부하시 탭 절환장치
VACUTAP® VMS®
조립 및 작동 개시 설명서

5993476/03 KO . 탭 선택기 크기 B
모든 저작권은 Maschinenfabrik Reinhausen에 있습니다.
본 문서의 배포 및 복제, 내용의 무단 전재 및 사용은 금지됩니다.
이를 위반할 경우 손해 배상의 의무가 있습니다. 특히 등록, 실용 신안 등록 및 디자인 등록에 대한 모든 권한은 Maschinenfabrik Reinhausen에 있습니다.
본 문서의 편집 완료 이후에 제품과 관련하여 변경이 발생했을 수 있습니다.
기술 제원 혹은 구조 및 납품 범위가 변경될 수 있습니다.
원칙적으로 각각의 입찰 및 주문 처리 시 전달된 정보 및 체결된 협의가 구속력을 지닙니다.
본 사용 설명서의 원본은 독일어로 작성되었습니다.
목차

1 서론
 1.1 제조자
 1.2 완전성
 1.3 보관
 1.4 표기 약속
 1.4.1 위험 표시 시스템
 1.4.2 정보 시스템
 1.4.3 지침 시스템
 2 안전
 2.1 적절한 사용
 2.2 부적절한 사용
 2.3 기본 안전 지침
 2.4 인력의 자격
 2.5 개인보호장구
 3 제품 설명
 3.1 납품 범위
 3.2 부하시 탭 변환기
 3.2.1 기능 설명
 3.2.2 셋업/버전
 3.2.3 명판 및 일련번호
 3.2.4 보호장치
 3.3 구동축
 3.3.1 기능 설명
 3.3.2 설계/버전
 4 포장, 수송 및 보관
 4.1 포장
 4.1.1 적절성
 4.1.2 표시
 4.2 선적물의 수송, 수령 및 취급
 4.3 선적물 보관
 4.4 선적물을 개봉하고 수송 손상 점검하기

Maschinenfabrik Reinhausen GmbH 2021
5993476/03 KO
VACUTAP® VMS®
<table>
<thead>
<tr>
<th>장착</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>준비 작업</td>
</tr>
<tr>
<td>5.1.1</td>
<td>변압기 커버에 마운팅 플랜지 껐우기</td>
</tr>
<tr>
<td>5.1.2</td>
<td>마운팅 플랜지에 스터드 볼트 껐우기</td>
</tr>
<tr>
<td>5.2</td>
<td>변압기 내 부하시 탭 절환장치(표준 버전) 설치</td>
</tr>
<tr>
<td>5.2.1</td>
<td>변압기 커버에 부하시 탭 변환기 고정</td>
</tr>
<tr>
<td>5.2.2</td>
<td>탭권선과 부하시 탭 체인저 유도체 연결</td>
</tr>
<tr>
<td>5.2.3</td>
<td>건조 전 변압비 측정 시험 수행</td>
</tr>
<tr>
<td>5.2.4</td>
<td>변압기 직류 저항 측정 수행</td>
</tr>
<tr>
<td>5.2.5</td>
<td>진공 오븐에서 부하시 탭 절환장치 건조</td>
</tr>
<tr>
<td>5.2.6</td>
<td>변압기 탱크 안에서 부하시 탭 절환장치 건조하기</td>
</tr>
<tr>
<td>5.2.7</td>
<td>부하시 탭 절환장치의 유격실에 절연 액체 충전하기</td>
</tr>
<tr>
<td>5.2.8</td>
<td>건조 후 변압비 측정 시험 수행</td>
</tr>
<tr>
<td>5.3</td>
<td>부하시 탭 절환장치를 변압기에 설치하기(벨 타입형 탱크 버전)</td>
</tr>
<tr>
<td>5.3.1</td>
<td>부하시 탭 절환장치 거지 구조물 안에 껐우기</td>
</tr>
<tr>
<td>5.3.2</td>
<td>탭권선과 부하시 탭 체인저 유도체 연결</td>
</tr>
<tr>
<td>5.3.3</td>
<td>건조 전 변압비 측정 시험 수행</td>
</tr>
<tr>
<td>5.3.4</td>
<td>변압기 직류 저항 측정 수행</td>
</tr>
<tr>
<td>5.3.5</td>
<td>진공 오븐에서 부하시 탭 절환장치 건조</td>
</tr>
<tr>
<td>5.3.6</td>
<td>지지플랜지(하단)에서 부하시 탭 절환장치 헤드 상단을 들어 올리기</td>
</tr>
<tr>
<td>5.3.7</td>
<td>부하시 탭 절환장치 헤드 상단에 빨 타입형 탱크 부착 및 부하시 탭 절환장치 연결</td>
</tr>
<tr>
<td>5.3.8</td>
<td>변압기 탱크 안에서 부하시 탭 절환장치 건조하기</td>
</tr>
<tr>
<td>5.3.9</td>
<td>부하시 탭 절환장치의 유격실에 절연 액체 충전하기</td>
</tr>
<tr>
<td>5.3.10</td>
<td>건조 후 변압비 측정 시험 수행</td>
</tr>
<tr>
<td>5.4</td>
<td>보호 장치 및 드라이브 구성품 설치하기</td>
</tr>
<tr>
<td>5.4.1</td>
<td>온도 센서 전기 연결</td>
</tr>
<tr>
<td>5.4.2</td>
<td>파이프 및 연결에 보호 계전기 설치하기</td>
</tr>
<tr>
<td>5.4.3</td>
<td>압력 동작 탁레이 설치 및 연결</td>
</tr>
<tr>
<td>5.4.4</td>
<td>모터 구동 장치 장착하기</td>
</tr>
<tr>
<td>5.4.5</td>
<td>구동축 장착하기</td>
</tr>
<tr>
<td>5.4.6</td>
<td>부하시 탭 절환장치와 모터 구동 장치의 중앙 위치 맞추기</td>
</tr>
<tr>
<td>5.4.7</td>
<td>모터 구동 장치의 전기 연결</td>
</tr>
<tr>
<td>6 시운전</td>
<td>185</td>
</tr>
<tr>
<td>6.1</td>
<td>변압기 제조자의 부지에서 부하시 탭 절환장치 시운전하기</td>
</tr>
<tr>
<td>6.1.1</td>
<td>부하시 탭 절환장치 헤드와 흡입 파이프 배기하기</td>
</tr>
<tr>
<td>6.1.2</td>
<td>부하시 탭 절환장치 접지하기</td>
</tr>
</tbody>
</table>
목차

6.1.3 오터 구동 장치 점검하기... 188
6.1.4 변압기에서 고전압 시험... 189
6.2 운전 부지에 변압기 운송하기... 190
6.2.1 드라이브를 제거하고 수송.. 190
6.2.2 변압기 탱크를 채우고 모일 컨서베이터 없이 수송하기.................. 190
6.2.3 변압기 탱크를 비우고 수송하기... 191
6.3 운전 부지에서 변압기 시운전하기.. 192
6.3.1 브하시 탱 절환장치의 유격실에 절연 액체 총전하기...................... 192
6.3.2 브하시 탱 절환장치 하드와 흡입 파이프 배기하기......................... 194
6.3.3 오터 구동 장치 점검하기.. 195
6.3.4 보호 계전기 점검하기... 196
6.3.5 압력 동작 릴레이 점검하기... 197
6.3.6 변압기 시운전하기.. 198

7 고장 제거.. 199
7.1 보호 계전기 트립하기 및 변압기 다시 시운전하기.............................. 201
7.1.1 플랩 밸브가 RESET 위치에 있음... 202
7.1.2 TRIP 위치에 있는 플랩 값... 202
7.1.3 변압기 다시 시운전하기... 202
7.2 압력 동작 릴레이 차단 및 변압기 재작동... 203
7.2.1 센서가 RESET 위치에 있음... 203
7.2.2 센서가 TRIP 위치에 있음.. 203
7.2.3 변압기 다시 시운전하기... 204

8 처분... 205

9 기술 데이터.. 206
9.1 브하시 탱 절환장치의 기술 데이터.. 206
9.1.1 브하시 탱 절환장치 속성... 206
9.1.2 허용 주변 조건.. 206
9.2 보호 계전기용 기술 데이터... 208
9.3 보호 계전기의 특수 모델... 210
9.3.1 CO 체인저 오버 접점이 차단 스위치로 사용되는 보호 계전기........ 210
9.3.2 여러 리드형 자석 스위치가 있는 보호 계전기.......................... 210
9.4 압력 동작 릴레이의 기술 데이터.. 211
9.5 절연 액체의 절연 강도 및 수분 함량 한계값...................................... 212
10 도면.. 213
10.1 치수도... 213
10.1.1 10117022 ... 214
10.2 부하시 탭 절환장치 헤드... 215
10.2.1 896762 .. 216
10.2.2 890180 .. 217
10.2.3 893899 .. 218
10.2.4 766161 .. 219
10.2.5 892916 .. 220
10.2.6 890183 .. 221
10.3 도구... 222
10.3.1 890182 .. 223
10.4 추가 도면.. 224
10.4.1 898012 .. 225
10.4.2 898026 .. 226
1 서론

이 기술 문서는 제품의 안전하고 적절한 설치, 연결 및 시운전에 대한 자세한 설명을 담고 있습니다.
또한 제품에 대한 안전 지침과 일반 정보도 담고 있습니다.
운영에 대한 정보는 운영 설명서에서 확인할 수 있습니다.
이 기술 문서는 전문 훈련을 받고 허가된 사람만 사용할 수 있습니다.

