明示的に許可された場合を除き、本書を配布および複製すること、さらには本書内容を使用および公開することは禁じられています。侵害行為があった場合は、賠償責任が生じます。特許、実用新案、意匠の付与に関するすべての権利を留保します。
本書の公開後に、製品に変更や修正が加えられている可能性があります。
製品のテクニカルデータや設計、納入内容を変更する権利は弊社が有します。
一般に、個別の見積および注文の処理時に提供された情報および合意された契約内容が法的拘束力を有します。
本書の原版はドイツ語で作成されています。
<table>
<thead>
<tr>
<th>章目</th>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>はじめに</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>妥当性</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>メーカー</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>補足資料</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>保管</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>表記法</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>危険因子に関して</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>インフォメーション表記</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>インストラクションの種類</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>安全</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>適切な使用</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>不適切な使用</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>基本的な安全に関するインストラクション</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>作業員の認定</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>保護具</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>製品説明</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>製品に含まれるもの</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>負荷時タップ切換器（OLTC）</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>機能の説明</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>デザイン/バージョン</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>銘板および製造番号</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>保護装置</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>駆動シャフト</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>機能の説明</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>構造/種類</td>
<td>32</td>
</tr>
</tbody>
</table>
4 梱包、輸送、保管 ... 37
 4.1 梱包 .. 37
 4.1.1 適切な扱い ... 37
 4.1.2 マークに関して ... 38
 4.2 出荷物の輸送、受領、扱い .. 39
 4.3 製品の保管 .. 40
 4.4 開梱および輸送による損傷の確認 ... 41

5 設置 ... 42
 5.1 準備作業 .. 42
 5.1.1 変圧器カバーへの取り付けフランジの取付 .. 42
 5.1.2 スタッドボルトの取り付けフランジへの取付 .. 44
 5.2 負荷時タップ切換器 (OLTC) の変圧器への取付 (標準仕様 = 非ベルタイプタンク) .. 45
 5.2.1 OLTC の変圧器カバーへの固定 ... 45
 5.2.2 タップ巻線とOLTC接続線の接続 .. 75
 5.2.3 乾燥前の変圧比測定の実施 .. 83
 5.2.4 変圧器での直流抵抗測定 ... 84
 5.2.5 乾燥炉内でのOLTCの乾燥 .. 84
 5.2.6 変圧器タンク内でOLTCを乾燥させる .. 92
 5.2.7 油槽へ絶縁油の注油 .. 113
 5.2.8 乾燥後の変圧比測定の実施 ... 114
 5.3 負荷時タップ切換器 (OLTC) を変圧器に取り付ける (ベル形タンクバージョン) .. 116
 5.3.1 OLTC を支持構造体に挿入する .. 116
 5.3.2 タップ巻線とOLTC接続線の接続 .. 123
 5.3.3 乾燥前の変圧比測定の実施 ... 131
 5.3.4 変圧器での直流抵抗測定 ... 132
 5.3.5 乾燥炉内でのOLTCの乾燥 .. 132
 5.3.6 負荷時タップ切換器 (OLTC) ヘッド上部を吊り上げて、同部下部支持フランジから切り離す .. 141
 5.3.7 ベル形タンクを取付け、OLTCヘッド上部に接続する .. 149
 5.3.8 変圧器タンク内でOLTCを乾燥させる .. 162
 5.3.9 油槽へ絶縁油の注油 .. 183
目次

5.3.10 乾燥後の変圧比測定の実施 185
5.4 保護装置および駆動部品の取り付け 186
5.4.1 温度センサーへの配線の接続 186
5.4.2 スーパーバイザーリーコントロールシステムの接続 186
5.4.3 保護リレーの設置と配管取り付け 186
5.4.4 圧力監視装置の取り付けと接続 198
5.4.5 電動操作機構(MDU)の取り付け 200
5.4.6 駆動シャフトの取り付け ... 200
5.4.7 負荷時OLTCタップ切替器（OLTC）および電動操作機構（MDU）の振り分け調整 260
5.4.8 電動操作機構（MDU）の配線接続 260

6 性能検証 ... 261
6.1 変圧器メーカー工場でのOLTCの性能検証 261
6.1.1 OLTCヘッドおよび排油管の気抜き 262
6.1.2 OLTCの接地 .. 263
6.1.3 電動操作機構（MDU）の確認 265
6.1.4 変圧器の高電圧試験 ... 265
6.2 変圧器の設置場所への輸送 ... 267
6.2.1 取り外した電動操作機構（MDU）の輸送 267
6.2.2 注油された変圧器タンクのオイルコンサベータなしでの輸送 267
6.2.3 空の変圧器タンクでの輸送 .. 268
6.3 設置現場での変圧器の性能検証 269
6.3.1 油槽へ絶縁油の注油 ... 269
6.3.2 OLTCヘッドおよび排油管の気抜き 271
6.3.3 電動操作機構（MDU）の確認 272
6.3.4 保護リレーの確認 .. 274
6.3.5 圧力監視装置の確認 .. 275
6.3.6 変圧器の性能検証 .. 276

7 トラブルシューティング ... 277
7.1 保護リレーのトリップと、変圧器の性能再検証 279
7.1.1 運転位置にあるフラップ弁 ... 280
目次

7.1.2 フラップ弁がオフ (TRIP)の位置になっている... 280
7.1.3 変圧器の性能再検証 .. 281
7.2 圧力監視装置の作動と変圧器の動作再開 .. 282
 7.2.1 運転位置にあるセンサー ... 282
 7.2.2 OFF (トリップ)位置にあるセンサー .. 283
 7.2.3 変圧器の性能再検証 .. 283
7.3 廃棄 ... 284

9 技術データ .. 285
 9.1 OLTCの技術データ .. 285
 9.1.1 OLTCの特性 .. 285
 9.1.2 使用可能条件 .. 286
 9.2 保護リレーの技術データ .. 288
 9.3 保護リレーの特別仕様 ... 290
 9.3.1 COチェンジオーバーコンタクトをトリップスイッチとして持つ保護リレー 290
 9.3.2 複数のドライリードマグネットスイッチのある保護リレー 291
 9.4 圧力監視装置の技術データ .. 292
 9.5 絶縁油の絶縁耐力と含水量の限度値 ... 293
 9.6 中性点が非接地のスター接続用のOLTC .. 294

10 図面 .. 295
 10.1 寸法図 ... 295
 10.1.1 10017738 .. 296
 10.1.2 10018045 .. 297
 10.2 負荷時タップ切換器 (OLTC)ヘッド .. 298
 10.2.1 893899 .. 299
 10.2.2 720781 .. 300
 10.2.3 895168 .. 301
 10.2.4 892916 .. 302
 10.2.5 890183 .. 303
 10.2.6 723015 .. 304
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.7</td>
<td>720845</td>
<td>305</td>
</tr>
<tr>
<td>10.2.8</td>
<td>766161</td>
<td>306</td>
</tr>
<tr>
<td>10.3</td>
<td>調整図</td>
<td>307</td>
</tr>
<tr>
<td>10.3.1</td>
<td>10017231</td>
<td>308</td>
</tr>
<tr>
<td>10.3.2</td>
<td>10017233</td>
<td>309</td>
</tr>
<tr>
<td>10.3.3</td>
<td>10017234</td>
<td>310</td>
</tr>
<tr>
<td>10.3.4</td>
<td>10017235</td>
<td>311</td>
</tr>
<tr>
<td>10.3.5</td>
<td>10017236</td>
<td>312</td>
</tr>
<tr>
<td>10.3.6</td>
<td>10020859</td>
<td>313</td>
</tr>
<tr>
<td>10.3.7</td>
<td>10020864</td>
<td>314</td>
</tr>
<tr>
<td>10.3.8</td>
<td>10020865</td>
<td>315</td>
</tr>
<tr>
<td>10.3.9</td>
<td>10020866</td>
<td>316</td>
</tr>
<tr>
<td>10.3.10</td>
<td>10020867</td>
<td>317</td>
</tr>
<tr>
<td>用語集</td>
<td></td>
<td>318</td>
</tr>
</tbody>
</table>
1 はじめに

本資料では、本製品の安全で適切な取付、接続、試運転について説明されています。
また本製品に関する安全の手引きや概要についても説明されています。
操作に関しての情報は、取扱説明書を参照してください。
本資料は特別な教育を受け、認定を受けた人間を対象にしています。

1.1 妥当性

この技術資料は、次のタイプの負荷時タップ切換器VACUTAP® VR®に関するものです。

VRS
- VRS I 701
- VRS II 702
- VRS III 700 Y
- VRS I 1001
- VRS I 1301

VRM
- VRM I 701
- VRM II 702
- VRM III 700 Y
- VRM I 1001
- VRM I 1301

1.2 メーカー

製造元情報:
Maschinenfabrik Reinhausen GmbH
Falkensteinstraße 8
93059 Regensburg
電話:(+49) 9 41/40 90-0
Eメール：sales@reinhausen.com
1 はじめに

本製品に関する追加情報および本資料のコピーは、上記より入手できます。

1.3 補足資料

いくつかの補足資料があります。
以下が補足資料になります。

- 開梱説明書
- 付録
- ルーチン試験レポート
- 接続図
- 寸法図
- 仕様確認書

1.4 保管

本資料および補足資料は、必要時に参照できるように保管してください。

1.5 表記法

1.5.1 危険因子に関して

本資料では以下のように表示します。

1.5.1.1 警告

章や段落などの項目全体の警告があります。項目全体に関連する警告は、次の形式を使用します。

⚠️警告

危険の種類
要因と結果。

► 対策
► 対策
1.5.1.2 項目ごとの警告情報

以下の警告は項目内の特定の部分に言及します。この警告は、上記の1.4.1.1の警告よりも細かな物に適用されます。以下の形式が使用されます。

⚠️ 危険！ 危険防止の為の指示。

1.5.1.3 用語と記号

以下が使用されます。

<table>
<thead>
<tr>
<th>表記</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>危険</td>
<td>死亡または重傷を負う。</td>
</tr>
<tr>
<td>警告</td>
<td>死亡または重傷を負う恐れがある。</td>
</tr>
<tr>
<td>注意</td>
<td>軽傷または中程度の怪我を負う恐れがある。</td>
</tr>
<tr>
<td>注記</td>
<td>物的損傷を避ける為の方法の指示。</td>
</tr>
</tbody>
</table>

表 1: 警告の注記で使用される用語

記号の種類:

<table>
<thead>
<tr>
<th>記号</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>危険</td>
<td></td>
</tr>
<tr>
<td>感電の恐れ</td>
<td></td>
</tr>
<tr>
<td>火災の恐れ</td>
<td></td>
</tr>
</tbody>
</table>
1.5.2 インフォメーション表記

インフォメーション表記は、特定の手順をシンプルに分かりやすくするためにあります。以下のように提示します。

重要情報。

1.5.3 インストラクションの種類

単一ステップおよび複数ステップの手順があります。

単一ステップのインストラクション

以下のような一つのステップで構成される手順。

作業の目的

要件 (オプション)。

ステップ1/1。

ステップの結果 (オプション)。

作業の結果 (オプション)。

複数ステップのインストラクション

以下のような複数のステップで構成される手順。

<table>
<thead>
<tr>
<th>記号</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>転倒の恐れ</td>
<td></td>
</tr>
<tr>
<td>挟まれる恐れ</td>
<td></td>
</tr>
</tbody>
</table>

表2: 警告で使用される記号
作業の目的

✓ 要件（オプション）。

1. ステップ1。
 ⇒ ステップの結果（オプション）。

2. ステップ2。
 ⇒ ステップの結果（オプション）。
 ⇒ 作業の結果（オプション）。

Maschinenfabrik Reinhausen GmbH 2021
2 安全

・本資料をよく読み、本製品の操作方法を理解してください。
・本資料は製品の一部として本製品に含まれています。
・本資料の警告を読んで従い、危険を回避してください。
・本製品は、最先端のテクノロジーに基づいて製造されています。しかし、不適切な使用により生命の危険や負傷の恐れや、または機能により本製品や他の所有物を損傷させることがあります。

2.1 適切な使用

本製品は負荷時タップ切換器（OLTC）であり、負荷の流れを中断することなく変圧器の変圧比を調整できます。本製品は、電気エネルギーシステムとその施設で使用されるためにのみに設計されています。本資料で指定された要件や条件、および本資料と別途製品に添付されている他の資料の警告に従い、本来の意図されたとおりに製品を使用した場合、製品が人、財産、または環境に危険を及ぼすことはありません。納品から取付、運用、取り外し、廃棄にいたるまで、上記は本製品の耐用年数を通じて適用されます。

以下が適切な使用方法となります。

・注文の際に指定されている変圧器/電動操作機構でのみ、本製品を使用してください。
・負荷時タップ切換器（OLTC）と付属品が1つのオーダーに対してセットとして供給される場合、OLTCと付属品（電動操作機構、駆動シャフト、傘歯車、保護リレーなど）のシリアル番号は一致する必要があります。
・銘板には本製品の準拠した規格と制定年が記載されています。
・本技術資料、合意した供給条件、技術データに従って本製品を操作してください。
・すべての作業は、有資格者だけが行うようにしてください。
・同梱されている備品や特殊ツールは、本資料に従い、本来の目的以外に使用しないでください。
・このOLTCでは、活線浄油器との併用は想定されていません。

許容されている電気的動作条件

注文確認に従った設計データに加えて、通過電流およびステップ電圧に対する以下の制限を順守してください。
標準品では、負荷時タップ切換器は曲線形状がゼロ軸に対し対称な正弦波50/60Hz交流電流に適応するように設計されており、最大2倍までの定格ステップ電圧\(U_{ir}\)で定格通過電流\(I_{r}\)を切り替えることができます。

このステップ電圧に対して許容される定格ステップ容量\(P_{StN}\)を超えない限り、短時間で定格ステップ電圧\(U_{ir}\)を10%まで超えることは許容されます。

2.2 不適切な使用

本製品が「適切な使用」に記載されている以外の方法で使用される場合を指します。また以下の内容に従ってください。

禁止されている電気的動作条件

仕様確認書の設計データに即しない使用条件はすべて、禁止されます。

変圧器やその他の機器に通電した際の短絡および突入電流によって、禁止されている動作条件が発生することがあります。このことは、並列または直列に接続された変圧器やその他の機器と同様に、影響を受ける変圧器自体にも当てはまります。

例として、負荷制限に後続する変圧器の過励磁によって、電圧上昇が発生することがあります。

許容動作条件外での運転は、怪我や本製品の損傷の原因になります。

- 適切な対策を講じることにより、許容動作条件外での動作を防止します。

2.3 基本的な安全に関するインストラクション

事故、停止、損傷、環境に対する悪影響を防止するために、本製品や付属品の輸送、取付、操作、メンテナンス、廃棄には次のことを守らなくてはなりません。

保護具

ゆるすぎたりサイズの合していない服を着用していると、回転部分にひかかったり、巻き込まれる危険性や突起部に引っかかる危険性が増します。このことにより、生命や四肢が危険にさらされます。

- それぞれの作業に応じた、ヘルメット、作業用手袋などの適切な保護具を着用します。
- 損傷のある保護具は絶対に着用しないでください。
安全

指輪、ネックレス等の装身具は絶対に着用しないでください。
長髪の場合はヘアネットを使用してください。

作業エリア

整理整頓が不十分であったりや照明が不十分な場合は事故の原因になります。
作業エリアの整理整頓をしてください。
作業エリアを充分に照明してください。
各国の安全基準や法律に準拠してください。

運転中の作業

本製品は必ず技術的にも機能的にも問題のない状態で運転してください。それ以外の条件下で運転を行うと、死亡や負傷を負うおそれがあります。
安全装置を定期的にチェックしてください。
本資料で記載されている点検作業、メンテナンス作業の指示やメンテナンス周期に従ってください。

爆発の危険

引火性の高い、あるいは爆発する可能性のある気体、蒸気、埃は、深刻な爆発や火災を引き起こすことがあります。これにより、死亡や負傷を負う可能性が増します。
爆発の危険性があるエリアで、本製品の取付や操作、メンテナンス作業を行わないでください。

安全性に関する表示

警告や安全性に関する情報を伝えるプレートが製品に添付してあります。これらは、安全性に関する重要な告知です。
表示の内容に従ってください。
表示を損傷させたり、文字を判読可能な状態にしないでください。
損傷や紛失している表示がある場合は交換してください。

使用環境

安全な操作を行うために、本製品は技術データで指定されている使用環境でのみ操作してください。
設置場所は指定されている運転条件/要件に従ってください。
補助剤と処理用材料

メーカーにより承認されていない補助剤や処理用材料を使用すると、人身傷害、器物の損傷、本製品の動作不良が発生することがあります。

▪ 必ずメーカーが認定している絶縁油 [▶セクション 9.1.2, ページ 286] を使用してください。
▪ 必ず導電性でかつ接地したホース、配管、ならびに可燃性液体用のポンプを使用してください。
▪ メーカーが認定している潤滑油と補助剤だけを使用してください。
▪ メーカーに連絡してください。

改造と仕様変更

メーカーに無断での改造や不適切な仕様変更を本製品に加えると、負傷や機材の損傷、運用上の不具合が発生することがあります。

▪ 改造、仕様変更を行う際は、必ずMaschinenfabrik Reinhausen GmbHと相談してからにしてください。

スペアパーツ

Maschinenfabrik Reinhausen GmbHによって承認されていないスペアパーツを使用すると、負傷や機材の損傷、運用上の不具合が発生することがあります。

▪ Maschinenfabrik Reinhausen GmbHが承認したスペアパーツのみを使用してください。
▪ Maschinenfabrik Reinhausen GmbHに連絡してください。

2.4 作業員の認定

組み立て、試運転、操作、メンテナンス、検査に責任のある担当者は、作業員がきちんと認定を受けていることを確認する必要があります。

電気技術熟練者

電気技術の熟練者は、技術認定を受けているため、必要な知識や経験があり、適切な規格や規制に精通しています。電気技術に熟練している人物は次のことに優れている。

▪ 単独で潜在的な危険を特定し、そのような危険を回避することができる。
▪ 電気システムで作業を行えます。
2 安全

業務を行う作業環境に対して特別なトレーニングを受けています。
事故防止のための適切な法的規制の要件を満たす必要があります。

電気技術の訓練を受けた者
電気技術の訓練を受けた者は、電気技術熟練者から、不適切な行動が行われたときの潜在的な危険、ならびに保護装置と安全対策に関連して指示とガイダンスを受けます。電気技術の訓練を受けた者は、電気技術熟練者の指示と監督の下のみで作業を行います。

オペレーター
オペレーターは、本資料に従って本製品を使用および操作します。運用を行う会社は、オペレーターに特定のタスク、および不適切な行動が行われた際に発生する潜在的な危険についての指示と訓練を提供します。

技術サービス
弊社は、メンテナンス、修理、レトロフィットを弊社の技術サービス部門により行うことを強く推奨します。このことによりすべての作業が適切に実行されるようになります。弊社の技術サービス部門がメンテナンスを行わない場合は、メンテナンス作業者がMaschinenfabrik Reinhausen GmbHのトレーニングを受け、同社により認定されていることを確認してください。

認定作業者
認定作業者は、メンテナンスを行うためにMaschinenfabrik Reinhausen GmbHのトレーニングを受けています。

2.5 保護具
健康に対するリスクを最小限に抑えるために、適切な保護具を作業中に着用する必要があります。

- 各々の作業に必要な保護具は常に着用してください。
- 損傷のある保護具は絶対に着用しないでください。
- 作業エリアで掲示されている保護具に関する情報に従ってください。
| 保護服 | 引裂き強度が低く、タイトな袖で引っかかりやすい部分のない、ぴったりとした作業服。主にこの服は、着用している人物が機械可動部にひっかかったりするのを防止します。 |
| 安全靴 | 重い物が落下した際の足を保護し、すべりやすい地面等で足がすべるのを防止します。 |
| 保護眼鏡 | 飛散する部品や液体などから目を守ります。 |
| バイザー | 飛散する部品や液体、ならびに他の危険物質から顔を守ります。 |
| ヘルメット | 落下物や飛来する部品や物質から顔を守ります。 |
| 聴力保護具 | 耳を騒音から守ります。 |
| 防護手袋 | 機械的、熱的、電気的危険から手を守ります。 |

表 3: 保護具
3 製品説明

3.1 製品に含まれるもの

本製品には湿気に対する保護があり、通常は以下のように供給されます。

▪ 切換開閉器（切換開閉器インサート付き油槽）
▪ 選択器
▪ 電動操作機構（MDU）
▪ 駆動シャフトと結合部、および傘歯車
▪ 保護装置
▪ 技術資料

より詳細な供給範囲に関しては、納品書を参照してください。

以下に注意してください。

▪ 出荷伝票に基づき、納入品目が揃っていることを確認してください。
▪ 部品は湿気の少ない場所に保管してください。
▪ 本製品は取付けの直前まで、バリア梱包は解かずに保管する必要があります。

詳細については、「梱包、輸送、保管」 [セクション 4, ページ 37]の章を参照してください。

3.2 負荷時タップ切換器（OLTC）

3.2.1 機能の説明

OLTCは、負荷の流れを中断することなく変圧器の変圧比を調整するために使用されます。これによって、送電グリッドで発生する電圧の変動などを補償できます。この目的で、OLTCは変圧器に取り付けられ、変圧器の帯電部分に接続されます。

制御インパルス信号を受信する（例：電圧調整継電器から）電動操作機構（MDU）により、OLTCの運転位置が変更され、その結果、変圧器の変圧比は要求された値になります。
3.2.2 デザイン/バージョン

次の図面は、OLTCの主要構成要素を示しています。

OLTCの詳細な図面は、「図面」[セクション 10, ページ 295]セクションに記載されています。
図 2: OLTCの設計

1. OLTCヘッド
2. 上部ギアユニット
3. 配管接続部
4. 油槽
5. タップ選択器
6. 副切換器（オプション）
7. OLTCヘッドカバー
8. 放圧板
3.2.2.1 配管接続部

OLTCヘッドには、それぞれ異なる用途の為、4つの配管接続部が装着されています。

注文に応じて、これらの配管接続部の一部または全てに、曲がり管が取り付けられます。タップ切換監視制御用の端子箱がない曲がり管はすべて、押さえ板を緩めると、自由に回転できます。

図3: 曲がり管付き配管接続部

配管接続部Q

配管接続部Qは閉止板で閉じられています。OLTCにスーパーバイザーーコントロールが搭載されている場合、スーパーバイザーーコントロールシステムの接続ケーブルは配管接続部を通ります。

RおよびQ配管接続部の機能は互換性があります。

配管接続部S

配管接続部Sの曲がり管には排気用ボルトがあります。変圧器タンク側面にある排油弁につながっているパイプに接続できます。OLTCに排油管が取り付けられている場合は、配管接続部Sを介して排油することができます。

配管接続部R

配管接続部Rは、保護リレーの取り付けおよびOLTCオイルコンサベータとの接続の為にあります。また配管接続部Qと入れ替えることができます。
配管接続部E2

配管接続部E2は閉止板でふさがれています。OLTCヘッド直下の変圧器本体側タンクに配管され、必要に応じてブッホルツリレーの集合配管に接続できます。この配管接続部は変圧器の乾燥、絶縁油の充填、輸送の際に変圧器タンクとOLTCの油槽間の圧力を平衡化するという機能もあります。

3.2.3 銘板および製造番号

製造番号の記載された銘板は、OLTCヘッドカバーに取り付けられています。

図4: 銘板

製造番号は選択器にも記載されています。

図5: 製造番号
3.2.4 護装置

OLTCには、以下の護装置が装備されています。

3.2.4.1 護リレー

3.2.4.1.1 機能の説明

護リレーは、遮断器のトリップ回路にループ接続されていること。負荷時タップ切換器のヘッドからオイルコンサベーターのフローの指定速度がエラーにより超過したときに、トリップされます。流れている絶縁油は、位置オフに転倒するフラップ弁を作動します。ドライリード電磁スイッチの接点がこれにより作動され、遮断器がトリップされ、変圧器の動力源が断たれます。

護リレーは、絶縁油が充填されている負荷時タップ切換器のコンポーネントで、この特性はそれぞれの適切なIECパブリケーション60214-1バージョンに準拠します。

定格切換容量または許容負荷での切換開閉器操作によって護リレーがトリップすることはありません。

保護リレーは、護リレーに滞まるガスではなく油流に反応します。変圧器に注油する際に保護リレーのガス抜きは必要はありません。保護リレー内にガスが滞ることは異常ではありません。

3.2.4.1.2 構造/種類

正面図

図6: 護リレーRS 2001

1 のぞき窓
2 通気口
3 製品説明

背面図

図 7: 保護リレーRS 2001

1 ダミープラグ 2 銘板

保護リレーRS 2001/Rにはのぞき窓が背面にもあります。

上面図

図 8: 保護リレーRS 2001

1 ガスケット 2 接地線

3 端子箱カバー 4 接地線取り付けすりわり付き小ねじ

5 テストボタン（復旧用） 6 保護カバー取り付けすりわり付き小ねじ
3.2.4.1.3 銘板

銘板は保護リレー背面に取付けられている。

3.2.4.1.4 安全性のマーク

次の安全性のマークが、本製品には使用されています。
3.2.4.2 圧力監視装置DW

3.2.4.2.1 機能の説明

DW 2000圧力監視装置はOLTCを異常な圧力増加から保護し、変圧器の安全性を向上させます。圧力監視装置は油槽の外部に設置され、油槽内での異常な静圧および動圧の上昇によって、トリップします。

圧力監視装置では、コルゲートチューブを、逆方向に作用するスプリングと一緒に使用し圧力計として働きます。このシステムはスナップアクションスイッチ上のセンサーと機械的に接続されています。

圧力の上昇により、スナップアクションスイッチのセンサーが起動され、オフ位置になります。そして遮断器が動作し、変圧器の電源が切れます。スナップアクションスイッチのセンサーは、トリップ後に手動でリセットする必要があります。

規定のトリップ圧力以下では圧力監視装置のトリップは発生しません。トリップ圧力は工場で設定され、変更はできないようにされています。

大きな圧力増加に対して、圧力監視装置は保護リレーより速く反応します。保護リレーはMRの標準的な保護システムの一部であり、標準装備されています。

圧力監視装置を追加で使用する際にも、保護リレーの取り付けは必要です。

圧力監視装置の機能および特性は、IEC60214-1に準拠します。

定格切換容量または許容過負荷での切換開閉器操作によって圧力監視装置がトリップすることはありません。

圧力監視装置は圧力変化に対応し、気体が蓄積されることには反応しません。圧力監視装置での気体蓄積は異常ではありません。

3.2.4.2.2 構造/種類

圧力監視装置には以下の2つの種類があります。

- 垂直設置用DW2000
- 水平設置用DW2000
圧力監視装置のハウジングおよびカバーは、軽量の耐腐食性金属で作られています。

図 11: スナップアクションスイッチと圧力測定部

1 スナップアクションスイッチ 2 圧力測定部
3.2.4.3 破裂板

破裂板は、IEC60214-1に準拠した信号接点のない放圧装置であり、OLTCヘッドカバー上にあります。
破裂板は、OLTC油槽内の圧力が規定値異常になった際に機能します。

3.2.4.4 放圧装置MPreC®

ご要望によりMRは、破裂板の代わりにMPreC®放圧装置を提供することができます。この装置は、OLTC油槽内の圧力が規定異常になった際に反応します。
OLTCは、放圧装置に関するIEC60214-1に適合しています。

3.2.4.5 スーパーバイザリーコントロールシステム

スーパーバイザリーコントロールシステムにより、OLTCと電動操作機構(MDU)の間の駆動シャフトと、切換開閉器の動作の両方が監視されます。
3.2.4.6 温度モニタリング

