambiador de tomas bajo carga pueden deflagrar o explotar y con ello provocar la muerte o lesiones graves.

► Asegúrese de que en la cercanía no haya ni se produzcan fuentes de ignición como fuego abierto, superficies calientes o chispas (p. ej. por carga estática).

► Desconecte la tensión de todos los circuitos auxiliares (p. ej. dispositivo de vigilancia de conmutación, válvula de alivio de presión, dispositivo supervisor de presión) antes de quitar la tapa de la cabeza del cambiador de tomas bajo carga.

► No ponga en funcionamiento aparatos eléctricos durante los trabajos (p. ej. formación de chispas a causa de atornilladores de percusión).

¡Daños en el cambiador de tomas bajo carga!

Las piezas pequeñas en el recipiente de aceite pueden bloquear el cuerpo insertable del ruptor dañando así el cambiador de tomas bajo carga.

► Asegúrese de que no caigan piezas en el recipiente de aceite.

► Controle el número total de las piezas pequeñas.

1. Asegúrese de que la mirilla esté cerrada con la tapa.
2. Retire los tornillos con arandelas de la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 96: Tapa de la cabeza del cambiador de tomas bajo carga

3. Retire la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 97: Tapa de la cabeza del cambiador de tomas bajo carga

5.3.6.2.1.3 Desmontaje del disco de indicación de posición

➤ Quite el clip elástico del extremo del árbol y retire el disco de indicación de posición.

Figura 98: Disco de indicación de posición
5.3.6.2.1.4 Extracción del cuerpo insertable del ruptor

1. ¡ATENCIÓN! Peligro de lesiones por corte al girar el tubo de acoplamiento sin llave de accionamiento. En caso de que las marcas en la brida de acoplamiento y la cabeza del cambiador de tomas bajo carga no coincidan, gire el tubo de acoplamiento con guantes directamente en el anillo pantalla o bien con una llave de accionamiento de forma que las marcas queden alineadas.

Figura 99: Alineación del tubo de acoplamiento

2. Cuelgue el aparejo de suspensión por cable en los ojetes de soporte del tubo de acoplamiento y coloque en vertical el dispositivo de elevación sobre el cuerpo insertable del ruptor.

3. Saque lentamente y en vertical el cuerpo insertable del ruptor del recipiente de aceite y asegúrese de no retirar el anillo protector del eje para indicador.

Figura 100: Cuerpo insertable del ruptor
4. ¡ATENCIÓN! Un cuerpo insertable del ruptor colocado de forma inestable se podría volcar provocando así lesiones o daños materiales. Coloque el cuerpo insertable del ruptor sobre una superficie plana y asegúrelo para impedir que vuelque. No accione el cuerpo insertable del ruptor cuando esté desmontado ni modifique la posición del acoplamiento del selector.

5.3.6.2.2 Apertura del tornillo de salida de keroseno

► ¡AVISO! Afloje el tornillo de salida de keroseno con una llave tubular prolongada girando en sentido antihorario, hasta que el giro presente cierta resistencia. Nunca desatornille completamente el tornillo de salida de keroseno.

Figura 101: Tornillo de salida de keroseno
5.3.6.2.3 Inserción del cuerpo insertable del ruptor

5.3.6.2.3.1 Inserción del cuerpo insertable del ruptor

1. Asegúrese de que el acoplamiento del selector para el montaje del cuerpo insertable del ruptor se halla en la posición de ajuste.

Figura 102: Marcas de ajuste en el fondo del recipiente de aceite
2. **AVISO** Daños en el cambiador de tomas bajo carga debido a la confusión de los cuerpos insertables del ruptor. Asegúrese de que el número de marcas en el cuerpo insertable del ruptor y la cabeza del cambiador de tomas bajo carga coincidan.

![Diagrama de configuración de marcas](image)

Figura 103: Mismo número de marcas
3. ¡ATENCIÓN! Peligro de lesiones por corte al girar el tubo de acoplamiento sin llave de accionamiento. En caso de que las marcas en el cuerpo insertable del ruptor no coincidan, gire el tubo de acoplamiento con guantes directamente en el anillo pantalla o bien con una llave de accionamiento de forma que las marcas queden alineadas. Dado el caso, conmute el cuerpo insertable del ruptor.

Figura 104: Marcas en el cuerpo insertable del ruptor

4. Cuelgue el aparejo de suspensión por cable en el cuerpo insertable del ruptor y coloque el cuerpo insertable del ruptor sobre el recipiente de aceite.

5. Alinee el cuerpo insertable del ruptor de tal forma que las marcas del cuerpo insertable del ruptor y las de la cabeza del cambiador de tomas bajo carga coincidan. Asegúrese de que el anillo protector se halle en el eje para indicador. Baje lentamente el cuerpo insertable del ruptor hasta que se deposite correctamente. Debido a la forma del acoplamiento del
selector, el acoplamiento solo puede realizarse en la posición correcta. Los cambiadores de tomas bajo carga con \(Um \geq 300 \text{ kV} \) disponen en el recipiente de aceite de un tubo guía adicional.

Figura 105: Marcas en el cuerpo insertable del ruptor y la cabeza del cambiador de tomas bajo carga

6. Controle la distancia entre el lado frontal superior del eje adaptador del cuerpo insertable del ruptor y la superficie de montaje de la cabeza del cambiador de tomas bajo carga. La distancia debe ser de \(13 \pm 2 \text{ mm} \).

Figura 106: Distancia entre el lado frontal superior del eje adaptador del cuerpo insertable del ruptor y la superficie de montaje de la cabeza del cambiador de tomas bajo carga
5 Montaje

5.3.6.2.3.2 Colocación del disco de indicación de posición

El montaje del disco de indicación de posición es posible únicamente en la posición correcta mediante un perno de arrastre.

► Encaje el disco de indicación de posición en el eje para indicador y deslíce el clip elástico sobre el extremo del árbol.

Figura 107: Disco de indicación de posición

5.3.6.2.3.3 Fijación de la tapa de la cabeza del cambiador de tomas bajo carga

¡Daños en el cambiador de tomas bajo carga!

La falta de una junta tórica o una junta tórica dañada así como superficies de junta sucias provocan la salida de líquido aislante y con ello daños en el cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica se inserte sin torcerse en la tapa de la cabeza del cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica no se dañe durante el montaje de la tapa.

► Asegúrese de que las superficies de junta en la tapa de la cabeza del cambiador de tomas bajo carga y la cabeza del cambiador de tomas bajo carga estén limpias.
1. Compruebe que los muelles de ajuste estén bien fijados en el eje adaptador. Dado el caso, asegure los muelles de ajuste con vaselina para que no caigan.

Figura 108: Muelles de ajuste

2. Coloque la tapa de la cabeza del cambiador de tomas bajo carga sobre la cabeza del cambiador de tomas bajo carga de forma que las marcas de triángulo rojas de la cabeza del cambiador de tomas bajo carga y de la tapa de la cabeza del cambiador de tomas bajo carga coincidan.

Figura 109: Tapa de la cabeza del cambiador de tomas bajo carga con junta tórica
3. Atornille la tapa de la cabeza del cambiador de tomas bajo carga con la cabeza del cambiador de tomas bajo carga.

![Figura 110: Tapa de la cabeza del cambiador de tomas bajo carga](image)

5.3.6.2.4 Secado del cambiador de tomas bajo carga

1. Conecte las conexiones para tubería R y Q de la cabeza del cambiador de tomas bajo carga con una tubería conjunta a la tubería de vapor de keroseno.

2. Obture con una tapa ciega adecuada las conexiones para tubería que no se utilizan.

![Figura 111: Tubería conjunta](image)

Secado con vapor de keroseno en la cuba del transformador

1. Suministre vapor de keroseno a una temperatura de aprox. 90 °C. Mantenga la temperatura constante durante aprox. 3...4 horas.

2. Aumente la temperatura del vapor de keroseno unos 10 °C/h hasta la temperatura final deseada de como máx. 125 °C en el cambiador de tomas bajo carga.

3. Seque al vacío el cambiador de tomas bajo carga a una temperatura de 105 °C hasta máx. 125 °C durante al menos 50 horas de secado al vacío.

4. Presión residual máxima 10^{-3} bar.
5.3.6.2.5 Cierre del tornillo de salida de keroseno

AVISO

¡Daños en el cambiador de tomas bajo carga!
La humedad en el recipiente de aceite disminuye la rigidez dieléctrica del líquido aislante y con ello provoca daños en el cambiador de tomas bajo carga.

► Tras el secado, en el plazo de 10 horas cierre el recipiente de aceite con la tapa de la cabeza del cambiador de tomas bajo carga.

1. Desmonte [► Apartado 5.3.6.2.1, Página 101] el cuerpo insertable del ruptor.
2. [AVISO] Un tornillo de salida de keroseno provoca la salida de líquido aislante del recipiente de aceite y con ello daños en el cambiador de tomas bajo carga. Afloje el tornillo de salida de keroseno con una llave tubular prolongada girando en sentido horario (par de torsión 20 Nm).
3. Colocación [► Apartado 5.3.6.2.3, Página 105] del cuerpo insertable del ruptor.

En caso de que tras el secado desee realizar de nuevo una medición de la relación de transformación, proceda según se describe en el apartado "Ejecución de la medición de la relación de transformación tras el secado" [► Apartado 5.3.8, Página 114].

5.3.7 Llenado de aceite aislante del recipiente de aceite del cambiador de tomas bajo carga

AVISO

¡Daños en el cambiador de tomas bajo carga!

¡Los líquidos aislantes no adecuados provocan daños en el cambiador de tomas bajo carga!

► Utilice líquidos aislantes que cumplan los requisitos según IEC 60296.

► Siempre que haya sido autorizado por el fabricante del transformador, puede utilizar ésteres sintéticos según IEC 61099 autorizados por Maschinenfabrik Reinhausen GmbH.
Tras el secado llene de nuevo completamente con aceite el recipiente de aceite (cuerpo insertable del ruptor montado) en el mínimo tiempo posible para que no se absorba demasiada humedad no permitida del ambiente.

1. Cree la tubería de comunicación entre la conexión para tubería E2 y una de las conexiones para tubería R, S o Q para garantizar la misma relación de presión en el recipiente de aceite y el transformador durante la evacuación.

![Figura 112: Tubería de comunicación entre E2 y Q](image1)

2. Llene con líquido aislante nuevo el cambiador de tomas bajo carga a través de una de las dos conexiones para tubería libres de la cabeza del cambiador de tomas bajo carga.

![Figura 113: Conexión para tubería S y R](image2)
5.3.8 Ejecución de la medición de la relación de transformación después del secado

AVISO

¡Daños en el cambiador de tomas bajo carga!

Daños en el cambiador de tomas bajo carga a causa de una ejecución incorrecta de la medición de la relación de transformación.

► Asegúrese de que el selector/cambiador de tomas sin tensión penetre completamente en el líquido aislante y de que el recipiente de aceite del cambiador de tomas bajo carga esté completamente lleno de líquido aislante.

► Opere el cambiador de tomas bajo carga únicamente mediante el engranaje reductor superior de una posición de servicio a la siguiente. Para ello puede usar p. ej. un tubo corto (diámetro 25 mm) con un perno de acoplamiento atornillado (diámetro 12 mm) y un volante de mano o una manivela. Si se utiliza un taladro, no supere la velocidad máxima de 250 rpm.

► Compruebe siempre la posición de servicio alcanzada mediante la mirilla de la tapa de la cabeza del cambiador de tomas bajo carga. Las posiciones finales que figuran en el esquema de conexiones suministrado no deberán sobrepasarse en ningún caso.

► En el caso de aplicaciones de varias columnas con accionamiento común una todas las cabezas del cambiador de tomas bajo carga entre sí a través de la pieza horizontal del árbol de accionamiento.

Al accionar el preselector se requiere un aumento del par.

1. Opere el cambiador de tomas bajo carga a la posición de servicio deseada. La conmutación del ruptor es perfectamente audible.

2. **[AVISO]** Si la operación de conmutación no ha finalizado completamente podría dañarse el cambiador de tomas bajo carga. Tras la conmutación del ruptor, siga girando con la manivela 2,5 vueltas el árbol de accionamiento del engranaje reductor superior en el mismo sentido para finalizar correctamente la operación de conmutación.

3. Ejecute la medición de la relación de transformación.

4. Repita la medición de la relación de transformación en todas las posiciones de servicio.

5. Conecte el cambiador de tomas bajo carga en la posición de ajuste (véase el esquema de conexiones suministrado del cambiador de tomas bajo carga).
5.4 Montaje del cambiador de tomas bajo carga en el transformador (modelo con cuba tipo campana)

5.4.1 Suspensión del cambiador de tomas bajo carga en la estructura soporte

5.4.1.1 Fijación de la unidad para guía de potencial en el selector

1. Eleve la unidad para guía de potencial en las eslingas de suspensión pre-montadas y colóquela sobre el preselector.

Figura 114: Elevación de la unidad para guía de potencial
2. Baje despacio la unidad para guía de potencial hasta el soporte premontado de forma que las espigas de los soportes se engranen en las escotaduras de la unidad para guía de potencial y los orificios de los soportes y de la unidad para guía de potencial estén alineados.

Figura 115: Descenso de la unidad para guía de potencial

3. Gire con cuidado los pernos de seguridad suministrados desde la parte exterior hasta que se hallen en el centro.

Figura 116: Fijación de la unidad para guía de potencial
4. Retire las eslingas de suspensión de la unidad para guía de potencial.

Figura 117: Desmontaje de las eslingas de suspensión

5. Solo en el modelo sin contacto para resistencia de guía: atornille 3 o 6 conductores de unión de potencial con el preselector. Para ello, coloque calotas de apantallamiento. El material de fijación y las calotas de apantallamiento están incluidos en el volumen de entrega.

Figura 118: Conductores de unión de potencial
5.4.1.2 Fijación del selector en el recipiente de aceite

1. **¡ATENCIÓN!** Un selector colocado de forma inestable se podría volcar provocando así lesiones o daños materiales. Coloque el selector con la paleta de transporte sobre una superficie plana y asegúrelo para impedir que vuelque.

2. Retire el material de embalaje y el material de transporte marcado en color rojo del selector. Retire los pies de apoyo rojos (si están disponibles) solo cuando el cambiador de tomas bajo carga esté suspendido en la estructura soporte.

3. Quite la bolsa de plástico con material de fijación del selector y prepárelo.

Figura 119: Bolsa de plástico con material de fijación
Figura 120: Bolsa de plástico con material de fijación
4. Retire la cinta de bloqueo del acoplamiento del selector. A continuación, no vuelva a girar el acoplamiento del selector.

Figura 121: Acoplamiento del selector con cinta de bloqueo
5. **¡ATENCIÓN!** Un recipiente de aceite colocado de forma inestable se podría volcar provocando así lesiones graves o daños materiales. Coloque el recipiente de aceite sobre una superficie plana y asegúrelo para impedir que vuelque.
6. Retire la cinta de bloqueo del acoplamiento del fondo del recipiente de aceite.

7. Levante el recipiente de aceite por la cabeza del cambiador de tomas bajo carga y colóquelo cuidadosamente sobre el selector. El peso del recipiente de aceite es de como máx. 320 kg.

8. **AVISO!** Debido a una bajada imprudente del recipiente de aceite, el recipiente de aceite y el selector pueden colisionar y resultar dañados. Baje el recipiente de aceite con cuidado y asegúrese de que los conductores del selector y la unidad para guía de potencial (si están disponibles) pasen libremente sin tocar el recipiente de aceite al bajarlo.

9. Haga coincidir la posición de los dos elementos de acoplamiento y los puntos de fijación del recipiente de aceite y del selector. En los planos de ajuste suministrados viene representada la posición correcta de los dos elementos de acoplamiento.
10. Atornille el selector con el recipiente de aceite.

Figura 124: Selector con recipiente de aceite
11. **[AVISO]** Los pares de torsión incorrectos así como atornilladuras no aseguradas pueden provocar daños en el cambiador de tomas bajo carga. Atornille con cuidado los conductores del selector en la pieza de unión. Respete el par de torsión indicado, asegure la atornilladura y pliegue las calotas de apantallamiento sobre la cabeza del tornillo.
Figura 126: VACUTAP® VRS, conductores del selector
Figura 127: VACUTAP® VRS, conductores del selector
Figura 128: VACUTAP® VRM/VRH/VRX, conductores del selector
Figura 129: VACUTAP® VRM/VRH/VRX, conductores del selector
Figura 130: VACUTAP® VRL/VRH, conductores del selector
5.4.1.3 **Fijación de la unidad para guía de potencial en el recipiente de aceite**

Solo tiene que fijar la unidad para guía de potencial en el recipiente de aceite si en la unidad para guía de potencial se dispone de una escuadra de fijación.
Atornille la unidad para guía de potencial con el anillo de derivación del recipiente de aceite.

Figura 132: Fijación de la unidad para guía de potencial

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tuerca</td>
</tr>
<tr>
<td>2</td>
<td>arandela</td>
</tr>
<tr>
<td>3</td>
<td>manguito distanciador</td>
</tr>
<tr>
<td>4</td>
<td>escuadra de fijación</td>
</tr>
<tr>
<td>5</td>
<td>disco de sujeción</td>
</tr>
<tr>
<td>6</td>
<td>calota de apantallamiento</td>
</tr>
<tr>
<td>7</td>
<td>tornillo</td>
</tr>
</tbody>
</table>
5.4.1.4 Suspensión del cambiador de tomas bajo carga en la estructura soporte

1. **¡AVISO!** Las fuerzas de tracción pueden provocar daños y funcionamientos incorrectos en el cambiador de tomas bajo carga. Cuelgue en posición vertical el cambiador de tomas bajo carga en la estructura soporte utilizando distanciadores (como máximo 1° de divergencia de la vertical), de manera que el cambiador de tomas bajo carga se encuentre a la altura definitiva prevista y, tras enchufar el arrollamiento de tomas y la derivación del cambiador de tomas bajo carga y colocar la cuba tipo campana, solo se deba elevar unos 5...20 mm como máximo.
Figura 133: Cambiador de tomas bajo carga con distanciadores en la estructura soporte
2. Fije temporalmente el cambiador de tomas bajo carga a la estructura soporte. Para ello, la brida de apoyo dispone de taladros.