1.1 제조자

제조자:
Maschinenfabrik Reinhausen GmbH
Falkensteinastraße 8
93059 Regensburg
전화: (+49) 9 41/40 90-0
이메일: sales@reinhausen.com

제품과 이 기술 문서에 대한 더 자세한 정보는 이 주소에서 입수할 수 있습니다.

1.2 완전성

이 기술 문서는 보충 문서가 없으면 불완전합니다.
아래 문서는 보충 문서로 간주됩니다.
▪ 분해 설명서
▪ 부록
▪ 일상 시험 보고서
▪ 결선도
▪ 치수도
▪ 주문 확인

1.3 보관

이 기술 문서와 모든 보충 문서는 나중에 필요할 때를 대비해 언제나 바로 꺼내서 볼 수 있게 보관하십시오.

1.4 표기 약속

1.4.1 위험 표시 시스템

이 기술 문서에서 경고는 다음과 같이 표시되어 있습니다.
1.4.1.1 절 관련 경고

절 관련 경고는 이 기술 문서에 있는 장이나 절 전체, 소절, 또는 몇 문단을 말합니다. 절 관련 경고는 다음 형식을 사용합니다.

⚠ 경고
위험의 유형!
위험의 원천과 결과.
► 조치
► 조치

1.4.1.2 내포된 경고 정보

내포된 경고는 절 안에 기술된 특정 부분을 말합니다. 이런 경고는 절 관련 경고보다 더 작은 단위의 정보에 적용됩니다. 내포된 경고는 다음 형식을 사용합니다.

⚠ 위험! 위험한 상황을 피하기 위한 지침.

1.4.1.3 신호어와 그림 문자

다음 신호어를 사용합니다.

<table>
<thead>
<tr>
<th>신호어</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>위험</td>
<td>피하지 않으면 사망에 이르거나 중상을 입게 될 위험한 상황을 의미합니다.</td>
</tr>
<tr>
<td>경고</td>
<td>피하지 않으면 사망에 이르거나 중상을 입을 수 있는 위험한 상황을 의미합니다.</td>
</tr>
<tr>
<td>주의</td>
<td>피하지 않으면 사소하거나 경미한 부상을 입을 수 있는 위험한 상황을 의미합니다.</td>
</tr>
<tr>
<td>참고 사항</td>
<td>재산 피해를 예방하기 위해 취해야 할 대책을 의미합니다.</td>
</tr>
</tbody>
</table>

표 1: 경고 참고 사항에 사용하는 신호어
위험 경고 그림문자:

<table>
<thead>
<tr>
<th>그림문자</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>위험 지점 경고</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>위험 전압 경고</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>가연성 물질 경고</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>넘어질 위험 경고</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>놀림 위험 경고</td>
</tr>
</tbody>
</table>

표 2: 경고 참고 사항에 사용된 그림문자

1.4.2 정보 시스템

정보란 각 절차를 단순화하여 이해하기 쉽게도록 설계한 것을 말합니다. 이 기술 문서에서 정보는 다음과 같이 표시되어 있습니다.

중요 정보

1.4.3 지침 시스템

이 기술 파일에는 단일 단계 및 다중 단계 설명서가 포함되어 있습니다.

단일 단계 설명서

하나의 프로세스 단계로 구성된 설명서는 다음과 같이 구성됩니다.
조치 목표
✓ 요건(옵션).
 ► 1의 1단계
 ⇒ 단계 결과(옵션)
 ⇒ 조치 결과(옵션).

다중 단계 설명서
여러 프로세스 단계로 구성된 설명서는 다음과 같이 구성됩니다.
조치 목표
✓ 요건(옵션).
1. 1단계.
 ⇒ 단계 결과(옵션)
2. 2단계.
 ⇒ 단계 결과(옵션)
 ⇒ 조치 결과(옵션).
2 안전

본 사용설명서를 읽고 제품에 대해 숙지하십시오.

이 사용설명서는 제품의 일부입니다.

이 장에 제공된 안전 지침을 읽고 준수하시기 바랍니다.

기능과 관련된 위험을 피하려면 이 사용설명서에 있는 경고 사항을 읽고 준수하십시오.

본 제품은 최적의 기술을 기반으로 제조되었습니다. 그러나 부적절하게 사용하는 경우에는 기능으로 인한 사용자의 생명과 신체에 대한 위험 및 제품과 기타 재료 자산의 손상이 발생할 수 있습니다.

2.1 적절한 사용

이 제품은 부하시 탭 절환장치로, 부하 흐름을 중단시키지 않고 변압기의 변압비를 조정합니다. 이 제품은 전기 에너지 시스템 및 설비에서만 사용하도록 설계되었습니다. 이 제품을 의도된 대로 사용하고 이 기술 문서에 명시된 요건과 조건을 따르며, 이 기술 문서에 명시된 경고 및 제품에 부착된 경고에 따라 사용한다면 이 제품은 인명이나 재산 또는 환경에 위험이 되지 않습니다. 이 사항은 공급, 설치, 운전부터 제거, 폐기에 이르는 제품의 전체 서비스 수명 동안 적용됩니다.

다음은 적절한 사용으로 간주됩니다.

- 제품은 주문서에 명시된 변압기/모터 구동 장치와 함께 사용해야 합니다.
- 부하시 탭 절환장치와 부하시 탭 절환장치 부속품이 하나의 주문에 대한 세트로 공급되는 경우 부하시 탭 절환장치의 일련 번호와 부하시 탭 절환 장치 부속품(드라이브, 구동축, 벨릴 가이, 보호 계전기 등)의 일련 번호가 일치해야 합니다.
- 제품의 유효한 표준 및 출시년도를 명판에서 확인할 수 있습니다.
- 제품은 이 기술 문서와 합의된 공급 조건 및 기술 데이터에 따라 사용해야 합니다.
- 필요한 모든 작업은 자격 있는 사람만 수행해야 합니다.
- 공급된 장비와 특수공구는 이 기술문서의 명세에 따라 해당 목적으로만 사용해야 합니다.
- 부하시 탭 절환장치는 오일 여과기와 함께 사용하는 제품이 아닙니다.

허용된 전기 운전 조건

주문 확인에 따른 설계 데이터와 함께 통과 전류와 단계 전압에 대해서 다음 한계를 준수하십시오.

표준 버전에서 부하시 탭 절환장치는 곡선 형태가 0축에 대칭적인 정현파 50/60Hz 교류 전류용으로 설계되었고 정격 스탭 전압 Uₚ이 정격 통과 전류 Iₚ의 2배를 스위칭할 수 있습니다.

이 단계 전압의 정격 스탭 용량 Pₚ이 초과되지 않는 한 정격 스탭 전압 Uₚ이 최고 10%까지 잠시 초과될 수 있습니다.
2.2 부적절한 사용

제품을 "적절한 사용" 절에 명시된 것 이외의 방식으로 사용하는 경우 부적절한 사용으로 간주합니다. 또한 다음 사항을 지키십시오.

금지된 전기 운전 조건

주문 확인에 따른 설계 데이터에 부합하지 않는 모든 운전 조건은 금지됩니다.

변압기나 기타 전기 장비에 전기를 공급할 때 동일 전류 임펄스는 물론 단락으로 인해 금지된 운전 조건이 발생할 수 있습니다. 이는 전기로 병렬 또는 직렬 연결된 변압기나 기타 전기 장비에 적용되듯이, 영향을 받는 변압기 자체에 적용됩니다.

예를 들어 부하 다중 분산 시에 변압기의 과요자로 인해 더 높은 전압이 발생할 수 있습니다.

허용된 운전 조건을 벗어난 운전은 관련 인력의 부상과 제품의 손상을 가져올 수 있습니다.
 ▪ 적절한 방법을 사용하여 허용된 운전 조건을 벗어나지 않도록 예방하십시오.

2.3 기본 안전 지침

사고, 파손, 손상 및 응용할 수 없는 환경 악영향을 방지하기 위하여, 제품 또는 제품의 부품을 수송, 설치, 운전, 정비 및 처분하는 책임자는 다음 사항을 확실히 해야 합니다.

개인보호장구

옷을 느슨하게 입거나 옷이 맞지 않으면 옷이 회전 부품에 빠져 들어가거나 걸 수 있는 위험 및 돌출된 부품에 걸릴 수 있는 위험이 커집니다. 이로 인해 생명 및 신체 위험에 노출될 수 있습니다.
 ▪ 각 작업에 적합한 헬멧, 작업용 장갑 같은 개인보호장구를 착용하십시오.
 ▪ 손상된 개인보호장구를 착용하지 마십시오.
 ▪ 반지나 목걸이, 기타 장신구를 착용하지 마십시오.
 ▪ 머리가 길다면 머리망을 사용하십시오.