温度モニタリング装置により、OLTC油槽内の絶縁油温度が監視されます。
3 製品説明

3.3 駆動シャフト

3.3.1 機能の説明

駆動シャフトは、駆動部と負荷時タップ切換器（OLTC）/無電壓タップ切替器（DETC）間を機械的に接続します。

傘歯車により、動力が垂直から水平に変換されます。

そのため、垂直側駆動シャフトはMDUと傘歯車の間に、水平側駆動シャフトは傘歯車とOLTC/DETCの間に取り付ける必要があります。
3.3.2 構造/種類

駆動シャフトは角管によって構成され、各終端で2つの結合用ブラケットと1つの結合用ボルトで、接続する対象の装置の駆動シャフトまたは被駆動シャフトの終端に連結されます。

図13: 駆動シャフトの構成

1	傘歯車
2	ホースクリップ
3	伸縮式保護筒
4	結合用ブラケット
5	角管
6	結合用ボルト
7	アダプターリング
8	保護カバー
3.3.2.1 カルダン継手なし、絶縁体なしの駆動シャフト

図 14: カルダン継手なし、絶縁体なしの駆動シャフト（標準仕様）

<table>
<thead>
<tr>
<th>許容角度</th>
<th>V1min</th>
<th>中間ベアリング</th>
</tr>
</thead>
<tbody>
<tr>
<td>手回しハンドルの中央 – 伞歯車の中 536mm (最大許容角度2°)</td>
<td>V1が2472mmを超える場合、中間ベアリングを使用する必要があります。V1≤2472mm (中間ベアリング不要) V1>2472mm (中間ベアリング要)</td>
<td></td>
</tr>
</tbody>
</table>
3.3.2.2 カルダン継手なし、絶縁体付きの駆動シャフト

図 15: カルダン継手なし、絶縁体付きの駆動シャフト（非標準仕様）

<table>
<thead>
<tr>
<th>許容角度</th>
<th>V1min</th>
<th>中間ベアリング</th>
</tr>
</thead>
<tbody>
<tr>
<td>手回しハンドルの中央 - 傘歯車の中 706mm（最大許容角度2°）</td>
<td>V1が2472mmを超える場合、中間ベアリングを使用する必要があります。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V1≤2472mm（中間ベアリング不要）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V1>2472mm（中間ベアリング要）</td>
<td></td>
</tr>
</tbody>
</table>
3.3.2.3 カルダン絡手付き、絶縁体なしの駆動シャフト

図 16: カルダン絡手付き、絶縁体なしの駆動シャフト (= 特殊モデル)

<table>
<thead>
<tr>
<th>設定</th>
<th>V 1 min [mm]</th>
<th>[mm] 用中間ベアリング</th>
</tr>
</thead>
<tbody>
<tr>
<td>手回しハンドルの中央 – 傘歯車の中央</td>
<td>798</td>
<td>V1>2564</td>
</tr>
<tr>
<td>央 (最大許容軸オフセット20°)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.2.4 カルダン継手付き、絶縁体付きの駆動シャフト

設定

<table>
<thead>
<tr>
<th>設定</th>
<th>V min [mm]</th>
<th>[mm] 用中間ベアリング</th>
</tr>
</thead>
<tbody>
<tr>
<td>手回しハンドルの中央 – 傘歯車の中央 (最大許容軸オフセット20°)</td>
<td>978</td>
<td>V1 > 2772</td>
</tr>
</tbody>
</table>

図17: カルダン継手付き、絶縁体付きの駆動シャフト（= 特殊モデル）
4 梱包、輸送、保管

4.1 梱包

本製品は、要件に応じて、密封包装で供給されることも、乾燥した状態で供給されることもあります。

密封包装の場合、パッケージ対象の製品のすべての側面がプラスチックフォイルで覆われます。

乾燥も行われている製品は、密封包装の黄色のラベルで識別されます。乾燥した状態の場合は、輸送コンテナーで供給を行うことも可能です。

次のセクションの情報を必要に応じて適用する必要があります。

4.1.1 適切な扱い

注記

- 木箱を不適切に積み重ねた事により物的損傷！
- 木箱を不適切に積み重ねると梱包物が損傷することがあります。
- ▶ 例：「OLTCまたは選択器が直立状態で梱包」との表記が木箱にある場合、決して積み重ねないでください。
- ▶ 一般的な注意事項：木箱を1.5m以上の高さに積み重ねないでください。
- ▶ その他木箱の積み重ね：最大で同じ大きさの木箱を2段まで

梱包は、製品の損傷を防ぎ、安全で確実な輸送の為に行われます。また、それぞれの地域の輸送に関する法律と規制に従います。

梱包には木箱が使用されます。木箱は、意図されている輸送位置で、許可できない位置の変更を防止するために梱包商品が安定化されることを保証し、いかなるパーツも輸送手段の荷積みの面に接触したり、荷下ろしの後に地面に接触したりしないようにすることも保証します。

パリア梱包の場合は、製品全体がプラスチックシートで覆われます。また乾燥剤を使用し、湿気を防ぎ防錆されます。乾燥剤を追加した後、プラスチックシートは密封されます。
4.1.2 マークに関して

安全な輸送と適切な保管のために、梱包された製品には説明や指示が添付されています。以下のマークは、危険物以外の物に適用されます。これらの記号は必ず順守してください。

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>湿気からの保護</td>
<td>この面を上に</td>
<td>壊れ物</td>
<td>吊り上げ装置取り付け場所</td>
</tr>
</tbody>
</table>

表 4: 記号の種類
4.2 出荷物の輸送、受領、扱い

⚠️ 警告

死亡、重傷の恐れ！

荷物が転倒または落下することにより、死亡したりまたは重傷を負う恐れ。

► 木箱が空いた状態で輸送しないでください。
► 輸送中は木箱で使用されている固定器具を取り外さないでください。
► 本製品がパレットで発送される場合は、しっかり固定してください。
► 訓練と認定を受けている人物だけが、吊り具を選択し、荷物を扱えます。
► 吊り荷の下を歩かないでください。
► 出荷伝票に記載されている重量に従い、充分な積載可能重量のある輸送手段と吊り上げ装置を使用してください。

輸送中は揺れや衝撃も発生することを想定する必要があります。損傷のリスクを回避するために、本製品の落下、転倒、強打、衝突を避けてください。

吊具の破損等により、木箱が転倒したり、一定の高さより落下したり際は、木箱が損傷していなかったとしても、重量に関係なく製品が損傷する可能性があることを想定する必要があります。

受取人は製品を受領する前（受取承認の前）に、下記をチェックする必要があります。

▪ 納入品目が揃っているかの確認
▪ 外部損傷がないかの点検

木箱または輸送コンテナの確認は、荷下ろし後に全側面から確認が完了した後に、行う必要があります。

目で見て分かる損傷（外観から分かる損傷）

輸送中に生じた外部損傷が受け取りの際に確認された場合、以下の手順に従ってください。

▪ 速やかに、確認された輸送による損傷を出荷伝票に記録し、これについて輸送業者にもカウンターサイン（副署）させます。
▪ 深刻な損傷（全損もしくは大きな損害額）が発生した場合には、メーカーと関係する保険会社に即座に知らせてください。
▪ 損傷を特定した後に、輸送会社または保険会社が検査を通じて決定を判断するまで、出荷の状態に変更を加えず、梱包材をそのまま残してください。
損傷の詳細について、関係する輸送会社と共に、現場で即座に記録してください。いかなる損傷に関する請求を行う際にも、これは重要なことです。

梱包と梱包された製品の損傷箇所を写真に撮ってください。梱包された製品に、梱包内の湿気（雨、雪、結露）による腐食が見られる場合も同様に行ってください。

注記 梱包密封の損傷による梱包製品への損傷 本製品が梱包密封で納入された場合、直ちに梱包密封を確認してください。バリア梱包が損傷を受けていた場合、いかなる場合も梱包された製品の取付や性能検証を行わないでください。取扱説明書にしたがい、乾燥済みの製品を再度乾燥するか、メーカーと連絡してどのように扱うか合意をとってください。

損傷を受けた部分を特定します。

目に見えない損傷（外観からは分からない損傷）
積荷を受け取った後、開梱するまで（外観からは）損傷が分かれてなかった場合、以下のよう進めます。

至急電話および文書で連絡し、責任者を明確にします。損害に関する報告書を準備します。

そのような法的措置に対してはそれぞれの国で適用される期間を順守します。これらについて、適当な時期に問い合せます。

目に見えない損傷（外観からは分からない損傷）の際は、輸送会社（その他関係者）の過失を立証するのは非常に困難です。当該ケースでは、関連する条項が保険契約条件に明示されている場合のみ保険金が支払われます。

4.3 製品の保管

Maschinenfabrik Reinhausenにより乾燥済みの製品
製品を受け取り次第、製品からバリア梱包を取り除き、油中保管されていない場合は乾燥した絶縁油内に密閉した状態で保管します。

未乾燥の製品
未乾燥の製品のうち、下記の条件を満たしたバリア梱包をされた物は、屋外保管が可能です。
保管場所を選び、保管準備をするとき以下を守ってください。

- 製品を湿気（洪水、融雪による水、氷）、埃や汚れ、ネズミやシロアリなどから保護し、許可の無い者が触れないように保管すること。
- 湿気の上昇からの保護や通気を確保する為、木箱は木製のパレットやスクリッドの上で保管します。
- 保管場所に充分な耐加熱があるか確認します。
- 搬入路を空けておきます。
- 保管されている製品を定期的に確認します。嵐、豪雨、雪などの後には適切な処置を講じます。

バリア梱包のシートが直射日光に当たらないようにし、紫外線で劣化しないようにします。劣化によって梱包の密封機能が損なわれることがあります。

到着より6カ月以上経過後に本製品を取り付ける場合、適切な対策を速やかにとる必要があります。以下の対策になります。

- 乾燥剤が再び機能するように適切に処理し、バリア梱包を戻します。
- 開梱し、適切な場所に保管します（換気が良く、なるべく埃がなく、可能な場合は湿度が50%未満の場所）。

4.4 開梱および輸送による損傷の確認

- **注記** 效率的に密封されていない梱包による梱包製品への損傷。梱包製品を取り付ける場所に、梱包された木箱を輸送します。バリア梱包は、取り付けの直前まで開けないでください。
- **警告** 梱包製品の転倒による重傷と梱包製品の損傷。梱包製品を直立した木箱に入れて、転倒から保護します。
- 梱包製品を開梱し、状態を確認します。
- 納品書を使用して、付属品キットが全て揃っているか確認します。
5 設置

警告
押しつぶしの危険性！

負荷時タップ切換器がタップ切換動作を始めるとき、コンポーネント（一部は自由にアクセス可能）は選択器、副切換器、電位接続ユニットで移動します。タップ切換動作中に選択器、副切換器、または電位接続ユニットに手を突っ込むと、重傷の原因になることがあります。

► タップ切換動作中は、少なくとも1mの安全距離を保ってください。
► タップ切換動作中は、選択器、副切換器、または電位接続ユニットに手を突っ込まないでください。
► 選択器、副切換器、または電位接続ユニットで作業している間は、負荷時タップ切換器の切換を行わないとください。

5.1 準備作業

OLTCを変圧器に取り付ける前に、以下に記載されている作業を行います。

5.1.1 変圧器カバーへの取り付けフランジの取付

取り付けフランジは、OLTCヘッドを変圧器カバーに取り付けるために必要です。取り付けフランジは、オプションとして提供されるものを使用することとも、お客様が作成した物を使用することもできます。お客様が取り付けフランジを作成する際は、添付の取り付け図面に適合する必要があります。

► 注記 取り付けフランジを変圧器カバー（油密式）に取り付きますシール面がまんべんなく当たり、また損傷しないように注意します。
図 18: 取り付けフランジ
5.1.2 スタッドボルトの取り付けフランジへの取付

スタッドボルトを取り付けフランジに取り付けるには、テンプレートを使用します。テンプレートは、初回納入時に限り無償提供が可能です。

1. テンプレートを取り付けフランジに取り付けて、4つのマークを使用して位置を合わせます。
2. スタッドボルトを取り付けフランジに取り付ける。

図19: テンプレート、スタッドボルト
5.2 負荷時タップ切換器（OLTC）の変圧器への取付（標準仕様＝非ベルタイプタンク）

5.2.1 OLTCの変圧器カバーへの固定

5.2.1.1 油槽の変圧器カバーへの固定 - 標準仕様

U_{m} < 362kVのOLTCの油槽の場合は、OLTCヘッドと下部を分離せず、取り付けフランジの開口部を通して降ろすことができます。

1. **注意** 油槽が不安定な状態で作業を行うと、転倒により負傷や物的損害の原因になる場合があります。油槽を水平面上に置き、傾かないように固定します。

2. 赤い梱包材および輸送材を油槽から外します。
3. 注記 不適切なガスケットの使用はオイル漏れや、OLTCの損傷の原因になります。使用される絶縁媒体に適したガスケットを取り付けフランジに取り付けます。取り付けフランジの密閉する表面とOLTC上部をきれいにします。

図 20: 密閉する表面、ガスケット
4. **注記** 油槽の下降時に、油槽が変圧器カバーと衝突して損傷するおそれがあるので、充分注意をしてください。OLTCヘッドと油槽を連結し持ち上げ、変圧器カバーの開口部に垂直に、慎重に下降させます。

図 21: 油槽を下降させる

5. OLTCヘッドが設計で指定されている位置に取り付けられていることを確認します。
6. OLTCヘッドを取り付けフランジにねじ留めします。

図 22: 取り付けフランジ付きOLTCヘッド

7. 動作防止用の結束バンドを油槽基部の連結部から取り外します。

図 23: 動作防止用の結束バンドが付いた油槽基部
5.2.1.2 油槽の変圧器カバーへの固定 - 分割式負荷時タップ切換器（OLTC）ヘッド

U_{m} ≥362kVのOLTCでは、シールドリングの直径が取り付けフランジの内径より大きく、油槽を取り付けフランジの開口部を通して上方から下降させることはできません。この場合、まず、OLTCヘッドの上部と下部を切り離し、上部を持ち上げて、変圧器カバーに固定する必要があります。その後、油槽をOLTCヘッドの上部に固定できます。

5.2.1.2.1 負荷時タップ切換器（OLTC）ヘッド上部を吊り上げて、同部下部支持フランジから切り離す

5.2.1.2.1.1 OLTCヘッドカバーを取り外す

注記
OLTCの損傷!

油槽への小さな部品等の混入は切換開閉器の切替を妨げ、破損などを起こすことがあります。

► 部品等が油槽内に絶対に落下しないようにします。
► 小さな部品なども紛失がないことを確認します。

1. 注意 油槽が不安定な状態で作業を行うと、転倒により負傷や物的損害の原因になる場合があります。油槽を水平面上に置き、傾かないように固定します。
2. 赤い梱包材および輸送材を油槽から外します。
3. のぞき窓がカバーでふさがれていることを確認してください。
4. OLTCヘッドカバーからネジとワッシャを外します。

図 24: OLTCヘッドカバー
5. OLTCヘッドカバーを取り外します。

図25: OLTCヘッドカバー

5.2.1.2.1.2 タップ位置表示ディスクの取り外し

► ばねクリップをシャフト端から引き抜き、タップ位置表示ディスクを取り外します。

図26: タップ位置表示ディスク
5.2.1.2.1.3 動作位置が35を超える多段の転位切換の副切換器を持つもののタップ位置表示ディスクの取り外し

1. パネル、タップ位置表示ディスクおよびカバーディスクの3箇所の赤マークが一直線になっていることを確認します。

2. 皿ネジを取り外します。

図27: 皿ネジ

3. マイナスドライバを使用しカバーディスク外し、パネルとブラケットの間から位置表示ディスクを引き抜きます。

図28: カバーディスクと位置表示ディスク
4. 六角ネジと回り止め（ロックタブ）を取り外します。

図29: ロックタブ

5. パネルとブラケットを引き上げて、駆動軸から取り外します。

図30: パネル

5.2.1.2.1.4 スーパーバイザリーコントロールシステムの取り外し

感電！
スーパーバイザリーコントロールシステムに供給電圧が印加されると感電することがあります。
▶ スーパーバイザリーコントロールシステムを供給電圧から切り離し、再びオンに切り替わることが無いようにします。
注記
スーパーバイザリーコントロールシステムの損傷！
スーパーバイザリーコントロールシステムを取り外す際に同システムを損傷することがありますので充分注意してください。また、そのことによりOLTCに損傷が発生することがあります。

接続リード線の損傷や引き抜けを防ぐ為、スーパーバイザリーコントロールシステムを慎重に取り外してください。

1. スーパーバイザリーコントロールシステム プラグコネクターを取り付けブラケットから取り外し、接続を切ります。

図 31: プラグコネクター

2. 取り付けプレート上のナットと緩み止めワッシャーを取り外します。

図 32: 取り付けプレート
3. スーパーバイザリーコントロールシステムと駆動シャフトの付いている取り付けプレートを取り外します。

図33: スーパーバイザリーコントロールシステムと駆動シャフトが付いた取り付けプレート

4. スーパーバイザリーコントロールシステムのリード線をスペーサー付きボルトから外します。

図34: スーパーバイザリーコントロールシステムのスペーサー付きボルトとリード線
5. スーパーバイザリーコントロールシステムのリード線をOLTCヘッドから外へ逃がします。

図 35: スーパーバイザリーコントロールシステムのリード線

6. スペーサー付きボルトを緩み止めワッシャーと一緒に取り外します。

図 36: スペーサー付きボルト

5.2.1.2.1.5 排油管の取り外し

1. ケーブルタイを排油管から外します。

図 37: 排油管
2. 排油管を負荷時タップ切換器頭部から外します。

図 38: 排油管

3. 取り付けブラケットを取り外します。

図 39: 取り付けブラケット

5.2.1.2.1.6 OLTCヘッド上部を吊り上げ、下部から切り離す

1. OLTCヘッド上部と下部を接合するナットと緩み止めワッシャーを取り外します。

図 40: OLTCヘッド上部と下部を接合するナットと緩み止めワッシャー
2. OLTCヘッド上部を吊り上げ、下部から切り離します。

図 41: OLTCヘッド上部

5.2.1.2.2 OLTCヘッド上部を変圧器カバーに取り付ける

1. 注意 不適切なガスケットの使用はオイル漏れや、OLTCの損傷の原因になります。使用される絶縁媒体に適したガスケットを取り付けフランジに取り付けます。取り付けフランジおよび負荷時タップ切換器頭部の上部の密閉する表面を清掃します。

図 42: 取り付けフランジとガスケット
2. **注意** 油槽が不安定な状態で作業を行うと、転倒により負傷や物的損害の原因になる場合があります。油槽を傾かないように固定し、変圧器カバー下側から持ち上げて、取付位置に基づいて位置合わせをします。油槽をシールドリング（円周形状）や支持フランジの接続ネジ部では絶対に持ち上げないでください。

![図43: 油槽の持ち上げ](image1)

3. OLTCヘッドを下降させ、取り付けフランジ上に降ろし、それぞれの三角の合いマーク、取り付け穴を合わせます。

![図44: 合いマークと位置決めピン](image2)
5.2.1.2.3 油槽をOLTCヘッド上部に接続する

5.2.1.2.3.1 油槽をOLTCヘッド上部に接続する

注記

OLTCを不適切に吊り上げると、損傷します！

OLTCの吊り上げ時に支持フランジの接続ネジを使用すると、ネジが損傷し、OLTCとOLTCヘッドを適切にネジ留めできなくなります！

► OLTCは必ず指定された吊り上げ用横木を使用して吊り上げ、決して支持フランジの接続ネジを使用しないでください。

吊り上げ装置または専用の吊り上げ装置を使用して、油槽をOLTCヘッド上部に取り付けることができます。オプション品の専用の吊り上げ装置について以下に説明します。

1. つめが内側に向いた状態で、吊り上げ装置を油槽に慎重に挿入します。

図 45: 吊り上げ装置

2. 注記 OLTCヘッドの支持フランジへのアライメントのずれは、OLTC吊り上げ時に損傷させる恐れがあります。吊り上げ装置のつめを外側に向かって、油槽を持ち上げます。合いマークの位置が合っていて、支持フランジのスタッドボルトすべてがOLTCヘッドの取り付け穴をストレス無く通ることを確認します。
図46: OLTCの吊り上げ

OLTCヘッドの上部と下部を組む際に、スパーバイザリーコントロールシステムの取付プレートのピン、リード線のスペーサー付きボルトやサクションパイプの取り付けブラケットのピンはそのままにします。

1. ナットと緩み止めワッシャーでOLTCヘッドの上部を下部に固定します。

図47: OLTCヘッド上部を下部にねじ留める
2. つめが内側を向いた状態で、吊り上げ装置を取り外します。

図 48: 吊り上げ装置の取り外し

3. OLTCヘッドを取り付けフランジにねじ留めします。

図 49: OLTCヘッドを取り付けフランジにねじ留め
4. 動作防止用の結束バンドを油槽基部の連結部から取り外します。

5.2.1.2.3.2 排油管の取り付け

1. 取り付けブラケットを取り付けます。
2. 排油管をOLTCヘッドへ挿入します。

図 52: 排油管の取り付け

3. 附属している結束バンドを使用して、排油管を取り付けブラケットに固定します。結束バンドの向きを図のように合わせます。

図 53: 結束バンド
5.2.1.2.3.3 スーパーバイザリーコントロールシステムの取り付け
1. 駆動シャフトの付いたスーパーバイザリーコントロールシステム取り付けプレートを取り付けます。

図 54: スーパーバイザリーコントロールシステムと駆動シャフトが付いた取り付けプレート

2. 駆動シャフトがプラグコネクターに正しく配置されていることを確認します。

図 55: 駆動シャフトおよびプラグコネクター
3. 取り付けプレートを固定します。

図 56: 取り付けプレート

4. スーパーバイザリーコントロールシステムのリード線を固定するためにスペーサー付きボルトを取り付けます。

図 57: スペーサー付きボルト

5. スーパーバイザリーコントロールシステムのリード線を、スペーサー付きボルトに固定します。

図 58: スペーサー付きボルト
6. プラグコネクターを、ブラケットに取り付ける前に接続します。

図 59: プラグコネクター

7. 接続したプラグコネクターをブラケットに挿入します。

図 60: ブラケットに挿入されたプラグコネクター

5.2.1.2.3.4 タップ位置表示ディスクの取り付け

連結ピンがあるため、タップ位置表示ディスクは、決まった位置にしか取付できません。
5 設置

► 表示板駆動軸にディスクを置き、ばねクリップをシャフト端に横から挿入します。

図 61: タップ位置表示ディスク

5.2.1.2.3.5 動作位置が35を超える多段の転位切換の副切換器を持つもののタップ位置表示ディスクの取り付け

1. 表示板駆動軸にブラケット付きパネルを置き、ロックタブと六角ネジで固定します。

図 62: パネルの取り付け
2. タップ位置表示ディスクをパネルとブラケットの間に水平に挿入し、カバーディスクを取り付けます。赤い線がつながった一つの線となるよう、タップ位置表示ディスクとカバーディスクの位置を合わせます。

図 63: 位置表示ディスクの取り付け

3. 皿ネジでカバーディスクを固定します。皿ネジは、センターポンチに適した形状である必要があります。

図 64: カバーディスクの固定

4. センターポンチで皿ネジが緩まないようにします。
5.2.1.2.3.6 負荷時タップ切換器（OLTC）ヘッドカバーの取り付け

注記
OLTCの損傷！
Οリングの組み忘れまたは損傷、および密閉する表面の汚れは絶縁油の漏れを引き起こし、その結果、OLTCが損傷します。
► Οリングがヘッドカバーにねじれずに取り付けられているかを確認します。
► ヘッドカバーを取り付ける時にΟリングが損傷していないことを確認します。
► ヘッドカバーおよびOLTCヘッドの密閉する表面がきれいであることを確認します。

1. 滑りキーがシャフトにしっかり取り付けられていることを確認します。
必要に応じて、滑りキーに脱落を防止するためにワセリンを使用し、キーの落下を防ぎます。

図 65: 滑りキー
2. ヘッドカバーとヘッドのそれぞれの赤い三角形の合いマークを合わせます。

図 66: Oリングの付いたOLTCヘッドカバー

3. OLTCヘッドカバーをOLTCヘッドにネジで固定します。

図 67: OLTCヘッドカバー
5.2.1.3 選択器の油槽への固定

1. **注意** 選択器が不安定な状態で作業を行うと、転倒により負傷や物的損害の原因になる場合があります。選択器を水平面上に置き、傾かないように固定します。

2. 赤い梱包材と輸送材を選択器から外します。選択器を油槽に固定した後におのみ、副切換器の0バーにある赤色の保護キャップを取り外すことができます。

3. 取り付けに必要な部品が入ったビニール袋を選択器から外し、すぐに使えるようにしておきます。

![図 68: 取り付けに必要な部品が入ったビニール袋](image)
4. 動作防止用の結束バンドを選択器結合部から外します。動作防止用の結束バンドを外した後は、選択器結合部を回さないでください。

図 69: 動作防止用の結束バンドの付いた選択器結合部

5. 選択器を吊り上げ装置に載させます。選択器の重量は最大165 kgです（多段の転移切換の副切換器を使用している場合は最大280 kg）。

6. 注記 選択器を持ち上げる際に、選択器と油槽がぶつかり損傷する場合があるので、十分注意をしてください。選択器を油槽下方より持ち上げる際には、タップ選択器接続リード線にストレスがかかっておらず、油槽にも触れていないことを確認します。

7. 油槽と選択器の取り付部双方の位置を合わせます。2つの結合部の正しい位置は、付属の調整図に示されています。
8. 選択器用ブラケットを油槽にネジで固定します。

図 70: 油槽および選択器のネジ止め
9. **注記** 不適切な締め付けトルクと不完全なネジの締め付けは、OLTC損傷の原因になる場合があります。タップ選択器接続リード線を接続部に慎重にネジ留めします。規定締め付けトルクでネジ接続部を固定し、電界緩和キャップをネジ頭部上方の所定の位置に持ってきます。

図 71: タップ選択器接続リード線
10. 副切換器の0バーにある赤色の保護キャップを取り外します。

図 72: 保護キャップ

5.2.2 タップ巻線とOLTC接続線の接続

注記
OLTCの損傷！
接続リード線がOLTCに機械的ストレスのある状態で接続されると、OLTCは損傷します。
► 慎重に接続します。
► 接続接点をねじらないでください。
► 接続リード線を、反らせたり、ゆがませたりしないで接続します。
► 必要に応じて、接続リード線にたわみを作ります。
► 附属の電界緩和キャップをネジ接続部に取り付けます。

タップ巻線およびOLTC接続線は、納入品に含まれている接続図に従って接続する必要があります。
5.2.2.1 タップ選択器の接続接点

タップ選択器の接続接点には、M10ネジ用の貫通穴があります。貫通穴は、OLTCのモデルに応じて水平または垂直になります。

1. 添付の接続図に従って、タップ巻線の接続リード線をタップ選択器に固定します。圧着端子と取り付け部品は供給されません。

2. 各ネジ接続部が緩んだり沈み込んだりしないように、適切な措置（スプリングワッシャを使うなど）を講じます。電界緩和キャップが製品と共有に供給されている場合は、必ず図に示すように取り付けてください。

3. 電界緩和キャップを閉じて、正しく取り付けられていることを確認します。ネジ頭部およびナットは、完全に覆われている必要があります。

図 73: タップ選択器の接続接点

5.2.2.2 多段の転位切換構成のタップ選択器の接続接点

注記

OLTCの損傷！

タップ巻線接続リード線の位置が切り替えセレクターの可動部分に近すぎると、副切換器がブロックされ、OLTCに損傷が発生します。

► 副切換器の周辺でのタップ巻線接続リード線は、切り替えセレクターの可動部品から十分離して配線する必要があります。
多段の転位切換の副切換器がある構成の場合、タップ選択器の接続接点や多段の転位切換の副切換器の接続接点に接続するケーブルを配線する際は注意してください。これらのケーブルは、隣接する接続接点から可能な限り離してください。

1. 両方の転位切換の副切換器カラムに面したタップ選択器の接続接点には、絶縁耐力を確保するために、3 mm以上の厚みの絶縁紙による絶縁が必要です。
2. 該当する寸法図に注意してください。

図 74: 絶縁紙による絶縁

1. MRからの接続には、すでに3 mmの厚さで絶縁紙による絶縁が施されています。

5.2.2.3 極性切換の副切換器の接続接点

注記

OLTCの損傷!