Figura 134: Fijación del cambiador de tomas bajo carga

3. Retire los pies de apoyo rojos del fondo del selector (si dispone de los mismos).

Figura 135: Pies de apoyo
5.4.2 Conexión del devanado de regulación y de la derivación del cambiador de tomas bajo carga

¡Avisos en el cambiador de tomas bajo carga!

Los conductores de conexión que someten al cambiador de tomas bajo carga a cargas mecánicas lo pueden dañar.

► Cree las conexiones con cuidado.
► No tuerza los terminales.
► Conecte los conductores de conexión sin ejercer esfuerzo mecánico.
► En caso necesario, los conductores de conexión deben presentar un bucle elástico.
► Coloque las calotas de apantallamiento suministradas en las uniones atornilladas.

La conexión del devanado de regulación y de la derivación del cambiador de tomas bajo carga se debe realizar de acuerdo con el esquema de conexiones que acompaña la remesa.

5.4.2.1 Terminales del selector

1. Fije los conductores de conexión con devanados de regulación con terminales y tornillos M12 (los terminales y el material de fijación no forman parte del volumen de entrega) según el esquema de conexiones suministrado. Los taladros pasantes de los terminales se encuentran horizontales de serie.

2. Asegúrese de que los conductores de conexión con devanados de regulación no carguen mecánicamente el selector.

3. Asegure todos los atornillados mediante las medidas adecuadas (p. ej, utilizando discos de sujeción) para evitar que se suelten y desplacen. Para ello, fije las calotas de apantallamiento según la figura.
4. Cierre las calotas de apantallamiento y procure que estén bien fijadas. La cabeza del tornillo y la tuerca deben estar completamente cubiertas.

AVISO

¡Daños en el cambiador de tomas bajo carga!

Los conductores de conexión con devanado de regulación con muy poca distancia a las piezas móviles del preselector lo bloquean dañando así el cambiador de tomas bajo carga.

► Coloque los conductores de conexión con devanados de regulación próximos al preselector con suficiente distancia a las partes móviles del preselector.
Figura 137: Terminales del preselector en conexión con inversor

Figura 138: Tendido de los conductores de conexión con devanados de regulación con suficiente distancia
5.4.2.3 Terminales del preselector en conexión con paso grueso

AVISO

¡Daños en el cambiador de tomas bajo carga!

Los conductores de conexión con devanado de regulación con muy poca distancia a las piezas móviles del preselector lo bloquean dañando así el cambiador de tomas bajo carga.

► Coloque los conductores de conexión con devanados de regulación próximos al preselector con suficiente distancia a las partes móviles del preselector.

![Diagrama de terminales del preselector en conexión con paso grueso](image)

Figura 139: Terminales del preselector en conexión con paso grueso
Figura 140: Tendido de los conductores de conexión con devanados de regulación con suficiente distancia
5.4.2.4 Conexión de la unidad para guía de potencial

► Fije las líneas en las escuadras de conexión de la unidad para guía de potencial con terminales y tornillos M8 (los terminales y el material de fijación no forman parte del volumen de entrega) según el esquema de conexiones suministrado. Asegúrese de que las líneas no carguen mecánicamente la unidad para guía de potencial.

Figura 141: Escuadra de conexión de la unidad para guía de potencial

1 escuadra de conexión para conexión por parte del cliente

5.4.2.5 Conexión de la derivación del cambiador de tomas bajo carga

1. Conecte la derivación del cambiador de tomas bajo carga con terminal y tornillo en cualquier taladro pasante en el anillo de derivación. El terminal y el material de fijación no se incluyen en el volumen de entrega.
5 Montaje

2. Asegure el atornillado mediante las medidas adecuadas (p. ej. utilizando discos de sujeción) para evitar que se suelten y desplacen.

Figura 142: Anillo de derivación en el recipiente de aceite
5.4.3 Ejecución de la medición de la relación de transformación antes del secado

¡Daños en el cambiador de tomas bajo carga!

Daños en el cambiador de tomas bajo carga a causa de una ejecución incorrecta de la medición de la relación de transformación.

► Opere el cambiador de tomas bajo carga como máximo 250 veces. En caso de más de 250 conmutaciones llene el recipiente de aceite completamente con líquido aislante y lubrique con líquido aislante las superficies de rodadura de los contactos en el selector y el engranaje del selector.

► Opere el cambiador de tomas bajo carga únicamente mediante el engranaje reductor superior de una posición de servicio a la siguiente. Para ello puede usar p. ej. un tubo corto (diámetro 25 mm) con un perno de acoplamiento atornillado (diámetro 12 mm) y un volante de mano o una manivela. Si se utiliza un taladro, no supere la velocidad máxima de 250 rpm.

► Compruebe siempre la posición de servicio alcanzada mediante la mirilla de la tapa de la cabeza del cambiador de tomas bajo carga. Las posiciones finales que figuran en el esquema de conexiones suministrado no deberán sobrepasarse en ningún caso.

► En el caso de aplicaciones de varias columnas con accionamiento común una todas las cabezas del cambiador de tomas bajo carga entre sí a través de las piezas horizontales del árbol de accionamiento.

Al accionar el preselector se requiere un aumento del par.

1. Opere el cambiador de tomas bajo carga a la posición de servicio deseada. La conmutación del ruptor es perfectamente audible.

2. ¡AVISO! Si la operación de conmutación no ha finalizado completamente podría dañarse el cambiador de tomas bajo carga. Tras la conmutación del ruptor, siga girando con la manivela 2,5 vueltas el árbol de accionamiento del engranaje reductor superior en el mismo sentido para finalizar correctamente la operación de conmutación.

3. Ejecute la medición de la relación de transformación.

4. Repita la medición de la relación de transformación en todas las posiciones de servicio.

5. Conecte el cambiador de tomas bajo carga en la posición de ajuste (véase el esquema de conexiones suministrado del cambiador de tomas bajo carga).
Tras la medición de la relación de transformación, abra el tornillo de salida de keroseno del recipiente de aceite cuando deba secarse el cambiador de tomas bajo carga con keroseno en la cuba del transformador. Tras el secado, debe desmontarse el cuerpo insertable del ruptor, cerrarse el tornillo de salida de keroseno del recipiente de aceite y volverse a montar el cuerpo insertable del ruptor.

5.4.4 Ejecución de la medición de resistencia con corriente continua en el transformador

La corriente continua de medición se limita normalmente al 10 % de la corriente asignada del arrollamiento del transformador para evitar un calentamiento excesivo del devanado.

Ejecute la medición de resistencia con corriente continua en las distintas posiciones de servicio del cambiador de tomas bajo carga. Para ello, debe distinguir si la corriente medida debe interrumpirse o no durante el cambio de la posición de servicio.

<table>
<thead>
<tr>
<th>Estado del recipiente de aceite</th>
<th>sin interrupción de la corriente medida</th>
<th>con interrupción (corriente medida = 0 A antes de cambiar la posición de servicio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipiente de aceite vacío</td>
<td>máximo 10 A CC</td>
<td>máximo 50 A CC</td>
</tr>
<tr>
<td>Recipiente de aceite llenado con líquido aislante</td>
<td>máximo 50 A CC</td>
<td>máximo 50 A CC</td>
</tr>
</tbody>
</table>

Tabla 12: Corrientes medidas máximas admitidas en la medición de resistencia con corriente continua en el transformador

5.4.5 Secado del cambiador de tomas bajo carga en el horno de secado

¡Daños en el cambiador de tomas bajo carga!

La humedad en el recipiente de aceite disminuye la rigidez dieléctrica del líquido aislante y con ello provoca daños en el cambiador de tomas bajo carga.

► Tras el secado, en el plazo de 10 horas cierre el recipiente de aceite con la tapa de la cabeza del cambiador de tomas bajo carga.

Seque el cambiador de tomas bajo carga según las siguientes normativas con el fin de garantizar los valores dieléctricos asegurados por MR para el cambiador de tomas bajo carga.

En un secado en el horno de secado son posibles los siguientes tipos:
- secado al vacío
- secado con vapor de keroseno
Como alternativa al secado en el horno de secado también puede secar el cambiador de tomas bajo carga en la cuba del transformador.

5.4.5.1 **Secado al vacío en horno de secado**

En caso de que tras el secado desee realizar de nuevo una medición de la relación de transformación, proceda según se describe en el apartado "Ejecución de la medición de la relación de transformación tras el secado" [⇒ Apartado 5.4.10, Página 179].

5.4.5.1.1 **Conmutación del cambiador de tomas bajo carga a la posición de ajuste**

► Conmute el cambiador de tomas bajo carga a la posición de ajuste. La posición de ajuste está indicada en el esquema de conexiones suministrado con el cambiador de tomas bajo carga.

5.4.5.1.2 **Desmontaje de la tapa de la cabeza del cambiador de tomas bajo carga**

ADVERTENCIA

¡Peligro de explosión!

Los gases explosivos debajo de la tapa de la cabeza del cambiador de tomas bajo carga pueden deflagrar o explotar y con ello provocar la muerte o lesiones graves.

► Asegúrese de que en la cercanía no haya ni se produzcan fuentes de ignición como fuego abierto, superficies calientes o chispas (p. ej. por carga estática).

► Desconecte la tensión de todos los circuitos auxiliares (p. ej. dispositivo de vigilancia de conmutación, válvula de alivio de presión, dispositivo supervis or de presión) antes de quitar la tapa de la cabeza del cambiador de tomas bajo carga.

► No ponga en funcionamiento aparatos eléctricos durante los trabajos (p. ej. formación de chispas a causa de atomilladores de percusión).

AVISO

¡Daños en el cambiador de tomas bajo carga!

Las piezas pequeñas en el recipiente de aceite pueden bloquear el cuerpo insertable del ruptor dañando así el cambiador de tomas bajo carga.

► Asegúrese de que no caigan piezas en el recipiente de aceite.

► Controle el número total de las piezas pequeñas.

1. Asegúrese de que la mirilla esté cerrada con la tapa.
2. Retire los tornillos con arandelas de la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 143: Tapa de la cabeza del cambiador de tomas bajo carga

3. Retire la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 144: Tapa de la cabeza del cambiador de tomas bajo carga

5.4.5.1.3 Secado del cambiador de tomas bajo carga

AVISO

¡Daños en la tapa de la cabeza del cambiador de tomas bajo carga y en los accesorios del cambiador de tomas bajo carga!

La tapa de la cabeza del cambiador de tomas bajo carga y los accesorios del cambiador de tomas bajo carga se dañan en caso de secarse.

- Nunca seque la tapa de la cabeza del cambiador de tomas bajo carga ni los siguientes accesorios: accionamiento a motor, árbol de accionamiento, relé de protección, dispositivo supervisor de presión, válvula de alivio de presión, reenvío angular, sonda térmica, unidad de filtrado de aceite.

1. Caliente el cambiador de tomas bajo carga en aire a presión atmosférica con un aumento de temperatura de aprox. 10 °C/h hasta una temperatura final de máximo 110 °C.
2. Seque previamente el cambiador de tomas bajo carga en circulación de aire a como máximo 110 °C durante 20 horas como mínimo.
3. Seque al vacío el cambiador de tomas bajo carga a una temperatura de 105 °C hasta máx. 125 °C durante al menos 50 horas de secado al vacío.
4. Presión residual máxima 10^{-3} bar.

5.4.5.1.4 Fijación de la tapa de la cabeza del cambiador de tomas bajo carga

AVISO

¡Daños en el cambiador de tomas bajo carga! La falta de una junta tórica o una junta tórica dañada así como superficies de junta sucias provocan la salida de líquido aislante y con ello daños en el cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica se inserte sin torcerse en la tapa de la cabeza del cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica no se dañe durante el montaje de la tapa.

► Asegúrese de que las superficies de junta en la tapa de la cabeza del cambiador de tomas bajo carga y la cabeza del cambiador de tomas bajo carga estén limpias.

1. Compruebe que los muelles de ajuste estén bien fijados en el eje adaptador. Dado el caso, asegure los muelles de ajuste con vaselina para que no caigan.

Figura 145: Muelles de ajuste
2. Coloque la tapa de la cabeza del cambiador de tomas bajo carga sobre la cabeza del cambiador de tomas bajo carga de forma que las marcas de triángulo rojas de la cabeza del cambiador de tomas bajo carga y de la tapa de la cabeza del cambiador de tomas bajo carga coincidan.

![Figura 146: Tapa de la cabeza del cambiador de tomas bajo carga con junta tórica](image)

3. Atornille la tapa de la cabeza del cambiador de tomas bajo carga con la cabeza del cambiador de tomas bajo carga.

![Figura 147: Tapa de la cabeza del cambiador de tomas bajo carga](image)

5.4.5.2 Secado con vapor de keroseno en horno de secado

En caso de que tras el secado desee realizar de nuevo una medición de la relación de transformación, proceda según se describe en el apartado "Ejecución de la medición de la relación de transformación tras el secado" [● A-apartado 5.4.10, Página 179].
5.4.5.2.1 Conmutación del cambiador de tomas bajo carga a la posición de ajuste

► Conmute el cambiador de tomas bajo carga a la posición de ajuste. La posición de ajuste está indicada en el esquema de conexiones suministrado con el cambiador de tomas bajo carga.

5.4.5.2.2 Desmontaje de la tapa de la cabeza del cambiador de tomas bajo carga

¡Peligro de explosión!

Los gases explosivos debajo de la tapa de la cabeza del cambiador de tomas bajo carga pueden deflagrar o explotar y con ello provocar la muerte o lesiones graves.

► Asegúrese de que en la cercanía no haya ni se produzcan fuentes de ignición como fuego abierto, superficies calientes o chispas (p. ej. por carga estática).

► Desconecte la tensión de todos los circuitos auxiliares (p. ej. dispositivo de vigilancia de conmutación, válvula de alivio de presión, dispositivo supervisor de presión) antes de quitar la tapa de la cabeza del cambiador de tomas bajo carga.

► No ponga en funcionamiento aparatos eléctricos durante los trabajos (p. ej. formación de chispas a causa de atornilladores de percusión).

¡Daños en el cambiador de tomas bajo carga!

Las piezas pequeñas en el recipiente de aceite pueden bloquear el cuerpo insertable del ruptor dañando así el cambiador de tomas bajo carga.

► Asegúrese de que no caigan piezas en el recipiente de aceite.

► Controle el número total de las piezas pequeñas.

1. Asegúrese de que la mirilla esté cerrada con la tapa.

2. Retire los tornillos con arandelas de la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 148: Tapa de la cabeza del cambiador de tomas bajo carga
3. Retire la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 149: Tapa de la cabeza del cambiador de tomas bajo carga

5.4.5.2.3 Apertura del tornillo de salida de keroseno

► ¡AVISO! Nunca retire completamente el tornillo de salida de keroseno. Abra en sentido horario el tornillo de salida de keroseno entre el fondo del recipiente de aceite y el engranaje del selector solo hasta encontrar una cierta resistencia.

Figura 150: Tornillo de salida de keroseno

5.4.5.2.4 Secado del cambiador de tomas bajo carga

¡Daños en la tapa de la cabeza del cambiador de tomas bajo carga y en los accesorios del cambiador de tomas bajo carga!

La tapa de la cabeza del cambiador de tomas bajo carga y los accesorios del cambiador de tomas bajo carga se dañan en caso de secarse.

► Nunca seque la tapa de la cabeza del cambiador de tomas bajo carga ni los siguientes accesorios: accionamiento a motor, árbol de accionamiento, relé de protección, dispositivo supervisor de presión, válvula de alivio de presión, reenvío angular, sonda térmica, unidad de filtrado de aceite.
1. Suministre vapor de keroseno a una temperatura de aprox. 90 °C. Mantenga la temperatura constante durante aprox. 3...4 horas.
2. Aumente la temperatura del vapor de keroseno unos 10 °C/h hasta la temperatura final deseada de como máx. 125 °C en el cambiador de tomas bajo carga.
3. Seque al vacío el cambiador de tomas bajo carga a una temperatura de 105 °C hasta máx. 125 °C durante al menos 50 horas de secado al vacío.
4. Presión residual máxima 10^{-3} bar.

5.4.5.2.5 Cierre del tornillo de salida de keroseno

¡AVISO! Un tornillo de salida de keroseno provoca la salida de líquido aislante del recipiente de aceite y con ello daños en el cambiador de tomas bajo carga. Cierre el tornillo de salida de keroseno (par de torsión 20 Nm).

5.4.5.2.6 Fijación de la tapa de la cabeza del cambiador de tomas bajo carga

¡Daños en el cambiador de tomas bajo carga!

La falta de una junta tórica o una junta tórica dañada así como superficies de junta sucias provocan la salida de líquido aislante y con ello daños en el cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica se inserte sin torcerse en la tapa de la cabeza del cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica no se dañe durante el montaje de la tapa.

► Asegúrese de que las superficies de junta en la tapa de la cabeza del cambiador de tomas bajo carga y la cabeza del cambiador de tomas bajo carga estén limpias.

1. Compruebe que los muelles de ajuste estén bien fijados en el eje adaptador. Dado el caso, asegure los muelles de ajuste con vaselina para que no caigan.