작업 공간

정돈되지 않고 어두컴컴한 작업 공간에서는 사고가 발생할 수 있습니다.
 ▪ 작업 공간을 깨끗하게 정돈하십시오.
 ▪ 작업 공간의 채광이 잘 되게 유지하십시오.
 ▪ 관련 국가의 사고 예방 준거법을 준수하십시오.
운전 중 작업
정상적인 운전 환경에서만 제품을 운전할 수 있습니다. 그렇지 않으면 생명 및 신체 위험에 노출됩니다.
- 안전 장비의 작동 안정성을 정기적으로 확인하십시오.
- 이 기술문서에 설명된 점검 작업, 정비 작업 및 정비 간격을 준수하십시오.

폭발 보호
높은 화염성 또는 폭발성 가스, 증기 및 먼지는 심각한 폭발과 화재의 원인이 될 수 있습니다. 이로 인해 생명과 신체에 대한 위험이 커집니다.
- 폭발 위험이 있는 영역에서 제품을 설치하거나 구동하거나 제품 정비 작업을 수행하지 마십시오.

안전 표시
경고 표시 및 안전 정보판은 제품의 안전 표시로 안전 개념에 있어 중요한 측면입니다.
- 제품에 있는 모든 안전 표시를 확인하십시오.
- 제품에 있는 모든 안전 표시가 파손되지 않고 알아볼 수 있게 유지하십시오.
- 손상되었거나 없어진 안전 표시는 교체하십시오.

주변 조건
신뢰할 수 있고 안전한 운용을 보장하기 위해 제품은 기술 데이터에 명시된 주변 조건에서만 운용해야 합니다.
- 지정된 운전 조건과 설치 장소 요건을 준수하십시오.

부속 재료 및 운용 재료
제조업체에서 승인하지 않은 부속 재료 및 운용 재료를 사용하면 사람이 다치거나 재산 피해가 발생하거나 제품이 오작동할 수 있습니다.
- 반드시 인화성 액체용으로 승인된, 전도력 있고 접지된 호스, 파이프 및 밸브 장비를 사용하십시오.
- 제조업체에서 승인한 운활유 및 부속 재료만 사용하십시오.
- 제조업체에 문의하십시오.

개조 및 변경
승인되지 않은 방식이나 부적절한 방법으로 제품을 개조할 경우 부상, 재산 피해 및 구동 오류가 발생할 수 있습니다.
- Maschinenfabrik Reinhausen GmbH와 상의한 후에만 제품을 개조하십시오.
예비 부품

Maschinenfabrik Reinhausen GmbH에서 승인하지 않은 예비 부품을 사용하면 상해를 입거나 제품이 손상되거나 오작동할 수 있습니다.
- Maschinenfabrik Reinhausen GmbH에서 승인한 예비 부품만 사용하십시오.
- Maschinenfabrik Reinhausen GmbH에 문의하십시오.

2.4 인력의 자격

조립, 시운전, 운용, 정비 및 점검을 담당하는 사람은 해당 인력이 충분한 자격을 갖추고 있는지 확인해야 합니다.

전기 전문 인력

전기 전문 인력은 기술 자격을 보유하고 있으므로 필요한 지식과 경험을 지니고 있으며 해당하는 표준 및 규정에도 정통합니다. 전기 전문 인력은 다음에 대해서도 능숙합니다.
- 잠재적인 위험을 독자적으로 식별할 수 있으며 이러한 위험을 방지할 수 있습니다.
- 전기 시스템에 대한 작업을 수행할 수 있습니다.
- 실제 작업하는 작업 환경에 대해 특수 훈련을 받았습니다.
- 사고 예방과 관련된 법 규정 요건을 충족해야 합니다.

전기 훈련을 받은 인력

전기 훈련을 받은 인력은 보호 장치 및 안전장치는 물론 부적절한 처리 시의 잠재적인 위험 및 수행된 작업과 관련하여 전기 전문 인력으로부터 지침 및 안내를 받습니다. 전기 훈련을 받은 인력은 전기 전문 인력의 안내 및 감독하에 독점적으로 작업합니다.

운전자

운전자는 기술 문서에 따라 제품을 사용하고 운용합니다. 운영 업체는 운전자에게 특정 작업 및 부적절한 처리로 인한 잠재적인 위험에 대한 지침 및 교육을 제공합니다.

기술훈련

당사 기술 서비스 부서를 통해 정비, 수리 및 개조를 받기를 권장합니다. 이를 통해 모든 작업이 올바르게 수행될 수 있습니다. 당사의 기술 서비스 부서에서 정비할 수 없을 때는 Maschinenfabrik Reinhausen GmbH에서 훈련받고 승인한 사람 또는 작업을 수행할 적절한 자격이 있는 사람이 정비해야 합니다.

승인된 인력

승인된 인력은 특정 정비를 수행하도록 Maschinenfabrik Reinhausen GmbH에서 훈련을 받습니다.
2.5 개인보호장구

작업할 때는 건강 위험을 최소화하기 위해 반드시 개인보호장구를 착용해야 합니다.

▪ 해당 작업에 필요한 개인보호장구를 항상 착용하십시오.
▪ 손상된 개인보호장구를 착용하지 마십시오.
▪ 작업 구역에서 찾을 수 있는 개인보호장구 정보를 참조하십시오.

보호복
인열 강도가 낮고, 소매가 몸에 딱 맞으며 돌출부가 없는, 몸에 꼭 맞는 작업복입니다. 보호복은 작업자가 기계의 이동부품에 걸리지 않도록 보호합니다.

안전화
낙하하는 무거운 물체에 다치지 않고 미끄러운 바닥에서 미끄러지지 않도록 보호합니다.

보안경
날아오는 부품과 튀는 액체로부터 눈을 보호합니다.

차양
날아오는 부품과 튀는 액체 또는 기타 외부한 물질로부터 눈을 보호합니다.

안전모
떨어지거나 날아오는 부품과 물체로부터 보호합니다.

청력보호기
청력 손상을 막습니다.

보호 장갑
기계적, 열적, 전기적 위험으로부터 보호합니다.

표 3: 개인보호장구
3 제품 설명

3.1 납품 범위

제품은 방습 포장되어 일반적으로 다음과 같이 납품됩니다.

- 부하시 탭 절환장치
- 모터 구동 장치
- 연결 부품과 베일 기어가 있는 구동축
- 보호 장치
- 기술문서

납품 범위에 대한 전체 세부사항은 운송장을 참조하십시오.

또한 부하시 탭 절환장치는 일반적인 모터 구동 장치가 있는 부하시 탭 절환 장치 세트로 제공될 수 있습니다.

다음 정보를 참조하십시오.

- 수송물이 선적 서류와 일치하는지 점검하십시오.
- 부품은 설치 때까지 건조한 곳에 보관하십시오.
- 제품은 일봉 보호포장 상태로 보관해야 하므로 설치 직전에 포장을 벗기십시오.

"포장, 수송 및 보관" [▶절 4, 페이지 32] 창에서 자세한 내용을 확인할 수 있습니다.

3.2 부하시 탭 변환기

3.2.1 기능 설명

부하시 탭 절환장치는 부하 흐름을 중단시키지 않고 변압기의 변압비를 조정하는 데 사용됩니다. 이를 통해 전력 전송 계통에서 발생하는 전압 변동 같은 요소에 대해 보상할 수 있습니다. 이러한 목적으로 부하시 탭 절환장치는 변압기에 설치되어 있으며 변압기의 유호 부품에 연결되어 있습니다.

전압 조정기 등에서 제어 신호를 수신하는 모터 구동 장치는 변압기의 변압비가 작동 요구 사항에 적합하도록 부하시 탭 절환장치의 작동 위치를 변경합니다.
3.2.2 셋업/버전

다음 그림은 부하시 탭 절환장치의 기본 구성품을 보여줍니다.

"도면 [►절 10. 페이지 213]" 절에서 부하시 탑 절환장치의 상세 도면을 찾을 수 있습니다.
3.2.2.1 파이프 커넥션

부하시 탭 절환장치 헤드에는 각기 용도가 다른 파이프 커넥션 4개가 있습니다.
주문에 따라 벤딩된 파이프가 파이프 커넥션의 일부 또는 전체에 설치되어 공장출하됩니다. 단자함이 없는 탭 변환 감시 제어기의 모든 벤딩된 파이프는 압박 링이 물리면 자유롭게 회전할 수 있습니다.

그림 3: 벤딩된 파이프의 파이프 커넥션

파이프 커넥션 Q
파이프 커넥션 Q는 표준 마개로 닫혀 있으며 부하시 탭 절환장치가 탭 변환 감시 장치에 장착된 경우 탭 변환 감시 장치의 연결 케이블이 파이프 커넥션을 통해 연결됩니다.

파이프 커넥션 R과 Q의 기능을 서로 교환할 수 있습니다.