タップ巻線接続リード線の位置が切り替えセレクターの可動部分に近すぎると、副切換器がブロックされ、OLTCに損傷が発生します。

▲副切換器の周辺でのタップ巻線接続リード線は、切り替えセレクターの可動部品から十分離して配線する必要があります。

副切換器の接続接点（+）と（-）は、極性切換の副切換器を接続するためのM10ネジ用の貫通穴のある接続端子として設計されています。
接続接点Kは、M10ネジ用の貫通穴のある延長されたタップ選択器の接続接点として設計されています。

1. 添付の接続図に従って、タップ巻線の接続リード線を副切換器に固定します。圧着端子と取り付け部品は供給されません。

2. 各接続部が緩んだり沈み込んだりしないように、適切な措置（スプリングワッシャを使うなど）を講じます。電界緩和キャップが供給されている場合は、必ず取り付けてください。

3. 電界緩和キャップを閉じて、正しく取り付けられていることを確認します。ネジ頭部およびナットは、完全に覆われている必要があります。

図 75: 極性切換の副切換器の接続接点

図 76: 極性切換の副切換器の接続接点（上面図）
5.2.2.4 転位切換の副切換器の接続接点

注記

OLTCの損傷!

タップ巻線接続リード線の位置が切り替えセレクターの可動部分に近すぎると、副切換器がブロックされ、OLTCに損傷が発生します。

▶ 副切換器の周辺でのタップ巻線接続リード線は、切り替えセレクターの可動部品から十分離して配線する必要があります。

転位切換器の接続では、副切換器接続接点（+）および（-）の外観は、タップ選択器接点と同じになります（M10ネジ用の貫通穴、常に垂直位置）。

1. 添付の接続図に従って、タップ巻線の接続リード線を副切換器に固定します。圧着端子と取り付け部品は供給されません。

2. 各接続部が緩んだり沈み込んだりしないように、適切な措置（スプリングワッシャを使うなど）を講じます。電界緩和キャップが供給されている場合は、必ず取り付けてください。

3. 電界緩和キャップを締めて、正しく取り付けられていることを確認します。ネジ頭部およびナットは、完全に覆われている必要があります。

図 77: 転位切換の副切換器の接続接点
5.2.2.5 多段の転位切換の副切換器の接続接点

注記

OLTCの損傷!

タップ巻線接続リード線の位置が切り替えセレクターの可動部分に近すぎると、副切換器がブロックされ、OLTCに損傷が発生します。

► 副切換器の周辺でのタップ巻線接続リード線は、切り替えセレクターの可動部品から十分離して配線する必要があります。

多段の転位切換の構成では、副切換器の接続接点の外観はタップ選択器の接点と同じです（M10ネジの場合は貫通穴、常に垂直位置）。

1. 添付の接続図に従って、タップ巻線の接続リード線を副切換器に固定します。圧着端子と取り付け部品は供給されません。

2. 各接続部が緩んだり沈み込んだりしないように、適切な措置（スプリングワッシャを使うなど）を講じます。電界緩和キャップが供給されている場合は、必ず取り付けてください。
3. 電界緩和キャップを閉じて、正しく取り付けられていることを確認します。ネジ頭部およびナットは、完全に覆われている必要があります。

図 79: 多段の転位切換の副切換器の接続接点

図 80: 接続接点に短絡導体を使用した多段の転位切換の副切換器の接続接点
5.2.2.6 OLTCの集電リードの接続

1. OLTCの集電リードを、圧着端子とネジを使用して集電リング上の貫通穴に接続します。圧着端子と取り付け部品は供給されません。

2. ネジ接続部が緩んだり沈み込んだりしないように、適切な措置（スプリングワッシャを使うなど）を講じます。

図 81: 油槽上の集電リング
5.2.3 乾燥前の変圧比測定の実施

<table>
<thead>
<tr>
<th>注記</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLTCの損傷！</td>
</tr>
</tbody>
</table>
変圧比測定の不適切な実施による、OLTCの損傷。

- 250回を超えるタップ切換動作をしないでください。250回を超えるタップ切換動作を実行する場合、油槽に絶縁油を十分に充填し、選択器と選択器駆動部や接点の摺動面に絶縁油を差してください。
- 上部ギアユニットを介して1つの運転位置から次の運転位置に負荷時タップ切換器を切り替えます。手回しハンドルや、専用のクランクと共に結合用ボルト (直径12mm) がネジ留めされた短いチューブ (直径25mm) を使うことができます。ドリルを使う場合は、250rpmを超えないようにしてください。
- ヘッドカバーのぞき窓から、切替後の運転位置を必ず確認してください。接続図に示されている上限下限位置を決して越えないようにしてください。
- 複数のOLTCを一つのドライブで駆動する際には、水平側駆動シャフトで全てのOLTCをヘッド部で互いに連結します。

1. OLTCを必要な運転位置に切り替えます。切換開閉器操作がはっきりと聞こえます。
2. 不完全なタップ切換作動は、OLTCを損傷することがあります。OLTCの切替後、上部ギアユニットの駆動シャフトを同じ方向に2.5回転させて、タップ切換作動を適切に完了します。
3. 変圧比測定を実行します。
4. すべての運転位置で変圧比測定を繰り返します。
5. OLTCを調整位置に切り替えます (OLTC接続図を参照のこと)。

変圧比測定の後、変圧器タンク内のOLTCを乾燥させる場合、残油がある場合には油槽のケロシン排油用栓を閉じます。乾燥後、切換開閉器を取り外し、油槽のケロシン排油用栓を閉じ、切換開閉器を再度取り付ける必要があります。
5.2.4 変圧器での直流抵抗測定

巻線の過热を防ぐために、直流電流値は通常、測定される変圧器の巻線の定格電流の10%以下に制限されます。

必要な複数のOLTCの運転位置で直流抵抗測定を実施します。運転位置を切り替え動作中に、測定電流値が遮断されているかどうかをここで判定する必要があります。

<table>
<thead>
<tr>
<th>油槽の状態</th>
<th>測定電流値の遮断なし</th>
<th>遮断あり(測定電流値 = 運転位置の変更前は0 A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>油槽が空の状態</td>
<td>最大10A DC</td>
<td>最大50 A DC</td>
</tr>
<tr>
<td>油槽が絶縁油が注油されている</td>
<td>最大50 A DC</td>
<td>最大50 A DC</td>
</tr>
</tbody>
</table>

表5: 直流抵抗測定時の最大許容測定電流値

5.2.5 乾燥炉でのOLTCの乾燥

オレックの損傷！

油槽内の湿度が高い場合、絶縁油の絶縁耐力が下がるため、OLTCの損傷につながります。

► 10時間以内の乾燥工程中、OLTCヘッドカバーで油槽を密封します。

MRの保証するOLTCの絶縁値を得る為に、以下の指示に従いOLTCを乾燥させます。

乾燥炉で乾燥させる場合、以下の方法を利用できます。

▪ 真空乾燥
▪ 気相乾燥

乾燥炉内でOLTCを乾燥させる代わりに、変圧器タンクで乾燥させることもできます。

5.2.5.1 乾燥炉での真空乾燥

乾燥後に別の変圧比測定を実行する場合、「乾燥後の変圧比測定の実施」[セクション 5.2.8, ページ 114]のセクションの説明に従ってください。
5.2.5.1.1 OLTCを調整位置へ

► OLTCを調整位置にします。調整位置は、納品時に含まれる接続図に示されています。

5.2.5.1.2 OLTCヘッドカバーを取り外す

警告
爆発の危険！
OLTCヘッドに爆発性の気体があると、燃焼したり、爆発したりすることがあり、重症や死亡事故につながる場合があります。
► 周囲に裸火、熱源、火花など（静電荷の発生により生じます）の発火源がないことを確認し、これらが発生しないようにします。
► OLTCヘッドカバーを取り外す前に、すべての補助回路（例えば、スーパーバイザーコントロールシステム、放圧装置、圧力監視装置）からの電気供給を停止します。
► 作業中に電動工具などの電気装置を使用しないでください（例：インパクトレンチから火花が発生する危険性があります）。

注記
OLTCの損傷！
油槽への小さな部品等の混入は切換開閉器の切替を妨げ、破損などを起こすることがあります。
► 部品等が油槽内に絶対に落下しないようにします。
► 小さな部品なども紛失がないことを確認します。

1. のぞき窓がカバーでふさがれていることを確認してください。
2. OLTCヘッドカバーからネジとワッシャを外します。

図 82: OLTCヘッドカバー
3. OLTCヘッドカバーを取り外します。　

図 83: OLTCヘッドカバー

5.2.5.1.3 OLTCの乾燥

注記

OLTCヘッドカバーおよび付属品の損傷。

OLTCヘッドカバーとOLTC付属品は、乾燥させると損傷します。

► OLTCヘッドカバーまたは次の付属品は決して乾燥させないでください:
電動操作機構（MDU）、駆動シャフト、保護リレー、圧力監視装置、放圧装置、傘歯車、温度センサー、活線浄油器。

1. 約10℃/時の温度上昇で（最大110℃の最終温度）、大気圧の空気中にOLTCを加熱します。
2. 最大温度110℃の温風で最低20時間、OLTCを事前乾燥させます。
3. 105℃～最大125℃で最低50時間、OLTCを真空乾燥させます。
4. 残留圧力が10⁻³バールを超えてはいけません。

5.2.5.1.4 負荷時タップ切換器（OLTC）ヘッドカバーの取り付け

注記

OLTCの損傷！
Oリングの組み忘れまたは損傷、および密閉する表面の汚れは絶縁油の漏れを引き起こし、その結果、OLTCが損傷します。

► Oリングがヘッドカバーにねじれずに取り付けられているかを確認します。
► ヘッドカバーを取り付ける時にOリングが損傷していないことを、確認します。
► ヘッドカバーおよびOLTCヘッドの密閉する表面がきれいであることを、確認します。
5 設置

1. 滑りキーがシャフトにしっかり取り付けられていることを確認します。必要に応じて、滑りキーに脱落を防止するためにワセリンを使用し、キーの落下を防ぎます。

図 84: 滑りキー

2. ヘッドカバーとヘッドのそれぞれの赤い三角形の合いマークを合わせます。

図 85: Oリングの付いたOLTCヘッドカバー
3. OLTCヘッドカバーをOLTCヘッドにネジで固定します。

図86: OLTCヘッドカバー

5.2.5.2 乾燥炉での気相乾燥

乾燥後に別の変圧比測定を実行する場合、「乾燥後の変圧比測定の実施」 [シセクション 5.2.8, ページ114]のセクションの説明に従ってください。

5.2.5.2.1 OLTCを調整位置へ

► OLTCを調整位置にします。調整位置は、納品時に含まれる接続図に示されています。

5.2.5.2.2 OLTCヘッドカバーを取り外す

爆発の危険！

OLTCヘッドに爆発性の気体があると、燃焼したり、爆発したりすることがあり、重症や死亡事故につながる場合があります。

► 周囲に裸火、熱源、火花など（静電荷の発生により生じます）の発火源が無いことを確認し、これらが発生しないようにします。

► OLTCヘッドカバーを取り外す前に、すべての補助回路（例えば、スーパーバイザリーコントロールシステム、放圧装置、圧力監視装置）からの電気供給を停止します。

► 作業中に電動工具などの電気装置を使用しないでください（例：インパクトレンチから火花が発生する危険性があります）。
OLTCの損傷！

油槽への小さな部品等の混入は切換開閉器の切替を妨げ、破損などを起こすことが事があります。

► 部品等が油槽内に絶対に落下しないようにします。
► 小さな部品なども紛失がないことを確認します。

1. のぞき窓がカバーでふさがれていることを確認してください。
2. OLTCヘッドカバーからネジとワッシャを外します。

図 87: OLTCヘッドカバー

3. OLTCヘッドカバーを取り外します。

図 88: OLTCヘッドカバー

5.2.5.2.3 ケロシン排油用栓を開く

► 注記 ケロシン排油用栓は決して完全に取り外さないでください。開けない程度固定した場合のみ、油槽基部と選択器駆動部の間のケロシン排油用栓を時計回りに回して外します。
5.2.5.2.4 OLTCの乾燥

注記

OLTCヘッドカバーおよび付属品の損傷。

OLTCヘッドカバーとOLTC付属品は、乾燥させると損傷します。

► OLTCヘッドカバーまたは次の付属品は決して乾燥させないでください:
電動操作機構（MDU）、駆動シャフト、保護リレー、圧力監視装置、放圧装置、傘歯車、温度センサー、活線浄油器。

1. 約90°Cの温度でケロシン気相を供給します。この温度を3〜4時間一定に保ちます。
2. OLTCで、ケロシン気相温度を最大125°Cの最終目的温度になるまで、約10°C/時上げます。
3. 105℃〜最大125℃で最低50時間、OLTCを真空乾燥させます。
4. 残留圧力が10⁻³バールを超えてはいけません。

5.2.5.2.5 ケロシン排油用栓を閉じる

► 注記 ケロシン排油用栓を開いたままにすると、絶縁油が油槽から漏れ、OLTCの損傷につながります。ケロシン排油用栓を閉じます（締め付けトルク20Nm)。
5.2.5.2.6 負荷時タップ切換器（OLTC）ヘッドカバーの取り付け

注記

OLTCの損傷！
Oリングの組み忘れまたは損傷、および密閉する表面の汚れは絶縁油の漏れを引き起こし、その結果、OLTCが損傷します。

► Oリングがヘッドカバーにねじれずに取り付けられているかを確認します。

► ヘッドカバーを取り付ける時にOリングが損傷していないことを、確認します。

► ヘッドカバーおよびOLTCヘッドの密閉する表面がきれいであることを、確認します。

1. 滑りキーがシャフトにしっかりと取り付けられていることを確認します。
 必要に応じて、滑りキーに脱落を防止するためにワセリンを使用し、キーの落下を防ぎます。

図 90: 滑りキー
2. ヘッドカバーとヘッドのそれぞれの赤い三角形の合いマークを合わせます。

図 91: Oリングの付いたOLTCヘッドカバー

3. OLTCヘッドカバーをOLTCヘッドにネジで固定します。

図 92: OLTCヘッドカバー

5.2.6 変圧器タンク内でOLTCを乾燥する

MRの保証するOLTCの絶縁値を得る為に、以下の指示に従ってOLTCを乾燥させます。
OLTCを変圧器タンク内で乾燥させる場合、変圧器をまず完全に組み立ててから乾燥に取り掛かります。

変圧器タンク内で乾燥させる場合、以下的方法を利用できます。

▪ 真空乾燥
▪ 気相乾燥

変圧器タンク内でOLTCを乾燥させる代わりに、乾燥炉で乾燥させることもできます。

5.2.6.1 変圧器タンク内での真空乾燥

乾燥プロセスを通して、OLTCヘッドカバーは閉じたままになります。

1. OLTCヘッド上のE2とQ、またはE2とRの間に配管接続を行います。
2. 未使用の配管接続部は、閉止板で密封します。

変圧器タンク内での真空乾燥

1. 約10℃/時の温度上昇で（最大110℃の最終温度）、大気圧の空気中でOLTCを加熱します。
2. 最大温度110℃の温風で最低20時間、OLTCを事前乾燥させます。
3. 105℃～最大125℃で最低50時間、OLTCを真空乾燥させます。
4. 残留圧力が10⁻³バールを超えてはいけません。

乾燥後に別の変圧比測定を実行する場合、「乾燥後の変圧比測定の実施」[セクション 5.2.8, ページ 114]のセクションの説明に従ってください。
5.2.6.2 変圧器タンク内での気相乾燥

ケロシン排油用栓をすでに開いている場合（変圧比測定後など）、すぐに乾燥 [▶セクション 5.2.6.2.4, ページ 112] を開始できます。

それ以外の場合は、乾燥を開始する前に、まずケロシン排油用栓を開く必要があります。

5.2.6.2.1 切換開閉器の取り外し

5.2.6.2.1.1 OLTCを調整位置へ

▶ OLTCを調整位置にします。調整位置は、納品時に含まれる接続図に示されています。

5.2.6.2.1.2 OLTCヘッドカバーを取り外す

⚠️警告

爆発の危険！

OLTCヘッドに爆発性の気体があると、燃焼したり、爆発したりすることがあり、重症や死亡事故につながる場合があります。

▶ 周囲に裸火、熱源、火花など (静電荷の発生により生じます) の発火源がないことを確認し、これらが発生しないようにします。

▶ OLTCヘッドカバーを取り外す前に、すべての補助回路 (例えば、スーパーバイザリーコントロールシステム、放圧装置、圧力監視装置) からの電気供給を停止します。

▶ 作業中に電動工具などの電気装置を使用しないでください (例: インパクトレンチから火花が発生する危険性があります)。

⚠️注記

OLTCの損傷！

油槽への小さな部品等の混入は切換開閉器の切替を妨げ、破損などを起こすことが事があります。

▶ 部品等が油槽内に絶対に落下しないようにします。

▶ 小さな部品なども紛失がないことを確認します。
5 設置

1. のぞき窓がカバーでふさがれていることを確認してください。
2. OLTCヘッドカバーからネジとワッシャを外します。

図 94: OLTCヘッドカバー

3. OLTCヘッドカバーを取り外します。

図 95: OLTCヘッドカバー

5.2.6.2.1.3 タップ位置表示ディスクの取り外し

► ばねクリップをシャフト端から引き抜き、タップ位置表示ディスクを取り外します。

図 96: タップ位置表示ディスク
5.2.6.2.1.4 動作位置が35を超える多段の転位切換の副切換器を持つもののタップ位置表示ディスクの取り外し

1. パネル、タップ位置表示ディスクおよびカバーディスクの3箇所の赤マークが一直線になっていることを確認します。

2. 皿ネジを取り外します。

図 97: 皿ネジ

3. マイナスドライバを使用しカバーディスクを外し、パネルとブラケットの間から位置表示ディスクを引き抜きます。

図 98: カバーディスクと位置表示ディスク
4. 六角ネジと回り止め（ロックタブ）を取り外します。

![図99: ロックタブ](image)

5. パネルとブラケットを引き上げて、駆動軸から取り外します。

![図100: パネル](image)

5.2.6.2.1.5 スーパーバイザリーコントロールシステムの取り外し

注記

スーパーバイザリーコントロールシステムの損傷！

スーパーバイザリーコントロールシステムを取り外す際に同システムを損傷することがありますので充分注意してください。また、そのことによりOLTCに損傷が発生することがあります。

►接続リード線の損傷や引き抜けを防ぐ為、スーパーバイザリーコントロールシステムを慎重に取り外してください。
1. スーパーバイザリーコントロールシステム プラグコネクターを取り付け
ブレケットから取り外し、接続を切ります。

図 101: プラグコネクター

2. 取り付けプレート上のナットと緩み止めワッシャーを取り外します。

図 102: 取り付けプレート
3. スーパーバイザリーコントロールシステムと駆動シャフトの付いている取り付けプレートを取り外します。

4. スーパーバイザリーコントロールシステムのリード線を矢印の方向に逃がします。
5.2.6.2.1.6 切換開閉器の持ち上げ

1. **注意** 作業用レンチ無しで結合用筒を回すと裂傷の危険。シャフトとOLTCヘッドの合いマークが揃っていない場合は、作業用レンチを使用し結合用筒を回すか、保護手袋を着用し、シールドリングを直接回して、マークが揃うようにします。

図 105: 結合用筒の位置合わせ

2. 結合用筒のアイボルトに吊り上げ装置をかけ、切換開閉器に対して垂直にします。

3. 油槽から切換開閉器をゆっくりと垂直に持ち上げます。また作業中は、表示板駆動軸の保護リングが落下しないように注意します。

図 106: 切換開閉器（DSI）
4. **注意** DSIを不安定な状態に置くと、傾いて負傷や物的損害の原因になる場合があります。DSIは水平面に置き、傾かないように固定してください。DSIが取り付けられていない状態で、DSIを操作したり、選択器結合部の位置を変えたりしないでください。

5.2.6.2.2 ケロシン排油用栓を開く

- **注記** 抵抗を感じるまで、拡張ソケットレンチを使ってケロシン排油用栓のネジを反時計回りに回します。決してケロシン排油用栓のネジを外さないでください。

図 107: ケロシン排油用栓
5.2.6.2.3 切換開閉器（DSI）の挿入

5.2.6.2.3.1 切換開閉器（DSI）の挿入

1. DSIを取り付ける際には、選択器結合部が調整位置にあることを確認します。

図 108: 油槽基部の調整用マーク
2. 注記 切換開閉器 (DSI) の混同による、OLTC の損傷。DSI と OLTC ヘッドに同じ数のマークがあることを確認してください。

図 109: 同数のマーク
3. **注意** 作業用レンチ無しで結合用筒を回すと裂傷の危険。切換開閉器とOLTCヘッドの合いマークが揃っていない場合は、作業用レンチを使用し結合用筒を回すか、保護手袋を着用し、シールドリングを直接回してマークが揃うようにします。必要に応じて、DSIを切り替えます。

図110: DSI上のマーク

4. 吊り上げ装置をDSIに取り付け、油槽上に移動させます。
5. DSIとOLTCヘッドのマークが揃うように、DSIを合わせます。保護リングが表示板駆動軸上にあることを確認します。油槽基部とかみ合うまで、DSIをゆっくりと下げます。選択器結合部の形状は、正しい位置でしか結合できないようになっています。Um≥300kVのOLTCの油槽には、ガイド用配管が追加されています。

図 111: DSIおよびOLTCヘッド上のマーク
6. DSIのシャフトの上端部とOLTCヘッドの取り付け面間の距離を確認します。距離は13±2mmでなければなりません。

![図112: DSIのシャフト上端部と、OLTCヘッド取り付け面間の距離](image1)

5.2.6.2.3.2 スーパーバイザリーコントロールシステムの取り付け

1. 駆動シャフトの付いたスーパーバイザリーコントロールシステム取り付けプレートを取り付けます。

![図113: スーパーバイザリーコントロールシステムと駆動シャフトが付いた取り付けプレート](image2)
5 設置

2. 駆動シャフトがプラグコネクターに正しく配置されていることを確認します。

図 114: 駆動シャフトおよびプラグコネクター

3. 取り付けプレートを固定します。

図 115: 取り付けプレート

4. プラグコネクターを、ブラケットに取り付ける前に接続します。

図 116: プラグコネクター
5. 接続したプラグコネクターをブラケットに挿入します。

図 117: ブラケットに挿入されたプラグコネクター

5.2.6.2.3.3 タップ位置表示ディスクの取り付け

連結ピンがあるため、タップ位置表示ディスクは、決まった位置にしか取付できません。

► 表示板駆動軸にディスクを置き、ばねクリップをシャフト端に横から挿入します。

図 118: タップ位置表示ディスク
5.2.6.2.3.4 動作位置が35を超える多段の転位切換の副切換器を持つもののタップ位置表示ディスクの取り付け

1. 表示板駆動軸にブラケット付きパネルを置き、ロックタブと六角ネジで固定します。

図 119: パネルの取り付け

2. タップ位置表示ディスクをパネルとブラケットの間に水平に挿入し、カバーディスクを取り付けます。赤い線がつながった一つの線となるよう、タップ位置表示ディスクとカバーディスクの位置を合わせます。

図 120: 位置表示ディスクの取り付け
3. 皿ネジでカバーディスクを固定します。皿ネジは、センターポンチに適した形状である必要があります。

図 121: カバーディスクの固定

4. センターポンチで皿ネジが緩まないようにします。

5.2.6.2.3.5 負荷時タップ切換器（OLTC）ヘッドカバーの取り付け

注記

OLTCの損傷！

Oリングの組み忘れまたは損傷、および密閉する表面の汚れは絶縁油の漏れを引き起こし、その結果、OLTCが損傷します。

► Oリングがヘッドカバーにねじれずに取り付けられているかを確認します。

► ヘッドカバーを取り付ける時にOリングが損傷していないことを、確認します。

► ヘッドカバーおよびOLTCヘッドの密閉する表面がきれいであることを、確認します。
1. 滑りキーがシャフトにしっかり取り付けられていることを確認します。必要に応じて、滑りキーに脱落を防止するためにワセリンを使用し、キーの落下を防ぎます。

2. ヘッドカバーとヘッドのそれぞれの赤い三角形の合いマークを合わせます。
3. OLTCヘッドカバーをOLTCヘッドにネジで固定します。

![OLTCヘッドカバーの図](image124.png)

5.2.6.2.4 OLTCの乾燥

1. OLTCヘッドの配管接続部RとQに、ケロシン気相配管を接続します。
2. 未使用の配管接続部は、閉止板で密封します。

![配管接続部の図](image125.png)

変圧器タンク内での気相乾燥

1. 約90℃の温度でケロシン気相を供給します。この温度を3〜4時間一定に保ちます。
2. OLTCで、ケロシン気相温度を最大125℃の最終目的温度になるまで、約10℃/時上げます。
3. 105℃〜最大125℃で最低50時間、OLTCを真空乾燥させます。
4. 残留圧力が10⁻⁵バールを超えてはいけません。
5.2.6.2.5 ケロシン排油用栓を開じる

注記
OLTCの損傷！
油槽内の湿度が高い場合、絶縁油の絶縁耐力が下がるため、OLTCの損傷につながります。
► 10時間以内の乾燥工程中、OLTCヘッドカバーで油槽を密封します。

1. DSIを取り外します [セクション 5.2.6.2.1, ページ 94]。
2. 注記 ケロシン排油用栓を開いたままにすると、絶縁油が油槽から漏れ、OLTCの損傷につながります。拡張ソケットレンチ（締め付けトルク20 Nm）を使って、ケロシン排油用栓を時計回りに回して閉じます。
3. DSIを挿入します [セクション 5.2.6.2.3, ページ 102]。

乾燥後に別の変圧比測定を実行する場合、「乾燥後の変圧比測定の実施」 [セクション 5.2.8, ページ 114]のセクションの説明に従ってください。

5.2.7 油槽へ絶縁油の注油

注記
負荷時タップ切換器への損傷！
不適切な絶縁油によって、負荷時タップ切換器が損傷します。
► 必ずメーカーが認定している絶縁油 [セクション 9.1.2, ページ 286]を使用してください。

乾燥後、基準値を超えた吸湿をしないように、早急に油槽（DSIを取り付けた状態で）に絶縁油で再度完全に満たします。

1. 配管接続部E2と、配管接続部R、S、Qのうちの1つとの間を接続し、排出中に油槽と変圧器に同等の圧力がかかるようにします。

図 126: E2とQ間の接続部
2. OLTCヘッドの2つの空き配管接続部のうちの1つを使って、OLTCに新しい絶縁油を注油します。

図 127: 配管接続部SおよびR

5.2.8 乾燥後の変圧比測定の実施

注記

OLTCの損傷!