Figura 151: Muelles de ajuste
2. Coloque la tapa de la cabeza del cambiador de tomas bajo carga sobre la cabeza del cambiador de tomas bajo carga de forma que las marcas de triángulo rojas de la cabeza del cambiador de tomas bajo carga y de la tapa de la cabeza del cambiador de tomas bajo carga coincidan.

Figura 152: Tapa de la cabeza del cambiador de tomas bajo carga con junta tórica

3. Atornille la tapa de la cabeza del cambiador de tomas bajo carga con la cabeza del cambiador de tomas bajo carga.

Figura 153: Tapa de la cabeza del cambiador de tomas bajo carga
5.4.6 Elevación de la parte superior de la cabeza del cambiador de tomas bajo carga de la brida de apoyo (parte inferior)

5.4.6.1 Desmontaje de la tapa de la cabeza del cambiador de tomas bajo carga

ADVERTENCIA

¡Peligro de explosión!

Los gases explosivos debajo de la tapa de la cabeza del cambiador de tomas bajo carga pueden deflagrar o explotar y con ello provocar la muerte o lesiones graves.

► Asegúrese de que en la cercanía no haya ni se produzcan fuentes de ignición como fuego abierto, superficies calientes o chispas (p. ej. por carga estática).

► Desconecte la tensión de todos los circuitos auxiliares (p. ej. dispositivo de vigilancia de conmutación, válvula de alivio de presión, dispositivo supervisor de presión) antes de quitar la tapa de la cabeza del cambiador de tomas bajo carga.

► No ponga en funcionamiento aparatos eléctricos durante los trabajos (p. ej. formación de chispas a causa de atornilladores de percusión).

AVISO

¡Daños en el cambiador de tomas bajo carga!

Las piezas pequeñas en el recipiente de aceite pueden bloquear el cuerpo insertable del ruptor dañando así el cambiador de tomas bajo carga.

► Asegúrese de que no caigan piezas en el recipiente de aceite.

► Controle el número total de las piezas pequeñas.

1. Asegúrese de que la mirilla esté cerrada con la tapa.
2. Quite la fijación temporal y los distanciadores y baje lentamente el cambiador de tomas bajo carga.

Figura 154: Fijación temporal y distanciadores
3. Retire los tornillos con arandelas de la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 155: Tapa de la cabeza del cambiador de tomas bajo carga

4. Retire la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 156: Tapa de la cabeza del cambiador de tomas bajo carga

5.4.6.2 Desmontaje del disco de indicación de posición

► Quite el clip elástico del extremo del árbol y retire el disco de indicación de posición.

Figura 157: Disco de indicación de posición
5.4.6.3 Retirada de la tubería de aspiración de aceite

1. Retire el sujetacables de la tubería de aspiración de aceite.

Figura 158: Tubería de aspiración de aceite

2. Saque la tubería de aspiración de aceite de la cabeza del cambiador de tomas bajo carga.

Figura 159: Tubería de aspiración de aceite

3. Quite la escuadra de sujeción.

Figura 160: Escuadra de sujeción
5.4.6.4 Elevación de la parte superior de la cabeza del cambiador de tomas bajo carga de la brida de apoyo

1. Quite las tuercas y los elementos de seguridad situados entre la parte superior de la cabeza del cambiador de tomas bajo carga y la brida de apoyo.

2. Eleve la parte superior de la cabeza del cambiador de tomas bajo carga de la brida de apoyo.

Figura 161: Parte superior de la cabeza del cambiador de tomas bajo carga con tuercas

Figura 162: Parte superior de la cabeza del cambiador de tomas bajo carga
5.4.7 Colocación de la cuba tipo campana y unión del cambiador de tomas bajo carga con la parte superior de la cabeza del cambiador de tomas bajo carga

5.4.7.1 Colocación de la cuba tipo campana
1. Limpie la superficie de junta de la brida de apoyo y coloque la junta tórica en la brida de apoyo.

Figura 163: Brida de apoyo con junta tórica

2. Levante la cuba tipo campana sobre la parte activa del transformador.

Figura 164: Cuba tipo campana
5.4.7.2 Posicionamiento de la parte superior de la cabeza del cambiador de tomas bajo carga en la cuba tipo campana

1. ¡AVISO! Las juntas no adecuadas provocan la salida de aceite y con ello daños en el cambiador de tomas bajo carga. Coloque una junta adecuada para el líquido aislante utilizado en la brida de montaje. Limpie las superficies de junta de la brida de montaje y de la cabeza del cambiador de tomas bajo carga.

Figura 165: Brida de montaje con junta
2. Baje y posicione la parte superior de la cabeza del cambiador de tomas bajo carga en la brida de montaje de forma que coincidan las marcas de triángulo, los pernos y los orificios de taladrado en la parte superior y la parte inferior de la cabeza del cambiador de tomas bajo carga.

Figura 166: Marcas y pernos de ajuste

5.4.7.3 Unión del cambiador de tomas bajo carga con la parte superior de la cabeza del cambiador de tomas bajo carga

AVISO

¡Daños en el cambiador de tomas bajo carga por elevarlo incorrectamente!

¡Si el cambiador de tomas bajo carga se eleva por los tornillos de fijación de la brida de apoyo, esto podría dañar los tornillos de manera que no se podría atornillar correctamente el cambiador de tomas bajo carga ni la cabeza del cambiador de tomas bajo carga!

► Eleve siempre el cambiador de tomas bajo carga sirviéndose de la travesa de elevación prevista a tal efecto, jamás tirando de los tornillos de fijación de la brida de apoyo.

1. **AVISO** Daños en el cambiador de tomas bajo carga debido al vertido de líquido aislante. Asegúrese de que la junta en el recipiente de aceite esté limpia, intacta y no torcida.
2. Coloque con cuidado el dispositivo de elevación con las garras replegadas en el recipiente de aceite.

Figura 167: Dispositivo de elevación

3. ¡AVISO! Si se alinea incorrectamente la cabeza del cambiador de tomas bajo carga con respecto a la brida de apoyo, al elevar el cambiador de tomas bajo carga se producirán daños en el mismo. Gire hacia afuera las garras del dispositivo de elevación y eleve el recipiente de aceite con el dispositivo de elevación. Asegúrese de que las marcas de triángulo estén alineadas y de que todos los espárragos roscados de la brida de apoyo pasen fácilmente a través de los orificios de fijación de la cabeza del cambiador de tomas bajo carga.

Figura 168: Elevación del cambiador de tomas bajo carga
Al atornillar la parte superior y la parte inferior de la cabeza del cambiador de tomas bajo carga, deje libres los pernos para la placa soporte del dispositivo de vigilancia de conmutación, los pernos para la escuadra de sujeción de la tubería de aspiración de aceite y los pernos distanciadores para la línea del dispositivo de vigilancia de conmutación.

1. Atornille con tuercas y elementos de seguridad la parte superior y la parte inferior de la cabeza del cambiador de tomas bajo carga.

Figura 169: Atornillado de la parte superior de la cabeza del cambiador de tomas bajo carga con la parte inferior

2. Retire el dispositivo de elevación con las garras replegadas.

Figura 170: Desmontaje del dispositivo de elevación
3. Atornille la cabeza del cambiador de tomas bajo carga en la brida de montaje.

![Figura 171: Atornillado de la cabeza del cambiador de tomas bajo carga con la brida de montaje](image1)

5.4.7.4 Colocación de la tubería de aspiración de aceite

1. Fije la escuadra de sujeción.

![Figura 172: Escuadra de sujeción](image2)

2. Coloque la tubería de aspiración de aceite en la cabeza del cambiador de tomas bajo carga.

![Figura 173: Colocación de la tubería de aspiración de aceite](image3)
3. Fije la tubería de aspiración de aceite con los sujetacables suministrados en la escuadra de sujeción. Gire el cierre del sujetacables hacia la escuadra de sujeción.

Figura 174: Sujetacables

5.4.7.5 Colocación del disco de indicación de posición

El montaje del disco de indicación de posición es posible únicamente en la posición correcta mediante un perno de arrastre.

► Encaje el disco de indicación de posición en el eje para indicador y deslice el clip elástico sobre el extremo del árbol.

Figura 175: Disco de indicación de posición
5.4.7.6 Fijación de la tapa de la cabeza del cambiador de tomas bajo carga

AVISOS

¡Daños en el cambiador de tomas bajo carga!

La falta de una junta tórica o una junta tórica dañada así como superficies de junta sucias provocan la salida de líquido aislante y con ello daños en el cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica se inserte sin torcerse en la tapa de la cabeza del cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica no se dañe durante el montaje de la tapa.

► Asegúrese de que las superficies de junta en la tapa de la cabeza del cambiador de tomas bajo carga y la cabeza del cambiador de tomas bajo carga estén limpias.

1. Compruebe que los muelles de ajuste estén bien fijados en el eje adaptador. Dado el caso, asegure los muelles de ajuste con vaselina para que no caigan.

Figura 176: Muelles de ajuste
2. Coloque la tapa de la cabeza del cambiador de tomas bajo carga sobre la cabeza del cambiador de tomas bajo carga de forma que las marcas de triángulo rojas de la cabeza del cambiador de tomas bajo carga y de la tapa de la cabeza del cambiador de tomas bajo carga coincidan.

3. Atornille la tapa de la cabeza del cambiador de tomas bajo carga con la cabeza del cambiador de tomas bajo carga.

5.4.8 Secado del cambiador de tomas bajo carga en la cuba del transformador

Seque el cambiador de tomas bajo carga según las siguientes normativas con el fin de garantizar los valores dielécticos asegurados por MR para el cambiador de tomas bajo carga.
Si desea secar el cambiador de tomas bajo carga en la cuba del transformador, en primer lugar debe finalizar el ensamblaje del transformador y a continuación llevar a cabo el secado.

En un secado en la cuba del transformador son posibles los siguientes tipos:
- secado al vacío
- secado con vapor de keroseno

Como alternativa al secado en la cuba del transformador también puede secar el cambiador de tomas bajo carga en el horno de secado.

5.4.8.1 Secado al vacío en la cuba del transformador

¡La tapa de la cabeza del cambiador de tomas bajo carga permanece cerrada durante todo el proceso de secado!

1. Prepare la tubería de comunicación en la cabeza del cambiador de tomas bajo carga opcionalmente entre las conexiones E2 y Q o E2 y R.
2. Obture con una tapa ciega adecuada las conexiones para tubería que no se utilizan.

Figura 179: Tubería de comunicación

Secado al vacío en la cuba del transformador

1. Caliente el cambiador de tomas bajo carga en aire a presión atmosférica con un aumento de temperatura de aprox. 10 °C/h hasta una temperatura final de máximo 110 °C.
2. Seque previamente el cambiador de tomas bajo carga en circulación de aire a como máximo 110 °C durante 20 horas como mínimo.
3. Seque al vacío el cambiador de tomas bajo carga a una temperatura de 105 °C hasta máx. 125 °C durante al menos 50 horas de secado al vacío.
4. Presión residual máxima 10⁻³ bar.
5.4.8.2 Secado con vapor de keroseno en la cuba del transformador

En caso de que ya haya abierto previamente el tornillo de salida de keroseno (p. ej. tras la medición de la relación de transformación), puede empezar directamente con el secado [Apartado 5.4.8.2.4, Página 176].

De lo contrario, primero deberá abrir el tornillo de salida de keroseno antes de iniciar el secado.

5.4.8.2.1 Desmontaje del cuerpo insertable del ruptor

5.4.8.2.1.1 Conmutación del cambiador de tomas bajo carga a la posición de ajuste

► Conmute el cambiador de tomas bajo carga a la posición de ajuste La posición de ajuste está indicada en el esquema de conexiones suministrado con el cambiador de tomas bajo carga.

5.4.8.2.1.2 Desmontaje de la tapa de la cabeza del cambiador de tomas bajo carga

¡Peligro de explosión!

Los gases explosivos debajo de la tapa de la cabeza del cambiador de tomas bajo carga pueden deflagrar o explotar y con ello provocar la muerte o lesiones graves.

► Asegúrese de que en la cercanía no haya ni se produzcan fuentes de ignición como fuego abierto, superficies calientes o chispas (p. ej. por carga estática).

► Desconecte la tensión de todos los circuitos auxiliares (p. ej. dispositivo de vigilancia de conmutación, válvula de alivio de presión, dispositivo supervisor de presión) antes de quitar la tapa de la cabeza del cambiador de tomas bajo carga.

► No ponga en funcionamiento aparatos eléctricos durante los trabajos (p. ej. formación de chispas a causa de atomilladores de percusión).

¡Daños en el cambiador de tomas bajo carga!

Las piezas pequeñas en el recipiente de aceite pueden bloquear el cuerpo insertable del ruptor dañando así el cambiador de tomas bajo carga.

► Asegúrese de que no caigan piezas en el recipiente de aceite.

► Controle el número total de las piezas pequeñas.

1. Asegúrese de que la mirilla esté cerrada con la tapa.
5 Montaje

2. Retire los tornillos con arandelas de la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 180: Tapa de la cabeza del cambiador de tomas bajo carga

3. Retire la tapa de la cabeza del cambiador de tomas bajo carga.

Figura 181: Tapa de la cabeza del cambiador de tomas bajo carga

5.4.8.2.1.3 Desmontaje del disco de indicación de posición

► Quite el clip elástico del extremo del árbol y retire el disco de indicación de posición.

Figura 182: Disco de indicación de posición
5.4.8.2.1.4 Extracción del cuerpo insertable del ruptor

1. **¡ATENCIÓN!** Peligro de lesiones por corte al girar el tubo de acoplamiento sin llave de accionamiento. En caso de que las marcas en la brida de acoplamiento y la cabeza del cambiador de tomas bajo carga no coincidan, gire el tubo de acoplamiento con guantes directamente en el anillo pantalla o bien con una llave de accionamiento de forma que las marcas queden alineadas.

![Figura 183: Alineación del tubo de acoplamiento](image)

2. Cuelgue el aparejo de suspensión por cable en los ojotes de soporte del tubo de acoplamiento y coloque en vertical el dispositivo de elevación sobre el cuerpo insertable del ruptor.

3. Saque lentamente y en vertical el cuerpo insertable del ruptor del recipiente de aceite y asegúrese de no retirar el anillo protector del eje para indicador.

![Figura 184: Cuerpo insertable del ruptor](image)
5 Montaje

4. ¡ATENCIÓN! Un cuerpo insertable del ruptor colocado de forma inestable se podría volcar provocando así lesiones o daños materiales. Coloque el cuerpo insertable del ruptor sobre una superficie plana y asegúrelo para impedir que vuelque. No accione el cuerpo insertable del ruptor cuando esté desmontado ni modifique la posición del acoplamiento del selector.

5.4.8.2.2 Apertura del tornillo de salida de keroseno

► ¡AVISO! Afloje el tornillo de salida de keroseno con una llave tubular prolongada girando en sentido antihorario, hasta que el giro presente cierta resistencia. Nunca desatornille completamente el tornillo de salida de keroseno.

Figura 185: Tornillo de salida de keroseno
5.4.8.2.3 Inserción del cuerpo insertable del ruptor

5.4.8.2.3.1 Inserción del cuerpo insertable del ruptor

1. Asegúrese de que el acoplamiento del selector para el montaje del cuerpo insertable del ruptor se halla en la posición de ajuste.

Figura 186: Marcas de ajuste en el fondo del recipiente de aceite
2. **AVISO** Daños en el cambiador de tomas bajo carga debido a la confusión de los cuerpos insertables del ruptor. Asegúrese de que el número de marcas en el cuerpo insertable del ruptor y la cabeza del cambiador de tomas bajo carga coincidan.

Figura 187: Mismo número de marcas
3. **¡ATENCIÓN!** Peligro de lesiones por corte al girar el tubo de acoplamiento sin llave de accionamiento. En caso de que las marcas en el cuerpo insertable del ruptor no coincidan, gire el tubo de acoplamiento con guantes directamente en el anillo pantalla o bien con una llave de accionamiento de forma que las marcas queden alineadas. Dado el caso, conmute el cuerpo insertable del ruptor.

4. Cuelgue el aparejo de suspensión por cable en el cuerpo insertable del ruptor y coloque el cuerpo insertable del ruptor sobre el recipiente de aceite.

5. Alinee el cuerpo insertable del ruptor de tal forma que las marcas del cuerpo insertable del ruptor y las de la cabeza del cambiador de tomas bajo carga coincidan. Asegúrese de que el anillo protector se halle en el eje para indicador. Baje lentamente el cuerpo insertable del ruptor hasta que se deposite correctamente. Debido a la forma del acoplamiento del
selector, el acoplamiento solo puede realizarse en la posición correcta.
Los cambiadores de tomas bajo carga con $\text{Um} \geq 300 \text{kV}$ disponen en el recipiente de aceite de un tubo guía adicional.

Figura 189: Marcas en el cuerpo insertable del ruptor y la cabeza del cambiador de tomas bajo carga

6. Controle la distancia entre el lado frontal superior del eje adaptador del cuerpo insertable del ruptor y la superficie de montaje de la cabeza del cambiador de tomas bajo carga. La distancia debe ser de $13 \pm 2 \text{ mm}$.

Figura 190: Distancia entre el lado frontal superior del eje adaptador del cuerpo insertable del ruptor y la superficie de montaje de la cabeza del cambiador de tomas bajo carga
5.4.8.2.3.2 Colocación del disco de indicación de posición

El montaje del disco de indicación de posición es posible únicamente en la posición correcta mediante un perno de arrastre.

► Encaje el disco de indicación de posición en el eje para indicador y deslice el clip elástico sobre el extremo del árbol.