파이프 커넥션 S
파이프 커넥션 S의 곡관에는 배기 나사가 있으며 이 곡관은 변압기 탱크 축면에서 운전자의 높이만큼의 곡관에 배수 밸브가 이어진 파이프에 연결할 수 있습니다. 부하시 탭 절환장치에 오일 출입 파이프가 설치되어 있으면 파이프 커넥션 S를 통해 부하시 탭 절환장치를 완전히 비울 수 있습니다.

파이프 커넥션 R
파이프 커넥션 R은 보호 계전기를 부착하고 부하시 탭 절환장치 오일 컨서베이터를 연결하기 위한 것이며 파이프 커넥션 Q와 교환할 수 있습니다.

파이프 커넥션 E2
파이프 커넥션 E2는 표준 마개로 밀봉되어 있습니다. 이것은 부하시 탭 절환 장치 헤드 바로 밑에서 변압기의 오일탱크로 이어지며, 필요 시에는 부흐홀 쪽 텐데라용 가스포집 파이프에 연결할 수 있습니다. 이 파이프 커넥션은 변압기 건조, 절연 맥체를 사용한 여과 및 수송에 필요한 부하시 탭 절환장치의 유격실과 변압기 탱크 간 압력을 동등하게 만드는 데도 사용됩니다.
3.2.3 명판 및 일련번호

일련 번호가 있는 명판은 부하시 탭 절환장치 헤드 커버에 있습니다.

![그림 4: 명판](image-url)

3.2.4 보호장치

부하시 탭 절환장치에는 다음 보호 장치가 장착되어 있습니다.

3.2.4.1 보호 계전기

3.2.4.1.1 기능 설명

보호 계전기가 차단기 트립 회로에 루프로 연결됩니다. 이 보호 계전기는 부하시 탭 절환장치 헤드부터 오일 컨서베이터까지 규정된 유속이 고장으로 인해 초과될 때 트립됩니다. 절연 액체의 흐름은 OFF 위치로 가울어진 플랩 밸브를 작동시킵니다. 그러면 리드형 자석 스위치 내 접점을 작동하여 차단기가 트립되고 변압기가 차단됩니다.

보호 계전기는 절연 액체로 채워진 부하시 탭 절환장치의 일부이며 그 특성은 IEC 간행물 60214-1의 적용 가능한 각 버전에 부합합니다.

정격 스위칭 용량에서 또는 허용 과부하에서의 다이버터 스위치 작동은 보호 계전기 트립을 유발하지 않습니다.

보호 계전기의 측정은 차단된 가스의 반응하지 않는 흐름에 반응합니 다. 절연 액체로 변압기를 충전할 때 보호 계전기를 해제할 필요는 없습니다. 보호 계전기 안에 가스가 축적되는 것은 정상입니다.
3 제품 설명

3.2.4.1.2 설계/버전

정면도

그림 5: 보호 계전기 RS2001

| 1 관측 유리 | 2 압력 균등화 요소 |

후면도

그림 6: 보호 계전기 RS2001

| 1 더미 플러그 | 2 명판 |

보호 계전기 RS 2001/R에는 후면에 추가 관측 유리가 있습니다.
위에서 보기

그림 7: 보호 계전기 RS2001

1. 개스킷
2. 전위 타이인
3. 단자함 커버
4. 전위 타이인용 일자형 헤드 나사
5. RESET(재설정) 테스트 버튼
6. 보호판용 일자형 헤드 나사
7. TRIP(테스트 트리핑) 테스트 버튼
8. 케이블 글랜드
9. 보호판
10. 다미 플러그
11. 연결 단자
12. 압력 균등화 요소
13. 보호 도체 연결용 실린더 헤드 나사

보호 계전기 RS 2003 및 RS 2004에는 케이블 글랜드 대신 1/2"-14NPT 어댑터가 있습니다.

3.2.4.1.3 명판

명판은 보호 계전기 뒷면에 있습니다.

그림 8: 명판
3.2.4.2 압력 동작 릴레이 DW

3.2.4.2.1 기능 설명

DW 2000 압력 동작 릴레이는 허용 불가능한 압력 증가로부터 부하시 탭 절환장치를 보호하여 변압기의 안전을 지킵니다. 압력 동작 릴레이는 부하시 탭 절환장치 외부에 설치되어 있으며 부하시 탭 절환장치 유격실의 허용 불가능한 정적 및 동적 압력을 예방하기 위해 트립됩니다.

압력 동작 릴레이는 파형관이 저항력을 제공하는 스프링과 함께 기압계의 기능을 수행하는 개념을 사용합니다. 이 어셈블리는 스냅 동작 스위치의 센서에 기계적으로 연결됩니다.

압력이 상승하면 스냅 동작 스위치의 센서가 작동하여 스위치가 TRIP 위치로 전환됩니다. 이렇게 되면 차단기가 작동되며 압력의 전압이 줄입니다. 스냅 동작 스위치의 센서가 트립된 후에는 처음 위치로 다시 수동 설정해야 합니다.

저에너지 간섭이 발생하면 필요한 차단 압력에 도달되지 않으므로 압력 동작 릴레이는 트립되지 않습니다. 차단 압력은 공장에서 설정되어 변경이 방지됩니다.

압력 동작 릴레이는 큰 압력 증가에 보호 계기보다 더 빠르게 반응합니yu. 보호 계기는 기본 MR 보호 시스템의 일부로, 기본으로 제공됩니다.

압력 모니터링 장치를 추가 사용하려면 제공된 보호 계기에도 설치해야 합니다.

압력 동작 릴레이의 기능 및 특징은 IEC 발행 60214-1의 각 해당 버전을 준수합니다.

정격 스위칭 용량에서 또는 허용 과부하에서의 다이버터 스위치 작동은 압력 동작 릴레이 트립을 유발하지 않습니다.

압력 동작 릴레이는 압력 변계에 반응하며 압력 동작 릴레이 하에서 가스 축적에는 반응하지 않습니다. 압력 동작 릴레이 하에서 가스가 축적되는 것은 정상입니다.

3.2.4.2.2 설계/버전

압력 동작 릴레이에는 다음의 두 가지 종류가 있습니다.

- 수직 설치의 DW 2000
- 수평 설치의 DW 2000
압력 동작 릴레이의 하우징 및 커버 캡은 경량의 부식 방지 금속으로 이루어져 있습니다.

그림 9: 스냅 동작 스위치 및 압력 측정 요소

<table>
<thead>
<tr>
<th>1</th>
<th>스냅 동작 스위치</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>압력 측정 요소</td>
</tr>
</tbody>
</table>
3.2.4.3 파열판
파열판은 IEC 60214-1에 따라 신호발생 접점이 없는 압력 경감 밸브이며 부하시 탭 절환장치 헤드 커버 안에 위치합니다.
파열판은 부하시 탭 절환장치 유격실에서 정의된 과압이 발생할 때 반응합니다.

3.2.4.4 압력 경감 밸브 MPreC®
요청 시에는 파열판 대신 사전 맞춤 MPreC® 압력 경감 밸브를 공급합니다. 이 장치는 부하시 탭 절환장치 유격실에서 정해진 과압이 발생할 때 반응합니다.
따라서 부하시 탭 절환장치는 압력 경감 밸브와 관련하여 IEC 60214-1의 요구 사항을 충족합니다.

3.2.4.5 온도 모니터링
온도 모니터링 시스템은 부하시 탭 절환장치 유격실의 절연 액체 온도를 모니터링합니다.
3.3 구동축

3.3.1 기능 설명

구동축은 구동 장치와 부하시 탭 절환장치/무전압 탭 체인저를 기계적으로 연결합니다.

베ベル 기어는 방향을 수직 방향에서 수평 방향으로 바꿉니다.

따라서 수직 구동축은 구동 장치와 베펠 기어 사이에 설치해야 하고, 수평 구동축은 베펠 기어와 부하시 탭 절환장치 또는 무전압 탭 체인저 사이에 설치해야 합니다.
3.3.2 설계/버전

구동축은 사각 관 1개로 되어 있으며 연결할 장치의 구동 또는 중공축에 연결 브래킷 2개와 연결 볼트 1개로 연결합니다.