変圧比測定の不適切な実施による、OLTCの損傷。

► 選択器/電気供給を停止したOLTCが絶縁油に完全に浸り、油槽に絶縁油が十分充填されていることを確認します。

► 上部ギアユニットを介して1つの運転位置から次の運転位置に負荷時タップ切換器を切り替えます。手回しハンドルや、専用のクランクと共に結合用ボルト (直径12mm) がネジ留めされた短いチューブ (直径25mm) を使うことができます。ドリルを使う場合は、250rpmを超えないようにしてください。

► ヘッドカバーのぞき窓から、切替後の運転位置を必ず確認してください。接続図に示されている上限下限位置を決して越えないようにしてください。

► 複数のOLTCを一つのドライブで駆動する際には、水平側駆動シャフトで全てのOLTCをヘッド部で互いに連結します。
副切換器が切り替わる際には、より高いトルクが必要です。

1. OLTCを必要な運転位置に切り替えます。切換開閉器操作がはっきりと聞こえます。

2. **注記** 不完全なタップ切換動作は、OLTCを損傷することがあります。
 OLTCの切替後、上部ギアユニットの駆動シャフトを同じ方向に2.5回転させて、タップ切換動作を適切に完了します。

3. 変圧比測定を実行します。

4. すべての運転位置で変圧比測定を繰り返します。

5. OLTCを調整位置に切り替えます（OLTC接続図を参照のこと）。
5.3 負荷時タップ切換器(OLTC)を変圧器に取り付ける (ベル形タンクバージョン)

5.3.1 OLTCを支持構造体に挿入する

5.3.1.1 選択器の油槽への固定

1. **注意** 選択器が不安定な状態で作業を行うと、転倒により負傷や物的損害の原因になる場合があります。選択器を水平面上に置き、傾かないように固定します。

2. 赤い梱包材と輸送材を選択器から外します。OLTCを支持構造体に挿入した後にのみ、副切換器の0バーの赤い保護キャップを取り外してください。

3. 取り付けに必要な部品が入ったビニール袋を選択器から外し、すぐに使えるようにしておきます。

図 128: 取り付けに必要な部品が入ったビニール袋
4. 動作防止用の結束バンドを選択器結合部から外します。動作防止用の結束バンドを外した後は、選択器結合部を回さないでください。

図 129: 動作防止用の結束バンドの付いた選択器結合部

5. **注意** 油槽が不安定な状態で作業を行うと、転倒により負傷や物的損害の原因になる場合があります。油槽を水平面上に置き、傾かないように固定します。

図 130: 油槽
5. 設置

6. 動作防止用の結束バンドを油槽底部の連結部から取り外します。

図131: 動作防止用の結束バンド

7. OLTCヘッドを吊り上げることにより油槽を持ち上げ、選択器の上に慎重に移動させます。油槽の重量は最大350 kgです。

8. 注記 油槽を下げる際に、油槽と選択器がぶつかり損傷する場合があるので、充分注意してください。油槽を下降させる際に、タップ選択器の接続リード線にストレスがかかっておらず、油槽に触れていないことを確認しながら、油槽を慎重に下げます。

9. 油槽と選択器の取り付部双方の位置を合わせます。2つの結合部の正しい位置は、付属の調整図に示されています。
10. 選択器を油槽にネジ留めします。

図132: 油槽付き選択器

11. 注記 不適切な締め付けトルクと不完全なネジの締め付けは、OLTC損傷の原因になる場合があります。タップ選択器接続リード線を接続部に慎重にネジ留めします。規定締め付けトルクでネジ接続部を固定し、電界緩和キャップをネジ頭部上方の所定の位置に持っています。
図 133: タップ選択器接続リード線
5.3.1.2 負荷時タップ切換器（OLTC)の支持構造体への挿入

1. 注記 引張力によって、OLTCの損傷と誤動作が生じる場合があります。スペーサーを使い、OLTCを支持構造体に垂直に挿入します（許容値：垂直より1°の傾き）。これにより、OLTCは最終的な取り付け高さに達し、タップ巻線やOLTCの集電リードが接続され、ベル形タンクが取り付けられた後は、最大でも5〜20 mmしか上昇させる必要がありません。

図 134：支持構造体上にスペーサーがある状態のOLTC
2. OLTCを支持構造体に一時的に締め付けます。この目的の為に支持フランジには貫通穴があります。

![図 135: OLTCの固定](image)

3. 副切換器の0バーにある赤色の保護キャップを取り外します。

![図 136: 保護キャップ](image)
5.3.2 タップ巻線とOLTC接続線の接続

注記

OLTCの損傷!
接続リード線がOLTCに機械的ストレスのある状態で接続されると、OLTCは損傷します。

► 慎重に接続します。
► 接続接点をねじらないでください。
► 接続リード線を、反らせたり、ゆがませたりしないで接続します。
► 必要に応じて、接続リード線にたわみを作ります。
► 附属の電界緩和キャップをネジ接続部に取り付けます。

タップ巻線およびOLTC接続線は、納入品に含まれている接続図に従って接続する必要があります。

5.3.2.1 タップ選択器の接続接点

タップ選択器の接続接点には、M10ネジ用の貫通穴があります。貫通穴は、OLTCのモデルに応じて水平または垂直になります。

1. 添付の接続図に従って、タップ巻線の接続リード線をタップ選択器に固定します。圧着端子と取り付け部品は供給されません。
2. 各ネジ接続部が緩んだり沈み込んだりしないように、適切な措置（スプリングワッシャを使うなど）を講じます。電界緩和キャップが製品と共に供給されている場合は、必ず図に示すように取り付けてください。
3. 電界緩和キャップを閉じて、正しく取り付けられていることを確認します。ネジ頭部およびナットは、完全に覆われている必要があります。図137: タップ選択器の接続接点

5.3.2.2 多段の転位切換構成のタップ選択器の接続接点

注記

OLTCの損傷!

タップ巻線接続リード線の位置が切り替えセレクターの可動部分に近すぎると、副切換器がブロックされ、OLTCに損傷が発生します。

► 副切換器の周辺でのタップ巻線接続リード線は、切り替えセレクターの可動部品から十分離して配線する必要があります。
多段の転位切換の副切換器がある構成の場合、タップ選択器の接続接点や多段の転位切換の副切換器の接続接点に接続するケーブルを配線する際は注意してください。これらのケーブルは、隣接する接続接点から可能な限り離してください。

1. 両方の転位切換の副切換器カラムに面したタップ選択器の接続接点には、絶縁耐力を確保するために、3 mm以上の厚みの絶縁紙による絶縁が必要です。

2. 該当する寸法図に注意してください。

図138: 絶縁紙による絶縁

| 1 | MRからの接続には、すでに3 mmの絶縁紙による絶縁が施されています。 |

5.3.2.3 極性切換の副切換器の接続接点

注記

OLTCの損傷!

タップ巻線接続リード線の位置が切り替えセレクターの可動部分に近すぎると、副切換器がブロックされ、OLTCに損傷が発生します。

副切換器の周辺でのタップ巻線接続リード線は、切り替えセレクターの可動部品から十分離して配線する必要があります。

副切換器の接続接点 (+) と (-) は、極性切換の副切換器を接続するためのM10ネジ用の貫通穴のある接続端子として設計されています。
接続接点Kは、M10ネジ用の貫通穴のある延長されたタップ選択器の接続接点として設計されています。

1. 添付の接続図に従って、タップ巻線の接続リード線を副切換器に固定します。圧着端子と取り付け部品は供給されません。

2. 各接続部が緩んだり沈み込んだりしないように、適切な措置（スプリンギワッシャを使うなど）を講じます。電界緩和キャップが供給されている場合は、必ず取り付けてください。

3. 電界緩和キャップを閉じて、正しく取り付けられていることを確認します。ネジ頭部およびナットは、完全に覆われている必要があります。

図 139: 極性切換の副切換器の接続接点

図 140: 極性切換の副切換器の接続接点（上面図）
5.3.2.4　転位切換の副切換器の接続接点

注記

OLTCの損傷!

タップ巻線接続リード線の位置が切り替えセレクターの可動部分に近すぎると、副切換器がブロックされ、OLTCに損傷が発生します。

► 副切換器の周辺でのタップ巻線接続リード線は、切り替えセレクターの可動部品から十分離して配線する必要があります。

転位切換器の接続では、副切換器接続接点（+）および（-）の外観は、タップ選択器接点と同じになります（M10ネジ用の貫通穴、常に垂直位置）。

1. 添付の接続図に従って、タップ巻線の接続リード線を副切換器に固定します。圧着端子と取り付け部品は供給されません。

2. 各接続部が緩んだり沈み込んだりしないように、適切な措置（スプリンクルワッシャを使うなど）を講じます。電界緩和キャップが供給されている場合は、必ず取り付けてください。

3. 電界緩和キャップを閉じて、正しく取り付けられていることを確認します。ネジ頭部およびナットは、完全に覆われている必要があります。

図141: 転位切換の副切換器の接続接点
5.3.2.5 多段の転位切換の副切換器の接続接点

注記

OLTCの損傷！

タップ巻線接続リード線の位置が切り替えセレクターの可動部分に近すぎると、副切換器がブロックされ、OLTCに損傷が発生します。

► 副切換器の周辺でのタップ巻線接続リード線は、切り替えセレクターの可動部品から十分離して配線する必要があります。

多段の転位切換の構成では、副切換器の接続接点の外観はタップ選択器の接点と同じです（M10ネジの場合は貫通穴、常に垂直位置）。

1. 添付の接続図に従って、タップ巻線の接続リード線を副切換器に固定します。圧着端子と取り付け部品は供給されません。

2. 各接続部が緩んだり沈み込んだりしないように、適切な措置（スプリングワッシャを使うなど）を講じます。電界緩和キャップが供給されている場合は、必ず取り付けてください。
3. 電界緩和キャップを閉じて、正しく取り付けられていることを確認します。ネジ頭部およびナットは、完全に覆われている必要があります。

図143: 多段の転位切換の副切換器の接続接点

図144: 接続接点に短絡導体を使用した多段の転位切換の副切換器の接続接点
5.3.2.6 OLTCの集電リードの接続

1. OLTCの集電リードを、圧着端子とネジを使用して集電リング上の貫通穴に接続します。圧着端子と取り付け部品は供給されません。

2. ネジ接続部が緩んだり沈み込んだりしないように、適切な措置（スプリングワッシャを使うなど）を講じます。

図145: 油槽上の集電リング
5.3.3 乾燥前の変圧比測定の実施

OLTCの損傷！
変圧比測定の不適切な実施による、OLTCの損傷。

► 250回を超えるタップ切換動作をしないでください。250回を超えるタ
ップ切換動作を実行する場合、油槽に絶縁油を十分に充填し、選択器と
選択器駆動部や接点の摺動面に絶縁油を差してください。

► 上部ギアユニットを介して1つの運転位置から次の運転位置に負荷時タ
ップ切換器を切り替えます。手回しハンドルや、専用のクランクと共に結
合用ボルト (直径12mm) がネジ留めされた短いチューブ (直径25mm)
を使うことができます。ドリルを使う場合は、250rpmを超えないよう
にしてください。

► ヘッドカバーののぞき窓から、切替後の運転位置を必ず確認してくだ
さい。接続図に示されている上限下限位置を決して越えないようにしてく
ださい。

► 複数のOLTCを一つのドライブで駆動する際には、水平側駆動シャフト
で全てのOLTCをヘッド部で互いに連結します。

副切換器が切替える際には、より高いトルクが必要です。

1. OLTCを必要な運転位置に切り替えます。切換開閉器操作がはっきりと聞
こえます。

2. 不完全なタップ切換動作は、OLTCを損傷することがあります。
 OLTCの切替後、上部ギアユニットの駆動シャフトと同じ方向に2.5回転
させて、タップ切換動作を適切に完了します。

3. 変圧比測定を実行します。

4. すべての運転位置で変圧比測定を繰り返します。

5. OLTCを調整位置に切り替えます（OLTC接続図を参照のこと）。

変圧比測定の後、変圧器タンク内のOLTCを乾燥させる場合、残油がある場
合は油槽のケロシン排油用栓を開きます。乾燥後、切換開閉器を取り外
し、油槽のケロシン排油用栓を閉じ、切換開閉器を再度取り付ける必要が
あります。
5.3.4 変圧器での直流抵抗測定

巻線の過熱を防ぐために、直流電流値は通常、測定される変圧器の巻線の定格電流の10%以下に制限されます。

必要な複数のOLTCの運転位置で直流抵抗測定を実施します。運転位置を切り替え動作中に、測定電流値が遮断されているかどうかをここで判定する必要があります。

<table>
<thead>
<tr>
<th>油槽の状態</th>
<th>測定電流値の遮断なし</th>
<th>遮断あり(測定電流値 = 運転位置の変更前は0 A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>油槽が空の状態</td>
<td>最大10A DC</td>
<td>最大50A DC</td>
</tr>
<tr>
<td>油槽が絶縁油が注入されている</td>
<td>最大50A DC</td>
<td>最大50A DC</td>
</tr>
</tbody>
</table>

表6: 直流抵抗測定時の最大許容測定電流値

5.3.5 乾燥炉内でのOLTCの乾燥

注記

OLTCの損傷！

油槽内の湿度が高い場合、絶縁油の絶縁耐力が下がるため、OLTCの損傷につながります。

► 10時間以内の乾燥工程中、OLTCヘッドカバーで油槽を密封します。

MRの保証するOLTCの絶縁値を得る為に、以下の指示に従いOLTCを乾燥させます。

乾燥炉で乾燥させる場合、以下の方法を利用できます。

- 真空乾燥
- 気相乾燥

乾燥炉内でOLTCを乾燥させる代わりに、変圧器タンクで乾燥させることもできます。

5.3.5.1 乾燥炉での真空乾燥

乾燥後に別の変圧比測定を実行する場合、「乾燥後の変圧比測定の実施」[※セクション 5.3.10, ページ 185]のセクションの説明に従ってください。
5.3.5.1.1 OLTCを調整位置へ

► OLTCを調整位置にします。調整位置は、納品時に含まれる接続図に示されています。

5.3.5.1.2 OLTCヘッドカバーを取り外す

⚠️ 警告

爆発の危険!

OLTCヘッドに爆発性の気体があると、燃焼したり、爆発したりすることがあり、重症や死亡事故につながる場合があります。

► 周囲に裸火、熱源、火花など (静電荷の発生により生じます) の発火源が無いことを確認し、これらが発生しないようにします。

► OLTCヘッドカバーを取り外す前に、すべての補助回路 (例えば、スーパーバイザリーコントロールシステム、放圧装置、圧力監視装置) からの電気供給を停止します。

► 作業中に電動工具などの電気装置を使用しないでください (例：インパクトレンチから火花が発生する危険性があります)。

注記

OLTCの損傷!

油槽への小さな部品等の混入は切換開閉器の切替を妨げ、破損などを起こすことが事があります。

► 部品等が油槽内に絶対に落下しないようにします。

► 小さな部品なども紛失がないことを確認します。

1. のぞき窓がカバーでふさがれていることを確認してください。

2. OLTCヘッドカバーからネジとワッシャを外します。

図 146: OLTCヘッドカバー
3. OLTCヘッドカバーを取り外します。

図 147: OLTCヘッドカバー

5.3.5.1.3 OLTCの乾燥

注記

OLTCヘッドカバーおよび付属品の損傷。

OLTCヘッドカバーとOLTC付属品は、乾燥させると損傷します。

► OLTCヘッドカバーまたは次の付属品は決して乾燥させないでください:

電動操作機構（MDU）、駆動シャフト、保護リレー、圧力監視装置、放出装置、傘歯車、温度センサー、活線浄油器。

1. 約10℃/時の温度上昇で（最大110℃の最終温度）、大気圧の空気中でOLTCを加熱します。
2. 最大温度110℃の温風で最低20時間、OLTCを事前乾燥させます。
3. 105℃～最大125℃で最低50時間、OLTCを真空乾燥させます。
4. 残留圧力が10⁻³バールを超えてはいけません。

5.3.5.1.4 負荷時タップ切換器（OLTC）ヘッドカバーの取り付け

注記

OLTCの損傷!

Oリングの組み忘れまたは損傷、および密閉する表面の汚れは絶縁油の漏れを引き起こし、その結果、OLTCが損傷します。

► Oリングがヘッドカバーにねじれずに取り付けられているかを確認します。

► ヘッドカバーを取り付ける時にOリングが損傷していないことを、確認します。

► ヘッドカバーおよびOLTCヘッドの密閉する表面がきれいであることを、確認します。
1. 滑りキーがシャフトにしっかり取り付けられていることを確認します。必要に応じて、滑りキーに脱落を防止するためにワセリンを使用し、キーの落下を防ぎます。

図 148: 滑りキー

2. ヘッドカバーとヘッドのそれぞれの赤い三角形の合いマークを合わせます。

図 149: Oリングの付いたOLTCヘッドカバー
3. OLTCヘッドカバーをOLTCヘッドにネジで固定します。

図150: OLTCヘッドカバー

5.3.5.2 乾燥炉での気相乾燥

乾燥後に別の変圧比測定を実行する場合、「乾燥後の変圧比測定の実施」
[▶セクション 5.3.10, ページ 185]のセクションの説明に従ってください。

5.3.5.2.1 OLTCを調整位置へ

► OLTCを調整位置にします。調整位置は、納品時に含まれる接続図に示されています。

5.3.5.2.2 OLTCヘッドカバーを取り外す

警告

OLTCヘッドに爆発性の気体があると、燃焼したり、爆発したりすることがあり、重症や死亡事故につながる場合があります。
► 周囲に裸火、熱源、火花など（静電荷の発生により生じます）の発火源がないことを確認し、これらが発生しないようにします。
► OLTCヘッドカバーを取り外す前に、すべての補助回路（例えば、スーパーバイザーコントロールシステム、放圧装置、圧力監視装置）からの電気供給を停止します。
► 作業中に電動工具などの電気装置を使用しないでください（例：インパクトレンチから火花が発生する危険性があります）。
注記

OLTCの損傷!

油槽への小さな部品等の混入は切換開閉器の切替を妨げ、破損などを起こすことが事があります。

► 部品等が油槽内に絶対に落下しないようにします。
► 小さな部品なども紛失がないことを確認します。

1. のぞき窓がカバーでふさがれていることを確認してください。
2. OLTCヘッドカバーからネジとワッシャを外します。

図 151: OLTCヘッドカバー

3. OLTCヘッドカバーを取り外します。

図 152: OLTCヘッドカバー

5.3.5.2.3 ケロシン排油用栓を開く

► 注記 ケロシン排油用栓は決して完全に取り外さないでください。開けない程固着した場合のみ、油槽基部と選択器駆動部の間のケロシン排油用栓を時計回りに回して外します。
5.3.5.2.4 OLTCの乾燥

注記

OLTCヘッドカバーおよび付属品の損傷。

OLTCヘッドカバーとOLTC付属品は、乾燥させると損傷します。

► OLTCヘッドカバーまたは次の付属品は決して乾燥させないでください:
電動操作機構（MDU）、駆動シャフト、保護リレー、圧力監視装置、放圧装置、傘歯車、温度センサー、活線浄油器。

1. 約90°Cの温度でケロシン気相を供給します。この温度を3～4時間一定に保ちます。
2. OLTCで、ケロシン気相温度を最大125°Cの最終目的温度になるまで、約10°C/時上げます。
3. 105℃～最大125℃で最低50時間、OLTCを真空乾燥させます。
4. 残留圧力が10⁻³バールを超えてはいけません。

5.3.5.2.5 ケロシン排油用栓を閉じる

► 注記 ケロシン排油用栓を閉したままにすると、絶縁油が油槽から漏れ、OLTCの損傷につながります。ケロシン排油用栓を閉じます（締め付けトルク20Nm）。
5.3.5.2.6 負荷時タップ切換器（OLTC）ヘッドカバーの取り付け

オリングの組み忘れまたは損傷、および密閉する表面の汚れは絶縁油の漏れを引き起こし、その結果、OLTCが損傷します。

► オリングがヘッドカバーにねじれずに取り付けられているかを確認します。
► ヘッドカバーを取り付ける時にオリングが損傷していないことを、確認します。
► ヘッドカバーおよびOLTCヘッドの密閉する表面がきれいであることを、確認します。

1. 滑りキーがシャフトにしっかり取り付けられていることを確認します。必要に応じて、滑りキーに脱落を防止するためにワセリンを使用し、キーの落下を防ぎます。
2. ヘッドカバーとヘッドのそれぞれの赤い三角形の合いマークを合わせます。

図 155: Oリングの付いたOLTCヘッドカバー

3. OLTCヘッドカバーをOLTCヘッドにネジで固定します。

図 156: OLTCヘッドカバー
5.3.6 負荷時タップ切換器（OLTC）ヘッド上部を吊り上げて、同部下部支持フランジから切り離す

5.3.6.1 OLTCヘッドカバーを取り外す

⚠️ 警告
爆発の危険！

OLTCヘッドに爆発性の気体があると、燃焼したり、爆発したりすることがあり、重症や死亡事故につながら場合があります。

► 周囲に裸火、熱源、火花など（静電荷の発生により生じます）の発火源が無いことを確認し、これらが発生しないようにします。

► OLTCヘッドカバーを取り外す前に、すべての補助回路（例えば、スーパーバイザリーコントロールシステム、放圧装置、圧力監視装置）からの電気供給を停止します。

► 作業中に電動工具などの電気装置を使用しないでください（例：インパクトレンチから火花が発生する危険性があります）。

⚠️ 注記
OLTCの損傷！

油槽への小さな部品等の混入は切換開閉器の切替を妨げ、破損などを起こすことが事があります。

► 部品等が油槽内に絶対に落下しないようにします。

► 小さな部品なども紛失がないことを確認します。

1. のぞき窓がカバーでふさがれていることを確認してください。
2. 仮止めのねじとスペーサーを外し、OLTCをゆっくりと下げます。

図 157: 仮止め用のねじとスペーサー
3. OLTCヘッドカバーからネジとワッシャを外します。

図 158: OLTCヘッドカバー

4. OLTCヘッドカバーを取り外します。

図 159: OLTCヘッドカバー

5.3.6.2 タップ位置表示ディスクの取り外し

► ばねクリップをシャフト端から引き抜き、タップ位置表示ディスクを取り外します。

図 160: タップ位置表示ディスク
5.3.6.3 動作位置が35を超える多段の転位切換の副切換器を持つもののタップ位置表示ディスクの取り外し

1. パネル、タップ位置表示ディスクおよびカバーディスクの3箇所の赤マークが一直線になっていることを確認します。

2. 皿ネジを取り外します。

図 161: 皿ネジ

3. マイナスドライバを使用しカバーディスクを外し、パネルとブラケットの間から位置表示ディスクを引き抜きます。

図 162: カバーディスクと位置表示ディスク
4. 六角ネジと回り止め（ロックタブ）を取り外します。

![ロックタブの図](image1)

図 163: ロックタブ

5. パネルとブラケットを引き上げて、駆動軸から取り外します。

![パネルの図](image2)

図 164: パネル

5.3.6.4 スーパーバイザリーコントロールシステムの取り外し

⚠️ 危険

感電！

スーパーバイザリーコントロールシステムに供給電圧が印加されると感電することがあります。

► スーパーバイザリーコントロールシステムを供給電圧から切り離し、再びオンに切り替わることが無いようにします。
スーパーバイザリーコントロールシステムの損傷！
スーパーバイザリーコントロールシステムを取り外す際に同システムを損傷することがありますので充分注意してください。また、そのことによりOLTCに損傷が発生することがあります。

接続リード線の損傷や引き抜けを防ぐ為、スーパーバイザリーコントロールシステムを慎重に取り外してください。

1. スーパーバイザリーコントロールシステム プラグコネクターを取り付けブラケットから取り外し、接続を切ります。

図 165: プラグコネクター

2. 取り付けプレート上のナットと緩み止めワッシャーを取り外します。

図 166: 取り付けプレート
3. スーパーバイザリーコントロールシステムと駆動シャフトの付いている取り付けプレートを取り外します。

図 167: スーパーバイザリーコントロールシステムと駆動シャフトが付いた取り付けプレート

4. スーパーバイザリーコントロールシステムのリード線をスペーサー付きボルトから外します。

図 168: スーパーバイザリーコントロールシステムのスペーサー付きボルトとリード線
5. スーパーバイザリーコントロールシステムのリード線をOLTCヘッドから外へ逃がします。

図169: スーパーバイザリーコントロールシステムのリード線

6. スペーサー付きボルトを緩み止めワッシャーと一緒に取り外します。

図170: スペーサー付きボルト

5.3.6.5 排油管の取り外し

1. ケーブルタイを排油管から外します。

図171: 排油管
2. 排油管を負荷時タップ切換器頭部から外します。

図 172: 排油管

3. 取り付けプラケットを取り外します。

図 173: 取り付けプラケット

5.3.6.6 負荷時タップ切換器（OLTC)ヘッド上部を支持フランジから持ち上げる

1. OLTCヘッド上部と支持フランジ間にあるナットと緩み止めワッシャーを外します。

図 174: ナット付きのOLTCヘッド上部
2. OLTCヘッド上部を支持フランジから持ち上げます。

5.3.7 ベル形タンクを取り付け、OLTCヘッド上部に接続する

5.3.7.1 ベル形タンクの取り付け

1. 支持フランジの密閉する表面を清掃し、Oリングを支持フランジの上に置きます。
2. 電圧器の帯電部上でベル形タンクを持ち上げます。

図177: ベル形タンク
5.3.7.2 OLTCヘッド上部をベル形タンク上に位置させる

1. 注記 不適切なガスケットの使用はオイル漏れや、OLTCの損傷の原因になります。使用する絶縁油に適切なガスケット1を取り付けフランジ2の上に装着します。取り付けフランジの密閉する表面とOLTC上部をきれいにします。

図 178: 取り付けフランジとガスケット
2. OLTCヘッドを下降させ、取り付けフランジ上に降ろし、それぞれの三角の合いマーク、取り付け穴を合わせます。

図 179: 合いマークと位置決めピン

5.3.7.3 OLTCを、ヘッド上部に接続する

注記
OLTCを不適切に吊り上げると、損傷します！
OLTCの吊り上げ時に支持フランジの接続ネジを使用すると、ネジが損傷し、OLTCとOLTCヘッドを適切にネジ留めできなくなります！
▶ OLTCは必ず指定された吊り上げ用横木を使用して吊り上げ、決して支持フランジの接続ネジを使用しないでください。
5 設置

1. **注記** 絶縁油の漏れにより、負荷時タップ切換器が損傷します。油槽のシールがきれいであっても、傷がなく、捻じれていないことを確認します。

2. つめが内側に向いた状態で、吊り上げ装置を油槽に慎重に挿入します。

![図180: 吊り上げ装置](image1)

3. **注記** 負荷時タップ切換器頭部と支持フランジの位置関係が不正確だと、吊り上げるときに負荷時タップ切換器が損傷します。吊り上げ装置のつめを外側に向け、油槽を持ち上げます。三角マークが位置合わせされており、支持フランジのスタッドボルトすべてが負荷時タップ切換器ヘッドの取り付け穴を簡単に通ることを確認します。

![図181: 負荷時タップ切換器の吊り上げ](image2)
OLTCヘッドの上部と下部を組む際に、スーパーヴライザーコントロールシステムの取付プレートのピン、リード線のスペーサー付きボルトやサクションパイプの取り付けブラケットのピンはそのままにします。

1. ナットと緩み止めワッシャで負荷時タップ切換器頭部の上部を下部に固定します。

図 182: 負荷時タップ切換器ヘッドの上部を下部にねじ留めする

2. つめが内側に曲がった状態で、吊り上げ装置を取り外します。

図 183: 吊り上げ装置の取り外し
3. OLTCヘッドを取り付けフランジにネジで固定します。

図184: OLTCヘッドの取り付けフランジへのねじ留め

5.3.7.4 排油管の取り付け

1. 取り付けブラケットを取り付けます。

図185: 取り付けブラケット

2. 排油管をOLTCヘッドへ挿入します。

図186: 排油管の取り付け
3. 附属している結束バンドを使用して、排油管を取り付けブラケットに固定します。結束バンドの向きを図のように合わせます。

![図187: 結束バンド]