Figura 191: Disco de indicación de posición

5.4.8.2.3.3 Fijación de la tapa de la cabeza del cambiador de tomas bajo carga

¡Daños en el cambiador de tomas bajo carga!

La falta de una junta tórica o una junta tórica dañada así como superficies de junta sucias provocan la salida de líquido aislante y con ello daños en el cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica se inserte sin torcerse en la tapa de la cabeza del cambiador de tomas bajo carga.

► Asegúrese de que la junta tórica no se dañe durante el montaje de la tapa.

► Asegúrese de que las superficies de junta en la tapa de la cabeza del cambiador de tomas bajo carga y la cabeza del cambiador de tomas bajo carga estén limpias.
1. Compruebe que los muelles de ajuste estén bien fijados en el eje adaptador. Dado el caso, asegure los muelles de ajuste con vaselina para que no caigan.

Figura 192: Muelles de ajuste

2. Coloque la tapa de la cabeza del cambiador de tomas bajo carga sobre la cabeza del cambiador de tomas bajo carga de forma que las marcas de triángulo rojas de la cabeza del cambiador de tomas bajo carga y de la tapa de la cabeza del cambiador de tomas bajo carga coincidan.

Figura 193: Tapa de la cabeza del cambiador de tomas bajo carga con junta tórica
3. Atornille la tapa de la cabeza del cambiador de tomas bajo carga con la cabeza del cambiador de tomas bajo carga.

![Figura 194: Tapa de la cabeza del cambiador de tomas bajo carga](image)

5.4.8.2.4 Secado del cambiador de tomas bajo carga

1. Conecte las conexiones para tubería R y Q de la cabeza del cambiador de tomas bajo carga con una tubería conjunta a la tubería de vapor de keroseno.

2. Obture con una tapa ciega adecuada las conexiones para tubería que no se utilizan.

![Figura 195: Tubería conjunta](image)

Secado con vapor de keroseno en la cuba del transformador

1. Suministre vapor de keroseno a una temperatura de aprox. 90 °C. Mantenga la temperatura constante durante aprox. 3...4 horas.

2. Aumente la temperatura del vapor de keroseno unos 10 °C/h hasta la temperatura final deseada de como máx. 125 °C en el cambiador de tomas bajo carga.

3. Seque al vacío el cambiador de tomas bajo carga a una temperatura de 105 °C hasta máx. 125 °C durante al menos 50 horas de secado al vacío.

4. Presión residual máxima 10^{-3} bar.
5 Montaje

5.4.8.2.5 Cierre del tornillo de salida de keroseno

AVISO

¡Daños en el cambiador de tomas bajo carga!

La humedad en el recipiente de aceite disminuye la rigidez dieléctrica del líquido aislante y con ello provoca daños en el cambiador de tomas bajo carga.

► Tras el secado, en el plazo de 10 horas cierre el recipiente de aceite con la tapa de la cabeza del cambiador de tomas bajo carga.

1. Desmonte [► Apartado 5.4.8.2.1, Página 166] el cuerpo insertable del ruptor.

2. [AVISO] Un tornillo de salida de keroseno provoca la salida de líquido aislante del recipiente de aceite y con ello daños en el cambiador de tomas bajo carga. Afloje el tornillo de salida de keroseno con una llave tubular prolongada girando en sentido horario (par de torsión 20 Nm).

3. Colocación [► Apartado 5.4.8.2.3, Página 170] del cuerpo insertable del ruptor.

En caso de que tras el secado desee realizar de nuevo una medición de la relación de transformación, proceda según se describe en el apartado "Ejecución de la medición de la relación de transformación tras el secado" [► Apartado 5.4.10, Página 179].

5.4.9 Llenado de aceite aislante del recipiente de aceite del cambiador de tomas bajo carga

AVISO

¡Daños en el cambiador de tomas bajo carga!

¡Los líquidos aislantes no adecuados provocan daños en el cambiador de tomas bajo carga!

► Utilice líquidos aislantes que cumplan los requisitos según IEC 60296.

► Siempre que haya sido autorizado por el fabricante del transformador, puede utilizar ésteres sintéticos según IEC 61099 autorizados por Maschinenfabrik Reinhausen GmbH.
Tras el secado llene de nuevo completamente con aceite el recipiente de aceite (cuerpo insertable del ruptor montado) en el mínimo tiempo posible para que no se absorba demasiada humedad no permitida del ambiente.

1. Cree la tubería de comunicación entre la conexión para tubería E2 y una de las conexiones para tubería R, S o Q para garantizar la misma relación de presión en el recipiente de aceite y el transformador durante la evacuación.

![Figura 196: Tubería de comunicación entre E2 y Q](image)

2. Llene con líquido aislante nuevo el cambiador de tomas bajo carga a través de una de las dos conexiones para tubería libres de la cabeza del cambiador de tomas bajo carga.

![Figura 197: Conexión para tubería S y R](image)
5.4.10 Ejecución de la medición de la relación de transformación después del secado

¡Daños en el cambiador de tomas bajo carga!

Daños en el cambiador de tomas bajo carga a causa de una ejecución incorrecta de la medición de la relación de transformación.

► Asegúrese de que el selector/cambiador de tomas sin tensión penetre completamente en el líquido aislante y de que el recipiente de aceite del cambiador de tomas bajo carga esté completamente lleno de líquido aislante.

► Opere el cambiador de tomas bajo carga únicamente mediante el engranaje reductor superior de una posición de servicio a la siguiente. Para ello puede usar p. ej. un tubo corto (diámetro 25 mm) con un perno de acoplamiento atornillado (diámetro 12 mm) y un volante de mano o una manivela. Si se utiliza un taladro, no supere la velocidad máxima de 250 rpm.

► Compruebe siempre la posición de servicio alcanzada mediante la mirilla de la tapa de la cabeza del cambiador de tomas bajo carga. Las posiciones finales que figuran en el esquema de conexiones suministrado no deberán sobrepasarse en ningún caso.

► En el caso de aplicaciones de varias columnas con accionamiento común una todas las cabezas del cambiador de tomas bajo carga entre sí a través de la pieza horizontal del árbol de accionamiento.

Al accionar el preselector se requiere un aumento del par.

1. Opere el cambiador de tomas bajo carga a la posición de servicio deseada. La conmutación del ruptor es perfectamente audible.

2. ¡AVISO! Si la operación de conmutación no ha finalizado completamente podría dañarse el cambiador de tomas bajo carga. Tras la conmutación del ruptor, siga girando con la manivela 2,5 vueltas el árbol de accionamiento del engranaje reductor superior en el mismo sentido para finalizar correctamente la operación de conmutación.

3. Ejecute la medición de la relación de transformación.

4. Repita la medición de la relación de transformación en todas las posiciones de servicio.

5. Conecte el cambiador de tomas bajo carga en la posición de ajuste (véase el esquema de conexiones suministrado del cambiador de tomas bajo carga).
5.5 Montaje de dispositivos de protección y componentes de accionamiento

5.5.1 Conexión eléctrica del sensor de temperatura

Dimensióne el cable para la conexión eléctrica de los sensores de temperatura de forma que en caso necesario al montar el árbol de accionamiento pueda girar los sensores de temperatura.

► Conecte eléctricamente los sensores de temperatura según el esquema de conexiones suministrado.

5.5.2 Montaje y conexión del relé de protección en la tubería

¡Peligro de explosión!

Los gases explosivos en el relé de protección pueden deflagrar o explotar y con ello provocar la muerte o lesiones graves.

► Después de la desconexión del transformador espere 15 minutos antes de continuar con otros trabajos en el relé de protección para que los gases de conmutación puedan disiparse.

► Asegúrese de que en la cercanía no haya o se produzcan fuentes de ignición como fuego abierto, superficies calientes o chispas (p. ej. por carga estática).

► Antes de empezar a trabajar desconecte todos los circuitos auxiliares de la tensión.

► No ponga en funcionamiento aparatos eléctricos durante los trabajos (p. ej. formación de chispas a causa de atornilladores de percusión).

Realice siempre todas las pruebas del transformador con el relé de protección montado y conectado.

5.5.2.1 Protección por fusible eléctrica

¡Daños en el cable de conexión!

Daños en el cable de conexión debido a una conexión inadecuada.

► Al tender el cable de conexión, observe las indicaciones del fabricante.

► Evite radios de flexión pequeños y dobladuras no admisibles.

El relé de protección solo puede conectarlo a circuitos de corriente que dispongan de un dispositivo de protección contra sobreintensidades externo y un dispositivo seccionador para todos los polos para poder conectar sin tensión la instalación en caso de necesidad (reparación, mantenimiento, etc.).
Los medios adecuados pueden ser dispositivos seccionadores según IEC 60947-1 e IEC 60947-3 (p. ej. interruptor de potencia). Al seleccionar el tipo de seccionador tenga en cuenta las propiedades de los correspondientes circuitos de corriente (tensión, corrientes máximas). Todos los circuitos de corriente y medios adecuados, como dispositivos seccionadores, deben cumplir los requisitos en cuanto a la protección contra explosión en la correspondiente área con peligro de explosión.

Tenga en cuenta además lo siguiente:

- el dispositivo seccionador debe ser fácilmente accesible para el usuario
- el dispositivo seccionador debe estar identificado para el aparato a aislar y los circuitos de corriente a aislar
- el dispositivo seccionador no puede ser un componente de la línea de red
- el dispositivo seccionador no puede interrumpir el conductor protector principal
- El dispositivo seccionador debe medirse de forma que se cumplan los tiempos de desconexión admisibles para la protección contra choque eléctrico, según el tipo de conexión a tierra de conformidad con los requisitos de DIN VDE 0100-410.
- La funcionalidad del circuito de disparo del interruptor de potencia (cable de alimentación para la bobina del interruptor de potencia) también debe seguir funcionando correctamente en todo momento al reaccionar el dispositivo seccionador.
5.5.2.2 Comprobación del funcionamiento del relé de protección

Compruebe el funcionamiento del relé de protección antes de montarlo en la tubería entre la cabeza del cambiador de tomas bajo carga y el conservador de aceite. Las posiciones de los contactos correspondientes para la comprobación del paso eléctrico pueden deducirse en el dibujo acotado suministra-
do.

1. Desatornille los tornillos de la tapa de la caja de bornes y levante la tapa de la caja de bornes.

Figura 198: Tapa de la caja de bornes

2. Desatornille el tornillo de cabeza ranurada para guía del potencial y desmonte la tapa de la caja de bornes con hilo trenzado.

Figura 199: Tapa de la caja de bornes

¡AVISO!

¡Daños en el relé de protección!
¡Daños en el relé de protección a causa de un manejo inadecuado!
► Nunca accione ambos pulsadores de prueba simultáneamente.
3. Accione el pulsador de prueba DESCONEXIÓN.
⇒ La clapeta está inclinada. El indicador rojo no es visible.

![Figura 200: Posición OFF](image)

4. Accione el pulsador de prueba SERVICIO.
⇒ La clapeta quedará en posición vertical. El indicador rojo aparece en la mirilla.

![Figura 201: Posición SERVICIO](image)
5. Introduzca el hilo trenzado para la tapa de la caja de bornes y fíjelo con el tornillo de cabeza ranurada.

![Figura 202: Tapa de la caja de bornes](image)

6. Coloque la tapa de la caja de bornes y ciérrela con tornillos.

![Figura 203: Tapa de la caja de bornes](image)

5.5.2.3 Montaje del relé de protección en la tubería

Para el montaje y el correcto funcionamiento del relé de protección tenga en cuenta lo siguiente:

1. Asegúrese de que en la tubería y el recipiente de expansión no hay cuerpos extraños.
2. Monte el relé de protección de forma que sea fácilmente accesible para futuros trabajos de mantenimiento.
3. Monte el relé de protección de forma que esté bien apoyado y sin oscilaciones.
4. Los pulsadores de prueba deben hallarse arriba.
5. El diámetro interior de la tubería debe ser de como mínimo 25 mm.
6. La intensidad de campo magnética (aisladores pasantes, barras colecto-
ras, etc.) debe ser de < 20 kA/m. Las intensidades de campo magnéticas
más elevadas influyen negativamente en el funcionamiento del relé de
protección.

7. La tubería del relé de protección hacia el conservador de aceite debe ten-
derse con una inclinación mínima del 2 % (1,2°) para asegurar la libre
evacuación de los gases de conmutación.

8. El relé de protección se ha previsto para una posición de servicio horizon-
tal justo al lado de la cabeza del cambiador de tomas bajo carga. En la di-
rección del conservador se permite una inclinación positiva de hasta 5°
respecto a la horizontal. Respecto a la vertical se permite una inclinación
a ambos lados de como máximo 5°.

Figura 204: Montaje del relé de protección
9. La flecha indicadora de la tapa de la caja de bornes se debe dirigir hacia el conservador de aceite del cambiador de tomas bajo carga.

Figura 205: La flecha indicadora mira hacia el conservador de aceite del cambiador de tomas bajo carga
10. Instale una llave de paso entre el relé de protección y el conservador de aceite con un mínimo de 25 mm de ancho nominal.

Figura 206: Llave de paso

5.5.2.4 Conexión eléctrica del relé de protección

El tubo de conmutación magnético en gas protector del relé de protección se suministra como contacto normalmente abierto o bien como contacto normalmente cerrado en las siguientes variantes:

- 2 contactos NC
- 2 contactos NA
- 1 contacto NC y 1 contacto NA
¡Peligro de muerte y de lesiones corporales graves!

¡Peligro de muerte y de lesiones corporales graves a causa de una conexión eléctrica del relé de protección inadecuada!

► Inserte el relé de protección en el circuito de disparo de los interruptores de potencia del transformador a proteger, de modo que los interruptores de potencia desconecten inmediatamente el transformador al accionarse el relé de protección dejándolo sin tensión.

► No se permiten sistemas en los que solamente se emite una señal de alarma.

Para la conexión eléctrica del relé de protección proceda como se describe a continuación.

1. Conecte el conductor de tierra con una sección de cable de 1…4 mm² en el tornillo cilíndrico.

2. Retire el tapón roscado MR.

3. Inserte el prensacables con certificación Ex en el agujero roscado en el lado de la caja de bornes.

Figura 207: Tapón roscado
4. Desatornille los tornillos de la tapa de la caja de bornes y levante la tapa de la caja de bornes.

![Figura 208: Tapa de la caja de bornes](image)

5. Desatornille el tornillo de cabeza ranurada para guía del potencial y retire la tapa de la caja de bornes con hilo trenzado.

![Figura 209: Tapa de la caja de bornes](image)
6. Retire el tornillo para la cubierta de protección y quite la cubierta de protección.

Figura 210: Tapa de la caja de bornes y cubierta de protección

7. Introduzca los cables con certificación Ex a través del prensacables en el relé de protección. Procure que la atornilladura sea correcta y que el prensacables sea estanco.

8. Conecte las líneas eléctricas con una sección de cable de 1…4 mm² según el esquema de conexiones en los bornes de conexión.

9. Coloque la cubierta de protección y fíjela con un tornillo.

10. Introduzca el hilo trenzado para la tapa de la caja de bornes y fijelo con el tornillo de cabeza ranurada.

Figura 211: Tapa de la caja de bornes
11. Coloque la tapa de la caja de bornes y ciérrela con tornillos.

5.5.3 Montaje del accionamiento a motor
► Monte el accionamiento a motor conforme a las instrucciones de servicio correspondientes de MR del accionamiento a motor en el transformador.

5.5.4 Montaje del árbol de accionamiento

Durante el montaje, tenga en cuenta la siguiente indicación:

AVISO

¡Daños en el accionamiento y en el cambiador de tomas bajo carga o el cambiador de tomas sin tensión!
No se garantiza un funcionamiento sin averías del accionamiento y del cambiador de tomas bajo carga o el cambiador de tomas sin tensión.
► Los extremos del árbol a acoplar deben estar perfectamente alineados.
Desplazamientos axiales admisibles

Se permiten ligeros desplazamientos axiales siempre y cuando no superen los 35 mm por cada 1000 mm de longitud del tubo cuadrado (lo que corresponde a 2°).

Figura 213: Desplazamiento axial máximo admisible del árbol de accionamiento vertical
Resistencia a la corrosión de los componentes

Los tubos cuadrados, los casquillos de acoplamiento, los pernos de acoplamiento, los tornillos y las arandelas de traba son de material anticorrosivo. Por tanto, recomendamos no aplicar a estas piezas la pintura para exteriores de la cuba del transformador.
Corte de los tubos cuadrados, de los tubos protectores telescópicos y de la chapa protectora

Los tubos cuadrados, los tubos protectores telescópicos y la chapa protectora se suministran con exceso de longitud (longitudes normalizadas escalonadas). Debe cortar estas piezas a la medida correcta al montarlas en el transformador. En raras ocasiones también debe cortar el tubo interior del tubo protector telescópico. Longitud máxima admisible del varillaje total del accionamiento; última columna = 15 m.

<table>
<thead>
<tr>
<th>Longitudes normalizadas</th>
<th>TAPMOTION® ED-Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>•</td>
</tr>
<tr>
<td>600</td>
<td>•</td>
</tr>
<tr>
<td>900</td>
<td>•</td>
</tr>
<tr>
<td>1300</td>
<td>•</td>
</tr>
<tr>
<td>1700</td>
<td>•</td>
</tr>
</tbody>
</table>

Tabla 13: Longitudes normalizadas escalonadas de los tubos cuadrados para el accionamiento a motor con protección contra explosión TAPMOTION® ED-Ex

5.5.4.1 Montaje del árbol de accionamiento vertical con aislante

Para montar el árbol de accionamiento vertical, proceda del siguiente modo:

1. ¡ATENCIÓN! Desconecte el guardamotor Q1 del accionamiento a motor (posición O). De lo contrario el accionamiento a motor podría arrancar accidentalmente y provocar lesiones.
2. Atornille el reenvío angular de fijación al transformador por ambos lados con las arandelas de contacto suministradas para garantizar una puesta a tierra duradera. Los tornillos no se incluyen en el volumen de entrega.