![구동축의 컴포넌트](image)

1	베벨 기어
2	호스 클립
3	신축 보호 튜브
4	연결 브래킷
5	사각 관
6	연결 볼트
7	어댑터 링
8	보호판
3.3.2.1 카르단 조인트가 없고 절연체가 없는 구동축

그림 12: 카르단 조인트가 없고 절연체가 없는 구동축 (=표준 버전)

<table>
<thead>
<tr>
<th>구성</th>
<th>V1분</th>
<th>중간 빈어링</th>
</tr>
</thead>
<tbody>
<tr>
<td>수동 크랭크의 중간 – 베릴 기어의 중간 (최대 허용 축방향 편차 2°)</td>
<td>536 mm</td>
<td>최대값 2472mm가 초과되는 경우 중간 빈어링을 사용해야 합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V1 ≤ 2472 mm (중간 빈어링 없음)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V1 > 2472 mm (중간 빈어링 있음)</td>
</tr>
</tbody>
</table>
3.3.2.2 카르단 조인트가 없고 절연체가 있는 구동축

![그림 13: 카르단 조인트가 없고 절연체가 있는 구동축(= 특수 모델)](image)

<table>
<thead>
<tr>
<th>구성</th>
<th>V 1분</th>
<th>중간 베어링</th>
</tr>
</thead>
</table>
| 수동 크랭크의 중간 - 베벌 기어의 중간(최대 허용 축방향 변차 2°) | 706mm | 최대값 2472mm가 초과되는 경우 중간 베어링을 사용해야 합니다.
V 1 ≤ 2472mm(중간 베어링 없음)
V 1 > 2472mm(중간 베어링 있음) |
3.3.2.3 카르단 조인트가 있고 절연체가 없는 구동축

그림 14: 카르단 조인트가 있고 절연체가 없는 구동축 (= 특수 모델)

<table>
<thead>
<tr>
<th>구성</th>
<th>V 1분 [mm]</th>
<th>중간 베어링 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>수동 크랭크의 중간 - 베티 기어의 중간 (최대 허용 축방향 변위 20°)</td>
<td>798</td>
<td>V 1 > 2564</td>
</tr>
</tbody>
</table>
3.3.2.4 카르단 조인트와 절연체가 있는 구동축

구성

<table>
<thead>
<tr>
<th>구성</th>
<th>V 1분 [mm]</th>
<th>중간 베어링 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>수동 크랭크의 중간 - 베벨 기어의 중간(최대 허용 축방향 변차 20°)</td>
<td>978</td>
<td>V 1 > 2772</td>
</tr>
</tbody>
</table>

그림 15: 카르단 조인트와 절연체가 있는 구동축 (= 특수 모델)
4 포장, 수송 및 보관

4.1 포장

제품은 밀봉 포장으로 제공되는 경우가 있으며 요구 사항에 따라 건조 상태로 제공되는 경우도 있습니다.

밀봉 포장은 포장 물품의 사방을 플라스틱 포일로 에워줍니다.

건조된 제품은 밀봉 포장에 있는 노란색 레이블로 식별됩니다. 건조한 상태에서 수송 콘테이너로도 납품이 가능합니다.

다음 섹션의 정보는 올바르게 적용되어야 합니다.

4.1.1 적절성

참고 사항
올바르지 않은 충격으로 인한 재산 피해!
올바르지 않은 충격으로 포장 물품에 손상을 입힐 수 있습니다!
► 예를 들면, 패키지 바깥쪽 표시는 부하시 턱 절환장치나 선택기가 똑바로 세워져 포장되었는지 나타냅니다. 절대로 이 상자들을 쌓지 마십시오.
► 일반 규칙: 상자를 빌 때 높이가 1.5m를 넘지 않도록 하십시오.
► 다른 상자의 경우: 최대 2개의 같은 크기의 상자만 위에 쌓을 수 있습니까.

포장은 현지 운송법 및 규정에 따라 손상되지 않고 완전하게 가능하는 운송 수단을 보장하는 데 적합합니다.

포장 물품은 건조한 상자에 포장됩니다. 이 상자는 포장 물품을 운송 위치에 안전적으로 두어 허용할 수 없는 변형을 방지하도록 하며 하여 후에 물품의 어떤 부품도 운송 수단의 적재면에 닿거나 지면에 닿지 않도록 합니다.

밀봉 포장은 포장 물품의 사방을 플라스틱 포일로 에워줍니다. 포장 물품은 흡습제를 사용하여 습기로부터 보호합니다. 흡습제가 추가된 후 플라스틱 포일이 접착되었습니다.

4.1.2 표시

포장에는 안전한 수송과 정확한 보관을 위한 지침과 함께 기호가 찍혀 있습니다. 다음 기호는 무해한 상품의 선적물에 적용됩니다. 이 기호를 의무적으로 준수해야 합니다.

<table>
<thead>
<tr>
<th>수분으로부터 보호</th>
<th>위쪽</th>
<th>깨지기 쉬움</th>
<th>여기에 라포팅 장비 부착</th>
<th>무게 중심</th>
</tr>
</thead>
</table>

표 4: 선적 그림문자
4.2 선적물의 수송, 수령 및 취급

사망 또는 중상 위험!
적재물을 넘어뜨리는 것이 놀라운 사람이나 중상 위험.
► 밀봉된 경우에만 상자를 운송하십시오.
► 운송하는 동안 상자에 사용된 고정 소재를 제거하지 마십시오.
► 제품을 운반하기 위해 두고 남무는 경우 충분히 고정시키십시오.
► 교육을 받은 허가 인원만이 슬링 기어를 선택하고 적재물을 고정할 수 있습니다.
► 매달린 적재물 아래로 지나가지 마십시오.
► 운송장에 설명된 무게에 따라 충분한 운반 용량이 있는 수송 및 리프팅 장비를 사용하십시오.

수송 중에는 진동 스트레스 외에 덜렁거림도 예상해야 합니다. 피해를 방지하기 위해서는 제품을 떨어뜨리거나, 찢어지거나, 넘어뜨리거나, 다른 제품에 부딪히지 말아야 합니다.

상자가 위집어지거나 높은 곳에서 떨어지거나(예: 슬링이 찢어지는 경우) 어떤가에 걸려지 않고 그대로 떨어질 경우 상자 중량에 상관 없이 손상을 예상해야 합니다.

인도된 모든 선적물은 수락(인수 확인) 전에 수령자가 다음 사항들을 점검해야 합니다.

- 배달장과의 일치 여부
- 각종 외부 손상

이 점검은 하역 후, 나무상자나 수송 콘테이너에 사방에서 접근할 수 있을 때해야 합니다.

눈에 보이는 손상
선적물을 수령할 때 외적인 수송 손상을 발견했다면 다음과 같이 진행하십시오.

- 식별된 수송 손상을 즉시 선적서류에 기록하고 운송자의 서명을 받으십시오.
- 심각한 손상, 충격적 손실 또는 높은 피해비용이 발생했을 때는 즉시 제조자와 관련 보험회사에 통지하십시오.
- 손상은 파악한 후에는 운송회사나 보험회사가 조사 결정을 내릴 때까지 선적물의 상태를 그대로 보존하고 포장재를 보관하십시오.
- 손상의 세부사항을 즉시 운송자와 함께 기록하십시오. 이 과정은 모든 피해 보상 청구에 필수적입니다.
- 포장과 포장 물품의 손상 부분을 사진으로 찍어 두십시오. 이것은 포장물품의 포장 내 수분(비, 눈, 응축)으로 인한 부식의 징후가 있을 때에도 적용됩니다.
4 포장, 수송 및 보관

참고 사항!
손상된 밀봉 포장으로 인한 포장 물품의 손상. 제품이 밀봉 포장으로 박립되는 경우 밀봉 포장을 즉시 점검하십시오. 밀봉 포장이 손상되었다면 어떤 상황에서도 타 포장 물품을 설치 또는 시운전하지 마십시오. 건조된 포장 물품을 운송 설명서에 따라 다시 건조시키거나 제조자에게 처리 방법을 문의하십시오.

손상된 부분을 식별하십시오.

숨겨진 손상
선품을 인수한 후 포장을 풀고 나서야 손상을 확인할 수 있었을 때(숨겨진 손상)에는 다음과 같이 진행하십시오.

- 그 손상에 책임이 있는 당사자에게 가급적 신속히 전화나 서면으로 책임을 묻고 피해 보고서를 작성하십시오.
- 해당 조치를 취할 수 있는 기간을 지키십시오(국가별로 다름). 기한을 넘기지 마십시오.

숨겨진 손상이 있으면 운송회사(또는 책임 있는 다른 당사자)에게 책임을 묻기 매우 어렵습니다. 그런 손상에 대한 보험청구는 관련 조항들이 보험 약관에 포함되어 있을 때에만 가능할 수 있습니다.

4.3 선적물 보관

Maschinenfabrik Reinhausen에서 건조된 포장 물품
포장 물품이 절연 액체에 담긴 채 제공되지 않은 경우 선적물 영수증을 기준으로 Maschinenfabrik Reinhausen에서 건조된 포장 물품을 밀봉된 포장에서 즉시 꺼내어 사용하기 전까지 건조 절연 액체에서 밀폐 보관합니다.

비건조 포장 물품
비건조 및 기능적으로 밀봉된 포장 물품은 다음 조건을 충족할 때 박외에 보관할 수 있습니다.

보관 위치를 선택하고 설치할 때 다음 사항을 확인하십시오.

- 보관 물품은 수분(춘수, 녹과 얼음에서 녹은 물), 먼지, 해충(시궁쥐, 생쥐, 흰개미) 등으로부터 보호되어야 하고 무단으로 접근할 수 없는 곳에 보관해야 합니다.
- 상자는 습기 방지와 원활한 통풍을 위해 목재보와 널판지 위에 보관해야 합니다.
- 지면에 충분한 운반 공간이 있어야 합니다.
- 입구에 장애물이 없어야 합니다.
- 보관된 물품을 정기적으로 점검하십시오. 또한 폭풍, 폭우, 폭설 등이 내린 후에는 적절한 조치를 취해야 합니다.