5.3.7.5 スーパーバイザリーコントロールシステムの取り付け

1. 駆動シャフトの付いたスーパーバイザリーコントロールシステム取り付けプレートを取り付けます。

![図188: スーパーバイザリーコントロールシステムと駆動シャフトが付いた取り付けプレート]
2. 駆動シャフトがプラグコネクターに正しく配置されていることを確認します。

図 189: 駆動シャフトおよびプラグコネクター

3. 取り付けプレートを固定します。

図 190: 取り付けプレート

4. スーパーバイザリーコントロールシステムのリード線を固定するためにスペーサー付きボルトを取り付けます。

図 191: スペーサー付きボルト
5. スーパーバイザリーコントロールシステムのリード線を、スペーサー付きボルトに固定します。

図 192: スペーサー付きボルト

6. プラグコネクターを、プラケットに取り付ける前に接続します。

図 193: プラグコネクター

7. 接続したプラグコネクターをプラケットに挿入します。

図 194: プラケットに挿入されたプラグコネクター
5.3.7.6 タップ位置表示ディスクの取り付け

連結ピンがあるため、タップ位置表示ディスクは、決まった位置にしか取付できません。

► 表示板駆動軸にディスクを置き、ばねクリップをシャフト端に横から挿入します。

図 195: タップ位置表示ディスク

5.3.7.7 動作位置が35を超える多段の転位切換の副切換器を持つもののタップ位置表示ディスクの取り付け

1. 表示板駆動軸にブラケット付きパネルを置き、ロックタブと六角ネジで固定します。

図 196: パネルの取り付け
2. タップ位置表示ディスクをパネルとブラケットの間に水平に挿入し、カバーディスクを取り付けます。赤い線がつながった一つの線となるよう、タップ位置表示ディスクとカバーディスクの位置を合わせます。

![図 197: 位置表示ディスクの取り付け](image1)

3. 盤ネジでカバーディスクを固定します。皿ネジは、センターポンチに適した形状である必要があります。

![図 198: カバーディスクの固定](image2)

4. センターポンチで皿ネジが緩まないようにします。
5.3.7.8 負荷時タップ切換器 (OLTC)ヘッドカバーの取り付け

注記

OLTCの損傷！

Oリングの組み忘れまたは損傷、および密閉する表面の汚れは絶縁油の漏れを引き起こし、その結果、OLTCが損傷します。

► Oリングがヘッドカバーにねじれずに取り付けられているかを確認します。

► ヘッドカバーを取り付ける時にOリングが損傷していないことを、確認します。

► ヘッドカバーおよびOLTCヘッドの密閉する表面がきれいであることを、確認します。

1. 滑りキーがシャフトにしっかりと取り付けられていることを確認します。必要に応じて、滑りキーに脱落を防止するためにワセリンを使用し、キーの落下を防ぎます。

図 199: 滑りキー
2. ヘッドカバーとヘッドのそれぞれの赤い三角形の合いマークを合わせます。

図 200: Oリングの付いたOLTCヘッドカバー

3. OLTCヘッドカバーをOLTCヘッドにネジで固定します。

図 201: OLTCヘッドカバー

5.3.8 変圧器タンク内でOLTCを乾燥させる

MRの保証するOLTCの絶縁値を得る為に、以下の指示に従ってOLTCを乾燥させます。
OLTCを変圧器タンク内で乾燥させる場合、変圧器をまず完全に組立ててから乾燥に取り掛かります。

変圧器タンク内で乾燥させる場合、以下の方法を利用できます。

- 真空乾燥
- 気相乾燥

変圧器タンク内でOLTCを乾燥させる代わりに、乾燥炉で乾燥させることもできます。

5.3.8.1 変圧器タンク内での真空乾燥

| 図 202: 接続部 |

変圧器タンク内での真空乾燥

1. 約10℃/時の温度上昇で（最大110℃の最終温度）、大気圧の空気中でOLTCを加熱します。
2. 最大温度110℃の温風で最低20時間、OLTCを事前乾燥させます。
3. 105℃〜最大125℃で最低50時間、OLTCを真空乾燥させます。
4. 残留圧力が10⁻³バールを超えてはいけません。
5.3.8.2 変圧器タンク内での気相乾燥

ケロシン排油用栓をすでに開いている場合（変圧比測定後など）、すぐに乾燥 [►セクション 5.3.8.2.4, ページ 182] を開始できます。

それ以外の場合は、乾燥を開始する前に、まずケロシン排油用栓を開く必要があります。

5.3.8.2.1 切換開閉器の取り外し

5.3.8.2.1.1 OLTCを調整位置へ

► OLTCを調整位置にします。調整位置は、納品時に含まれる接続図に示されています。

5.3.8.2.1.2 OLTCヘッドカバーを取り外す

警告
爆発の危険！

OLTCヘッドに爆発性の気体があると、燃焼したり、爆発したりすることがあり、重症や死亡事故につながる場合があります。

► 周囲に裸火、熱源、火花など（静電荷の発生により生じます）の発火源が無いことを確認し、これらが発生しないようにします。

► OLTCヘッドカバーを取り外す前に、すべての補助回路（例えば、スーパーバイザリーコントロールシステム、放圧装置、圧力監視装置）からの電気供給を停止します。

► 作業中に電動工具などの電気装置を使用しないでください（例：インパクトレンチから火花が発生する危険性があります）。

注記
OLTCの損傷！

油槽への小さな部品等の混入は切換開閉器の切替を妨げ、破損などを起こすことが事があります。

► 部品等が油槽内に絶対に落下しないようにします。

► 小さな部品なども紛失がないことを確認します。
1. のぞき窓がカバーでふさがれていることを確認してください。
2. OLTCヘッドカバーからネジとワッシャを外します。

図 203: OLTCヘッドカバー

3. OLTCヘッドカバーを取り外します。

図 204: OLTCヘッドカバー

5.3.8.2.1.3 タップ位置表示ディスクの取り外し

► ばねクリップをシャフト端から引き抜き、タップ位置表示ディスクを取り外します。

図 205: タップ位置表示ディスク
5.3.8.2.1.4 動作位置が35を超える多段の転位切換の副切換器を持つもののタップ位置表示ディスクの取り外し

1. パネル、タップ位置表示ディスクおよびカバーディスクの3箇所の赤マークが一直線になっていることを確認します。

2. 皿ネジを取り外します。

図 206: 皿ネジ

3. マイナスドライバを使用しカバーディスクを外し、パネルとブラケットの間から位置表示ディスクを引き抜きます。

図 207: カバーディスクと位置表示ディスク
4. 六角ネジと回り止め（ロックタブ）を取り外します。

図 208: ロックタブ

5. パネルとブラケットを引き上げて、駆動軸から取り外します。

図 209: パネル

5.3.8.2.1.5 スーパーバイザリーコントロールシステムの取り外し

注記
スーパーバイザリーコントロールシステムの損傷！
スーパーバイザリーコントロールシステムを取り外す際に同システムを損傷することがありますので充分注意してください。また、そのことによりOLTCに損傷が発生することがあります。

► 接続リード線の損傷や引き抜けを防ぐ為、スーパーバイザリーコントロールシステムを慎重に取り外してください。
1. スーパーバイザリーコントロールシステム ブラグコネクターを取り付け ブラケットから取り外し、接続を切ります。

図 210: ブラグコネクター

2. 取り付けプレート上のナットと緩み止めワッシャーを取り外します。

図 211: 取り付けプレート
3. スーパーバイザリーコントロールシステムと駆動シャフトの付いている取り付けプレートを取り外します。

図 212: スーパーバイザリーコントロールシステムと駆動シャフトが付いた取り付けプレート

4. スーパーバイザリーコントロールシステムのリード線を矢印の方向に逃がします。

図 213: スーパーバイザリーコントロールシステムのリード線
5.3.8.2.1.6 切換え閉器の持ち上げ

1. **注意** 作業用レンチ無しで結合用筒を回すと裂傷の危険。シャフトとOLTCヘッドの合いマークが揃っていない場合は、作業用レンチを使用し結合用筒を回すか、保護手袋を着用し、シールドリングを直接回して、マークが揃うようにします。

![図214: 結合用筒の位置合わせ](image1)

2. 結合用筒のアイボルトに吊り上げ装置をかけ、切換え閉器に対して垂直にします。

3. 油槽から切換え閉器をゆっくりと垂直に持ち上げます。また作業中は、表示板駆動軸の保護リングが落下しないように注意します。

![図215: 切換え閉器（DSI）](image2)
4. **注意** DSIを不安定な状態に置くと、傾いて負傷や物的損害の原因になる場合があります。DSIは水平に置き、傾かないように固定してください。DSIが取り付けられていない状態で、DSIを操作したり、選択器結合部の位置を変えたりしないでください。

5.3.8.2.2 ケロシン排油用栓を開く

► **注意** 抵抗を感じるまで、拡張ソケットレンチを使ってケロシン排油用栓のネジを反時計回りに回します。決してケロシン排油用栓のネジは外さないでください。

図 216: ケロシン排油用栓
5.3.8.2.3 切換開閉器（DSI）の挿入

5.3.8.2.3.1 切換開閉器（DSI）の挿入

1. DSIを取り付ける際には、選択器結合部が調整位置にあることを確認します。

図 217: 油槽基部の調整用マーク
2. **注記** 切換開閉器（DSI）の混同による、OLTCの損傷。DSIとOLTCヘッドに同じ数のマークがあることを確認してください。

図 218: 同数のマーク
3. **注意** 作業用レンチ無しで結合用筒を回すと裂傷の危険。切換開閉器とOLTCヘッドの合いマークが揃っていない場合は、作業用レンチを使用し結合用筒を回すか、保護手袋を着用し、シールドリングを直接回して、マークが揃うようにします。必要に応じて、DSIを切り替えます。

図219: DSI上のマーク

4. 吊り上げ装置をDSIに取り付け、油槽上に移動させます。
5. DSIとOLTCヘッドのマークが揃うように、DSIを合わせます。保護リングが表示板駆動軸上にあることを確認します。油槽基部とかみ合うまで、DSIをゆっくりと下げます。選択器結合部の形状は、正しい位置でしか結合できないようになっています。Um≥300kVのOLTCの油槽には、ガイド用配管が追加されています。
6. DSIのシャフトの上端部とOLTCヘッドの取り付け面間の距離を確認します。距離は13±2mmでなければなりません。

図 221: DSIのシャフト上端部と、OLTCヘッド取り付け面間の距離

5.3.8.2.3.2 スーパーバイザリーコントロールシステムの取り付け

1. 駆動シャフトの付いたスーパーバイザリーコントロールシステム取り付けプレートを取り付けます。

図 222: スーパーバイザリーコントロールシステムと駆動シャフトが付いた取り付けプレート
2. 駆動シャフトがプラグコネクターに正しく配置されていることを確認します。

図 223: 駆動シャフトおよびプラグコネクター

3. 取り付けプレートを固定します。

図 224: 取り付けプレート

4. プラグコネクターを、ブラケットに取り付ける前に接続します。

図 225: プラグコネクター
5. 接続したプラグコネクターをブラケットに挿入します。

5.3.8.2.3.3 タップ位置表示ディスクの取り付け

圖 226: ブラケットに挿入されたプラグコネクター

連結ピンがあるため、タップ位置表示ディスクは、決まった位置にしか取付できません。

► 表示板駆動軸にディスクを置き、ばねクリップをシャフト端に横から挿入します。

圖 227: タップ位置表示ディスク
5.3.8.2.3.4 動作位置が35を超える多段の転位切換の副切換器を持つものタップ位置表示ディスクの取り付け

1. 表示板駆動軸にブラケット付きパネルを置き、ロックタブと六角ネジで固定します。

図 228: パネルの取り付け

2. タップ位置表示ディスクをパネルとブラケットの間に水平に挿入し、カバーディスクを取り付けます。赤い線がつながった一つの線となるよう、タップ位置表示ディスクとカバーディスクの位置を合わせます。

図 229: 位置表示ディスクの取り付け
3. 皿ネジでカバーディスクを固定します。皿ネジは、センターポンチに適した形状である必要があります。

![図230: カバーディスクの固定](image)

4. センターポンチで皿ネジが緩まないようにします。

5.3.8.2.3.5 負荷時タップ切換器 (OLTC)ヘッドカバーの取り付け

注記

OLTCの損傷！

Oリングの組み忘れまたは損傷、および密閉する表面の汚れは絶縁油の漏れを引き起こし、その結果、OLTCが損傷します。

► Oリングがヘッドカバーにねじれずに取り付けられているかを確認します。

► ヘッドカバーを取り付ける時にOリングが損傷していないことを、確認します。

► ヘッドカバーおよびOLTCヘッドの密閉する表面がきれいであることを、確認します。
5 設置

1. 滑りキーがシャフトにしっかり取り付けられていることを確認します。必要に応じて、滑りキーに脱落を防止するためにワセリンを使用し、キーの落下を防ぎます。

![図231: 滑りキー](image1)

2. ヘッドカバーとヘッドのそれぞれの赤い三角形の合いマークを合わせます。

![図232: Oリングの付いたOLTCヘッドカバー](image2)
3. OLTCヘッドカバーをOLTCヘッドにネジで固定します。

図 233: OLTCヘッドカバー

5.3.8.2.4 OLTCの乾燥

1. OLTCヘッドの配管接続部RとQに、ケロシン気相配管を接続します。
2. 未使用の配管接続部は、閉止板で密封します。

図 234: 配管接続部

変圧器タンク内での気相乾燥

1. 約90°Cの温度でケロシン気相を供給します。この温度を3〜4時間一定に保ちます。
2. OLTCで、ケロシン気相温度を最大125°Cの最終目的温度になるまで、約10°C/時上げます。
3. 105℃〜最大125℃で最低50時間、OLTCを真空乾燥させます。
4. 残留圧力が10⁻³バールを超えてはいけません。
5.3.8.2.5 ケロシン排油用栓を閉じる

注記

OLTCの損傷!
油槽内の湿度が高い場合、絶縁油の絶縁耐力が下がるため、OLTCの損傷につながります。

10時間以内の乾燥工程中、OLTCヘッドカバーで油槽を密封します。

1. DSIを取り外します [セクション 5.3.8.2.1, ページ 164]。
2. 注記 ケロシン排油用栓を開いたままにすると、絶縁油が油槽から漏れ、OLTCの損傷につながります。拡張ソケットレンチ (締め付けトルク20 Nm) を使って、ケロシン排油用栓を時計回りに回して閉じます。
3. DSIを挿入します [セクション 5.3.8.2.3, ページ 172]。

乾燥後に別の変圧比測定を実行する場合、「乾燥後の変圧比測定の実施」 [セクション 5.3.10, ページ 185]のセクションの説明に従ってください。

5.3.9 油槽へ絶縁油の注油

注記

負荷時タップ切換器への損傷!
不適切な絶縁油によって、負荷時タップ切換器が損傷します。

必ずメーカーが認定している絶縁油 [セクション 9.1.2, ページ 286] を使用してください。
乾燥後、基準値を超えた吸湿をしないように、早急に油槽（DSIを取り付けた状態で）に絶縁油で再度完全に満たします。

1. 配管接続部E2と、配管接続部R、S、Qのうちの1つとの間を接続し、排出中に油槽と変圧器に同圧力がかかるようにします。

2. OLTCヘッドの2つの空き配管接続部のうちの1つを使って、OLTCに新しい絶縁油を注油します。
5.3.10 乾燥後の変圧比測定の実施

OLTCの損傷!
変圧比測定の不適切な実施による、OLTCの損傷。

► 選択器/電気供給を停止したOLTCが絶縁油に完全に浸り、油槽に絶縁油が十分充填されていることを確認します。

► 上部ギアユニットを介して1つの運転位置から次の運転位置に負荷時タップ切換器を切り替えます。手回しハンドルや、専用のクランクと共に結合用ボルト（直径12mm）がネジ留めされた短いチューブ（直径25mm）を使うことができます。ドリルを使う場合は、250rpmを超えないようにしてください。

► ヘッドカバーのぞき窓から、切替後の運転位置を必ず確認してください。接続図に示されている上限下限位置を越えないようにしてください。

► 複数のOLTCを一つのドライブで駆動する際には、水平側駆動シャフトで全てのOLTCをヘッド部で互いに連結します。

副切換器が切り替わる際には、より高いトルクが必要です。

1. OLTCを必要な運転位置に切り替えます。切換開閉器操作がはっきりと聞こえます。

2. 不完全なタップ切換動作は、OLTCを損傷することがあります。OLTCの切替後、上部ギアユニットの駆動シャフトを同じ方向に2.5回転させて、タップ切換動作を適切に完了します。

3. 変圧比測定を実行します。

4. すべての運転位置で変圧比測定を繰り返します。

5. OLTCを調整位置に切り替えます（OLTC接続図を参照のこと）。
5.4 保護装置および駆動部品の取り付け

5.4.1 温度センサーへの配線の接続
駆動シャフトを取り付ける際に、必要に応じてセンサーを回転できるように、温度センサーの配線のサイズを選定します。

► 添付の接続図に従って、温度センサーの配線を接続します。

5.4.2 スーパーバイザリーコントロールシステムの接続

危険
電圧による致命傷のリスク!
装置の組み立てや接続時の、電圧による死亡の危険。
► 機器、およびシステム周辺装置の電源を切断し、再度電源がオンにならないようにロックしてください。
► OLTCヘッド (配管接続部Qの端子箱) に統合されたモニタリング装置接続部を、添付の接続図に指定された接続リード線を使ってMDUの端子に接続します。

5.4.3 保護リレーの設置と配管取り付け

警告
爆発の危険！
保護リレー内に爆発性の気体があると、燃焼したり、爆発したりすることがあり、重傷を負ったり、死亡することがあります。
► 作業を開始する前に、変圧器のスイッチを切ってから15分待ち、保護リレー内のこのような気体がなくなるのを待ちます。
► 周辺に裸火、熱源、火花など (静電荷の発生により生じます) の発火源がないことを確認し、これらが発生しないようにします。
► 作業を開始する前にすべての補助回路の動力源を遮断します。
► 作業中に電動工具などの電気装置を使用しないでください (例：インパクトレンチから火花が発生する危険性があります)。

► 保護リレーを付け、接続した状態で、すべての変圧器の試験を常に行ってください。
5.4.3.1 保護リレーの機能のチェック

OLTCヘッドとオイルコンサベータ間の配管に保護リレーを取り付ける前に、保護リレーの機能をチェックします。導通をチェックするのに必要な接触位置は、添付の寸法図に表示されています。

1. 端子箱カバーの3つのねじをゆるめ、端子箱カバーを開けます。

2. 接地線を止めていいるすりわり付き小ねじを取り外し、接地線の付いた端子箱カバーを取り外してください。

注記
保護リレーの損傷！
不適切な操作により保護リレーへの損傷が発生します。
► 絶対に両方のテストボタンを同時に押さないでください。
3. OFF(トリップ)のテストボタンを押します。
⇒ フラップ弁が倒れています。のぞき窓の中央に赤いマーカーが表示されます。

図 239: OFF(トリップ)位置

4. OPERATION（復旧）のテストボタンを押します。
⇒ フラップ弁が垂直です。

図 240: 運転位置
5. 端子箱カバーの接地線を、すりわり付き小ねじで取付します。

図 241: 端子箱カバー

6. 端子箱カバーを、ねじで固定します。

図 242: 端子箱カバー

5.4.3.2 保護リレーを配管に取り付けする

保護リレーを設置し、適切に機能させるためには、以下に従ってください。

1. 配管やオイルコンサベータに異物が混入していないことを確認してください。

2. 今後メンテナンス作業に支障が無いように、保護リレーを設置してください。

3. しっかりと支えられ、振動を受けないように、保護リレーを設置してください。

4. テストボタンは上向きにしないといけません。
5. 配管の内径は25mm以上でなければなりません。

6. 磁界の強さ（ブッシング、バスバーなど）は20 kA/m未満である必要があります。高い磁界の強さは、保護リレーの機能に悪影響があります。

7. 保護リレーからオイルコンサベータへのパイプは、2% (1.2°) 以上の傾斜で取付され、切替動作で発生するガスが放出されるようにします。

8. 保護リレーは、OLTCヘッド付近への水平接地向けです。コンサベータに向かって、水平から最大5°の傾斜は許容されます。いずれの側の垂直から最大5°の傾斜は許容されます。
9. 端子箱カバーの矢印は、OLTCオイルコンサベータを向いていないといけません。

図244: OLTCオイルコンサベータへ向く矢印
10. 25mm以上の径のバルブを、保護リレーとオイルコンサベータの間に取り付けます。

図 245: バルブ

5.4.3.3 保護リレーへの配線接続

保護リレーのドライリード磁気スイッチングチューブが、NCコンタクトまたはNOコンタクトとして標準版で供給されます。他のコンタクトの組み合わせは、特別版として供給でき、提示されている寸法図に表示されています。
警告

死亡や重傷のリスク！
保護リレーの電気接続が不適切なため、死亡や重傷を負うリスクがあります。

► 保護する変圧器の遮断器のトリップ回路に保護リレーを接続し、保護リレーがトリップしたときに、変圧器の動力源が遮断器により即座に遮断できるようにします。

► 警報を生成するだけの仕様は許可されません。

図 246: ねじ穴

2. ダミープラグのあるシールオープンのねじ穴。

図 247: ダミープラグで密封
3. 端子箱カバーの3つのねじをゆるめ、端子箱カバーを持ち上げます。

4. 潜在的な関係のためのすりわり付き小ねじを取り外し、ワイヤ付きの端子箱カバーを取り外してください。

5. 保護カバー用ねじを取り外し、保護カバーを取り外してください。
6. ケーブルグランドを通して保護リレーまでケーブルをルーティングしてください。ケーブルグランドが適切に接続され、密封されていることを確認してください。

図 251: ケーブルブッシング

7. 寸法図の接続図に従ってケーブルを接続端子に接続します。

図 252: 電気ケーブル
8. 接地線を平頭ねじに接続します。

図 253: 接地線

9. 保護カバーを挿入し、ねじを使用して固定します。

図 254: 保護カバー
5 設置

10. 端子箱カバーのワイヤを配置し、すりわり付き小ねじを使用して設置します。

図 255: 端子箱カバー

11. 端子箱カバーを設置し、ねじで固定します。

図 256: 端子箱カバー
5.4.4 圧力監視装置の取り付けと接続

5.4.4.1 圧力監視装置の機能を確認する

曲がり管またはOLTCヘッドに取り付ける前に、圧力監視装置の機能を確認します。

1. カバーキャップを取り外します。
2. スナップアクションスイッチを動作させます。
 ◀ スナップアクションスイッチが上にある際にセンサーはOFF（トリップ）位置にあります。

図 257: OFF(トリップ)位置

1 スナップアクションスイッチ
2 OFF（トリップ）位置にあるセンサー
3. スナップアクションスイッチを再度動作させます。

⇒ スナップアクションスイッチが下にある際に、センサーは運転位置にあります。

図 258: 運転位置

1 スナップアクションスイッチ
2 運転位置にあるセンサー

4. カバーキャップを固定します。

センターの位置を必ず確認してください!

5.4.4.2 圧力監視装置の取り付け

圧力監視装置は、2種類の方法で取り付けることができます。

▪ OLTCヘッド上に固定する（垂直取り付け）
▪ 曲がり管（エルボー部）上に固定する（水平取り付け）

取り付けリング上の穴を通じて取り付けます。取り付けシールは圧力監視装置の下に取り付ける必要があります。

固定中に、通気口が上部にあることを確認します。
圧力監視装置の上に、カバーキャップを取り外すための十分なスペースがあることを確認します。

5.4.4.3 圧力監視装置に配線を接続する

電圧による致命傷のリスク!
装置の組み立てや接続時の、電圧による死亡の危険。
▶ 機器、およびシステム周辺装置の電源を切断し、再度電源がオンにならないようにロックしてください。

警告
死亡、重傷の恐れ！
圧力監視装置の不適切な電気的接続による重量や死亡のリスク。
▶ 変圧器の遮断器のトリップ回路に圧力監視装置を接続し、圧力監視装置がトリップした際に、変圧器の動力源が遮断器により即座に遮断されるようにします。
▶ 警報を生成するだけの仕様は許可されません

1. カバーキャップを取り外します。
2. 専用のリード線を配線するためねじ穴を使います
3. リード線をスナップアクションスイッチの端子に接続します。
 スナップアクションスイッチは、通常開および通常閉スイッチとして設計されています。これはトリガーされると反転し、リセットすることができます。
4. すべてのリード線と接地線を接続します。
 リード線接続には、端子あたり1本または2本のリード線を接続できます（Ø 0.75…2.5 mm²）。
5. カバーキャップを固定します。
6. 取付ネジが正しい位置にあることを確認します。添付の寸法図も参照してください。

5.4.5 電動操作機構(MDU)の取り付け
▶ MDUに関連するMR取扱説明書に従い、MDUを変圧器に取り付けます。

5.4.6 駆動シャフトの取り付け
取り付けに際しては、以下を確認してください。
耐防腐性部品

角管、結合用ブラケット、結合用ボルト、ネジ、およびロックワッシャは腐食耐性である。したがって、変圧器タンクと同じ外部塗装をこれらの部品には行わないことを推奨します。

角管、伸縮式保護筒、および保護カバーの切断

角管、伸縮式保護筒および保護カバーは、長めに（標準長で）供給されていきます。変圧器に取り付ける前に、これらの部品を必要なサイズに切断する必要があります。稀に、伸縮式保護筒の内管を必要な長さに切断する必要もあります。駆動シャフトの最大合計長はMDUから一番遠いOLTCまでで15mです。

<table>
<thead>
<tr>
<th>標準長</th>
<th>電動操作機構(MDU)</th>
<th>手動操作機構</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>600</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>900</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>1300</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>1700</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>2000</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>2500</td>
<td>使用不可</td>
<td>1)</td>
</tr>
</tbody>
</table>

表7: 角管の標準長種類

1) I>2000は保護カバーなしでの垂直側取り付けでのみ可能です! 垂直寸法V1>2462の手動操作機構の伸縮式保護筒は、電動操作機構と同様に、垂直中間ベアリングとともに供給されます。
5.4.6.1 カルダン継手のない垂直側駆動シャフトの取り付け

許容軸方向変位

垂直側駆動シャフトでは角管長さの1000 mmにつき35 mm以下の（これは2°に相当します）、軸方向変位は許容されます。

図 259: カルダン継手がない場合の、垂直側駆動シャフトの許容最大軸方向変位
垂直側駆動シャフトをMDUに取り付けるには、以下の手順に従います。

1. **注意** MDUのモーター保護スイッチ（Q1）をオフ（位置O）にします。これを行わない場合、MDUが意図せずに起動し負傷の原因になる場合があります。

2. 傘歯車を変圧器に固定します。

図 260: 傘歯車
3. MDUのシャフト端と傘歯車のシャフト端間の寸法Aを測定します。角管を「Aの長さ - 9 mm」にカットします。

図 261: 角管の切断
4. 角管の切断面を面取りします。

図 262: 切断面の面取り
5. 仮留めされた結合部を、止まるまで角管に差し込みます。

図 263: 結合部を角管への差し込み
6. 結合用ボルトをMDUのシャフト端に挿入します。結合部、結合用ボルトおよびシャフト端にグリスを塗布します（例、ISOFLEX TOPAS L32など）。角管を結合部と共にシャフト端にスライドさせる

図 264: シャフト端に結合部とともに角管を差し込む

7. 角管のMDUへの取り付け。

図 265: 角管をMDUに取り付ける
8. 角管を傾け、軸から逃がします。

図 266: 角管を傾け、軸から逃がす

9. 伸縮式保護筒の内管を取り付ける時は、必要に応じて、切欠きのない側をカットします。2つの保護筒が重なる部分の最小寸法は100 mmです。
内管は変形させないでください。外管にスライドしやすいように面取りしてください。