Figura 215: Reenvío angular
3. Determine la medida A entre el extremo del árbol del accionamiento y del reenvío angular. Recorte el tubo cuadrado considerando el aislante a la longitud de A–179 mm.

Figura 216: Recorte del tubo cuadrado
4. Desbarbe las interfaces del tubo cuadrado.

Figura 217: Desbarbado de las interfaces

5. Atornille el casquillo de acoplamiento doble con el aislante incluido y el tubo cuadrado. Monte el aislante en el lado orientado hacia el accionamiento.

Figura 218: Atornillado del tubo cuadrado y del aislante con casquillo de acoplamiento doble
6. Desplace la pieza de acoplamiento atornillada suelta en el aislante hasta el tope.

![Figura 219: Desplazamiento de la pieza de acoplamiento en el aislante](image)

7. Coloque el perno de acoplamiento en el extremo del árbol del accionamiento. Engrase la pieza de acoplamiento, el perno de acoplamiento y el extremo del árbol (p. ej. con ISOFLEX TOPAS L32). Deslice el tubo cuadrado con la pieza de acoplamiento en el extremo del árbol.

![Figura 220: Desplazamiento del tubo cuadrado con la pieza de acoplamiento en el extremo del árbol](image)
8. Fije el tubo cuadrado en el accionamiento.

Figura 221: Fijación del tubo cuadrado en el accionamiento

9. Gire el tubo cuadrado.

Figura 222: Giro del tubo cuadrado

10. Para montar el tubo interior del tubo protector telescópico, recorte por el lado no ranurado en caso necesario. La dimensión mínima para el solapado de los dos tubos protectores es de 100 mm.
El tubo interior no puede deformarse ni debe desbarbarse para permitir que se deslice ligeramente en el tubo exterior.

Figura 223: Desbarbado del tubo interior

<table>
<thead>
<tr>
<th>Medida A (= distancia entre el extremo del árbol del accionamiento y el del reenvío angular)</th>
<th>Tubo interior</th>
<th>Tubo exterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>170 mm...190 mm</td>
<td>acortar a 200 mm</td>
<td>= 200 mm</td>
</tr>
<tr>
<td>191 mm...1130 mm</td>
<td>medida A + 20 mm</td>
<td>= 200 mm</td>
</tr>
<tr>
<td>1131 mm...1598 mm</td>
<td>= 700 mm</td>
<td>= 1150 mm</td>
</tr>
<tr>
<td>1599 mm...2009 mm</td>
<td>= 1150 mm</td>
<td>= 1150 mm</td>
</tr>
</tbody>
</table>
11. Para la puesta a tierra separada a una distancia de 110 mm (visto desde el lado ranurado) taladre un orificio en el tubo interior con un diámetro de 11 mm.

Figura 224: Colocación del taladro de puesta a tierra en el tubo protector telescópico
12. Deslice el tubo exterior sobre el tubo interior. Al hacerlo, el lado no ranurado del tubo interior debe señalar hacia arriba. Desplace el tubo protector telescópico sobre el tubo cuadrado. A continuación, deslice las abrazaderas para manguera sobre el tubo protector telescópico.

Figura 225: Deslizamiento del tubo protector telescópico
13. Coloque el anillo adaptador sobre el cuello de apoyo del reenvío angular y desplácelo hacia arriba. Coloque el perno de acoplamiento en el extremo del árbol del reenvío angular. Gire hacia dentro el tubo cuadrado.

Figura 226: Colocación del anillo adaptador y del perno de acoplamiento
14. Engrase los casquillos de acoplamiento, el perno de acoplamiento y el extremo del árbol (p. ej. con ISOFLEX TOPAS L32) y fije el tubo cuadrado con los casquillos de acoplamiento en el reenvío angular. Ajuste un juego axial unilateral de 3 mm entre el perno de acoplamiento y la pieza de acoplamiento superior.

Figura 227: Montaje de los casquillos de acoplamiento
15. Con un cable de puesta a tierra y el tornillo adjunto con arandelas de contacto establezca una conexión desde el tubo protector inferior (tubo interior) a la tierra de servicio. Para ello, monte el tornillo de fijación para el cable de puesta a tierra desde el interior debido al peligro de colisión con la cabeza del tornillo.

Figura 228: Atornillado del cable de puesta a tierra en el tubo protector telescópico
16. Fije el tubo protector inferior (tubo interior) usando una abrazadera para manguera al cuello de apoyo del accionamiento 1. A continuación, desplace el tubo protector superior (tubo exterior) sobre el adaptador del reenvío angular 2. Fije el tubo protector superior en el extremo superior con la segunda abrazadera para manguera 3.

Figura 229: Montaje del tubo protector
17. En ambos tubos, por ejemplo en el centro y desplazados 180°, taladre dos orificios con un diámetro de 4,5 mm. A continuación, enrosque los tornillos para chapa suministrados y bloquee entre sí los tubos protectores para establecer una conexión galvánica.

![Figura 230: Enroscado de los tornillos para chapa](image)

5.5.4.2 Montaje del árbol de accionamiento horizontal con aislante

Alineación del engranaje reductor superior en la cabeza del cambiador de tomas bajo carga

Para el montaje correcto del árbol de accionamiento horizontal, en determinadas circunstancias es posible que primero deba alinear el engranaje reductor superior, de forma que el árbol de accionamiento horizontal quede alineado con el extremo del árbol del engranaje reductor superior.

Para ello proceda de la siguiente manera:

1. **¡AVISO!** Si el engranaje reductor se alinea con el recipiente de aceite no llenado completamente, el cambiador de tomas bajo carga podría dañarse. Asegúrese de que el recipiente de aceite esté completamente lleno de líquido aislante.
2. Suelte los tornillos y gire hacia un lado los segmentos del anillo de presión.

3. ¡AVISO! Alinee el engranaje reductor de forma que el árbol de accionamiento horizontal quede alineado con el árbol de accionamiento del engranaje reductor. Durante la alineación del engranaje reductor, gire el árbol de accionamiento del engranaje reductor de forma que el eje de salida del engranaje reductor mantenga su posición original. De lo contrario, durante la puesta en servicio pueden producirse daños en el cambiador de tomas sin tensión y el transformador.
4. Pliegue hacia atrás los segmentos del anillo de presión en dirección al engranaje reductor y apriete los tornillos. Asegúrese de que la arandela de traba se halle entre la cabeza de tornillo y el segmento del anillo de presión y de que los segmentos del anillo de presión estén bien fijados en la carcasa del engranaje reductor.

Figura 233: Fijación de los segmentos del anillo de presión

Montaje del árbol de accionamiento horizontal

Para montar el árbol de accionamiento horizontal, proceda del siguiente modo:

1. Determine la medida A entre el extremo del eje del engranaje reductor superior y el reenvío angular y recorte el tubo cuadrado a la longitud A−179 mm teniendo en cuenta el aislante.

Figura 234: Recorte del tubo cuadrado
2. Determine la longitud interior B entre las cajas del engranaje reductor superior y el reenvío angular. Corte la chapa de protección a la longitud B-2 mm y desbarbe las interfaces.

Figura 235: Recorte y desbarbado de la chapa protectora

3. Para la puesta a tierra separada a una distancia de 110 mm desde el reenvío angular taladre un orificio en la chapa protectora con un diámetro de 11 mm. Proteja la chapa protectora con una capa de pintura anticorrosiva.

Figura 236: Colocación del taladro de puesta a tierra en la chapa protectora
4. Atornille el casquillo de acoplamiento doble con el aislante incluido y el tubo cuadrado. Monte el aislante en el lado orientado hacia el reenvío angular.

Figura 237: Atornillado del tubo cuadrado y del aislante con casquillo de acoplamiento doble

5. Desplace la pieza de acoplamiento atornillada suelta en el aislante hasta el tope.

Figura 238: Piezas de acoplamiento
6. Engrase el perno de acoplamiento, la pieza de acoplamiento y el extremo de árbol del reenvío angular (p. ej. con ISOFLEX TOPAS L32) y coloque el perno de acoplamiento en el extremo de árbol. Coloque las abrazaderas para manguera en el tubo cuadrado y deslice el tubo cuadrado con la pieza de acoplamiento en el extremo del árbol.

![Figura 239: Desplazamiento del tubo cuadrado con la pieza de acoplamiento en el extremo del árbol](image)

7. Fije el tubo cuadrado en el reenvío angular.

![Figura 240: Fijación del tubo cuadrado en el reenvío angular](image)

8. Engrase el perno de acoplamiento, los casquillos de acoplamiento y el extremo de árbol del engranaje reductor superior (p. ej. con ISOFLEX TOPAS L32) y coloque el perno de acoplamiento en el extremo de árbol. Fije
el tubo cuadrado con el casquillo de acoplamiento en el engranaje reduc-
tor superior. Ajuste un juego axial unilateral de 3 mm entre el perno de
acoplamiento y la pieza de acoplamiento superior.

Figura 241: Fijación del tubo cuadrado en el engranaje reductor superior
9. Encaje la chapa protectora recortada en las piezas insertadas de la caja de la cabeza del cambiador de tomas bajo carga y del reenvío angular. En cada extremo fije la chapa protectora con una abrazadera para manguera respectivamente.

Figura 242: Montaje de la chapa protectora
10. Con un cable de puesta a tierra y el tornillo adjunto con arandelas de contacto establezca una conexión desde la chapa protectora a la tierra de servicio. Para ello, monte el tornillo de fijación para el cable de puesta a tierra desde el interior debido al peligro de colisión con la cabeza del tornillo.

Figura 243: Atornillado del cable de puesta a tierra de la chapa protectora

5.5.4.2.1 **Juegos de cambiadores de tomas bajo carga y combinaciones de cambiadores de tomas bajo carga**

En modelos de cambiador de tomas bajo carga de dos y tres columnas se accionan las distintas columnas del cambiador de tomas bajo carga de un accionamiento a motor común. Debe acoplar las cabezas del cambiador de tomas bajo carga sobre la tapa del transformador y asegurar una conmutación síncrona de las columnas del cambiador de tomas bajo carga.

Para ello proceda de la siguiente manera:

1. Controle que todos los cambiadores de tomas bajo carga se encuentren en igual posición (a través de la mirilla en la cabeza del cambiador de tomas bajo carga). Todos los cambiadores de tomas bajo carga deben estar en posición de ajuste.
2. Gire hacia un lado los segmentos de presión de los engranajes reductores superiores soltando los 6 tornillos M8/anocho de llave 13.

3. ¡AVISO! Lleve los engranajes reductores superiores a la posición de montaje deseada exclusivamente girando los árboles de accionamiento de los engranajes reductores superiores con los segmentos de presión sueltos. En caso de realizarse otro procedimiento al alinear los engranajes reductores superiores pueden producirse daños en el cambiador de tomas bajo carga.

4. Pliegue hacia atrás los segmentos de presión en dirección hacia el engranaje reductor y apriete los tornillos (par de torsión 15 Nm). Asegúrese de que el disco de resorte se halle entre la cabeza del tornillo y el segmento del anillo de presión y de que los segmentos del anillo de presión estén bien fijados en la caja del engranaje reductor.

5. Observe la flecha en la brida del árbol de accionamiento, debajo del número de fabricación estampado. La dirección de la flecha indica el sentido de giro al activar el accionamiento a motor con la manivela en sentido horario y debe coincidir en todos los engranajes reductores.

6. Efectúe el cambio, para cada cambiador de tomas bajo carga de forma individual, avanzando una posición hasta que el cambiador de tomas bajo carga haya actuado. Dicho cambio se efectuará girando los extremos del árbol en sentido antihorario.

7. Compruebe que todas las cabezas del cambiador de tomas bajo carga se hallen en la misma posición.

8. Instale el árbol de accionamiento horizontal entre las cabezas del cambiador de tomas bajo carga. Acople cada cambiador de tomas bajo carga por separado. Comience por el cambiador de tomas bajo carga que se halle más cerca del accionamiento a motor.

9. ¡AVISO! Una vez montados todos los árboles de accionamiento, gire con la manivela 2,5 vueltas el árbol de accionamiento del engranaje reductor superior en sentido antihorario para finalizar correctamente la operación de conmutación. Si la operación de conmutación no ha finalizado completamente podría dañarse el cambiador de tomas bajo carga.

10. Devuelva el cambiador de tomas bajo carga a la posición de ajuste girando el árbol de accionamiento en sentido horario. Una vez que elruptor ha alcanzado la posición de ajuste y realizado el cambio de toma, vuelva a girar con la manivela 2,5 vueltas el árbol de accionamiento del engranaje reductor superior en sentido horario para finalizar correctamente la operación de conmutación.

11. Asegúrese de que todos los cambiadores de tomas bajo carga efectúen el cambio de tomas. En este caso, se permite un mínimo decalaje temporal.

12. Compruebe que todas las cabezas del cambiador de tomas bajo carga se hallen en la misma posición.

13. Instale el árbol de accionamiento vertical.
5.5.5 **Alineación del cambiador de tomas bajo carga y del accionamiento a motor**

► Alinee el cambiador de tomas bajo carga y el accionamiento a motor según las instrucciones de servicio MR "TAPMOTION® ED" correspondientes del accionamiento a motor.

5.5.6 **Conexión eléctrica del accionamiento a motor**

► Conecte eléctricamente el accionamiento a motor según las correspondientes instrucciones de servicio MR del accionamiento a motor.
6 Puesta en servicio

¡Peligro de explosión!

Los gases explosivos en el recipiente de aceite del cambiador de tomas bajo carga, el transformador, el sistema de conducción, el conservador de aceite y en el orificio del deshumidificador de aire pueden deflagrar o explotar y con ello provocar la muerte o lesiones graves.

► Asegúrese de que durante la puesta en servicio en la cercanía del transformador no haya o se produzcan fuentes de ignición como fuego abierto, superficies calientes o chispas (p. ej. por carga estática).
► No ponga en funcionamiento aparatos eléctricos (p. ej. formación de chispas a causa de atornilladores de percusión).
► Utilice exclusivamente mangueras, tubos y dispositivos de bombeo conductivos y puestos a tierra homologados para líquidos inflamables.

¡Peligro de explosión!

Una sobrecarga del cambiador de tomas bajo carga puede provocar una explosión. Las salpicaduras de líquido aislante caliente y piezas que salen despedidas puede provocar la muerte y lesiones graves. Es muy probable que se produzcan daños materiales.

► Asegúrese de que el cambiador de tomas bajo carga no se sobrecargue.
► Uso del cambiador de tomas bajo carga según el apartado "Uso adecuado".
► Evite mediante medidas adecuadas cualquier conexión fuera de las condiciones de servicio admisibles.

6.1 Puesta en servicio del cambiador de tomas bajo carga por parte del fabricante del transformador

Ejecute los trabajos y las comprobaciones de funcionamiento siguientes antes de poner en servicio el transformador.

6.1.1 Purgado de aire de la cabeza del cambiador de tomas bajo carga y de la tubería de aspiración

6.1.1.1 Purgado de aire de la cabeza del cambiador de tomas bajo carga

1. Abra todos los grifos de avance y de retorno del sistema de tuberías.
2. Quite la tapa roscada de la válvula de purga de aire E1 en la tapa de la cabeza del cambiador de tomas bajo carga.

![Figura 244: Tapa roscada](image)

3. Utilizando un destornillador, levante el vástago de la válvula de purga de aire E1 y purgue el aire de la cabeza del cambiador de tomas bajo carga.

![Figura 245: Vástago de la válvula](image)

4. Cierre la válvula de purga de aire E1 con la tapa roscada (par de apriete 10 Nm).
6.1.1.2 Purgado de aire de la tubería de aspiración en la conexión para tubería S

1. Quite la tapa roscada de la conexión para tubería S.

2. **¡AVISO!** Una tubería de aspiración no purgada completamente merma considerablemente el poder aislante contra tierra del cambiador de tomas bajo carga. Abra el tornillo de purga de aire y deje que salga el aire completamente de la tubería de aspiración.

3. Cierre el tornillo de purga de aire.

4. Cierre el tornillo de purga de aire con una tapa roscada.

6.1.2 Puesta a tierra del cambiador de tomas bajo carga

En caso necesario, disminuya el par de torsión indicado según el cable a tierra utilizado.
1. Ponga a tierra el cambiador de tomas bajo carga. Para ello, conecte únicamente el borne de puesta a tierra en la cabeza del cambiador de tomas bajo carga con la tapa del transformador.

Figura 247: Borne de puesta a tierra en la cabeza del cambiador de tomas bajo carga

2. Ponga a tierra el accionamiento a motor. Para ello, conecte únicamente la conexión a tierra a prueba de torsiones del accionamiento a motor con la conexión a tierra del transformador.

Figura 248: Tornillo de puesta a tierra en el accionamiento a motor

3. Conecte la carcasa del sensor de temperatura con el tornillo de puesta a tierra en la cabeza del cambiador de tomas bajo carga.
6.1.3 Comprobación del accionamiento a motor

AVISO

¡Daños en el cambiador de tomas bajo carga/cambiador de tomas sin tensión!

Si se activa el cambiador de tomas bajo carga/cambiador de tomas sin tensión sin líquido aislante se producirán daños en el cambiador de tomas bajo carga/cambiador de tomas sin tensión.

► Asegúrese de que el selector/cambiador de tomas sin tensión penetre completamente en el líquido aislante y de que el recipiente de aceite del cambiador de tomas bajo carga esté completamente lleno de líquido aislante.