포장 호일은 직사일광을 받으면 자외선의 영향으로 분해되어 밀봉 기능을 잃게 되므로 직사일광을 피해야 합니다.

제품을 배송 후 6개월이 지난 뒤에 설치하는 경우 적절한 조치가 바로 취해져야 합니다. 다음 대책을 사용할 수 있습니다.

- 건조제를 정확히 재생하여 밀봉 포장을 복원합니다.
- 상자에서 포장 물품을 꺼내어 적절한 저장 공간(하이가 잘 되고 가능한 먼지가 없으며 습도가 50% 이하인 곳)에 보관합니다.
4 포장, 수송 및 보관

4.4 선적물 개봉하고 수송 손상 점검하기

▪ 참고 사항!
 잘못된 밀봉 포장으로 인한 포장 물품의 손상. 포장된 상자를 포장 물품을 설치할 위치로 운반합니다. 설치 직전까지 밀봉 포장을 열지 마십시오.

▪ 경고!
 포장 물품의 쓰러짐으로 인한 심각한 부상 및 포장 물품의 손상. 포장한 물품을 똑바로 세운 상자 안에 넣고 상자가 쓰러지지 않게 보호하십시오.

▪ 포장 물품을 개봉하여 상태를 점검하십시오.
▪ 액세서리 키트를 운송장과 대조하여 완전한지 확인하십시오.
5 장착

경고

부상 위험이!

부하시 탭 절환장치가 탭 변환 구동을 실행하는 경우 선택기, 체인저 오버 선택기 및 전위연결 기구의 구성요소가 이동하며, 일부 구성요소에는 자유롭게 접근할 수 있습니다. 탭 변환 구동 중에 선택기, 제어기 오버 선택기 또는 전위연결 기구에 접촉하면 심각한 부상을 입을 수 있습니다.

- 탭 변환 구동 중에는 최소 1m의 안전 거리를 유지하십시오.
- 탭 변환 구동 동안 선택기, 제어기 오버 선택기 또는 전위연결 기구에 접촉하지 않도록 하십시오.
- 선택기, 제어기 오버 선택기 또는 전위연결 기구에서 작업 시 부하시 탭 절환장치를 전환하지 마십시오.

5.1 준비 작업

변압기 안에 부하시 탭 변환기를 설치하기 전에 아래 명시된 작업을 수행하십시오.

5.1.1 변압기 커버에 마운팅 플랜지 깔우기

마운팅 플랜지는 부하시 탭 변환기 헤드를 변압기 커버에 고정하는 데 필요합니다. 이 플랜지는 선택 사항으로 공급받거나 고객이 만들 수 있습니다. 고객이 만든 마운팅 플랜지는 부록에 있는 설치 도면에 부합해야 합니다.

참고 사항: 마운팅 플랜지를 변압기 커버에 설치하시는(암력 밀폐). 단봉 표면은 완전히 접촉되고 손상되지 않아야 합니다.

![그림 16: 마운팅 플랜지](image)
5 장착

5.1.2 마운팅 플랜지에 스터드 볼트 깔우기

스터드 볼트를 마운팅 플랜지에 부착하기 위해 마킹 템플릿을 사용하십시오. 부하시 텔 변환기를 최초로 설치할 때 이 템플릿을 무료로 제공할 수 있습니다(요청 시).

1. 마운팅 플랜지에 마킹 템플릿을 놓고 마킹 네 개에 맞춰 정렬합니다.
2. 마운팅 플랜지에 스터드 볼트를 깔웁니다.

그림 17: 마킹 템플릿, 스터드 볼트
5.2 변압기 내 부하시 탭 절환장치(표준 버전) 설치

5.2.1 변압기 커버에 부하시 탭 변환기 고정

1. 주의! 불안정한 위치의 부하시 탭 절환장치는 기울어져 중상 또는 피해를 입힐 수 있습니다. 부하시 탭 절환장치를 평평한 면에 놓고 기울지 않게 고정합니다.

2. 유격실에서 빨간색 포장지와 운반재를 제거하십시오.

3. 참고 사항! 부적합한 개스킷을 사용하면 오일이 새어나와 부하시 탭 절환장치가 손상될 수 있습니다. 마운팅 플랜지에 절연 액체에 적합한 개스킷을 설치합니다. 마운팅 플랜지와 부하시 탭 절환장치 헤드의 일봉 표면을 깨끗이 합니다.

![그림 18: 밀봉면, 개스킷]
4. 전위연결 기구가 있는 부하시 탭 절환장치 또는 3W/2W/3G 체인저 오버 선택기가 있는 부하시 탭 절환장치의 연결 케이블은 변압기 커버 구멍을 통해 부하시 탭 절환장치를 고정하기 위해 분리해야 합니다.

![Diagram of connection pipe](image)

그림 19: 연결 파이프
5 장착

참고 사항!
충분한 주의를 기울이지 않고 부하시 탭 절환장치를 아래로 내리면 부하시 탭 절환장치가 변압기 커버와 충돌하여 손상될 수 있습니다. 부하시 탭 절환장치 헤드를 들어올린 다음 변압기의 커버 구멍 안에 수직으로 조심스럽게 내립니다.

그림 20: 부하시 탭 절환장치 내리기

6. 부하시 탭 절환장치 헤드가 설계상 지정된 위치에 장착되었는지 확인합니다.
7. 부하시 탭 절환장치 헤드를 마운팅 플랜지에 나사로 고정합니다.

8. 전위연결 기구가 있는 부하시 탭 절환장치 또는 3W/2W/3G 체인저 오버 선택기가 있는 부하시 탭 절환장치의 연결 케이블은 다시 연결해야 합니다.

5.2.2 탭권선과 부하시 탭 체인저 유도체 연결

참고 사항
부하시 탭 절환장치 손상!
부하시 탭 절환장치에 기계적 긴장을 가하는 연결 케이블은 부하시 탭 절환 장치에 손상을 입습니다.

► 주의해서 연결하십시오.
► 연결 접점을 비틀지 마십시오.
► 연결 케이블을 뒤집거나 변형하지 않고 탭 선택기에 연결하십시오.
► 필요 시에는 연결 케이블에 신축관을 사용하십시오.
► 나사 연결부에 제공된 카페 캡을 맞출십시오.
5 장착

탭권선과 부하시 탭 체인지 유도체는 납품시에 포함된 결선도에 따라 연결해야 합니다.

5.2.2.1 탭 선택기 연결 점검

탭 선택기 연결 점검에는 M8 나사용 구멍이 가로로 돌려 있습니다.
1. 제공된 결선도에 따라 탭 권선 연결 케이블을 탭 선택기에 고정합니다. 케이블 런그 및 고정 부품은 납품 범위에 포함되지 않습니다.
2. 적절한 조치(예: 클램핑 와셔 사용)를 취하여 각 고정 부위가 느슨해지거나 침하되지 않도록 합니다. 차폐 캡이 납품 범위에 포함될 경우 그림에 표시된 대로 차폐 캡을 연결해야 합니다.
3. 차폐 캡을 닫고 올바르게 장착되었는지 확인합니다. 나사 헤드 및 너트를 완전히 잎어야 합니다.

그림 23: 탭 선택기 연결 점검

5.2.2.2 극성 체인지 오버 선택기 연결용 체인지 오버 선택기 연결 점검

참고 사항

부하시 탭 절환장치 손상!
체인지 오버 선택기의 가동 부품에 너무 가까이 배치한 탭권선 연결 케이블은 체인지 오버 선택기 동작을 방해하고, 이로 인해 부하시 탭 절환장치가 손상됩니다.
► 체인지 오버 선택기 구역에 있는 탭권선 연결 케이블은 체인지 오버 선택기의 가동 부품과 충분히 떨어져 있도록 배치해야 합니다.

(+)와 (−) 체인지 오버 선택기 연결 점검은 리버싱 체인지 오버 선택기 연결을 위해 M8 나사용 구멍이 있는 연결 점검으로서 설계되었습니다.
연결 접점 K는 확장된 파인 탭 선택기 연결 접점(또한 M8 나사용 구멍이 있음)으로 설계되었습니다.

이미지 24: 리버싱 채인저 오버 선택기 결선용 채인저 오버 선택기 연결 접점

이미지 25: 리버싱 채인저 오버 선택기 결선의 회전 범위

5.2.2.3 코오스 채인저 오버 선택기 연결용 채인저 오버 선택기 연결 점점

참고 사항
부하시 탭 절환장치 손상!
채인저 오버 선택기의 가동 부품에 너무 가까이 배치한 탭권선 연결 케이블은 채인저 오버 선택기 동작을 방해하고, 이로 인해 부하시 탭 절환장치가 손상됩니다.