図 267: 内管の面取り

<table>
<thead>
<tr>
<th>寸法A（= MDUのシャフト端と傘歯車のシャフト端間の距離）</th>
<th>内管</th>
<th>外管</th>
</tr>
</thead>
<tbody>
<tr>
<td>170 mm...190 mm</td>
<td>200 mmにカットする</td>
<td>= 200 mm</td>
</tr>
<tr>
<td>191 mm...1,130 mm</td>
<td>寸法A + 20 mm</td>
<td>= 200 mm</td>
</tr>
<tr>
<td>1,131 mm...1,598 mm</td>
<td>= 700 mm</td>
<td>= 1,150 mm</td>
</tr>
<tr>
<td>1,599 mm...2,009 mm</td>
<td>= 1,150 mm</td>
<td>= 1,150 mm</td>
</tr>
</tbody>
</table>
10. 外管を内管にかぶせます。この際、内管の切欠きのない側が上向きになっていることを確認してください。伸縮式保護筒を角管にかぶせます。その後、ホースクリップを伸縮式保護筒に挿入させます。
11. アダプターリングを傘歯車の軸受外輪に取り付け、上向きにスライドさせます。結合用ボルトを傘歯車のシャフト端に挿入します。角管を傾け軸に戻します。

図 269: アダプターリングと結合用ボルトの取り付け
12. 結合用ブラケット、結合用ボルトおよびシャフト端にグリスを塗布し（例：ISOFLEX TOPAS L32）、結合用ブラケットで角管を傘歯車に固定します。結合用ボルトと結合片上端間に、3 mmの軸方向の隙間を設けます。

図 270: 結合用ブラケットの取り付け

13. ホースクリップを使って、下部保護筒（内管）を駆動部の軸受外輪に取り付けます①。その後、上部保護筒（外管）を傘歯車上のアダプターリングにスライドさせます②。ホースクリップを使って、上端と接続部の両方で、上部保護筒を下部保護筒に固定します③。
図 271: 保護筒の取り付け
5.4.6.2 カルダン接続なしの水平側駆動シャフトの取り付け

許容軸方向変位

水平側駆動シャフトでは角管長さの1000 mmにつき35 mm以下の（これは2°に相当します）、軸方向変位は許容されます。

図272: カルダン接続がない場合の、水平駆動シャフトの許容最大軸方向変位

上部ギアユニットのOLTCヘッド上での調整

水平側駆動シャフトを正しく取り付けるためには、上部ギアユニットの向きをまず調整することで、上部ギアユニットが傘歯車としっかり揃う必要がある場合があります。多列式の負荷時タップ切換器では、負荷時タップ切換器のボールを連結するために、個々の負荷時タップ切換器のボールを相互に揃えることも必要となる場合があります。
以下の手順に従ってください。

1. **注記** 油槽が完全に満たされていない状態でのギアユニットの調整はOLTCを損傷させるかもしれません。油槽が絶縁油で十分満たされていることを確認してください。

2. ネジを緩め、押さえ板の部分を片側に回します。

![図273: 押さえ板部分](image)

3. **注記** 上部ギアユニットの位置合わせ間違いによる負荷時タップ切換器の破損。水平側駆動シャフトがギアユニットの駆動シャフトとぴったり重なるように、ギアユニットを調整します。ギアユニットを調整中は、出力シャフトが元の位置を保持するためにユニットの駆動シャフトを回します。

![図274: ギアユニットの調整](image)
4. 押さえ板部分をギアユニットに向けて回転させて戻し、ネジを締めます。ロックワッシャがネジの頭と押さえ板部分の間にあり、押さえ板部分がギアユニットハウジングとしっかりと接触していることを確認します。

図 275: 押さえ板部分を固定する

水平側駆動シャフトの取り付け

駆動シャフトの取り付けに必要な場合、温度センサーを回すことができます。
水平側駆動シャフトを取り付けるには、以下の手順に従います。

1. 上部ギアユニットのシャフト端と傘歯車のシャフト端間の寸法Aを計算し、角管を長さA–9 mmに切断します。

2. 上部ギアユニットハウジングと傘歯車間の寸法Bを計算します。保護カバーをB-2 mmに切断し、切断面を面取りします。塗装して、保護カバーを腐食から保護します。
3. 仮留めされた結合部を、止まるまで角管に挿入します。

図 278: 結合部を角管にスライドさせる
4. 結合用ボルト、結合部および傘歯車のシャフト端に潤滑油を差し（ISOFLEX TOPAS L32など）、結合用ボルトをシャフト端に挿入します。ホースクリップを角管に装着し、角管と結合部をシャフト端にスライドさせます。

図 279: シャフト端に結合部とともに角管を差し込む

5. 角管を傘歯車上に固定します。

図 280: 角管を傘歯車上に固定する
6. 結合用ボルト、結合用ブラケットおよび上部ギアユニットのシャフト端に潤滑油を差し（ISOFLEX TOPAS L32など）、結合用ボルトをシャフト端に挿入します。結合用ブラケットを使って、角管を上部ギアユニットに固定します。

図 281: 上部ギアユニット上に角管を固定します。
7. 切断した保護カバーを、OLTCヘッドと傘歯車上のハウジングの段差部に取り付けます。ホースクリップを使って保護カバーの各端を固定します。
8. 軸受ブロックまたは角度付きギアを使用する場合、キャップを保護カバーに取り付けます。キャップを取り付ける前に、ドリルビット付きのハンドドリルを使用して、保護カバーの側面にそれぞれØ3.5 mmの穴を2つ開けます。

図 283: 軸受ブロックのキャップ

図 284: 角度付きギアのキャップ
5.4.6.2.1 複数の負荷時タップ切替器（OLTC）との組み合わせ

2ポールおよび3ポールタイプの負荷時タップ切換器モデルでは、個々の負荷時タップ切換器を、一つの共通の電動操作機構または複数の電動操作機構によって駆動できます。

負荷時タップ切換器のポールおよび電動操作機構の数にかかわらず、すべての負荷時タップ切換器ポールおよび電動操作機構は同じ運転位置にあり、同時に切り換わる必要があります（ABC 切り換えシーケンスには適用されません）。

共通の電動操作機構で駆動される負荷時タップ切換器のポールが同時に切り替わるようにするには、変圧器カバーを介して負荷時タップ切換器のポールを水平方向の駆動シャフトと結合する必要があります。これらの負荷時タップ切換器のポール間の切り換え時のオフセットは、最大で 1 タップ切換表示部とすることができます。

負荷時タップ切換器のポールを結合するには、以下の手順に従います。

上部ギアユニットのOLTCヘッド上での調整

水平側駆動シャフトを正しく取り付けるためには、上部ギアユニットの向きをまず調整することで、上部ギアユニットが傘歯車としっかり揃う必要がある場合があります。多列式の負荷時タップ切換器では、負荷時タップ切換器のポールを連結するために、個々の負荷時タップ切換器のポールを相互に揃えることも必要となる場合があります。
以下の手順に従ってください。

1. **注記** 油槽が完全に満たされていない状態でのギアユニットの調整はOLTCを損傷させるかもしれません。油槽が絕縁油で十分満たされていることを確認してください。

2. ネジを緩め、押さえ板の部分を片側に回します。

3. **注記** 上部ギアユニットの位置合わせ間違いによる負荷時タップ切換器の破損。水平側駆動シャフトがギアユニットの駆動シャフトとぴったり重なるように、ギアユニットを調整します。ギアユニットを調整中は、出力シャフトが元の位置を保持するようにユニットの駆動シャフトを回します。
4. 押さえ板部分をギアユニットに向けて回転させて戻し、ネジを締めます。ロックワッシャがネジの頭と押さえ板部分の間にあり、押さえ板部分がギアユニットハウジングとしっかりと接触していることを確認します。

図 287: 押さえ板部分を固定する
負荷時タップ切換器のポールを相互に結合

1. スタンプが押されたシリアル番号の下にある駆動シャフトフランジのすべての矢印が同じ方向を指していることを確認してください。矢印の方向は、電動操作機構の手回しハンドルを時計回り方向に回したときの回転方向を示しており、すべてのギアユニットの方向が同一であり、すべてのギアユニットで一致している必要があります。

2. 次の運転位置に負荷時タップ切換器のポールを相互に切り替えます。これを行うには、負荷時タップ切換器のポールが切り替わるまで、各ギアユニットのシャフト端を反時計回りに順次回します。

3. すべての負荷時タップ切換器のポールが同一位置であることを確認します。

図 288: 負荷時タップ切換器のポールを手動で切り替え
4. 水平方向の駆動シャフトを通じて負荷時タップ切換器のポールを相互に結合します。これを行う場合、電動操作機構に最も近い負荷時タップ切換器のポールから始めます。

図 289: 負荷時タップ切換器のポールの結合

5. 注記 不完全なタップ切換動作による負荷時タップ切換器のポールの損傷。すべての駆動シャフトを取り付けた後、ギアユニットの駆動シャフトをさらに2.5回転反時計回りにクランクで回転させて、タップ切換動作を完了します。
6. ギアユニットの駆動シャフトを時計回りに回して、負荷時タップ切換器のポールを調整位置に切り替えます。調整位置に到達し、負荷時タップ切換器のポールが切り替えられたら、上部ギアユニットの駆動シャフトをさらに2.5回転時計回りにクランクで回転させて、タップ切換動作を適切に完了するようにします。

7. すべての負荷時タップ切換器のポールが同時に切り替わることを確認します。ここでは、ギアユニットの駆動シャフトに最大0.25回転の最小オフセットが認められます。

8. すべての負荷時タップ切換器のポールが同一位置であることを確認します。
9. 駆動シャフトを傘歯車とギアユニットの間に取り付けます。

図 291: 駆動シャフトを傘歯車とギアユニットの間に取り付け

5.4.6.3 カルダン継手を使用した駆動シャフトの取り付け

カルダン継手を使用した駆動シャフトの取り付けは、主に、MDUと傘歯車間の垂直側駆動シャフトに対して設計されています。

技術的には、水平側へも適用可能です。ただし、水平側に使用する場合、同梱されている保護カバーを適切に取り付ける必要があり、上部ギアユニットでカルダン継手を使用したい場合、ハブ内径が25 mmのカルダンジョイントを使用する必要があります。
許容軸方向変位

20°の軸方向変位が、カルダン継手を使用した垂直および水平側駆動シャフトでは許容されています。

図 292: カルダン継手を使用した垂直側駆動シャフトの最大許容軸方向変位
図293: カルダン継手を使用した水平側駆動シャフトの最大許容軸方向変位

注記

物理的損傷！
カルダン継手を不適切に取り付けると、損傷や誤動作を引き起こすことがあります。

► 取り付け時に、カルダン継手が伸縮ペローズを損傷することができないこと を確認してください。

► 変位の角度αが20°以上にならないことを確認してください。

► 変位の角度αが両方のカルダン継手で同じであることを確認してください。
図294: 変位の角度α

α = α

α ≠ β
カルダン継手を使用して駆動シャフトを取り付けるには、以下の手順に従います。

1. 結合用ボルト、結合用ブラケット、およびシャフト端にグリスを塗布します（例：ISOFLEX TOPAS L 32など）。

図 295: 結合用ボルト、結合用ブラケット、およびシャフト端へのグリス塗布
2. アダプターリングを回転式保護筒の外輪に挿入します1。旋回式保護筒の2つの部分を一緒に取り付け2。お互いの方向に回転させて3。適当な角度に設定します。

図296: 旋回式保護筒へのアダプターの挿入

3. 納入時には、カルダン継手に結合用ボルトが取り付けられています1。MDUシャフト端に取り付けるには、次の手順を実行する必要があります。ホースクリップを取り外します2。伸縮ペローズを上にスライドさせます3。結合用ボルトを取り外します4。カルダン継手を出力シャフ
5 営業

図の上に挿入させます5。結合用ボルトを挿入します6。伸縮ベローズをこの上にスライドさせます7。伸縮ベローズをホースクリップで固定します8。

図 297: カルダン継手の取り付け

4. 同様のカルダン継手（短）を、結合用ボルトを使用してMDUのシャフト端に接続します。

図 298: MDUのシャフト端へのカルダン継手の接続
5. 注記 次にカルダン継手（長）を傘歯車に取り付け、傘歯車側とMDU側でカルダン継手の向きが同じになるように取り付けます。上記を行わないと、損傷や誤動作を引き起こすことがあります。

図 299: カルダン継手（長）を傘歯車への取り付け

6. 伸縮ベローズをホースクリップで固定します。

図 300: ホースクリップでの伸縮ベローズの固定
7. それぞれのシャフト端をアングル材で仮でつなぎ、一直線になるように位置を調整します。
8. シャフト端間の寸法Aを決定します。角管を
LR = A + 100 mm (LR = 角管の長さ) に切断します。角管の切断面を
面取りします。

図 302: 角管の切断
9. 取り付け作業を始める前に、両方の伸縮管を対応する寸法A（A = 両方のカルダン継手端の寸法）にし、面取りします。

図303: 伸縮管の切断

<table>
<thead>
<tr>
<th>寸法A（MDUのシャフト端と傘歯車のシャフト端間の距離）</th>
<th>内管</th>
<th>外管</th>
</tr>
</thead>
<tbody>
<tr>
<td>260 mm</td>
<td>200 mmにカットする</td>
<td>200 mm</td>
</tr>
<tr>
<td>261 mm...760 mm</td>
<td>A-60 mmにカットする</td>
<td>200 mm</td>
</tr>
<tr>
<td>761 mm...1,090 mm</td>
<td>700 mm</td>
<td>A-60 mmにカットする</td>
</tr>
<tr>
<td>1,091 mm...1,700 mm</td>
<td>700 mm</td>
<td>1,150 mm</td>
</tr>
<tr>
<td>1,701 mm...1,900 mm</td>
<td>1,150 mm</td>
<td>1,150 mm</td>
</tr>
</tbody>
</table>
10. 一方のアダプターリングをMDU軸受外輪に取り付け、他方のアダプターリングを傘歯車の軸受外輪に取り付けます。

図 304: アダプターの取り付け

11. 事前に切断と面取りをした角管をカルダン継手端に止まるまでスライドさせます。

図 305: 上側カルダン継手端部への角管スライド
12. 角管に下方から上側旋回式保護筒をねじ込みます（筒の長い部分が上向き）。

図 306: 旋回式保護筒の角管上へのスライド
13. 内管を外管にスライドさせ、外管と内管の切欠きの付いている側が両方とも下を向くようにします。ホースクリップを挿入します。

図 307: 伸縮筒のスライド
14. すべてを上方にスライドさせ、クランプで落下防止します。

図 308: ネジクランプによる落下防止
15. 下側の旋回式保護筒（同じく筒の長い方が上向き）を角管にスライドして入れ、ネジクランプで脫落防止をします。

図 309: 底部の旋回式保護筒の角管上へのスライド
16. 角管を揺らしながら、すべてを下までスライドさせます。
17. 下の結合用ボルトを押し込んでグリースを塗ります。下側結合用ブラケットを締め付けます。シャフト端および結合部は、結合用ボルトと結合用ブラケットの間に軸方向の隙間がないように、しっかりと接続されている必要があります。

図311: 下側の結合用ブラケットの締め付け
18. 上側の結合用ブラケットを3 mmの軸方向の隙間を残して取り付けます。

図 312: 上側の結合用ブラケットの取り付け

19. 上側から、シャフト保護具の各部品を取り付けます。両方の旋回式保護筒間における角度決定し、適切なホースクリップで固定します。上側および下側の保護筒の両端をホースクリップで固定します。ホースクリップを使用して、2つの伸縮式保護筒を互いに固定します。

プラスチックアダプターは、旋回式保護筒の対応する端にある必要があります。ホースクリップを締め付ける前に、伸縮式保護筒のみを上側および下側の旋回式保護筒にアダプターの幅だけスライドして入れます。
図313: ホースクリップを使用した伸縮式保護筒および旋回式保護筒の固定

5.4.6.4 絶縁体付き駆動シャフトの取り付け

垂直駆動シャフトに絶縁体があるモデルでは、駆動シャフトの絶縁取り付けが可能です。
許容軸方向変位

角管長さの1000 mmにつき35 mmを超えない限り（これは2°に相当します）、絶縁体付き垂直側駆動シャフトの軸方向変位は許容されます。

図 314: 絶縁体を使用する垂直側駆動シャフトの許容軸方向変位
5.4.6.4.1 絶縁体を使用した垂直駆動シャフトの取り付け

垂直駆動シャフトを取り付けるには、以下の手順に従います。

1. **注意** MDUのモーター保護スイッチ（Q1）をオフ（位置O）にします。これを行わない場合、MDUが意図せずに起動し負傷の原因になる場合があります。

2. 傘歯車をねじ込み、変圧器に取り付けます。ネジは、納入範囲には含まれていません。

図315: 傘歯車
3. MDUのシャフト端と傘歯車のシャフト端間の寸法Aを測定します。絶縁体分の長さを考慮して、角管をA-179 mmの長さに切断します。

図 316: 角管の切断
4. 角管の切断面を面取りします。

図 317: 切断面の面取り

5. 同梱のインシュレーター付きダブル結合部および角管をネジ留めします。絶縁体はMDU側に取り付けます。

図 318: 角管およびダブル結合部と絶縁体のネジでの固定
6. 仮留めされた結合部を、止まるまで絶縁体に挿入させます。

図 319: 結合部を絶縁体に挿入する

7. 同梱の絶縁体リングをMDU軸受外輪に置きます。

図 320: インシュレーティングリング

8. 結合用ボルトをMDUのシャフト端に挿入します。結合部、結合用ボルトおよびシャフト端にグリスを塗布します（例、ISOFL EX TOPAS L32など）。角管を結合部と共にシャフト端にスライドさせる

図 321: シャフト端に結合部とともに角管を差し込む
9. 角管のMDUへの取り付け。

図 322: 角管をMDUに取り付ける

10. 角管を傾け、軸から逃がします。

図 323: 角管を傾け、軸から逃がす

11. 伸縮式保護筒の内管を取り付ける時は、必要に応じて、切欠きのない側をカットします。2つの保護筒が重なる部分の最小寸法は100 mmです。
内管は変形させないでください。外管にスライドしやすいように面取りしてください。

図 324: 内管の面取り

<table>
<thead>
<tr>
<th>寸法A（= MDUのシャフト端と傘歯車のシャフト端間の距離）</th>
<th>内管</th>
<th>外管</th>
</tr>
</thead>
<tbody>
<tr>
<td>170 mm...190 mm</td>
<td>200 mmにカットする = 200 mm</td>
<td></td>
</tr>
<tr>
<td>191 mm...1,130 mm</td>
<td>寸法A + 20 mm = 200 mm</td>
<td></td>
</tr>
<tr>
<td>1,131 mm...1,598 mm</td>
<td>= 700 mm = 1,150 mm</td>
<td></td>
</tr>
<tr>
<td>1,599 mm...2,009 mm</td>
<td>= 1,150 mm = 1,150 mm</td>
<td></td>
</tr>
</tbody>
</table>
12. 外管を内管にかぶせます。この際、内管の切欠きのない側が上向きになっていることを確認してください。伸縮式保護筒を角管にかぶせます。その後、ホースクリップを伸縮式保護筒に挿入させます。
13. アダプターリングを傘歯車の軸受外輪に取り付け、上向きにスライドさせます。結合用ボルトを傘歯車のシャフト端に挿入します。角管を傾け軸に戻します。

図 326: アダプターリングと結合用ボルトの取り付け
14. 結合用ブラケット、結合用ボルトおよびシャフト端にグリスを塗布し（例：ISO FLEX TOPAS L32）、結合用ブラケットで角管を傘歯車に固定します。結合用ボルトと結合片上端間に、3 mmの軸方向の隙間を設けます。

図 327: 結合用ブラケットの取り付け

15. ホースクリップを使って、下部保護筒（内管）を駆動部の軸受外輪に取り付けます①。次いで、上部の保護筒（外管）を傘歯車のアダプターにスライドさせます②。ホースクリップを使って、上端と接続部の両方で、上部保護筒を下部保護筒に固定します③。
5.4.6.5 絶縁体とカルダン継手を使用した駆動シャフトの取り付け

垂直駆動シャフトに絶縁体およびカルダン継手があるモデルでは、駆動シャフトの絶縁取り付けが可能です。
5.4.7 負荷時OLTCタップ切替器（OLTC）および電動操作機構（MDU）の振り分け調整

► 付属するMDUのMR取扱説明書で説明されているように、OLTCとMDUの振り分け調整をします。

5.4.8 電動操作機構（MDU）の配線接続

► 付属するMDUのMR取扱説明書で説明されているように、配線を接続します。
6 性能検証

警告

爆発の危険！

OLTCの油槽、変圧器、配管内、オイルコンサベーター、ならびに吸湿呼吸器開口部の爆発性の気体による燃焼や爆発で、重傷や死につながる可能性があります！

► 性能検証中に、変圧器の周囲に裸火、熱源、火花など（静電荷の発生により生じます）の発火源が無いことを確認し、またこれらが発生しないようにします。

► 電動工具などの電気装置を使用しないでください（例：インパクトレンチから火花が発生する危険性があります）。

► 導電性でなおかつ接地したホース、配管、ならびに可燃性液体用のポンプを使用してください。

警告

爆発の危険！

OLTCの過負荷は爆発を引き起こすことがあります。熱せられた絶縁油の噴出および部品の飛び出しによって、死亡や重傷を負うことがあります。物的損傷が起こる可能性は極めて高くなります。

► OLTCが過負荷になっていないことを確認してください。

► 「適切な使用」セクションに従って、OLTCを使用するようにしてください。

► 適切な措置を講じて、許容運転条件外で運転させることのないようにします。

6.1 変圧器メーカー工場でのOLTCの性能検証

変圧器の性能検証前に、次の作業および機能確認を実行します。
6.1.1 OLTCヘッドおよび排油管の気抜き

6.1.1.1 OLTCヘッドの気抜き

1. 配管システムのすべての送りバルブおよび戻りバルブを開きます。
2. OLTCヘッドカバーの気抜き栓E1のねじ蓋を取り外します。
3. ドライバーを使って気抜き栓E1の弁部分を持ち上げ、OLTCヘッドをブリードします。
4. 気抜き栓E1をねじ蓋で密閉します（締め付けトルク10 Nm）。

図 330: ねじ蓋

図 331: 弁部分
6.1.1.2 配管接続部Sでの排油管の気抜き

1. 配管接続部Sからねじ蓋を取り外します。

図 332: ねじ蓋

2. **注記** 気抜きが不十分な排油管は、OLTCの接地への絶縁性を著しく低下させてしまいます。排気用ボルトを開き、排油管を完全に気抜きします。

3. 排気用ボルト排気用ボルトを閉じます。

4. ねじ蓋で排気用ボルトを密閉します。

6.1.2 OLTCの接地

1. OLTCヘッドの接地ボルトを変圧器カバーに接続します。CUPALワッシャを接続用端子両側に直接取り付けないといけません。CUPALワッシャのアルミニウム側は、接続用端子に向ける必要があります。

図 333: 接地ネジ頭部
2. MDU保護筐体の接地ネジを変圧器タンクに接続します。CUPALワッシャを圧着端子と接続用端子の間に入れないといけません。CUPALワッシャのアルミニウム側は、接続用端子に向ける必要があります。

![図 334: MDUの接地ネジ](image)

3. 温度センサーを使用する際は、温度センサーの筐体とOLTCヘッドの接地ネジに接続するか、変圧器の別の接地ポイントに接続します。CUPALワッシャを圧着端子と温度センサー筐体の間に入れる必要があります。CUPALワッシャのアルミニウム側は、温度センサー筐体に向ける必要があります。

![図 335: 温度センサーの接地](image)
6.1.3 電動操作機構（MDU）の確認

注記
負荷時タップ切替器（OLTC）/無電圧タップ切換器の損傷！
負荷時タップ切換器/無電圧タップ切換器を絶縁油の無い状態で動作させることによって、負荷時タップ切換器/非通電タップ切換器が損傷します。
►選択器/無電圧タップ切換器が絶縁油に完全に浸されており、負荷時タップ切換器の油槽が絶縁油で充填されていることを確認します。

変圧器の性能検証前に、MDUおよびOLTCが正しく結合され、MDUが正しく動作することを確認してください。

電動操作機構（MDU）の試験

1. MDUのMR取扱説明書で説明されているように機能確認を行います。
2. 注記 不適切に接続されたMDUは、OLTCの損傷を引き起こすことがあります。設定範囲全体（上限〜下限全ての範囲）で、タップ切換動作のテストを実行します。各運転位置で、MDUとOLTCヘッドのタップ位置表示が一致していることを確認します（OLTCヘッドののぞき窓）。

変圧器配線の絶縁試験

► 関連するMDUのMR取扱説明書の、変圧器配線の絶縁試験に関連する情報に注意してください。

6.1.4 変圧器の高電圧試験

注記
負荷時タップ切換器への損傷！
試験電圧や動作電圧が許容できないほど高いことによる負荷時タップ切換器の損傷。
► 中性点が開いている星形接続の負荷時タップ切換器の許容試験電圧と動作電圧[セクション 9.6, ページ 294]が遵守されていることを確認してください。

変圧器に対して高電圧試験を実行する前に、次の点に注意します。
- OLTCの油槽が絶縁油で満たされていることを確認します。
- OLTCのすべての保護装置が正常に動作しており、使用準備ができていることを確認します。
- MDU保護筐体の接地接続および保護筐体の留め具に塗料が付着していないことを確認します。
6 性能検証

- MDUのドアが閉じているときのみ高電圧試験を実行します。
- 過電圧による損傷を避けるため、MDUの電気構成部への外部接続を切断します。
- MDUの供給電圧に接続するとき、リード挿入を意図した保護筐体ベースのケーブルブッシングのみを使用します。
- すべての接地線を１つの集中接続ポイントに配線します（適切な基準接地を確保するため）。
- 高電圧試験の前にすべての電気構成部品を切断します。配線の絶縁試験前に、耐電圧が1000 V未満のすべての装置を取り外します。
- 試験に使用したリードは、アンテナとして機能するため、高電圧試験前に取り外します。
- 可能な限り、測定リードおよびデータリードを電源ケーブルとは分けて配線します。

想定されるさらなる危険についてのご質問については、メーカーにお問い合わせください。
6.2 変圧器の設置場所への輸送

注記
電動操作機構 (MDU)の損傷！
MDUの保護筐体にある結露（水分）が原因で、MDUが損傷を受けます。
► MDUの保護筐体は常にしっかりと閉じてください。
► 初回性能検証前に、8週間以上のダウンタイムがある場合は、MDUの結露防止ヒーターを接続し動作させます。これができない場合、保護筐体に充分な量の乾燥剤を入れてください。

6.2.1 取り外した電動操作機構（MDU）の輸送
1. MDUとOLTCが調整位置になっていることを確認します。
2. MDUを取り外します。
3. OLTCが接続されていないときはMDUを動作させないでください。出力シャフトも回さないでください。
4. 接続されていないOLTCを動作させないでください。また、その駆動シャフトも回さないでください。
5. MDUをMR配送梱包材に入れて、設置場所に輸送してください。
6. 設置場所でMDU [セクション 5.4.5, ページ 200]および駆動シャフト [セクション 5.4.6, ページ 200]を変圧器に接続します。

6.2.2 注油された変圧器タンクのオイルコンサベータなしでの輸送
変圧器がフルタンクでオイルコンサベータを使用せずに輸送されている場合は、OLTCの油槽と変圧器タンクの間に接続リード線を取り付けます。
► 接続部E2およびQまたはE2およびRの間のOLTCヘッドに配管接続を行います。

図 336: 接続部
オイルコンサベータなしでの短期間の不稼働時間（最大4週間）の場合、OLTCの油槽から絶縁油を約5リットル排出するだけでも十分です。

6.2.3 空の変圧器タンクでの輸送

注記

OLTCの損傷!
変圧器を絶縁油なしで輸送し、OLTCの油槽を絶縁油を入れたまま輸送する場合、変圧器の輸送中にOLTCが振動にさらされることはあります。これらの振動は、OLTCを損傷させることがあります。

► 変圧器を絶縁油なしで輸送する場合、油槽を完全に空にしてください。
► 輸送を変圧器と同じようにして油槽を保護します（例えば、N2で充填）。

6.2.3.1 配管接続部Sを介して油槽を空にする

1. すべての補助回路（スーパバイザリーコントロールシステム、放圧装置、圧力監視装置）の電源を断ちます。
2. オイルコンサベータと油槽の間のバルブ（スライドバルブ）を開き、OLTCヘッドの気抜き栓E1を開きます。
3. OLTCカバーの下側からガスを排出します。これを行うとき、十分な新鮮な空気を確保します（例、変圧器セルおよび作業テント内）。
4. ガスが排出され、絶縁油が気抜き栓から流れ出たら、気抜き栓を閉じて、オイルコンサベータと油槽の間のバルブを閉じます。
5. 気抜き栓を再び開き、OLTCヘッドカバー下のエリアに絶縁油がなくなるまで、配管接続部Sから約5〜10リットルの絶縁油を排出します。
6. OLTCヘッドカバーの、M10/レンチサイズ17の24本のネジと緩み止めワッシャーを緩めます。
7. OLTCヘッドカバーを取り外します。
8. 配管接続部Sを介して絶縁油を排出します。
9. オイルコンサベータと油槽の間のバルブを開きます。
 ◎ 絶縁油は、オイルコンサベータから油槽に流れます。
10. 配管接続部Sを介して絶縁油を排出します。
11. OLTCヘッドカバーをOLTCヘッドに取り付けます。
12. M10/レンチサイズ17の24本のネジ（締め付けトルク34 Nm）とゆるみ止めワッシャーでOLTCヘッドカバーをとめます。
6.3 設置現場での変圧器の性能検証

6.3.1 油槽へ絶縁油の注油

注記

負荷時タップ切換器への損傷!