Antes de poner en servicio el transformador, compruebe si el accionamiento a motor y el cambiador de tomas bajo carga están acoplados correctamente y si el accionamiento a motor funciona correctamente.

Comprobaciones en el accionamiento a motor

1. Ejecute las pruebas de funcionamiento según las correspondientes instrucciones de servicio MR del accionamiento a motor.

2. **¡AVISO!** Un accionamiento a motor mal acoplado conlleva daños en el cambiador de tomas bajo carga. Realice operaciones de prueba por todo el margen de ajuste. Asegúrese de que en cada posición de servicio coincidan las indicaciones de posición del accionamiento a motor y del cambiador de tomas bajo carga (a través de la mirilla de la cabeza del cambiador de tomas bajo carga).

Ensayos de aislamiento en el cableado del transformador

► Tenga en cuenta las indicaciones sobre los ensayos de aislamiento en el cableado del transformador según las correspondientes instrucciones de servicio MR del accionamiento a motor.

6.1.4 Ensayos de alta tensión en el transformador

Tenga en cuenta los puntos siguientes antes de ejecutar los ensayos de alta tensión en el transformador:

- Asegúrese de que el recipiente de aceite del cambiador de tomas bajo carga esté completamente lleno de líquido aislante.

- Asegúrese de que todos los dispositivos de protección del cambiador de tomas bajo carga funcionen correctamente y estén listos para el servicio.

- Preste atención a la ausencia de pintura en las conexiones a tierra en la caja de protección del accionamiento a motor y la fijación de la caja de protección.

- Lleve a cabo un ensayo de alta tensión solo con las puertas del accionamiento a motor cerradas.

- Desemborne las conexiones externas a componentes electrónicos en el accionamiento a motor para evitar daños a causa de sobretensión.
6 Puesta en servicio

- Para la conexión de la tensión de alimentación del accionamiento a motor utilice solo las boquillas de paso en la base de la caja de protección previstas para introducir cables.
- Una todos los conductores de puesta a tierra en un punto central de conexión (diseño de una tierra de referencia adecuada).
- Desemborne todos los componentes electrónicos antes del ensayo de alta tensión. Desmonte todos los aparatos con una tensión soportable < 1000 V antes de realizar un ensayo de aislamiento del cableado.
- Para la comprobación, antes del ensayo de alta tensión deben quitarse los conductos utilizados, ya que estos actúan como antenas.
- En la medida de lo posible, los cables de medición y de datos deberán tenderse separados de los cables de energía eléctrica.

Póngase en contacto con el fabricante si todavía tiene dudas sobre posibles peligros.

6.2 Transporte del transformador al lugar de instalación

AVISO

¡Daños en el accionamiento a motor!

Daños en el accionamiento a motor a causa de agua condensada en la caja de protección del accionamiento a motor.

- Cierre siempre herméticamente la caja de protección del accionamiento a motor.
- En el caso de tiempos de parada de más de 8 semanas, debe conectar y poner en servicio la calefacción anticondensante en el accionamiento a motor. Si esto no es posible, recomendamos poner una cantidad suficiente de agente secante en la caja de protección.

6.2.1 Transporte con el accionamiento desmontado

1. Asegúrese de que el accionamiento y el cambiador de tomas bajo carga se hallan en la posición de ajuste.
2. Desmonte el accionamiento.
3. No accione el accionamiento con el cambiador de tomas bajo carga desacoplado ni tuerza el eje de salida.
4. No accione el cambiador de tomas bajo carga desacoplado ni tuerza su árbol de accionamiento.
5. Transporte el accionamiento al lugar de instalación en el embalaje de suministro MR.
6. Monte el accionamiento [► Apartado 5.5.3, Página 191] y el árbol de accionamiento en el lugar de instalación en el transformador.
6.2.2 Transporte con el depósito del transformador lleno y sin conservador de aceite

Para la compensación de presión coloque una tubería de comunicación entre el recipiente de aceite del cambiador de tomas bajo carga y el depósito del transformador, en caso de que el transformador se transporte con el depósito lleno y sin conservador de aceite.

► Prepare la tubería de comunicación en la cabeza del cambiador de tomas bajo carga entre las conexiones E2 y Q o E2 y R.

Figura 249: Tubería de comunicación

En caso de un periodo de parada de corto plazo de máximo 4 semanas sin conservador de aceite, también será suficiente con eliminar aprox. 5 litros de líquido aislante del recipiente de aceite del cambiador de tomas bajo carga.

6.2.3 Transporte con el depósito del transformador vacío

¡Daños en el cambiador de tomas bajo carga!

Durante el transporte del transformador pueden producirse movimientos oscilantes del cambiador de tomas bajo carga, en caso de que el transformador se transporte sin líquido aislante y el recipiente de aceite del cambiador de tomas bajo carga se transporte con líquido aislante. Estos movimientos oscilantes pueden provocar daños en el cambiador de tomas bajo carga.

► Vacíe completamente el recipiente de aceite en caso de transportar el transformador sin líquido aislante.

► El recipiente de aceite se debe tratar en este caso de igual manera que el transformador (p. ej. carga con N2).

6.2.3.1 Vaciado del recipiente de aceite mediante conexión para tubería S

1. Desconecte la tensión de todos los circuitos auxiliares (p. ej. dispositivo de vigilancia de conmutación, válvula de alivio de presión, dispositivo supervisor de presión).

2. Abra la válvula de purga de aire E1 en la cabeza del cambiador de tomas bajo carga teniendo abierta la llave de paso (compuerta) entre el conservador de aceite y el recipiente de aceite.
3. Evacue el gas que se encuentra bajo la tapa del cambiador de tomas bajo carga. Asegúrese de que dispone de ventilación suficiente (p. ej. en células del transformador y carpas de trabajo).

4. En cuanto se haya eliminado el gas y el líquido aislante empiece a salir de la válvula de purga de aire, cierre la válvula de purga de aire y la llave de paso entre el conservador de aceite y el recipiente de aceite.

5. Vuelva a abrir la válvula de purga de aire y evacue aprox. 5...10 litros de líquido aislante a través de la conexión para tubería S hasta que la superficie que se encuentra bajo la tapa de la cabeza del cambiador de tomas bajo carga esté libre de líquido aislante.

6. Suelte los 24 tornillos M10/ancho de llave 17 con elementos de seguridad de la tapa de la cabeza del cambiador de tomas bajo carga.

7. Retire la tapa de la cabeza del cambiador de tomas bajo carga.

8. Succione el líquido aislante a través de la conexión para tubería S.

9. Abra la llave de paso entre el conservador de aceite y el recipiente de aceite.

⇒ El líquido aislante del conservador de aceite fluye al recipiente de aceite.

10. Succione el líquido aislante a través de la conexión para tubería S.

11. Ponga la tapa de la cabeza del cambiador de tomas bajo carga sobre la cabeza del cambiador de tomas bajo carga.

12. Atornille la tapa de la cabeza del cambiador de tomas bajo carga con 24 tornillos M10/ancho de llave 17 y elementos de seguridad (par de apriete 34 Nm).

6.3 Puesta en servicio del transformador en el lugar de instalación

Antes de que aplique tensión al transformador, debe comprobar que el accionamiento a motor y los dispositivos de protección funcionan correctamente y añadir líquido aislante nuevo al recipiente de aceite del cambiador de tomas bajo carga.

6.3.1 Llenado de aceite aislante del recipiente de aceite del cambiador de tomas bajo carga

AVISOS

¡Daños en el cambiador de tomas bajo carga!

¡Los líquidos aislantes no adecuados provocan daños en el cambiador de tomas bajo carga!

⇒ Utilice líquidos aislantes que cumplan los requisitos según IEC 60296.

⇒ Siempre que haya sido autorizado por el fabricante del transformador, puede utilizar ésteres sintéticos según IEC 61099 o ésteres naturales según IEC 62770 autorizados por Maschinenfabrik Reinhausen GmbH.
1. Cree la tubería de comunicación entre la conexión para tubería E2 y una de las conexiones para tubería R, S o Q para garantizar la misma relación de presión en el recipiente de aceite y el transformador durante la evacuación.

Figura 250: Tubería de comunicación entre E2 y Q

2. Llene con líquido aislante nuevo el cambiador de tomas bajo carga a través de una de las dos conexiones para tubería libres de la cabeza del cambiador de tomas bajo carga.

Figura 251: Conexión para tubería S y R

3. Tome una muestra de líquido aislante del recipiente de aceite.

4. Haga constar en el acta la temperatura de la muestra inmediatamente tras su toma.
5. Determine la rigidez dieléctrica y el contenido de agua con una temperatu-
ra de la muestra de 20 °C ± 5 °C. La rigidez dieléctrica y el contenido de
agua deben cumplir los valores límite indicados en los datos técnicos
[Apartado 8.3, Página 242].

6.3.2 Purgado de aire de la cabeza del cambiador de tomas bajo carga
y de la tubería de aspiración

6.3.2.1 Purgado de aire de la cabeza del cambiador de tomas bajo carga
1. Abra todos los grifos de avance y de retorno del sistema de tuberías.
2. Quite la tapa roscada de la válvula de purga de aire E1 en la tapa de la
cabeza del cambiador de tomas bajo carga.

3. Utilizando un destornillador, levante el vástago de la válvula de purga de
aire E1 y purgue el aire de la cabeza del cambiador de tomas bajo carga.

4. Cierre la válvula de purga de aire E1 con la tapa roscada (par de apriete
10 Nm).
6.3.2.2 Purgado de aire de la tubería de aspiración en la conexión para tubería S

1. Quite la tapa roscada de la conexión para tubería S.

Figura 254: Tapa roscada

2. ¡AVISO! Una tubería de aspiración no purgada completamente merma considerablemente el poder aislante contra tierra del cambiador de tomas bajo carga. Abra el tornillo de purga de aire y deje que salga el aire completamente de la tubería de aspiración.

3. Cierre el tornillo de purga de aire.

4. Cierre el tornillo de purga de aire con una tapa roscada.

6.3.3 Comprobación del accionamiento a motor

¡Daños en el cambiador de tomas bajo carga/cambiador de tomas sin tensión!

Si se activa el cambiador de tomas bajo carga/cambiador de tomas sin tensión sin líquido aislante se producirán daños en el cambiador de tomas bajo carga/cambiador de tomas sin tensión.

► Asegúrese de que el selector/cambiador de tomas sin tensión penetre completamente en el líquido aislante y de que el recipiente de aceite del cambiador de tomas bajo carga esté completamente lleno de líquido aislante.
¡Daños en el cambiador de tomas bajo carga y en el acciona-
miento a motor!

Daños en el cambiador de tomas bajo carga y en el accionamiento a motor a causa de un uso no adecuado del dispositivo indicador de posiciones.

► En las conexiones del módulo transmisor de posición solo pueden conectarse circuitos de corriente según se indica en el capítulo Datos técnicos del dispositivo indicador de posiciones.

► El momento de conmutación del dispositivo indicador de posiciones en el accionamiento a motor no representa el momento de conmutación del cambiador de tomas bajo carga. Este depende del tipo de ruptor. Al diseñar circuitos de enclavamiento entre el accionamiento a motor y un dispositivo externo (p. ej. interruptores de potencia del transformador) deben tenerse en cuenta estas circunstancias.

► Por este motivo, para fines de vigilancia, bloqueo y control externos no debe utilizarse el dispositivo indicador de posiciones, sino el contacto de rodadura “Cambiador de tomas en servicio” descrito en el esquema de conexiones.

Antes de poner en servicio el transformador, compruebe si el accionamiento a motor y el cambiador de tomas bajo carga están acoplados correctamente y si el accionamiento a motor funciona correctamente.

Comprobaciones en el accionamiento a motor

1. Ejecute las pruebas de funcionamiento según las correspondientes instrucciones de servicio MR del accionamiento a motor.

2. ¡AVISO! Un accionamiento a motor mal acoplado conlleva daños en el cambiador de tomas bajo carga. Realice operaciones de prueba por todo el margen de ajuste. Asegúrese de que en cada posición de servicio coincidan las indicaciones de posición del accionamiento a motor y del cambiador de tomas bajo carga (a través de la mirilla de la cabeza del cambiador de tomas bajo carga).

Ensayos de aislamiento en el cableado del transformador

► Tenga en cuenta las indicaciones sobre los ensayos de aislamiento en el cableado del transformador según las correspondientes instrucciones de servicio MR del accionamiento a motor.

6.3.4 Comprobación de relés de protección

✓ Compruebe que el relé de protección funciona correctamente antes de poner en servicio el transformador:

1. Ponga a tierra el transformador en el lado de tensión superior e inferior. Asegúrese de que no se elimine la puesta a tierra preventiva y de seguridad del transformador durante la comprobación.

2. Asegúrese de que durante la comprobación el transformador permanezca sin tensión.

3. Proteja el dispositivo automático de extinción de incendios.
4. Abra la caja de bornes del relé de protección.
5. Accione el pulsador de prueba DESCONEXIÓN.
6. Abandone la zona de peligro del transformador.
7. Asegúrese de que el interruptor de potencia del transformador no pueda cerrarse.
 → Prueba de protección pasiva
8. Accione el pulsador de prueba SERVICIO.
9. Abandone la zona de peligro del transformador.
10. Cierre el interruptor de potencia del transformador estando los seccionadores abiertos y el transformador puesto a tierra en todos los lados.
11. Accione el pulsador de prueba DESCONEXIÓN.
12. Asegúrese de que el interruptor de potencia del transformador está abierto.
 → Prueba de protección activa.
13. Accione el pulsador de prueba SERVICIO para restaurar el relé de protección.

6.3.5 Puesta en servicio del transformador

✓ El contacto de señalización que indica que no se llega al nivel mínimo de líquido aislante dentro del conservador de aceite del cambiador de tomas bajo carga está insertado en bucle en el circuito de disparo del interruptor de potencia.
✓ El relé de protección y los dispositivos de protección adicionales están insertados en bucle en el circuito de disparo del interruptor de potencia.
✓ El accionamiento a motor y todos los dispositivos de protección funcionan correctamente y están listos para el servicio.
✓ El recipiente de aceite del cambiador de tomas bajo carga está completamente lleno de líquido aislante.
✓ Todas las llaves de paso entre el cambiador de tomas bajo carga y el conservador de aceite del cambiador de tomas bajo carga están abiertas.

1. Conecte el transformador.

2. ¡AVISO! Las corrientes de irrupción pueden elevarse tanto a un múltiple de la corriente nominal del transformador como también llevar a secuencias de corriente con una forma de la curva asimétrica o no sinusoidal y con ello sobrecargar el cambiador de tomas bajo carga durante el cambio de tomas del ruptor. Realice cambios de tomas bajo carga tanto en condiciones de carga como con marcha en vacío solo tras la completa atenuación de la corriente de irrupción.
7 Solución de averías

⚠️ ¡ADVERTENCIA!

¡Peligro de explosión!

¡Peligro de muerte por gases explosivos bajo la tapa de la cabeza del cambiador de tomas bajo carga!

► Asegúrese de que en la cercanía no haya o se produzca fuego abierto, superficies calientes o chispas (por ejemplo, por carga estática).

► Desconecte la tensión de todos los circuitos auxiliares (por ejemplo, dispositivo de vigilancia de conmutación,) antes de quitar la tapa de la cabeza del cambiador de tomas bajo carga.

► Durante los trabajos, no ponga en funcionamiento ningún aparato eléctrico (por ejemplo, formación de chispas a causa de un atomillador de percusión).

► Utilice exclusivamente mangueras, tubos y dispositivos de bombeo homologados, conductivos y puestos a tierra para líquidos inflamables.

⚠️ ¡AVISO!

¡Daños en el cambiador de tomas bajo carga y el transformador!

Si reacciona el relé de protección u otros dispositivos de protección puede indicar que se han producido daños en el cambiador de tomas bajo carga y en el transformador. No está permitido energizar el transformador sin realizar la comprobación.

► Si reacciona el relé de protección u otros dispositivos de protección compruebe el cambiador de tomas bajo carga y el transformador.

► No vuelva a poner el cambiador de tomas bajo carga en servicio hasta haberse asegurado de que no existan daños en el cambiador de tomas bajo carga y en el transformador.

⚠️ ¡AVISO!

¡Daños en el accionamiento a motor!

Daños en el accionamiento a motor a causa de agua condensada en la caja de protección del accionamiento a motor.

► Cierre siempre herméticamente la caja de protección del accionamiento a motor.

► En el caso de interrupciones del servicio de más de 2 semanas, debe conectar y poner en servicio la calefacción anticondensante en el accionamiento a motor. Si esto no es posible, p. ej. durante el transporte del accionamiento a motor, recomendamos poner una cantidad suficiente de agente secante en la caja de protección.

La siguiente tabla debería ayudarle a reconocer y dado el caso solucionar las averías.