채인저 오버 선택기 구역에 있는 탭권선 연결 케이블은 채인저 오버 선택기의 가동 부품과 충분히 떨어져 있도록 배치해야 합니다.
코스 탭 선택기 결선이 있으면, (+)와 (-) 채인저 오버 선택기 연결 접점은 코스 채인저 오버 선택기의 적층 종이 바에 각각 고정됩니다. 접점의 외관은 탭 선택기 접점과 동일합니다(언제나 가로 방향인 M8 나사용 구멍이 있음).

그림 26: 코스 탭 선택기 결선용 채인저 오버 선택기 연결 접점

그림 27: 코스 탭 선택기 결선의 회전 범위
5 장착

5.2.2.4 유격실에 직접 인출 리드 연결

1. 케이블 러그와 나사를 이용하여 부하시 탭 체인저 유도체를 인출 리드 연결부에 연결합니다. 케이블 러그 및 고정 부품은 제공 범위에 포함되지 않습니다.

2. 적절한 조치(예: 클램핑 외셔 사용)를 취하여 각 고정 부위가 느슨해지거나 침하되지 않도록 합니다.

![그림 28: 유격실의 인출 리드 연결](image)

5.2.3 건조 전 변압비 측정 시험 수행

참고 사항
부하시 탭 절환장치 손상!

변압비 측정 시험을 잘못 수행함으로 인해 발생하는 부하시 탭 절환장치 손상입니다.

▶ 부하시 탭 절환장치에서 탭 변환 구동을 250회 이상 수행하지 마십시오. 탭 변환 구동을 250회 넘게 수행할 예정인 경우 유격실에 절연 액체를 끝까지 채우고 선택기와 탭 선택기 기어의 접점 슬라이딩 표면에 절연 액체를 도포하십시오.

▶ 부하시 탭 절환장치를 상부 기어 유닛을 통해 작동 위치에서 다음 위치로만 전환합니다. 이를 위해 예를 들어 연결 볼트(지름 12mm)가 고정된 짧은 튜브(지름 25mm)를 수동 휠 또는 크랭크와 함께 사용할 수 있습니다. 드릴을 사용할 때 최대 속도 250 rpm을 넘으면 안 됩니다.

▶ 부하시 탭 절환장치 헤드 커버의 관측 유리를 통해 작동 위치에 도달했는지 항상 확인하십시오. 납품 시에 공급된 결선도에 표시된 말단 위치를 결코 넘어가지 마십시오.

▶ 공유 구동장치로 여러 칼럼을 사용할 경우 수평 구동축 부품을 사용하여 모든 부하시 탑 절환장치 헤드를 서로 연결해야 합니다.

체인저 오버 선택기를 작동시킬 때는 더 높은 토크가 필요합니다.
5 장착

1. 부하시 탭 절환장치를 원하는 작동 위치로 전환합니다. 다이버터 스위치 작동음이 뚜렷하게 들릴 것입니다.

2. 참고 사항! 탭 변환 구동이 제대로 완료되지 않으면 부하시 탭 절환장치가 손상될 수 있습니다. 다이버터 스위치를 작동한 후 탭 변환 구동을 올바르게 끝내기 위해 상부 기여 유닛의 구동축을 같은 방향으로 2.5바퀴 회전합니다.

3. 변압비 측정 시험을 수행합니다.

4. 모든 작동 위치에서 변압비 측정 시험을 반복합니다.

5. 부하시 탭 절환장치를 조정 위치로 전환합니다(동봉된 부하시 탭 절환장치 용결선도 참고).

부하시 탭 절환장치를 변압기 탱크 안에서 등유로 건조해야 한다면 변압비 측정 시험 후에 유격실 내 등유 배출 플러그를 개방하십시오. 건조 후에는 다이버터 스위치 장착부를 제거해야 하고, 유격실 내 등유 배출 플러그를 닫아야 하고, 다이버터 스위치 장착부를 재장착해야 합니다.

5.2.4 변압기 직류 저항 측정 수행

권선 과열을 방지하기 위해, 측정되는 직류 저항은 대개 측정된 변압기 권선의 정격 전류의 10%로 제한됩니다.

여러 부하시 탭 절환장치 작동 위치에서 직류 저항 측정을 수행합니다. 작동 위치를 변경할 때 측정 전류 차단 여부를 여기에서 구별해야 합니다.

<table>
<thead>
<tr>
<th>유격실 상태</th>
<th>측정 전력에서 차단하지 않는 경우</th>
<th>차단하는 경우(작동 위치 변경 전 측정 전력 = 0 A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>유격실이 비었음</td>
<td>최대 10 A DC</td>
<td>최대 50 A DC</td>
</tr>
<tr>
<td>절연유를 충전한 유격실</td>
<td>최대 50 A DC</td>
<td>최대 50 A DC</td>
</tr>
</tbody>
</table>

표 5: 변압기에서 직류 저항 측정 시 최대 허용 측정 전류

5.2.5 진공 오븐에서 부하시 탭 절환장치 건조

참고 사항

부하시 탭 절환장치 손상!
유격실에 습기가 있는 경우 절연 액체의 절연 강도가 저하되어 부하시 탭 절환장치가 손상될 수 있습니다.

- 건조 10시간 내로 유격실을 부하시 탭 절환장치 헤드 커버와 함께 밀봉합니다.

MR이 보장하는 부하시 탭 절환장치 절연 값을 보장하기 위해 다음 지침에 따라 부하시 탭 절환장치를 건조시키십시오.

진공 오븐에서 건조하는 경우 다음과 같은 방법을 사용할 수 있습니다.
- 진공 건조
- 등유 건조
부하시 탭 절환장치를 진공 오븐에서 건조시키지 않고 변압기 탱크에서 대신 건조시킬 수도 있습니다.

5.2.5.1 진공 오븐에서 진공 건조

건조 후에 변압비 측정 시험을 다시 수행하고자 할 경우 "건조 후 변압비 측정 시험 수행" [▶절 5.2.8, 페이지 67] 섹션에 설명된 대로 진행하십시오.

5.2.5.1.1 부하시 탭 절환장치를 조정 위치로 이동시키기

▶ 부하시 탭 절환장치를 조정 위치로 이동합니다. 조정 위치는 납품에 포함된 부하시 탭 절환장치 설계도에 나와 있습니다.

5.2.5.1.2 부하시 탭 절환장치 헤드 커버 제거하기

⚠ 경고

폭발 위험!

부하시 탭 절환장치 헤드 커버 아래의 폭발성 가스가 연소되거나 폭발하여 사람이 심하게 다치거나 사망할 수 있습니다.

▶ 주변에 불꽃, 뜨거운 표면 또는 (예를 들어 정전기가 충격되어 발생하는) 스파크 같은 점화원이 없는지 확인하고 점화원이 새로 생기지 않도록 하십시오.

▶ 부하시 탭 절환장치 헤드 커버를 제거하기 전에 모든 보조 전류 회로(예: 탭 변환 감시 장치, 압력 경감 밸브)에서 전원을 단절하십시오.

▶ 작업하는 동안 어떠한 전기 장치도 가동하지 마십시오(예: 충격 렌치로 인한 스파크 발생 위험).

참고 사항

부하시 탭 절환장치 손상!

유격실 안에 있는 작은 부품에 다이버터 스위치 장착부가 끼어서 부하시 탭 절환장치가 손상될 수 있습니다.

▶ 부품이 유격실 안으로 떨어지지 않게 하십시오.

▶ 작은 부품이 모두 있는지 확인하십시오.
1. 관측 유리를 커버로 막았는지 확인합니다.
2. 부하시 탭 절환장치 헤드 커버에서 나사와 와셔를 제거합니다.

![그림 29: 부하시 탭 절환장치 헤드 커버](image)

3. 부하시 탭 절환장치 헤드 커버를 제거합니다.

![그림 30: 부하시 탭 절환장치 헤드 커버](image)

5.2.5.1.3 부하시 탭 절환장치 건조하기

참고 사항
부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 부속품 손상.
부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 부속품을 건조시키면 모두 손상됩니다.

► 부하시 탭 절환장치 헤드나 모터 구동 장치, 구동축, 보호 계전기, 압력 동작 릴레이, 압력 경량 밸브, 베릴 기어, 온도 센서, 오일 여과기 등의 부속품을 절대로 건조시키지 마십시오.

1. 부하시 탭 절환장치를 대기압 공기 속에서 최고 110°C의 최종 공기온도까지 약 10°C/h씩 공기온도를 증가시키며 가열합니다.
2. 부하시 탭 절환장치를 최고 온도 110°C의 공기 순환 속에서 20시간 이상 예비 건조합니다.
3. 부하시 탭 절환장치를 105°C ~ 최대 125°C에서 최소 50시간 동안 진공 건조합니다.
4. 잔류 압력은 10⁻³bar 이하여야 합니다.
5 장착

5.2.5.1.4 부하시 탭 절환기 헤드 커버 고정하기

참고 사항

부하시 탭 절환장치 손상!
O-링이 없거나 손상되고 씰 표면이 깨끗하지 않으면 절연 액체가 새어 나와 부하시 탭 절환장치가 손상됩니다.