不適切な絶縁油によって、負荷時タップ切換器が損傷します。

▶ 必ずメーカーが認定している絶縁油 [▶セクション 9.1.2, ページ 286]
を使用してください。

1. 注記 OLTCヘッドカバーに、放圧装置を取り付けるためのフランジがあるかどうかを確認します。もしフランジがある場合は、放圧装置なしでの操作は許可されず、OLTCが損傷する可能性があります。

⇒ OLTCヘッドに、このOLTC用に承認された放圧装置を取り付けます。

2. 配管接続部E2と、配管接続部R、S、Qのうちの1つとの間を接続し、排出中に油槽と変圧器に同等の圧力がかかるようにします。

図 337: E2とQ間の接続部
3. OLTCヘッドの2つの空き配管接続部のうちの1つを使って、OLTCに新しい絶縁油を注油します。

図 338: 配管接続部SおよびR

4. 油槽から絶縁油サンプルを採取します。

5. サンプルを採取した直後にサンプルの温度を記録します。

6. サンプル温度20℃±5℃で絶縁耐力と含水量を求めます。絶縁耐力と含水量は、技術データ [セクション 9.5, ページ 293]で指定された限度値を逸脱してはいけません。
6.3.2 OLTCヘッドおよび排油管の気抜き

6.3.2.1 OLTCヘッドの気抜き

1. 配管システムのすべての送りバルブおよび戻りバルブを開きます。
2. OLTCヘッドカバーの気抜き栓E1のねじ蓋を取り外します。

図 339: ねじ蓋

3. ドライバーを使って気抜き栓E1の弁部分を持ち上げ、OLTCヘッドをブリードします。

図 340: 弁部分

4. 気抜き栓E1をねじ蓋で密閉します（締め付けトルク10 Nm）。
6.3.2.2 配管接続部Sでの排油管の気抜き

1. 配管接続部Sからねじ蓋を取り外します。

図 341: ねじ蓋

2. 注記 気抜きが不十分な排油管は、OLTCの接地への絶縁性を著しく低下させてしまいます。排気用ボルトを開き、排油管を完全に気抜きします。

3. 排気用ボルト排気用ボルトを閉じます。

4. ねじ蓋で排気用ボルトを密閉します。

6.3.3 電動操作機構（MDU）の確認

注記 負荷時タップ切替器（OLTC）/ 無電圧タップ切換器の損傷！
負荷時タップ切替器 / 無電圧タップ切換器を絶縁油の無い状態で動作させることによって、負荷時タップ切替器 / 非通電タップ切換器が損傷します。

► 選択器 / 無電圧タップ切換器が絶縁油に完全に浸されており、負荷時タップ切換器の油槽が絶縁油で充填されていることを確認します。
注記

負荷時タップ切替器（OLTC）および電動操作機構（MDU）の損傷！

位置送信装置の不適切使用による、OLTCおよびMDUの損傷。

▶ 位置送信装置の技術データ章に記載されている回路のみ位置送信モジュール接続部に接続できます。

▶ MDUの位置送信装置の切り替えポイントは、OLTCの切り替えポイントと同じではありません。これはOLTCの種類によって異なります。そのため、MDUと外部機器（変圧器遮断器など）の間の鎖錠回路を計画する際には注意する必要があります。

▶ したがって、接続図に示されている「タップ切換器動作中」接点を、位置送信装置の代わりに外部監視、ロック、および制御の目的で使用する必要があります。

変圧器の性能検証前に、MDUおよびOLTCが正しく結合され、MDUが正しく動作することを確認してください。

電動操作機構（MDU）の試験

1. MDUのMR取扱説明書で説明されているように機能確認を行います。

2. 注記 不適切に接続されたMDUは、OLTCの損傷を引き起こすことがあります。設定範囲全体（上限〜下限全ての範囲）で、タップ切換動作のテストを実行します。各運転位置で、MDUとOLTCヘッドのタップ位置表示が一致していることを確認します（OLTCヘッドののぞき窓）。

変圧器配線の絶縁試験

▶ 関連するMDUのMR取扱説明書の、変圧器配線の絶縁試験に関連する情報に注意してください。
6.3.4 保護リレーの確認

- 変圧器の性能検証を行う前に、保護リレーが適切に機能していることを確認してください。

1. 変圧器を高圧側と低圧側で接地します。試験中に、変圧器の接地が絶対に外されないようにしてください。

2. 変圧器の電源が試験中に遮断されたままになっていることを確認してください。

3. 自動消火装置を無効にします。

4. 端子箱カバーの3つのねじをゆるめ、端子箱カバーを開けます。

5. 接地線を止めているすりわり付き小ねじを取り外し、接地線の付いた端子箱カバーを取り外してください。

6. OFF（トリップ）のテストボタンを押します。

7. 変圧器の危険区域を離れます。

8. 変圧器の遮断器を閉じることができないようにします。

 ⊳ パッシブ保護試験

9. OPERATION（復旧）のテストボタンを押します。

10. 変圧器の危険区域を離れます。

11. 断路器を開いて、変圧器の高圧側、低圧側がともに接地された状態で、変圧器の遮断器を閉じます。

12. OFF（トリップ）のテストボタンを押します。

13. 変圧器の遮断器が開かれていることを確認してください。

 ⊳ アクティブ保護試験。

14. 操作のOPERATION(復旧) テストボタンを押して、保護リレーをリセットします。

15. 端子箱カバーの接地線を、すりわり付き小ねじで取付します。

16. 端子箱カバーを、ねじで固定します。
6.3.4.2 保護リレー（RS 2004）のチェックする

- 变圧器の性能検証を行う前に、保護リレーが適切に機能していることを確認してください。

1. フラップ弁が運転位置になっていることを確認してください。
2. 变圧器の危険区域を離れます。
3. 断路器を開いて、変圧器の高压側、低压側がともに接地された状態で、変圧器の遮断器を閉じます。
4. OFF（トリップ）のデスチャボタンを押します。
5. 变圧器の遮断器が開かれていることを確認してください。

⇒ アクティブ保護試験

6.3.5 圧力監視装置の確認

1. 变圧器を高压側と低压側で接地します。試験中に、変圧器の接地が絶対に外されないようにしてください。
2. 变圧器の電源が試験中に遮断されたままになっていることを確認してください。
3. 自動消火装置を無効に行います。
4. カバーを取り外します。
5. スナップアクションスイッチのセンサーを動作させます。
 ⇒ センサーがオフ位置にあります。
6. 变圧器の危険区域を離れます。
7. 变圧器の遮断器を閉じることができないようにします。
 ⇒ パッシブ保護試験
8. スナップアクションスイッチのセンサーを動作させます。
 ⇒ センサーが運転位置にあります。
9. 变圧器の危険区域を離れます。
10. 断路器を開いて、変圧器の高压側、低压側がともに接地された状態で、変圧器の遮断器を閉じます。
11. スナップアクションスイッチのセンサーを動作させます。
 ⇒ センサーがオフ位置にあります。
12. 变圧器の遮断器が開かれていることを確認してください。

⇒ アクティブな保護試験。
13. 壓力監視装置をリセットするために、スナップアクションスイッチのセンサーを動作させます。

⇒ センサーが運転位置にあります。
14. カバーを固定します。

6.3.6 変圧器の性能検証

- OLTCオイルコンサベータの絶縁油レベル下限の信号接点は、遮断器のトリップ回路にループ接続されていること。
- 保護リレーと追加の保護装置は、遮断器のトリップ回路にループ接続されていること。
- MDUとすべての保護装置が正しく機能しており、すぐに使用できること。
- OLTCの油槽に絶縁油を完全に充填すること。
- OLTCとOLTCオイルコンサベータの間のすべてのバルブが開いていること。

1. 変圧器のスイッチを入れます。

2. 注記 突入電流は、変圧器定格電流よりもかなり大きくなる可能性があり、非対称または非正弦曲線形状の電流経路をもたらし、その結果、切換開閉器操作中に負荷時タップ切換器に過負荷がかかる可能性があります。無負荷状態、負荷状態に関係なく、突入電流が収まった後にのみ、タップ切換動作のみを実行します。
7 トラブルシューティング

警告
爆発の危険！
OLTCヘッドに爆発性の気体があると、燃焼したり、爆発したりすることがあり、重症や死亡事故につながることがあります。
► 周囲に裸火、熱源、火花など（静電荷の発生により生じます）の発火源がないことを確認し、これらが発生しないようにします。
► OLTCヘッドカバーを取り外す前に、すべての補助回路（例えば、スーパーバイザーコントロールシステム、放圧装置、圧力監視装置）からの電気供給を停止します。
► 作業中に電動工具などの電気装置を使用しないでください（例：インパクトレンチから火花が発生する危険性があります）。

注記
OLTCおよび変圧器の損傷！
保護リレーまたはその他の保護装置が作動した場合、OLTCおよび変圧器の損傷を示している可能性があります。変圧器を点検することなく通電しないでください。
► 保護リレーまたは他の保護装置が作動した場合は、OLTCと変圧器を点検してください。
► 必ずOLTCや変圧器に損傷がないことが確認してから装置の使用を再開してください。

注記
電動操作機構（MDU）の損傷！
MDUの保護筐体にある結露（水分）が原因で、MDUが損傷を受けます。
► MDUの保護筐体は常にしっかりと閉じてください。
► 2週間以上を超えてMDUが動作しない場合は、MDU内の結露防止ヒーターに電源を接続し、使用します。これができない場合（例えば輸送中）、保護筐体に充分な量の乾燥剤を入れてください。

次の表は、不具合の発見と、可能な場合の不具合からの復旧を手助けすることを目的としています。
詳細については、保護リレーまたは関連する保護装置の取扱説明書を参照してください。
OLTCおよびMDUに現場で簡単に復旧できない障害が発生した場合、または保護リレーまたは他の保護装置が作動した場合は、MR窓口担当者、変圧器製造元、またはMR本国に直接お問い合わせください。

Maschinenfabrik Reinhausen GmbH
技術サービス
Postfach 12 03 60
93025 Regensburg
Germany
電話：+49 94140 90-0
ファックス：+49 941 40 90-7001
電子メール：service@reinhausen.com
インターネット：www.reinhausen.com

<table>
<thead>
<tr>
<th>不具合の説明</th>
<th>対策</th>
</tr>
</thead>
<tbody>
<tr>
<td>保護リレーのトリップ</td>
<td>「保護リレーのトリップと変圧器の性能再検証」を参照また、MRにお問い合わせください。</td>
</tr>
<tr>
<td>放圧装置の作動（例：MPreC®）</td>
<td>OLTCと変圧器を点検する必要があります。原因に応じて、変圧器の測定/点検を実行します。OLTCをチェックするには、MRにお問い合わせください。</td>
</tr>
<tr>
<td>圧力監視装置のトリップ（例：DW 2000）</td>
<td>「圧力監視装置のトリップと変圧器の運転再開」を参照また、MRにお問い合わせください。</td>
</tr>
<tr>
<td>スーパーバイザリーコントロールシステムの作動</td>
<td>スーパーバイザリーコントロールシステムが作動すると、MDUは電気的に作動できなくなります。変圧器が通電している状態で手回しハンドルを介したMDUの手動操作は禁止されています。OLTCと変圧器を点検する必要があります。原因に応じて、変圧器の測定/点検を実行します。OLTCをチェックするには、MRにお問い合わせください。</td>
</tr>
<tr>
<td>OLTCヘッドカバーの破裂板（ラプチャーディスク）の作動</td>
<td>OLTCと変圧器を点検する必要があります。原因に応じて、変圧器の測定/点検を実行します。OLTCをチェックするには、MRにお問い合わせください。</td>
</tr>
<tr>
<td>MDUのモーター保護スイッチの作動</td>
<td>TAPMOTION®ED電動操作機構（MDU）の取扱説明書の「トラブルシューティング」章を参照</td>
</tr>
<tr>
<td>絶縁油の油面がOLTCオイルコンサベータの最小値を下回ったことを示すトリップ信号接点</td>
<td>配管システム（パイプなど）およびOLTCヘッドに漏れがないかチェックします。OLTCの取扱説明書に従って、油槽の絶縁油の油面と状態を点検します。油面が限界値を下回った場合は、MRにもご連絡ください。</td>
</tr>
</tbody>
</table>
不具合の説明

<table>
<thead>
<tr>
<th>話題</th>
<th>対策</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLTCがタップ位置を切り替えない（動きが鈍い、昇圧／高圧動作が機能しない、音声切換開閉器動作しない）</td>
<td>MRにお問い合わせください。</td>
</tr>
<tr>
<td>MDUのタップ位置が変わっても、変圧器の電圧が変わらない</td>
<td>MRにお問い合わせください。</td>
</tr>
<tr>
<td>MDUとOLTCのタップ位置表示が異なる</td>
<td>取扱説明書に従って駆動シャフトを適切に取り付けてください。ホースクリップと保護筒が正しく取り付けられていることを確認します。MDUから異音が発生する場合は、MRにご連絡ください。</td>
</tr>
<tr>
<td>タップ切替動作中の駆動シャフトまたはMDUからの異音</td>
<td>可能であれば、データベースを読み取り、エラーコードとともにMRに送信してください。</td>
</tr>
<tr>
<td>モニタリング装置のレッドメッセージ</td>
<td>可能であれば、データベースを読み取り、エラーコードとともにMRに送信してください。</td>
</tr>
<tr>
<td>変圧器のブッホルツリレーからの警報またはトリップ</td>
<td>変圧器の製造元に連絡します。</td>
</tr>
<tr>
<td>変圧器の巻線抵抗を測定するときの目標値からのずれ</td>
<td>変圧器の製造元に連絡し、さらに必要に応じてMRに連絡し、測定値をお伝えください。</td>
</tr>
<tr>
<td>溶存ガス分析中の目標値からのずれ（変圧器用油）</td>
<td>変圧器の製造元に連絡し、さらに必要に応じてMRに連絡し、測定値をお伝えください。</td>
</tr>
<tr>
<td>レシオ試験中の目標値からのずれ</td>
<td>変圧器の製造元に連絡し、さらに必要に応じてMRに連絡し、測定値をお伝えください。</td>
</tr>
<tr>
<td>絶縁油の限界値からのずれ</td>
<td>絶縁油を交換し、OLTCのオイルコンサベータ呼吸器をチェックします。</td>
</tr>
</tbody>
</table>

表 8: トラブルシューティング

7.1 保護リレーのトリップと、変圧器の性能再検証

警告

爆発の危険！

保護リレー内に爆発性の気体があると、燃焼したり、爆発したりすることがあり、重傷を負ったり、死亡することがあります。

- 作業を開始する前に、変圧器のスイッチを切ってから15分待つ。保護リレー内このような気体がなくなるのを待ちます。

- 周辺に裸火、熱源、火花など（静電荷の発生により生じます）の発火源がないことを確認し、これらが発生しないようにします。

- 作業を開始する前にすべての補助回路の動力源を遮断します。

- 作業中に電動工具などの電気装置を使用しないでください（例：インパクトレンチから火花が発生する危険性があります）。

Maschinenfabrik Reinhausen GmbH 2021 5221045/05 JA VACUTAP® VR® 279
警告

OLTCと変圧器の検証試験が不充分な場合、死亡や重傷を負う危険があります。

► 保護リレーがトリップし、OLTCと変圧器をチェックする際には、必ずMaschinenfabrik Reinhausenに連絡してください。
► OLTCや変圧器に損傷がないことが確認できた場合にのみ、装置を再開してください。

遮断器が保護リレーでトリップさせられた際は、以下のように進んでください。
1. トリップした際の時間を確認します。
2. OLTCの運転位置を特定します。
3. 万が一に備え、モーター保護スイッチ（Q1）をトリップさせることによりMDUをブロックし、OLTCがリモートで作動される事を防ぎます。
4. OLTCのヘッドカバーを点検します。絶縁油が漏れている場合、オイルコンサベータのバルブを速やかに閉じてください。
5. 保護リレーのフラップバルブがトリップ（OFF）または運転位置（OPERATION）になっているかどうかを確認してください。

7.1.1 運転位置にあるフラップ弁

フラップ弁が運転位置になっている場合、トリップ回路でエラーが発生している可能性があります。この場合はトリップ回路を点検してください。保護リレーがなぜトリップしたのか原因が不明の場合は、必ずMaschinenfabrik Reinhausenに連絡して、OLTCを点検してください。

7.1.2 フラップ弁がオフ（TRIP）の位置になっている

保護リレーRS 2004には自動リセットメカニズムがあります。これにより、フラップ弁はトリッピングの後にオフの位置に留まりません。トリップ回路のエラーのため保護リレーRS 2004がトリップされていない場合も、RS 2004に対しても下記の説明に従ってください。
7 トラブルシューティング

フラップ弁がオフの位置の場合、以下のように進んでください。

1. いかなる状況でも変圧器が運転されないことを確認してください。
2. Maschinenfabrik Reinhausenに連絡して、次の内容を伝えてください。
 ⇨ 保護リレーとOLTCのシリアル番号
 ⇨ トリッピングの瞬間の変圧器の負荷がどのようになっていたのか
 ⇨ OLTCは、トリッピングの直前またはトリッピングの最中に動作したか
 ⇨ 変圧器の他の保護装置はトリッピングの瞬間に動作したか
 ⇨ トリッピングの瞬間に、ネットワークの切換動作を行ったか
 ⇨ トリッピングの瞬間に過電圧は記録されたか
3. Maschinenfabrik Reinhausenと合意して次のアクションをとってください。

7.1.3 変圧器の性能再検証

保護リレーのトリッピングの原因が見つかり、復旧されるた後にのみ、変圧器の性能検証を再度行えます。

1. 保護リレーを点検します (⇒セクション 6.3.4.1, ページ 274)。
2. 変圧器の性能検証を実施します。
7.2 圧力監視装置の作動と変圧器の動作再開

死亡、重傷の恐れ！

OLTCと変圧器の検証試験が不充分な場合、死亡や重傷を負う危険があります。

►圧力監視装置が作動した後は、OLTCと変圧器を点検するために、必ずMaschinenfabrik Reinhausenに連絡してください。

►OLTCや変圧器に損傷がないことが確認できた場合のみ、装置を再開してください。

遮断器が圧力監視装置によって作動した場合、次の手順を実行します。

1. トリップした際の時間を確認します。
2. OLTCの運転位置を特定します。
3. 万が一に備え、モーター保護スイッチ（Q1）をトリップさせることによりMDUをブロックし、OLTCがリモートで作動される事を防ぎます。
4. OLTCのヘッドカバーを点検します。絶縁油が漏れている場合、オイルコンサベータのバルブを速やかに閉じてください。
5. 圧力監視装置のセンサーがオフ（TRIP）位置または運転（OPERATION）位置にあるかを確認します。

7.2.1 運転位置にあるセンサー

センサーが運転（OPERATION）位置にある場合、トリップ回路で不具合が発生している可能性があります。この場合はトリップ回路を点検してください。圧力監視装置がなぜ作動したかが不明の場合は、必ずMaschinenfabrik Reinhausenに連絡して、OLTCをチェックしてください。
7 トラブルシューティング

7.2.2 OFF（トリップ）位置にあるセンサー

センサーがOFF（TRIP）位置にある場合は、次の手順に従ってください。
1. いかなる状況でも変圧器が運転されないことを確認してください。
2. Maschinenfabrik Reinhausenに連絡して、次の内容を伝えてください。
 ⇒ トリッピングの瞬間の変圧器の負荷がどのようになっていたのか
 ⇒ 作動の直前または作動中にOLTCでタップ切換動作がありましたか？
 ⇒ 変圧器の他の保護装置はトリッピングの間に動作したか
 ⇒ トリッピングの瞬間に、ネットワークの切換動作を行ったか
 ⇒ トリッピングの瞬間に過電圧は記録されたか
 ⇒ 放圧装置の静圧はどれくらいですか（OLTCオイルコンサベータと放圧
 装置の油面の高さの差）
3. Maschinenfabrik Reinhausenと合意して次のアクションをとってください。

7.2.3 変圧器の性能再検証

圧力監視装置をトリップさせた原因が特定され、それが解決したら、変圧器
を再稼働できます。
1. スナップアクションスイッチのセンサーが運転（OPERATION）位置にあ
 ることを確認します。
2. 変圧器の性能検証を実施します。
8 廃棄

廃棄に関しては、使用する国で適切な国内の要件に準拠してください。

分解や廃棄について質問がある場合は、Maschinenfabrik Reinhausen GmbHの技術サービス部門に連絡してください。
9 技術データ

負荷時タップ切替器（OLTC）および電動操作機構（MDU）のすべての主だった技術データの概要は、個別のドキュメント形式で存在し、ご要望に応じて供給できます。

9.1 OLTCの技術データ

9.1.1 OLTCの特性

VACUTAP® VR®, I_{rm} 700〜1 300 A、M選択器の電気的なデータ

<table>
<thead>
<tr>
<th>負荷時タップ切換器（OLTC）</th>
<th>VRS I 701</th>
<th>VRS I 1001</th>
<th>VRS I 1301</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VRS II 702</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VRS III 700 Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

最大定格通過電流I_{rm} [A]	700	1 000	1 300
定格短時間電流 [kA]	10	12	16
定格短絡期間 [s]	3	3	3
定格ピーク耐電流 [kA]	25	30	40
最大定格ステップ電圧U_{rm} [V]	4 500	4 500	4 500
ステップ容量P_{stm} [kVA]	1 500^{1}	1 500^{1}	1 500^{1}
	2 100^{1}	2 100^{1}	2 100^{1}
定格周波数 [Hz]	50…60		

^{1}ステップ容量線図参照

表 9: VACUTAP® VRの電気的なデータ

<table>
<thead>
<tr>
<th>負荷時タップ切換器（OLTC）</th>
<th>VRM I 701</th>
<th>VRM I 1001</th>
<th>VRM I 1301</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VRM II 702</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VRM III 700 Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

最大定格通過電流I_{rm} [A]	700	1 000	1 300
定格短時間電流 [kA]	10	12	16
定格短絡期間 [s]	3	3	3
定格ピーク耐電流 [kA]	25	30	40
最大定格ステップ電圧U_{rm} [V]	4 500	4 500	4 500
ステップ容量P_{stm} [kVA]	3 000	3 000	3 000
9 技術データ

<table>
<thead>
<tr>
<th>定格周波数 [Hz]</th>
<th>50...60</th>
</tr>
</thead>
</table>

1) ステップ容量線図参照

VACUTAP® VRの機械データ

| 運転位置の数 | 副切換器なし：最大18
副切換器あり：最大35
多段の転位切換の副切換器あり：最大107 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>セクター数</td>
<td>1…3</td>
</tr>
<tr>
<td>選択器サイズ</td>
<td>B, C, D, DE</td>
</tr>
</tbody>
</table>

表 10: VACUTAP® VRMの電気的なデータ

9.1.2 使用可能条件

<table>
<thead>
<tr>
<th>運転中の気温</th>
<th>-25°C～+50°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>動作中絶縁油の温度</td>
<td>-25°C～+105°C（変圧器が緊急運転中の場合は最大+115°C）</td>
</tr>
<tr>
<td>輸送温度、保管温度</td>
<td>-40°C～+50°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>乾燥温度</th>
<th>取付及び試運転説明書の「取り付け」章参照</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>壓縮強度</th>
<th>技術データTD 61 - 一般章参照</th>
</tr>
</thead>
</table>

| 絶縁油 |
IEC 60296およびASTM D3487(要望に応じて同等の規格)に準拠した石油製品由来の未使用絶縁油1)
IEC 60296に準拠した石油製品由来の未使用絶縁油、またはこれらの油と、IEC 60296、ASTM D3478、または要望に応じて同等の規格に準拠した石油製品1)とのブレンド
天然および合成エステル、または要望に応じてシリコーン油などの代替絶縁油。 |

1) ガス ツー リキッド オイル（GTL油）は、ここでは石油製品として理解されています

<table>
<thead>
<tr>
<th>オイルコンサベータの設置高さ</th>
<th>技術データTD 61 - 一般章参照</th>
</tr>
</thead>
<tbody>
<tr>
<td>海抜設置高さ</td>
<td>技術データTD 61 - 一般章参照</td>
</tr>
</tbody>
</table>

表 11: VACUTAP® VRの機械データ

表 12: 許容される使用環境条件
9 技術データ
9.2 保護リレーの技術データ

保護リレーRS 2001の技術データが次に一覧表示されています。DIN EN 60255-1にしたがって、操作の精度 = ベースの精度となっています

<table>
<thead>
<tr>
<th>部品</th>
<th>屋外モデル</th>
</tr>
</thead>
<tbody>
<tr>
<td>保護等級</td>
<td>IP66</td>
</tr>
<tr>
<td>リレー作動</td>
<td>開口部のあるフラップ弁</td>
</tr>
<tr>
<td>重量</td>
<td>約3.5 kg</td>
</tr>
<tr>
<td>トリップ時のオイル流速の種類（オイル温度20°C）</td>
<td>0.65 ± 0.15 m/s 1.20 ± 0.20 m/s 3.00 ± 0.40 m/s 4.80 ± 0.60 m/s</td>
</tr>
</tbody>
</table>

表13: 技術データ概要

トリップ回路

保護リレーは通常開（NO）または通常閉（NC）のドライリードマグネットスイッチと共に供給されます（添付の寸法図を参照してください）。他のコンタクトの組み合わせは特別仕様となります。

常時閉（NC）のドライリード電磁スイッチの電気的なデータ

<table>
<thead>
<tr>
<th>スペック</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DC切換容量</td>
<td>1.2 W〜200 W</td>
</tr>
<tr>
<td>AC切換容量（50 Hz）</td>
<td>1.2 VA〜400 VA</td>
</tr>
<tr>
<td>切換電圧AC/DC</td>
<td>24 V〜250 V</td>
</tr>
<tr>
<td>開閉電流AC/DC</td>
<td>4.8 mA〜2 A</td>
</tr>
</tbody>
</table>