Consulte asimismo las instrucciones de servicio del relé de protección o del dispositivo de protección pertinente.
En caso de fallos en el cambiador de tomas bajo carga y en el accionamiento a motor que no puedan solucionarse fácilmente en el lugar de la instalación, así como en caso de que el relé de protección u otros dispositivos de protección adicionales hayan reaccionado, informe al correspondiente representante de MR, al fabricante del transformador o directamente a Maschinenfabrik Reinhausen GmbH:

Servicio técnico
Ap. correos 12 03 60
93025 Regensburg
Alemania
Teléfono: +49 94140 90-0
Fax: +49 9 41 40 90-7001
email: service@reinhausen.com
Internet: www.reinhausen.com

<table>
<thead>
<tr>
<th>Cuadro de error</th>
<th>Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se ha activado el relé de protección (p. ej. RS-Ex)</td>
<td>Véase "Excitación del relé de protección y nueva puesta en servicio del transformador".</td>
</tr>
<tr>
<td></td>
<td>Póngase en contacto además con MR.</td>
</tr>
<tr>
<td>El disco de reventamiento en la tapa de la cabeza del cambiador de tomas bajo carga ha reaccionado</td>
<td>Deben comprobarse tanto el cambiador de tomas bajo carga como el transformador. Dependiendo de la causa por la que se ha activado, realice mediciones/comprobaciones en el transformador.</td>
</tr>
<tr>
<td></td>
<td>Para comprobar el cambiador de tomas bajo carga, póngase en contacto con MR.</td>
</tr>
<tr>
<td>El guardamotor del accionamiento a motor se ha activado</td>
<td>véase el capítulo "Solución de averías" en las instrucciones de servicio del accionamiento a motor TAPMOTION® ED-Ex.</td>
</tr>
<tr>
<td>Se ha activado el contacto de señalización de caída por debajo del nivel mínimo de aceite en el conservador de aceite del cambiador de tomas bajo carga</td>
<td>Compruebe la estanqueidad del sistema de conducción (tuberías, etc.) y de la cabeza del cambiador de tomas bajo carga. Compruebe el nivel y la calidad del aceite del ruptor conforme a las instrucciones de servicio del cambiador de tomas bajo carga. Si los valores límite caen por debajo del límite, póngase en contacto con MR.</td>
</tr>
<tr>
<td>El cambiador de tomas bajo carga no cambia la posición de toma (resistencia al cambio, las teclas subir/bajar no funcionan, no se percibe audiblemente ningún salto del ruptor)</td>
<td>Póngase en contacto con MR.</td>
</tr>
<tr>
<td>No se ha modificado la tensión en el transformador a pesar de haber cambiado la posición en el accionamiento a motor</td>
<td>Póngase en contacto con MR.</td>
</tr>
<tr>
<td>Indicación de posición distinta en el accionamiento a motor y el cambiador de tomas bajo carga</td>
<td>Póngase en contacto con MR.</td>
</tr>
<tr>
<td>Ruidos en el árbol de accionamiento o accionamiento a motor durante el cambio de la posición de toma</td>
<td>Compruebe que el árbol de accionamiento esté bien montado conforme a las instrucciones de servicio para el árbol de accionamiento. Compruebe que las abrazaderas para manguera y las chapas protectoras estén bien situadas. Si los ruidos provienen del accionamiento a motor, póngase en contacto con MR.</td>
</tr>
</tbody>
</table>
7 Solución de averías

<table>
<thead>
<tr>
<th>Cuadro de error</th>
<th>Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviso en rojo en el monitoreo</td>
<td>Si es posible lea la base de datos y envíela junto con el código de fallo a MR.</td>
</tr>
<tr>
<td>Advertencia o activación del relé de Buchholz en el transformador</td>
<td>Informe al fabricante del transformador.</td>
</tr>
<tr>
<td>Desviación del valor consigna al medir la resistencia de devanado del transformador</td>
<td>Póngase en contacto con el fabricante del transformador y, en caso necesario, también con MR y comunique los valores de medición.</td>
</tr>
<tr>
<td>Desviación del valor consigna en el análisis de gas en aceite (aceite de transformadores)</td>
<td>Póngase en contacto con el fabricante del transformador y, en caso necesario, también con MR y comunique los valores de medición.</td>
</tr>
<tr>
<td>Desviación del valor consigna al realizar la medición de la relación de transformación</td>
<td>Póngase en contacto con el fabricante del transformador y, en caso necesario, también con MR y comunique los valores de medición.</td>
</tr>
<tr>
<td>Desviación del valor límite en los líquidos aislantes</td>
<td>Cambie el líquido aislante y compruebe la carga de silicagel del conservador de aceite del cambiador de tomas bajo carga.</td>
</tr>
</tbody>
</table>

Tabla 14: Solución de averías

7.1 Excitación del relé de protección y nueva puesta en servicio del transformador

¡Peligro de explosión!

Los gases explosivos en el relé de protección pueden deflagrar o explotar y con ello provocar la muerte o lesiones graves.

- Después de la desconexión del transformador espere 15 minutos antes de continuar con otros trabajos en el relé de protección para que los gases de conmutación puedan disiparse.
- Asegúrese de que en la cercanía no haya o se produzcan fuentes de ignición como fuego abierto, superficies calientes o chispas (p. ej. por carga estática).
- Antes de empezar a trabajar desconecte todos los circuitos auxiliares de la tensión.
- No ponga en funcionamiento aparatos eléctricos durante los trabajos (p. ej. formación de chispas a causa de atomilladores de percusión).

¡Peligro de muerte y de lesiones corporales graves!

Peligro de muerte y peligro de heridas corporales graves a causa de una comprobación insuficiente del cambiador de tomas bajo carga y del transformador.

- En caso de que reaccione el relé de protección, es imprescindible contactar con Maschinenfabrik Reinhausen para comprobar el cambiador de tomas bajo carga y el transformador.
- No vuelva a poner el cambiador de tomas bajo carga en servicio hasta haberse asegurado de que no existen daños en el cambiador de tomas bajo carga y en el transformador.
Cuando el funcionamiento del relé de protección ha provocado un disparo de los interruptores de potencia, proceda tal y como se indica a continuación:

1. Determine el momento del disparo.
2. Determine la posición de servicio del cambiador de tomas bajo carga.
3. Bloquee por precaución el accionamiento a motor disparando el guardamotor de modo que se evite un cambio de tomas del cambiador de tomas bajo carga causado por un control remoto.
4. Compruebe la tapa de la cabeza del cambiador de tomas bajo carga. Si existe una fuga de líquido aislante, cierre inmediatamente la válvula de cierre del conservador de aceite.
5. Compruebe si la clapeta del relé de protección está en posición DESCONEXIÓN o en posición SERVICIO.

7.1.1 Clapeta en posición SERVICIO

Si la clapeta está en posición SERVICIO puede haberse producido un fallo en el circuito de disparo. En este caso, compruebe el circuito de disparo. Si no es posible aclarar por qué se ha producido el disparo del relé de protección de este modo, es imprescindible ponerse en contacto con Maschinenfabrik Reinhausen para comprobar el cambiador de tomas bajo carga.

7.1.2 Clapeta en posición DESCONEXION

Si la clapeta se halla en la posición DESCONEXIÓN, proceda según se indica a continuación:

1. Asegúrese de que el transformador no se ponga en servicio bajo ningún concepto.
2. Póngase en contacto con Maschinenfabrik Reinhausen y comunique los siguientes puntos:
 - Número de serie del relé de protección y del cambiador de tomas bajo carga
 - ¿Cuál era la carga del transformador en el momento del disparo?
 - ¿Se ha ejecutado una maniobra del cambiador de tomas bajo carga inmediatamente antes o durante el disparo?
 - ¿Han reaccionado en el momento del disparo otros dispositivos de protección del transformador?
 - ¿Se estaban realizando acciones de conmutación en la red en el momento del disparo?
 - ¿Se han registrado sobretensiones en el momento del disparo?
3. Lleve a cabo otros pasos de acuerdo con Maschinenfabrik Reinhausen.
7.1.3 Nueva puesta en servicio del transformador

Una vez haya establecido y solucionado la causa de la excitación del relé de protección, puede volver a poner en servicio el transformador:

1. Compruebe el relé de protección.
2. Ponga en servicio el transformador.
8 Datos técnicos

Se dispone de un sinóptico de todos los datos técnicos esenciales del cambiador de tomas bajo carga y del accionamiento a motor como documentos separados que se suministran bajo demanda.

8.1 Datos técnicos del cambiador de tomas bajo carga

8.1.1 Propiedades de los cambiadores de tomas bajo carga

El cambiador de tomas bajo carga VACUTAP® VR con selector M solo es posible como VACUTAP® VRS y VACUTAP® VRM. En este caso, son posibles variantes bifásicas y trifásicas solo con una corriente nominal de paso máx. de 700 A.

Datos eléctricos VACUTAP® VRS I/II/III

<table>
<thead>
<tr>
<th>Cambiador de tomas bajo carga</th>
<th>VRS I 701</th>
<th>VRS II 1001</th>
<th>VRS III 1000 Y</th>
<th>VRS I 1301</th>
<th>VRS II 1302</th>
<th>VRS III 1300 Y</th>
<th>VRS I 2622(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente nominal de paso máxi-ma (I_{nm}) [A]</td>
<td>700</td>
<td>1000</td>
<td>1300</td>
<td>2600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corriente instantánea nominal [kA]</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duración de cortocircuito nominal [s]</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulso de corriente nominal [kA]</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión por escalón nominal má-xima (U_{nm}) [V]</td>
<td>4500</td>
<td>4500</td>
<td>4500</td>
<td>4500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potencia por escalón (P_{nm}) [kVA]</td>
<td>1500(^2)</td>
<td>1500(^2)</td>
<td>1500(^2)</td>
<td>3000(^2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2100(^2)</td>
<td>2100(^2)</td>
<td>2100(^2)</td>
<td>4200(^2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frecuencia nominal [Hz]</td>
<td>50…60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 15: Datos eléctricos VACUTAP® VRS I/II/III

\(^1\) se precisa una distribución de corrientes forzada mediante dos devanados de inducido paralelos. No para el servicio para horno de arco voltaico.

\(^2\) véase el diagrama de potencia por escalón

Datos eléctricos VACUTAP® VRM I/II/III

<table>
<thead>
<tr>
<th>Cambiador de tomas bajo carga</th>
<th>VRM I 701</th>
<th>VRM II 1001</th>
<th>VRM III 1000 Y</th>
<th>VRM I 1301</th>
<th>VRM II 1302</th>
<th>VRM III 1300 Y</th>
<th>VRM I 2622(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente nominal de paso máxi-ma (I_{nm}) [A]</td>
<td>700</td>
<td>1000</td>
<td>1300</td>
<td>2600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 Datos técnicos

<table>
<thead>
<tr>
<th>Corriente instantánea nominal [kA]</th>
<th>10</th>
<th>12</th>
<th>16</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duración de cortocircuito nominal [s]</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Impulso de corriente nominal [kA]</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>65</td>
</tr>
<tr>
<td>Tensión por escalón nominal máxima U_{im} [V]</td>
<td>4500</td>
<td>4500</td>
<td>4500</td>
<td>4500</td>
</tr>
<tr>
<td>Potencia por escalón P_{stm} [kVA]</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>6000</td>
</tr>
<tr>
<td>Frecuencia nominal [Hz]</td>
<td>50…60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 16: Datos eléctricos VACUTAP® VRM I/II/III

1) se precisa una distribución de corrientes forzada mediante dos devanados de inducido paralelos. No para el servicio para horno de arco voltaico.

Datos eléctricos VACUTAP® VRL I/II/III

<table>
<thead>
<tr>
<th>Cambiador de tomas bajo carga</th>
<th>VRL I 1301</th>
<th>VRL II 1302</th>
<th>VRL III 1300 Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente nominal de paso máxima I_{rm} [A]</td>
<td>1300</td>
<td>2600</td>
<td></td>
</tr>
<tr>
<td>Corriente instantánea nominal [kA]</td>
<td>16</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Duración de cortocircuito nominal [s]</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Impulso de corriente nominal [kA]</td>
<td>40</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Tensión por escalón nominal máxima U_{im} [V]</td>
<td>4500</td>
<td>4500</td>
<td></td>
</tr>
<tr>
<td>Potencia por escalón P_{stm} [kVA]</td>
<td>5850</td>
<td>11.700</td>
<td></td>
</tr>
<tr>
<td>Frecuencia nominal [Hz]</td>
<td>50…60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 17: Datos eléctricos VACUTAP® VRL I/II/III

1) se precisa una distribución de corrientes forzada mediante dos devanados de inducido paralelos. No para el servicio para horno de arco voltaico.

Datos eléctricos VACUTAP® VRH/VRX I/II/III

<table>
<thead>
<tr>
<th>Cambiador de tomas bajo carga</th>
<th>VRH I 651</th>
<th>VRH II 652</th>
<th>VRH III 650 Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente nominal de paso máxima I_{rm} [A]</td>
<td>650</td>
<td>1300</td>
<td>2600</td>
</tr>
</tbody>
</table>

Los cambiadores de tomas bajo carga VACUTAP® VRH y VRX son aplicaciones especiales solo disponibles bajo demanda.

<table>
<thead>
<tr>
<th>Cambiador de tomas bajo carga</th>
<th>VRH I 1301</th>
<th>VRH II 1302</th>
<th>VRH III 1300 Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente nominal de paso máxima I_{rm} [A]</td>
<td>650</td>
<td>1300</td>
<td>2600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cambiador de tomas bajo carga</th>
<th>VRH I 2622</th>
<th>VRX I 652</th>
<th>VRX I 1302</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente nominal de paso máxima I_{rm} [A]</td>
<td>650</td>
<td>1300</td>
<td>1300</td>
</tr>
</tbody>
</table>
Datos técnicos

<table>
<thead>
<tr>
<th>Corriente instantánea nominal [kA]</th>
<th>10</th>
<th>16</th>
<th>26</th>
<th>10</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duración de cortocircuito no-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>nimal [s]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulso de corriente nominal</td>
<td>25</td>
<td>40</td>
<td>65</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>[kA]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensión por escalón nominal</td>
<td>6000</td>
<td>6000</td>
<td>6000</td>
<td>12.000(^1)</td>
<td>12.000(^2)</td>
</tr>
<tr>
<td>máxima (U_{im}) [V]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potencia por escalón (P_{sin})</td>
<td>3000</td>
<td>6000</td>
<td>12.000</td>
<td>6000</td>
<td>12.000</td>
</tr>
<tr>
<td>[kVA]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frecuencia nominal [Hz]</td>
<td>50...60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 18: Datos eléctricos VACUTAP® VRH/VRX I/II/III

1) se precisa una distribución de corrientes forzada mediante dos devanados de inducido paralelos. No para el servicio para horno de arco voltaico.

2) Es necesario un número de devanados doble

Datos mecánicos VACUTAP® VR

<table>
<thead>
<tr>
<th>Número de posiciones de servicio</th>
<th>sin preselector: máximo 18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>con preselector: máximo 35</td>
</tr>
<tr>
<td></td>
<td>con un selector grueso múltiple: máximo 107</td>
</tr>
<tr>
<td>Número de sectores equipados</td>
<td>1...3</td>
</tr>
<tr>
<td>Modelos del selector</td>
<td>Selector R: RC, RD, RDE, RE, RF, RES</td>
</tr>
<tr>
<td></td>
<td>Selector M: B, C, D, DE</td>
</tr>
<tr>
<td>Dimensiones</td>
<td>Véanse los dibujos acotados [(\Rightarrow) Apartado 9.1, Página 243]</td>
</tr>
<tr>
<td>Peso</td>
<td></td>
</tr>
<tr>
<td>Volumen de desplazamiento y contenido de aceite</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 19: Datos mecánicos VACUTAP® VR

8.1.2 Condiciones ambientales admisibles

<table>
<thead>
<tr>
<th>Temperatura del aire durante el servicio</th>
<th>-25 °C…+50 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura del líquido aislante durante el funcionamiento</td>
<td>Líquido aislante según IEC 60296: -25 °C…+105 °C (en servicio de emergencia del transformador de conformidad con IEC 60076-7 hasta +110 °C según IEC 60214-1)</td>
</tr>
<tr>
<td></td>
<td>Líquido de éster sintético según IEC 61099: -15 °C…+105 °C (en servicio de emergencia del transformador hasta +115 °C)</td>
</tr>
<tr>
<td>Temperatura de transporte, temperatura de almacenamiento</td>
<td>-40 °C…+50 °C</td>
</tr>
<tr>
<td>Temperaturas de secado</td>
<td>Véanse las instrucciones para el montaje y la puesta en servicio, capítulo "Montaje"</td>
</tr>
<tr>
<td>Resistencia a la compresión</td>
<td>Véanse los Datos técnicos TD 61 – Parte general</td>
</tr>
<tr>
<td>Líquidos aislantes alternativos</td>
<td>Líquido de éster sintético (IEC 61099): bajo demanda</td>
</tr>
</tbody>
</table>
Altura de montaje del conservador de aceite
Véanse los Datos técnicos TD 61 – Parte general

Altura de montaje sobre el nivel del mar
Véanse los Datos técnicos TD 61 – Parte general

Tabla 20: Condiciones ambientales admisibles

8.2 Datos técnicos de los relés de protección

A continuación, se muestran los datos técnicos del relé de protección RS 2001-Ex. Según DIN EN 60255-1 se aplica: precisión de servicio = precisión básica

<table>
<thead>
<tr>
<th>Caja</th>
<th>Modelo a la intemperie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado de protección</td>
<td>IP 66</td>
</tr>
<tr>
<td>Mando del relé de protección</td>
<td>Clapeta con orificio</td>
</tr>
<tr>
<td>Insensibilidad a la vibración</td>
<td>hasta máx. 3 g</td>
</tr>
<tr>
<td>Peso</td>
<td>aprox. 3,5 kg</td>
</tr>
</tbody>
</table>
| Velocidad del flujo de aceite de las variantes disponibles al excitarse (20 °C de temperatura del aceite) | 0,65 ± 0,15 m/s
1,20 ± 0,20 m/s
3,00 ± 0,40 m/s
4,80 ± 0,60 m/s |

Tabla 21: Datos técnicos generales

Interruptor de disparo

El relé de protección puede suministrarse opcionalmente con dos contactos magnéticos en gas inerte independientes entre sí. Estos pueden actuar como contactos normalmente abiertos NA o bien como contactos normalmente cerrados NC (véase el dibujo acotado suministrado).