表14: スペック

<table>
<thead>
<tr>
<th>切換容量（電流のオン/オフ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>最小開閉電流AC/DC（最低電圧）</td>
</tr>
<tr>
<td>最小開閉電流AC/DC（最高電圧）</td>
</tr>
<tr>
<td>最大開閉電流DC（最高電流）</td>
</tr>
<tr>
<td>最大開閉電流DC（最高電圧）</td>
</tr>
<tr>
<td>最大開閉電流AC（最高電流）</td>
</tr>
</tbody>
</table>
切換容量（電流のオン/オフ）

<table>
<thead>
<tr>
<th>容量</th>
<th>電流</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大開閉電流AC（最高電圧）</td>
<td>1.6（cos φ = 0.6で250 V）</td>
</tr>
<tr>
<td>切換動作</td>
<td>1,000サイクル</td>
</tr>
</tbody>
</table>

表 15: 切換容量（電流のオン/オフ）

絶縁耐力

<table>
<thead>
<tr>
<th>試験</th>
<th>電圧</th>
</tr>
</thead>
<tbody>
<tr>
<td>すべての電圧通過箇所と接地バーツの間のAC絶縁耐力</td>
<td>2,500 V、50 Hz、試験時間1分</td>
</tr>
<tr>
<td>開いた接点間のAC絶縁耐力</td>
<td>2,000 V、50 Hz、試験時間1分</td>
</tr>
</tbody>
</table>

表 16: 絶縁耐力

常時開（NO）のドライリード電磁スイッチの電気的なデータ

<table>
<thead>
<tr>
<th>スペック</th>
<th>電流</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC切換容量</td>
<td>1.2 W～250 W</td>
</tr>
<tr>
<td>AC切換容量（50 Hz）</td>
<td>1.2 VA～400 VA</td>
</tr>
<tr>
<td>切換電圧AC/DC</td>
<td>24 V～250 V</td>
</tr>
<tr>
<td>開閉電流AC/DC</td>
<td>4.8 mA～2 A</td>
</tr>
</tbody>
</table>

表 17: スペック

切換容量（電流のオン/オフ）

<table>
<thead>
<tr>
<th>容量</th>
<th>電流</th>
</tr>
</thead>
<tbody>
<tr>
<td>最小開閉電流AC/DC（最低電圧）</td>
<td>50 mA（24 V）</td>
</tr>
<tr>
<td>最小開閉電流AC/DC（最高電圧）</td>
<td>4.8 mA（250 V）</td>
</tr>
<tr>
<td>最大開閉電流DC（最高電流）</td>
<td>2 A（L/R = 40 msで125 V）</td>
</tr>
<tr>
<td>最大開閉電流DC（最高電圧）</td>
<td>1 A（L/R = 40 msで250 V）</td>
</tr>
<tr>
<td>最大開閉電流AC（最高電流）</td>
<td>2 A（cos φ = 0.6で125 V）</td>
</tr>
<tr>
<td>最大開閉電流AC（最高電圧）</td>
<td>1.6（cos φ = 0.6で250 V）</td>
</tr>
<tr>
<td>切換動作</td>
<td>1,000サイクル</td>
</tr>
</tbody>
</table>

表 18: 切換容量（電流のオン/オフ）

絶縁耐力

<table>
<thead>
<tr>
<th>試験</th>
<th>電圧</th>
</tr>
</thead>
<tbody>
<tr>
<td>すべての電圧通過箇所と接地バーツの間のAC絶縁耐力</td>
<td>2,500 V、50 Hz、試験時間1分</td>
</tr>
<tr>
<td>開いた接点間のAC絶縁耐力</td>
<td>2,000 V、50 Hz、試験時間1分</td>
</tr>
</tbody>
</table>

表 19: 絶縁耐力
使用環境

<table>
<thead>
<tr>
<th>項目</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用環境温度Ta</td>
<td>-40°C～+50°C</td>
</tr>
<tr>
<td>油温</td>
<td><130 °C</td>
</tr>
<tr>
<td>気圧</td>
<td>海抜0 m～4,000 mに対応</td>
</tr>
</tbody>
</table>

表 20: 使用環境

9.3 保護リレーの特別仕様

9.3.1 COチェンジオーバーコンタクトをトリップスイッチとして持つ保護リレー

保護リレーは、ドライリード電磁スイッチ、CO切り替え（バリアント3）と共に供給できます（供給されている寸法図を参照してください）。

CO切り替えドライリード電磁スイッチの電気的なデータ

<table>
<thead>
<tr>
<th>電気的なデータ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DCスイッチング容量</td>
<td>1.2 W…150 W</td>
</tr>
<tr>
<td>ACスイッチング容量 (50 Hz)</td>
<td>1.2 VA…200 VA</td>
</tr>
<tr>
<td>スイッチング電圧AC/DC</td>
<td>24 V…250 V</td>
</tr>
<tr>
<td>スイッチド電流AC/DC</td>
<td>4.8 mA…1 A</td>
</tr>
</tbody>
</table>

表 21: 電気的なデータ

スイッチング容量 (ロードをオン/オフでスイッチ)

<table>
<thead>
<tr>
<th>スイッチング容量 (ロードをオン/オフでスイッチ)</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>最小スイッチド電流AC/DC (最低電圧)</td>
<td>50 mA (24 V)</td>
</tr>
<tr>
<td>最小スイッチド電流AC/DC (最高電圧)</td>
<td>4.8 mA (250 V)</td>
</tr>
<tr>
<td>最大スイッチド電流DC (最高電流)</td>
<td>1.0 A (L/R = 40 msで150 V)</td>
</tr>
<tr>
<td>最大スイッチド電流DC (最高電圧)</td>
<td>0.6 A (L/R = 40 msで250 V)</td>
</tr>
<tr>
<td>最大スイッチド電流AC (最高電流)</td>
<td>1 A (cos φ = 0.6で200 V)</td>
</tr>
<tr>
<td>最大スイッチド電流AC (最高電圧)</td>
<td>0.8 (cos φ = 0.6で250 V)</td>
</tr>
<tr>
<td>スイッチング操作</td>
<td>1,000サイクル</td>
</tr>
</tbody>
</table>

表 22: スイッチング容量 (ロードをオン/オフでスイッチ)
9 技術データ

絶縁耐力

<table>
<thead>
<tr>
<th>項目</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>すべての電圧通過接続と接地パートの間AC絶縁耐力</td>
<td>2,500 V、50 Hz、テスト期間1分</td>
</tr>
<tr>
<td>開かれたコンタクト間のAC絶縁耐力</td>
<td>1,150 V、50 Hz、テスト期間1分</td>
</tr>
</tbody>
</table>

表 23: 絶縁耐力

9.3.2 複数のドライリードマグネットスイッチのある保護リレー

保護リレーは、いくつかの独立したドライリード電磁スイッチとともに供給することができます。これらは常時開 (NO) コンタクトまたは常時閉 (NC) コンタクトとして設計することができ、電気的に絶縁されます (供給されている寸法図を参照してください)。

常時開 (NO) のドライリード電磁スイッチと常時閉 (NC) のドライリード電磁スイッチの電気的データ
9.4 圧力監視装置の技術データ

技術データ概要

<table>
<thead>
<tr>
<th>項目</th>
<th>詳細</th>
</tr>
</thead>
<tbody>
<tr>
<td>設置場所</td>
<td>屋外モデル</td>
</tr>
<tr>
<td>周囲温度</td>
<td>-40°C～+80°C（機械的）</td>
</tr>
<tr>
<td>ケーブルグランド</td>
<td>M25x1.5</td>
</tr>
<tr>
<td>保護等級</td>
<td>IEC 60529に準拠したIP55（密閉型装置）</td>
</tr>
<tr>
<td>リレー作動</td>
<td>カウンタープレスシャースプリング付きコルゲートチューブ</td>
</tr>
<tr>
<td>油温</td>
<td>-40°C～+100°C</td>
</tr>
<tr>
<td>重量</td>
<td>約1.2 kg</td>
</tr>
<tr>
<td>使用対象</td>
<td>標準絶縁油用（IEC60296およびIEC60422）</td>
</tr>
<tr>
<td>シール材（油 - 空気）</td>
<td>VITON</td>
</tr>
<tr>
<td>許容圧力範囲（絶対圧）</td>
<td>1 bar～6 bar、真空には適用不可</td>
</tr>
<tr>
<td>上限切換圧力</td>
<td>3.8±0.2 bar（作動圧力）</td>
</tr>
<tr>
<td>下限切換圧力</td>
<td>2.8 ± 0.2 bar</td>
</tr>
<tr>
<td>スナップアクションスイッチ</td>
<td></td>
</tr>
<tr>
<td>接続端子</td>
<td>リード接続：端子ごとに1リードまたは2リード（Ø 0.75～2.5 mm²）</td>
</tr>
<tr>
<td>接点</td>
<td>1xNO（通常開）、1xNC（通常閉）</td>
</tr>
<tr>
<td>使用カテゴリ IEC60947-5-1</td>
<td>AC 15: 230 V/1 A</td>
</tr>
<tr>
<td></td>
<td>DC 13: 60 V/0.5 A</td>
</tr>
<tr>
<td>最大連続電流</td>
<td>10 A</td>
</tr>
<tr>
<td>定格絶縁電圧</td>
<td>AC: 2.5 kV/min</td>
</tr>
</tbody>
</table>

表 24: 技術データ概要
9.5 絶縁油の絶縁耐力と含水量の限度値

次の表は、VACUTAP®負荷時タップ切換器の絶縁油に対する絶縁耐力（IEC 60156に従って測定）および含水量（IEC 60814に従って測定）の限度値を指定します。これらの値は、IEC 60422、IEC 61203、およびIEEE C57.147に基づいて決定されています。

表 25: IEC 60296に準拠した絶縁油

<table>
<thead>
<tr>
<th></th>
<th>U_d</th>
<th>H_2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>変圧器を初めて性能検証するとき</td>
<td>$> 60 \text{kV}/2.5 \text{mm}$</td>
<td>$< 12 \text{ppm}$</td>
</tr>
<tr>
<td>運転中</td>
<td>$> 30 \text{kV}/2.5 \text{mm}$</td>
<td>$< 30 \text{ppm}$</td>
</tr>
<tr>
<td>メンテナンス点検後</td>
<td>$> 50 \text{kV}/2.5 \text{mm}$</td>
<td>$< 15 \text{ppm}$</td>
</tr>
</tbody>
</table>

表 26: IEC 62770に準拠した天然エステル

<table>
<thead>
<tr>
<th></th>
<th>U_d</th>
<th>H_2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>変圧器を初めて性能検証するとき</td>
<td>$> 60 \text{kV}/2.5 \text{mm}$</td>
<td>$\leq 100 \text{ppm}$</td>
</tr>
<tr>
<td>運転中</td>
<td>$> 30 \text{kV}/2.5 \text{mm}$</td>
<td>$\leq 200 \text{ppm}$</td>
</tr>
<tr>
<td>メンテナンス点検後</td>
<td>$> 50 \text{kV}/2.5 \text{mm}$</td>
<td>$\leq 100 \text{ppm}$</td>
</tr>
</tbody>
</table>

表 27: IEC 61099に準拠した合成エステル

<table>
<thead>
<tr>
<th></th>
<th>U_d</th>
<th>H_2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>変圧器を初めて性能検証するとき</td>
<td>$> 60 \text{kV}/2.5 \text{mm}$</td>
<td>$\leq 100 \text{ppm}$</td>
</tr>
<tr>
<td>運転中</td>
<td>$> 30 \text{kV}/2.5 \text{mm}$</td>
<td>$\leq 400 \text{ppm}$</td>
</tr>
<tr>
<td>メンテナンス点検後</td>
<td>$> 50 \text{kV}/2.5 \text{mm}$</td>
<td>$\leq 150 \text{ppm}$</td>
</tr>
</tbody>
</table>
9.6 中性点が非接地のスター接続用のOLTC

OLTCに非接地の中性点がある場合、非接地の中性点に接続できるのは変流器のみです。そうしないと、中性点にて許容できない過電圧が発生します。

リアクトルは接続できません。

<table>
<thead>
<tr>
<th>3つの油槽の出力接点の接続（= 非接地の中性点）</th>
<th>VACUTAP® VRS/VRM/VRL III 700/1000/1300 Y</th>
<th>VACUTAP® VRH III 650/1300 Y</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OLTCの外側での変流器の接続および中性点の形成</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A) 油槽の出力接点間で許容される試験電圧</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ 定格雷インパルス耐電圧</td>
<td>4 kV (1.2/50 µS)</td>
<td></td>
</tr>
<tr>
<td>▪ 短時間商用周波耐電圧の定格値</td>
<td>2.5 kV (50 Hz, 1 分)</td>
<td></td>
</tr>
<tr>
<td>B) 油槽の出力接点間の許容最大動作電圧</td>
<td>1 kV (50, 60 Hz)</td>
<td></td>
</tr>
</tbody>
</table>

表 28: VACUTAP® VRS/VRM/VRL III 700/1000/1300 YとVACUTAP® VRH III 650/1300 Yの許容試験電圧および動作電圧
10 図面

10.1 寸法図
ON-LOAD TAP-CHANGER VACUTAP® VR
INSTALLATION DRAWING VR S/M - B/C/D/DE
DIMENSION DRAWING

<table>
<thead>
<tr>
<th>Document No.</th>
<th>Scale</th>
<th>Change No.</th>
<th>Material Number</th>
<th>Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SED 5128712 001 01</td>
<td>-</td>
<td>100177380E</td>
<td>-</td>
<td>1/1</td>
</tr>
</tbody>
</table>

Table: Max Pull-Out Height (mm)

<table>
<thead>
<tr>
<th>Um</th>
<th>VRS</th>
<th>VRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>725</td>
<td>1200</td>
<td>1590</td>
</tr>
<tr>
<td>123</td>
<td>1380</td>
<td>1480</td>
</tr>
<tr>
<td>170</td>
<td>1660</td>
<td>1670</td>
</tr>
<tr>
<td>245</td>
<td>1560</td>
<td>1790</td>
</tr>
<tr>
<td>300</td>
<td>1712</td>
<td>1862</td>
</tr>
<tr>
<td>362</td>
<td>1675</td>
<td>1965</td>
</tr>
<tr>
<td>420</td>
<td>1934</td>
<td>2084</td>
</tr>
</tbody>
</table>

Legend:
- B-B: Buterus 06.03.2017
- M12 fixing screw
- On-load tap-changer head gasket
- Position indicator, remove before removing the diverter switch insert
- Injection window
- Ø 15 holes
- Suction pipe
- 11: Mounting flange on transformer cover
- 12: M12 fixing screw
- 13: On-load tap-changer head gasket
- 14: Position indicator, remove before removing the diverter switch insert
- 15: Injection window
- 16: Ø 15 holes
- 17: Suction pipe
- 21: On-load tap-changer head
- 22: Cover screw
- 23: Cover gasket
- 24: On-load tap-changer head cover
- 25: Central gear unit with 25a drive shaft
- 26: Pipe connection R for protective relay
- 27: Pipe connection S with vent screw (optional)
- 28: Pipe connection T (optional)
- 29a: Air-vent valve of the on-load tap-changer head cover
- 29b: Venting option for the transformer oil chamber
- 31: Diverter switch oil compartment
- 32: Oil compartment base
- 33: Shielding rings for Um of 170 kV or greater
- 34: Oil compartment connection terminal
- 35: Connection contact for on-load tap-changer take-off lead
- 36: Take-off ring for on-load tap-changer take-off lead
- 41: Selector suspension
- 42: Selector gear
- 43: Fine tap selector
- 44: Change-over selector
- 45: Selector connection contacts (see associated dimensional drawings)
- 46: Change-over selector connection contacts (see associated dimensional drawings)
- 47: Selector connecting lead
- 51: Diverter switch insert
- 52: Transition resistances
- 53: Eyebolt
- 54: C variant displayed

Dimensions (mm):
- Dimensions in mm except as noted
- On-load tap-changer head cover
- Transformer tank bottom
- Maintain sufficient distance
- Transformer tank bottom
<table>
<thead>
<tr>
<th>DATE</th>
<th>NAME</th>
<th>DOCUMENT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.10.2016</td>
<td>HILTNER</td>
<td>CHANGE NO. 1</td>
</tr>
<tr>
<td>19.10.2016</td>
<td>PROGASTSCHUK</td>
<td>SCALE 1077668</td>
</tr>
</tbody>
</table>

Sheet Material Number: 36

Serial Number: 161011000

On-Load Tap- changer VACUTAP® VR

Installation Position of Selector Contacts

![Diagram of on-load tap-changer](image)

- Dimension in mm
- Excerpt as noted
- The reproduction, distribution, and utilization of this document as well as the communication of its contents to others without express authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.
10.2 負荷時タップ切換器（OLTC）ヘッド
E1 = BLEEDING FACILITY FOR ON-LOAD TAP-CHANGER HEAD
E2 = BLEEDING FACILITY FOR SPACE UNDER THE HEAD OUTSIDE
THE TAP-CHANGER OIL COMPARTMENT (SAME PIPE CONNECTION AS R, S, Q OR BLEEDER SCREW CAN BE USED)
Q = CONNECTION FOR OIL RETURN PIPE OR TAP-CHANGE SUPERVISORY CONTROL
S = CONNECTION FOR SUCTION PIPE
R = CONNECTION FOR PROTECTIVE RELAY EXCHANGEABLE WITH CONNECTION Q
T = THERMOMETER BAG / TEMPERATURE SENSOR (OPTIONALLY)
SR = INSPECTION WINDOW, RIGHT
SL = INSPECTION WINDOW, LEFT
W = DRIVE SHAFT
M = DRIVE SIDE OF SELECTOR

Gasket Width

Dimensions and Selection 899496: / 899497:

Ground Connection M12
ON-LOAD TAP-CHANGER
OILTAP® M, MS, R, RM AND VACUTAP® VR®, VM®, VMS®
WITH MOUNTING FLANGE FOR PRESSURE RELIEF DEVICE

© MASCHINENFABRIK REINHAUSEN GMBH 2018
THE REPRODUCTION, DISTRIBUTION AND UTILIZATION OF THIS DOCUMENT AS WELL AS THE COMMUNICATION OF ITS CONTENTS TO OTHERS WITHOUT EXPRESS AUTHORIZATION IS PROHIBITED. OFFENDERS WILL BE HELD LIABLE FOR THE PAYMENT OF DAMAGES. ALL RIGHTS RESERVED IN THE EVENT OF THE GRANT OF A PATENT, UTILITY MODEL OR DESIGN.

NAME
BUERUS
WILHELM
PRODASTSCHUK

DATE
16.07.2018

SCALE
1:2,5

DIMENSION IN mm EXCEPT AS NOTED

DOCUMENT NO.
STAND.
CHANGE NO.
DFTR.
CHKD.
SHEET
DATE

WITH MOUNTING FLANGE FOR PRESSURE RELIEF DEVICE

GASKET
4.25 x 178.5 x 200

MA = 50 Nm

M 12

MIN. 100 mm

13

30°

346

Z

190

30°

16

O

160

min. 100 mm

13

O

262

MA = 50 Nm

235

O

262

MIN. 100 mm

13

O

262

GRAVE SIDE OF SELECTOR
The direction of rotation is defined during ordering.
ON-LOAD TAP-CHANGER VACUTAP®, OILTAP®
DRILLING TEMPLATE FOR
ON-LOAD TAP-CHANGER HEAD
8901838E
PIPE CONNECTION WITH TAP-CHANGE SUPERVISORY CONTROL BUSHING WITHOUT OIL FILTER UNIT

NOTE:
The vent screw (2) of the mounted housing (1) has to be on the top

M20x15
Clamping range for connection cable:
External diameter: 7 - 13 mm

1. Connection terminals for tap-change supervisory control
2. Wiring see connection diagram of the motor-drive unit
3. Function diagram for tap-change supervisory control see motor-drive connection diagram
4. Rated continuous current: 2A
5. Rated voltage DC/AC (50Hz): 24V ... 250V
6. Dielectric strength: 1150V / 50Hz / 1 min.
7. Dielectric test of all voltage carrying terminals to ground: 2000V AC, 50Hz, test-duration 1 min.

ON-LOAD TAP-CHANGER VACUTAP® VM, VR
PIPE CONNECTION WITH TAP-CHANGE SUPERVISORY CONTROL
10.3 調整図

= DRIVE SIDE OF THE SELECTOR

= ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

DIVERTER SWITCH INSERT
TOP VIEW

1 SECTOR
2 SECTORS
3 SECTORS

DIVERTER SWITCH

SELECTOR COUPLING

GENEVA WHEEL TOP

SELECTOR

SELECTOR PLANE I

SELECTOR PLANE II

10050 10060 10070 10080 10090 10100 14130 14140 18170 18180

© MASCHINENFABRIK REINHAUSEN GMBH 2016
THE REPRODUCTION, DISTRIBUTION AND UTILIZATION OF THIS DOCUMENT AS WELL AS THE COMMUNICATION OF ITS CONTENTS TO OTHERS WITHOUT EXPRESS AUTHORIZATION IS PROHIBITED. OFFENDERS WILL BE HELD LIABLE FOR THE PAYMENT OF DAMAGES. ALL RIGHTS RESERVED IN THE EVENT OF THE GRANT OF A PATENT, UTILITY MODEL OR DESIGN.
The connection diagram of the on-load tap-changer is binding for the designation and the equipment of the terminals and phases.

- **M** = Drive side of the selector
- **A** = On-load tap-changer take-off terminal

Divertor Switch Insert

Top View

1 Sector

2 Sectors

3 Sectors

Selector Coupling

Geneva Wheel Lower

Selector

Selector Plane I

Selector Plane II

© MASCHINENFABRIK REINHAUSEN GMBH 2016

The reproduction distribution and utilization of this document as well as the communication of its contents to others without express authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

- \(M \) = DRIVE SIDE OF THE SELECTOR
- \(A \) = ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

DIVERTER SWITCH INSERT

TOP VIEW

1 SECTOR
2 SECTORS
3 SECTORS

DIVERTER SWITCH

SELECTOR COUPLING

GENEVA WHEEL LOWER

SELECTOR

SELECTOR PLANE I

SELECTOR PLANE II

10 PITCH REPRESENTATION

ON-LOAD TAP-CHANGER VACUTAP® VR
VR S/M I/II/III - B/C/D/DE - G
ADJUSTMENT PLAN

MATERIAL NUMBER
SERIAL NUMBER
SHILL
100172340E 1/1

\[M \] = DRIVE SIDE OF THE SELECTOR HEAD

\[A \] = ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

DIVERTER SWITCH INSERT
TOP VIEW

DIVERTER SWITCH

SELECTOR COUPLING

GENEVA WHEEL LOWER

SELECTOR 10 PITCH REPRESENTATION

SELECTOR PLANE I

SELECTOR PLANE II

= DRIVE SIDE OF THE SELECTOR HEAD

- \(\text{M} \) = DRIVE SIDE OF THE SELECTOR
- \(\text{A} \) = ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

DIVERTER SWITCH INSERT
TOP VIEW

DIVERTER SWITCH

SELECTOR COUPLING

GENEVA WHEEL LOWER

SELECTOR
10 PITCH REPRESENTATION

SELECTOR PLANE I

SELECTOR PLANE II

16121W, 16131W, 16141W, 16151W, 18151W, 18161W, 18171W

\[\text{M} \] = DRIVE SIDE OF THE SELECTOR

\[\text{A} \] = ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

-DIVERTER SWITCH INSERT

-TOP VIEW

-DIVERTER SWITCH

-SELECTOR COUPLING

-GENEVA WHEEL LOWER

-SELECTOR

LOWER SELECTOR PLANE

UPPER SELECTOR PLANE
The connection diagram of the on-load tap-changer is binding for the designation and the equipment of the terminals and phases.

- M = Drive side of the selector
- A = On-load tap-changer take-off terminal

Diverter switch insert
Top view

Diverter switch

Selector coupling

Geneva wheel lower

Selector

Lower selector plane

Upper selector plane

= DRIVE SIDE OF THE SELECTOR

= ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

ON-LOAD TAP-CHANGER HEAD

DIVERTER SWITCH INSERT

TOP VIEW

1 SECTOR

3 SECTORS

DIVERTER SWITCH

SELECTOR COUPLING

GENEVA WHEEL LOWER

LOWER SELECTOR PLANE

UPPER SELECTOR PLANE

M = DRIVE SIDE OF THE SELECTOR

A = ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

© MASCHINENFABRIK REINHAUSEN GMBH 2018. THE REPRODUCTION, DISTRIBUTION AND UTILIZATION OF THIS DOCUMENT AS WELL AS THE COMMUNICATION OF ITS CONTENTS TO OTHERS WITHOUT EXPRESS AUTHORIZATION IS PROHIBITED. OFFENDERS WILL BE HELD LIABLE FOR THE PAYMENT OF DAMAGES. ALL RIGHTS RESERVED IN THE EVENT OF THE GRANT OF A PATENT, UTILITY MODEL OR DESIGN.

- **M** = DRIVE SIDE OF THE SELECTOR
- **A** = ON-LOAD TAP-CHANGER TAKE-OFF TERMINAL

ON-LOAD TAP-CHANGER HEAD

DIVERTER SWITCH INSERT

TOP VIEW

DIVERTER SWITCH

SELECTOR COUPLING

GENEVA WHEEL LOWER

SELECTOR

LOWER SELECTOR PLANE

UPPER SELECTOR PLANE

© MASCHINENFABRIK REINHAUSEN GMBH 2018
THE REPRODUCTION, DISTRIBUTION AND UTILIZATION OF THIS DOCUMENT AS WELL AS THE COMMUNICATION OF ITS CONTENTS TO OTHERS WITHOUT EXPRESS AUTHORIZATION IS PROHIBITED. OFFENDERS WILL BE HELD LIABLE FOR THE PAYMENT OF DAMAGES. ALL RIGHTS RESERVED IN THE EVENT OF THE GRANT OF A PATENT, UTILITY MODEL OR DESIGN.
The connection diagram of the on-load tap-changer is binding for the designation and the equipment of the terminals and phases.

- (M) = Drive side of the selector
- (A) = On-load tap-changer take-off terminal

Diverter switch insert
Top view

Diverter switch

Selector coupling

Geneva wheel lower

Selector

Lower selector plane

Upper selector plane

De-energized tap-changer Vacutap® VR VRS/VRM with multiple coarse change-over selector, 18 pitch adjustment plan / 2-5 coarse tap connections.
<table>
<thead>
<tr>
<th>用語集</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
</tr>
<tr>
<td>チェンジオーバーコンタクト（切り替えコントクト）</td>
</tr>
<tr>
<td>DC</td>
</tr>
<tr>
<td>直流</td>
</tr>
<tr>
<td>IEC</td>
</tr>
<tr>
<td>国際電気標準会議 (IEC) は、電気、電子、および関連技術の国際規格の作成を行っております。</td>
</tr>
<tr>
<td>IP</td>
</tr>
<tr>
<td>防水防塵保護等級</td>
</tr>
<tr>
<td>MR</td>
</tr>
<tr>
<td>Maschinenfabrik Reinhausen GmbH</td>
</tr>
<tr>
<td>NC</td>
</tr>
<tr>
<td>Normally Close（通常閉）接点</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>Normally Open（通常開）接点</td>
</tr>
<tr>
<td>NPT</td>
</tr>
<tr>
<td>National Pipe Thread（米国のねじ山の規格）</td>
</tr>
<tr>
<td>絶縁耐力</td>
</tr>
<tr>
<td>アイソレータの材料固有の特性[kV/2.5 mm]。破壊なしの最大電界強度（アーク）</td>
</tr>
</tbody>
</table>