<table>
<thead>
<tr>
<th>Parámetros eléctricos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de ruptura CC</td>
<td>1,2 W…200 W</td>
</tr>
<tr>
<td>Capacidad de ruptura CA (50 Hz)</td>
<td>1,2 VA…400 VA</td>
</tr>
<tr>
<td>Tensión de conmutación CA/CC</td>
<td>24 V…250 V</td>
</tr>
<tr>
<td>Corriente de conmutación CA/CC</td>
<td>4,8 mA…2 A</td>
</tr>
</tbody>
</table>

Tabla 22: Parámetros eléctricos

Capacidad de conmutación (conectar y desconectar la carga)

Corriente de conmutación mínima CA/CC (tensión mínima)	50 mA (con 24 V)
Corriente de conmutación mínima CA/CC (tensión máxima)	4,8 mA (con 250 V)
Corriente de conmutación máxima CA/CC (corriente máxima)	1,6 A (con 125 V con L/R = 40 ms)
Corriente de conmutación máxima CA/CC (tensión máxima)	0,9 A (con 250 V con L/R = 40 ms)
Capacidad de conmutación (conectar y desconectar la carga)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente de conmutación máxima CA</td>
<td>2 A (con 125 V con cos φ = 0,6)</td>
</tr>
<tr>
<td>Corriente de conmutación máxima CA (tensión máxima)</td>
<td>1,6 A (con 250 V con cos φ = 0,6)</td>
</tr>
<tr>
<td>Conmutaciones</td>
<td>1000 ciclos</td>
</tr>
</tbody>
</table>

Tabla 23: Capacidad de conmutación (conectar y desconectar la carga)

Rigidez dieléctrica

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigidez dieléctrica alterna entre todas las conexiones que conducen tensión y las partes puestas a tierra</td>
<td>2500 V, 50 Hz, duración de prueba 1 minuto</td>
</tr>
<tr>
<td>Rigidez dieléctrica alterna entre los contactos abiertos</td>
<td>2000 V, 50 Hz, duración de prueba 1 minuto</td>
</tr>
</tbody>
</table>

Tabla 24: Rigidez dieléctrica

Parámetros eléctricos

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de ruptura CC</td>
<td>1,2 W…250 W</td>
</tr>
<tr>
<td>Capacidad de ruptura CA (50 Hz)</td>
<td>1,2 VA…400 VA</td>
</tr>
<tr>
<td>Tensión de conmutación CA/CC</td>
<td>24 V…250 V</td>
</tr>
<tr>
<td>Corriente de conmutación CA/CC</td>
<td>4,8 mA…2 A</td>
</tr>
</tbody>
</table>

Tabla 25: Parámetros eléctricos

Capacidad de conmutación (conectar y desconectar la carga)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente de conmutación mínima CA/CC (tensión mínima)</td>
<td>50 mA (con 24 V)</td>
</tr>
<tr>
<td>Corriente de conmutación mínima CA/CC (tensión máxima)</td>
<td>4,8 mA (con 250 V)</td>
</tr>
<tr>
<td>Corriente de conmutación máxima CA/CC (corriente máxima)</td>
<td>2 A (con 125 V con L/R = 40 ms)</td>
</tr>
<tr>
<td>Corriente de conmutación máxima CC (tensión máxima)</td>
<td>1 A (con 250 V con L/R = 40 ms)</td>
</tr>
<tr>
<td>Corriente de conmutación máxima CA (corriente máxima)</td>
<td>2 A (con 125 V con cos φ = 0,6)</td>
</tr>
<tr>
<td>Corriente de conmutación máxima CA (tensión máxima)</td>
<td>1,6 A (con 250 V con cos φ = 0,6)</td>
</tr>
<tr>
<td>Conmutaciones</td>
<td>1000 ciclos</td>
</tr>
</tbody>
</table>

Tabla 26: Capacidad de conmutación (conectar y desconectar la carga)
8 Datos técnicos

Rigidez dieléctrica

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigidez dieléctrica alterna entre todas las conexiones que conducen tensión y las partes puestas a tierra</td>
<td>2500 V, 50 Hz, duración de prueba 1 minuto</td>
</tr>
<tr>
<td>Rigidez dieléctrica alterna entre los contactos abiertos</td>
<td>2000 V, 50 Hz, duración de prueba 1 minuto</td>
</tr>
</tbody>
</table>

Tabla 27: **Rigidez dieléctrica**

Condiciones ambientales

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura ambiente T_a</td>
<td>-25 °C…+50 °C</td>
</tr>
<tr>
<td>Temperatura del aceite</td>
<td>< 130 °C</td>
</tr>
<tr>
<td>Presión de aire</td>
<td>Correspondiente a 0 m…4 000 m sobre el nivel del mar</td>
</tr>
</tbody>
</table>

Tabla 28: **Condiciones ambientales**

8.2.1 Relé de protección con varios tubos de conmutación magnéticos de gas protector

El relé de protección puede suministrarse opcionalmente con varios tubos de conmutación magnéticos de gas protector independientes entre sí. Estos pueden actuar como contactos normalmente abiertos NA o bien como contactos normalmente cerrados NC y están separados entre sí de forma galvánica (véase el dibujo acotado suministrado).

Datos eléctricos como tubos de conmutación magnéticos de gas protector contacto normalmente abierto NA y contacto normalmente cerrado NC.

8.2.2 Comprobaciones

Seguridad eléctrica

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61010-1</td>
<td>Normas de seguridad para aparatos eléctricos de medición, mando, regulación y laboratorio</td>
</tr>
<tr>
<td></td>
<td>• Categoría de sobretensión III</td>
</tr>
<tr>
<td></td>
<td>• Grado de contaminación 2</td>
</tr>
</tbody>
</table>

Tabla 29: **Seguridad eléctrica**
8 Datos técnicos

8.3 Valores límite para la rigidez dieléctrica y el contenido de agua de líquidos aislantes

Las siguientes tablas indican para el cambiador de tomas bajo carga VACUTAP® los valores límite para rigidez dieléctrica (medida según IEC 60156) y contenido de agua (medido según IEC 60814) de líquidos aislantes. Los valores se han determinado de conformidad con IEC 60422, IEC 61203 e IEEE C57.147.

Valores límite para líquidos aislantes según IEC 60296

<table>
<thead>
<tr>
<th></th>
<th>(U_d)</th>
<th>(H_2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al poner en servicio</td>
<td>> 60 kV/2,5 mm</td>
<td>< 12 ppm</td>
</tr>
<tr>
<td>Único vez el transformador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durante el servicio</td>
<td>> 30 kV/2,5 mm</td>
<td>< 30 ppm</td>
</tr>
<tr>
<td>Tras el mantenimiento</td>
<td>> 50 kV/2,5 mm</td>
<td>< 15 ppm</td>
</tr>
</tbody>
</table>

Tabla 30: Líquidos aislantes según IEC 60296

Valores límite para ésteres sintéticos según IEC 61099

<table>
<thead>
<tr>
<th></th>
<th>(U_d)</th>
<th>(H_2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al poner en servicio</td>
<td>> 60 kV/2,5 mm</td>
<td>≤ 100 ppm</td>
</tr>
<tr>
<td>Único vez el transformador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durante el servicio</td>
<td>> 30 kV/2,5 mm</td>
<td>≤ 400 ppm</td>
</tr>
<tr>
<td>Tras el mantenimiento</td>
<td>> 50 kV/2,5 mm</td>
<td>≤ 150 ppm</td>
</tr>
</tbody>
</table>

Tabla 31: Ésteres sintéticos según IEC 61099
9 Dibujos

9.1 Dibujos acotados
ON-LOAD TAP-CHANGER VACUTAP® VR
INSTALLATION DRAWING VR S/M/L/H/X - RC/RD/ROE/RE/RF/RES
DIMENSION DRAWING

11 MOUNTING FLANGE ON TRANSFORMER COVER
12 M12 FIXING SCREW
13 ON-LOAD TAP-CHANGER HEAD DASKET
14 POSITION INDICATOR, REMOVE BEFORE REMOVING THE DIVERTER SWITCH INSERT
15 INJECTION WINDOW
16 Ø15 HOLES
17 SUCTION PIPE
21 ON-LOAD TAP-CHANGER HEAD
22 COVER SCREW
23 COVER GASKET
24 ON-LOAD TAP-CHANGER HEAD COVER
25 CENTRAL GEAR UNIT WITH 25a DRIVE SHAFT
26 PIPE CONNECTION P FOR PROTECTIVE RELAY
27 PIPE CONNECTION S WITH VENT SCREW (OPTIONAL)
28 PIPE CONNECTION Q (OPTIONAL)
29a AIR-VENT VALVE OF THE ON-LOAD TAP-CHANGER HEAD COVER
29b VENTING OPTION FOR THE TRANSFORMER OIL CHAMBER
31 DIVERTER SWITCH OIL COMPARTMENT
32 OIL COMPARTMENT BASE
33 SHIELDING RINGS FOR UM OF 170 kV OR GREATER
34 OIL COMPARTMENT CONNECTION TERMINAL
35 CONNECTION CONTACT FOR ON-LOAD TAP-CHANGER TAKE-OFF LEAD
36 TAKE-OFF RING FOR ON-LOAD TAP-CHANGER TAKE-OFF LEAD
41 SELECTOR SUSPENSION
42 SELECTOR GEAR
43 FINE TAP SELECTOR
44 CHANGE-OVER SELECTOR
45 SELECTOR CONNECTION CONTACTS (SEE ASSOCIATED DIMENSIONAL DRAWING)
46 CHANGE-OVER SELECTOR CONNECTION CONTACTS (SEE ASSOCIATED DIMENSIONAL DRAWING)
47 SELECTOR CONNECTING LEAD
51 DIVERTER SWITCH INSERT
52 TRANSITION RESISTANCES
53 EYEBOLT

MOUNTING FLANGE ON TRANSFORMER COVER
9.2 Cabeza del cambiador de tomas bajo carga
E1 = BLEEDING FACILITY FOR ON-LOAD TAP-CHANGER HEAD
E2 = BLEEDING FACILITY FOR SPACE UNDER THE HEAD OUTSIDE THE TAP-CHANGER OIL COMPARTMENT
(SAME PIPE CONNECTION AS R, S OR BLEEDER SCREW CAN BE USED)
Q = CONNECTION FOR OIL RETURN OR TAP CHANGE SUPERVISORY CONTROL
S = CONNECTION WITH BLEEDER SCREW (OPTIONAL)
R = CONNECTION FOR PROTECTIVE RELAY
M = EARTH CONNECTION M12

ON-LOAD TAP-CHANGER VACUTAP®, OILTAP®
ON-LOAD TAP-CHANGER HEAD, CENTRIC DRIVE

SED 1324138 001 03
7208474E
ON-LOAD TAP-CHANGER VACUTAP® VR
SPECIAL DESIGN BELL-TYPE TANK INSTALLATION

Um [kV] 170 / 245 / 300 362 / 420
DIMENSION (mm) D ø56 ø100
 E 148 185
 F ø620 ø695

© MASCHINENFABRIK REINHAUSEN GMBH 2019
THE REPRODUCTION, DISTRIBUTION AND UTILIZATION OF THIS DOCUMENT AS WELL AS THE COMMUNICATION OF ITS CONTENTS TO OTHERS WITHOUT EXPRESS AUTHORIZATION IS PROHIBITED. OFFENDERS WILL BE HELD LIABLE FOR THE PAYMENT OF DAMAGES. ALL RIGHTS RESERVED IN THE EVENT OF THE GRANT OF A PATENT, UTILITY MODEL OR DESIGN.

Z = CENTERING BOLT
M DRIVE SIDE OF SELECTOR

Z = CENTERING BOLT
M DRIVE SIDE OF SELECTOR

SCREENING RING ONLY WITH Um=170/245/300/362/420 kV

TRANSFORMER COVER
LIFTING DEVICE
SUPPORTING FLANGE
LIFTING DEVICE
Der Drehsinn wird bei Bestellung festgelegt. / THE DIRECTION OF ROTATION IS DEFINED DURING ORDERING.
PIPE CONNECTION WITH TAP-CHANGE SUPERVISORY CONTROL BUSHING WITHOUT OIL FILTER UNIT

NOTICE!
The vent screw (2) of the mounted housing (1) has to be on the top.

ON-LOAD TAP-CHANGER HEAD

A ~ 11
REPRESENTED WITHOUT COVER

M20x15
CLAMPING RANGE FOR CONNECTION CABLE:
EXTERNAL DIAMETER: 7 - 13 mm

ON-LOAD TAP-CHANGER VACUTAP® VM, VR
PIPE CONNECTION WITH TAP-CHANGE SUPERVISORY CONTROL

CONNECTION TERMINALS FOR TAP-CHANGE SUPERVISORY CONTROL

WIRING SEE CONNECTION DIAGRAM OF THE MOTOR-DRIVE UNIT

FUNCTION DIAGRAM FOR TAP-CHANGE SUPERVISORY CONTROL SEE MOTOR-DRIVE CONNECTION DIAGRAM

RATED CONTINUOUS CURRENT: 2A
RATED VOLTAGE DC/AC (50Hz): 24V ~ 250V
DIELECTRIC STRENGTH: 1150V / 50Hz / 1 min.

DIELECTRIC TEST OF ALL VOLTAGE CARRYING TERMINALS TO GROUND
2000V AC, 50Hz, TEST-DURATION 1 min.
9.3 Planos de ajuste

- \(\mathbf{M} \) = DRIVE SIDE OF THE SELECTOR
- \(\mathbf{A} \) = ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

DIVERTER SWITCH INSERT

TOP VIEW

1 SECTOR
2 SECTORS
3 SECTORS

DIVERTER SWITCH

SELECTOR COUPLING

GENEVA WHEEL TOP

SELECTOR
SELECTOR
SELECTOR
PLANE I
PLANE II

ON-LOAD TAP-CHANGER VACUTAP® VR

VR S/M/L/H I/II/III - RC/RD/RDE - O

ADJUSTMENT PLAN

\[M \] = DRIVE SIDE OF THE SELECTOR

\[A \] = ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

DIVERTER SWITCH INSERT

TOP VIEW

1 SECTOR

2 SECTORS

3 SECTORS

SELECTOR COUPLING

GENEVA WHEEL TOP

SELECTOR 10 PITCH REPRESENTATION

SELECTOR PLANE I

SELECTOR PLANE II

10 PITCH REPRESENTATION

A = DRIVE SIDE OF THE SELECTOR

M = ON-LOAD TAP-CHANGER HEAD

ON-LOAD TAP-CHANGER VACUTAP® VR

VR S/M/L/H I/II/III - RC/RD/ROE - W

ADJUSTMENT PLAN

= DRIVE SIDE OF THE SELECTOR

= ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

ON-LOAD TAP-CHANGER HEAD

DIVERTER SWITCH INSERT

TOP VIEW

1 SECTOR

2 SECTORS

3 SECTORS

DIVERTER SWITCH

SELECTOR COUPLING

GENEVA WHEEL TOP

SELECTOR

10 PITCH REPRESENTATION

SELECTOR PLANE I

SELECTOR PLANE II
THE CONNECTION DIAGRAM OF THE
ON-LOAD TAP-CHANGER IS BINDING
FOR THE DESIGNATION AND
THE EQUIPMENT OF THE TERMINALS
AND PHASES.

\[M \] = DRIVE SIDE OF THE SELECTOR

\[A \] = ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

DIVERTER SWITCH INSERT
TOP VIEW

DIVERTER SWITCH

SELECTOR COUPLING

GENEVA WHEEL TOP

SELECTOR PLANE I

SELECTOR PLANE II

ON-LOAD TAP-CHANGER VACUTAP® VR
VR S/M/L/H I/II/III - RE/RF - 0
ADJUSTMENT PLAN

© MASCHINENFABRIK REINHAUSEN GMBH 2016
THE REPRODUCTION, DISTRIBUTION AND UTILIZATION OF THIS DOCUMENT AS WELL AS THE COMMUNICATION OF ITS CONTENTS TO OTHERS WITHOUT EXPRESS AUTHORIZATION IS PROHIBITED. OFFENDERS WILL BE HELD LIABLE FOR THE PAYMENT OF DAMAGES. ALL RIGHTS RESERVED IN THE EVENT OF THE GRANT OF A PATENT, UTILITY MODEL OR DESIGN.

\(\text{M} \) = DRIVE SIDE OF THE SELECTOR

\(\text{A} \) = ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

DIVERTER SWITCH INSERT

TOP VIEW

DIVERTER SWITCH

SELECTOR COUPLING

GENEVA WHEEL TOP

SELECTOR

10 PITCH REPRESENTATION

SELECTOR PLANE I

SELECTOR PLANE II

- = DRIVE SIDE OF THE SELECTOR

A = ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

DIVERTER SWITCH INSERT

TOP VIEW

DIVERTER SWITCH

SELECTOR COUPLING

GENEVA WHEEL TOP

SELECTOR

10 PITCH REPRESENTATION

SELECTOR PLANE I

SELECTOR PLANE II

1 SECTOR

2 SECTORS

3 SECTORS
<table>
<thead>
<tr>
<th>CC</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente continua (Direct Current)</td>
<td>Contacto normalmente abierto (Normally Open contact)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEC</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Comisión electrotécnica internacional, abreviada IEC por sus siglas en inglés, es una organización de normalización internacional del sector de la electrotecnia y electrónica.</td>
<td>Contacto normalmente cerrado (Normally Closed contact)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP</th>
<th>Rigidez dieléctrica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protección frente a penetración (Ingress Protection)</td>
<td>propiedad específica del material de aislantes [kV/2,5 mm]; intensidad de campo eléctrica máxima, sin que se produzca una ruptura de tensión (arco voltaico)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maschinenfabrik Reinhausen GmbH</td>
<td></td>
</tr>
</tbody>
</table>