► O-링이 부하시 탭 절환장치 헤드 커버에 비틀리지 않은 상태로 설치되도록 하십시오.
► 커버를 장착할 때 O-링이 손상되지 않도록 하십시오.
► 부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 헤드의 일봉 표면이 깨끗한지 확인하십시오.

1. 페더 키가 어댑터 샤프트에 단단히 고정되었는지 확인합니다. 필요한 경우 Vaseline을 사용하여 페더 키가 밖으로 떨어지지 않도록 고정하십시오.

![그림 31: 페더 키](image)

2. 부하시 탭 절환장치 헤드와 부하시 탭 절환장치 헤드 커버의 빨간색 삼각형 표시가 정렬되도록 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드 위에 놓습니다.

![그림 32: 삼각형 표시와 O형](image)
3. 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드에 나사로 고정 합니다.

그림 33: 부하시 탭 절환장치 헤드 커버

5.2.5.2 진공 오븐에서의 동유 건조

건조 후에 변압비 측정 시험을 다시 수행하고자 할 경우 '건조 후 변압비 측정 시험 수행' [▶절 5.2.8, 페이지 67] 섹션에 설명된 대로 진행하십시오.

5.2.5.2.1 부하시 탭 절환장치를 조정 위치로 이동시키기

▶ 부하시 탭 절환장치를 조정 위치로 이동합니다. 조정 위치는 납품에 포함된 부하시 탭 절환장치 결선도에 나와 있습니다.

5.2.5.2.2 부하시 탭 절환장치 헤드 커버 제거하기

⚠ 경고

부하시 탑 절환장치 헤드 커버 아래의 폭발성 가스가 연소되거나 폭발하여 사람이 심하게 다치거나 사망할 수 있습니다.

▶ 주변에 불꽃, 뜨거운 표면 또는 (예를 들어 정전기의 충격이 발생하는) 스파크 같은 점화원이 없는지 확인하고 점화원이 새로 생기지 않도록 하십시오.

▶ 부하시 탑 절환장치 헤드 커버를 제거하기 전에 모든 보조 전류 회로(예: 탑 변환 감시 장치, 압력 경감 밸브)에서 전원을 단절하십시오.

▶ 작업하는 동안 어떠한 전기 장치도 가동하지 마십시오(예: 충격 렌치로 인한 스파크 발생 위험).

참고 사항

부하시 탑 절환장치 손상!

유격실 안에 있는 작은 부품에 다이버터 스위치 장착부가 떨어져 부하시 탑 절환장치가 손상될 수 있습니다.

▶ 부품이 유격실 안으로 떨어지지 않게 하십시오.

▶ 작은 부품이 모두 있는지 확인하십시오.
1. 관측 유리를 커버로 막았는지 확인합니다.
2. 부하시 탭 절환장치 헤드 커버에서 나사와 와셔를 제거합니다.

![그림 34: 부하시 탭 절환장치 헤드 커버](image)

3. 부하시 탭 절환장치 헤드 커버를 제거합니다.

![그림 35: 부하시 탭 절환장치 헤드 커버](image)

5.2.5.2.3 등유 배출 플러그 열기

- **참고 사항**: 등유 배출 플러그를 완전히 제거하지 마십시오. 유격실 하부와 탭 선택기 기어 사이의 등유 배출 플러그를 열기 힘들어질 정도까지만 었습니다.
5.2.5.2.4 부하시 탭 절환장치 건조하기

참고 사항
부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 부속품 손상.
부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 부속품을 건조시키면 모두 손상됩니다.
► 부하시 탭 절환장치 헤드나 모터 구동 장치, 구동축, 보호 계전기, 압력 동작 릴레이, 압력 경감 밸브, 배럴 기어, 온도 센서, 오일 여과기 등의 부속품을 절대로 건조시키지 마십시오.

1. 약 90°C 온도의 등유 증기를 공급합니다. 이 온도를 약 3~4시간 동안 일정하게 유지합니다.
2. 등유 증기 온도를 원하는 최종 온도(부하시 탭 절환장치에서 최대 125°C)까지 약 10°C/히브로 높입니다.
3. 부하시 탭 절환장치를 105°C ~ 최대 125°C에서 최소 50시간 동안 진공 건조합니다.
4. 잔류 압력은 10^{-3}bar 이하여야 합니다.

5.2.5.2.5 등유 배출 플러그 닫기

참고 사항
등유 배출 플러그가 열려 있으면 유격실에서 절연 액체가 새어나와 부하시 탭 절환장치가 손상됩니다. 등유 배출 플러그를 닫으십시오(조임 토크 20Nm).
5 장착

5.2.5.2.6 부하시 탭 절환기 헤드 커버 고정하기

참고 사항

부하시 탭 절환장치 손상!
O-링이 없거나 손상되고 씨 표면이 깨끗하지 않으면 절연 액체가 새어 나와 부하시 탭 절환장치가 손상됩니다.
► O-링이 부하시 탭 절환장치 헤드 커버에 바틀리지 않은 상태로 설치되도록 하십시오.
► 커버를 장착할 때 O-링이 손상되지 않도록 하십시오.
► 부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 헤드의 일봉 표면이 깨끗한지 확인하십시오.

1. 페더 키가 어댑터 샤프트에 단단히 고정되었는지 확인합니다. 필요한 경우 Vaseline을 사용하여 페더 키가 밖으로 떨어지지 않도록 고정하십시오.

그림 37: 페더 키

2. 부하시 탭 절환장치 헤드와 부하시 탭 절환장치 헤드 커버의 빨간색 삼각형 표시가 정렬되도록 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드 위에 놓습니다.

그림 38: 삼각형 표시와 O형
3. 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드에 나사로 고정 합니다.

그림 39: 부하시 탭 절환장치 헤드 커버

5.2.6 변압기 탱크 안에서 부하시 탭 절환장치 건조하기

MR이 보장하는 부하시 탭 절환장치 절연 값을 보장하기 위해 다음 지침에 따라 부하시 탭 절환장치를 건조시키십시오.

부하시 탭 절환장치를 변압기 탱크에서 건조시키려면 먼저 변압기를 완전히 조립한 후 건조시키십시오.

변압기 탱크에서 건조하는 경우 다음과 같은 방법을 사용할 수 있습니다.

- 진공 건조
- 등유 건조

부하시 탭 절환장치를 변압기 탱크에서 건조시키지 않고 진공 오븐에서 대신 건조시킬 수도 있습니다.

5.2.6.1 변압기 탱크에서 진공 건조하기

부하시 탭 절환장치 헤더 커버는 건조 과정 내내 닫혀 있어야 합니다.
5 장착

1. 부하시 탭 절환장치 헤드에서 연결 E2와 Q 사이 또는 연결 E2와 R 사이에 연결 케이블을 연결합니다.
2. 사용하지 않은 파이프 커넥션을 적합한 표준 마개로 일봉합니다.

변압기 탱크에서 진공 건조
1. 부하시 탭 절환장치를 대기압 공기 속에서 최고 110°C의 최종 공기온도까지 약 10°C/h씩 공기온도를 증가시키며 가열합니다.
2. 부하시 탭 절환장치를 최고 온도 110°C의 공기 순환 속에서 20시간 이상 예비 건조합니다.
3. 부하시 탭 절환장치를 105°C ~ 최대 125°C에서 최소 50시간 동안 진공 건조합니다.
4. 잔류 압력은 10⁻³bar 이하여야 합니다.

건조 후에 변압비 측정 시험을 다시 수행하고자 할 경우 "건조 후 변압비 측정 시험 수행" [▶절 5.2.8, 페이지 67] 섹션에 설명된 대로 진행하십시오.

5.2.6.2 변압기 탱크에서 등유 건조
등유 배출 플러그를 이미 연 경우(예: 변압비 측정 시험 후) 바로 건조 [▶절 5.2.6.2.4, 페이지 64]를 시작할 수 있습니다.
그리지 않은 경우 먼저 등유 배출 플러그를 열어야 건조를 시작할 수 있습니다.

5.2.6.2.1 다이버터 스위치 장착부 제거하기

5.2.6.2.2.1 부하시 탭 절환장치를 조정 위치로 이동시키기
▶ 부하시 탭 절환장치를 조정 위치로 이동합니다. 조정 위치는 납품에 포함된 부하시 탭 절환장치 결선도에 나와 있습니다.
5 장착

5.2.6.2.1.2 부하시 탭 절환장치 헤드 커버 제거하기

⚠ 경고 ⚠
폭발 위험!
부하시 탭 절환장치 헤드 커버 아래의 폭발성 가스가 연소되거나 폭발하여 사람이 심하게 다치거나 사망할 수 있습니다.

► 주변에 불꽃, 뜨거운 표면 또는 (예를 들어 점프기의 충격으로 발생하는) 스파크 같은 점화원이 없는지 확인하고 점화원이 새로 생기지 않도록 하십시오.

► 부하시 탭 절환장치 헤드 커버를 제거하기 전에 모든 보조 전류 회로(예: 탭 변환 감시 장치, 압력 경감 밸브)에서 전원을 단절하십시오.

► 작업하는 동안 어떠한 전기 장치도 가동하지 마십시오(예: 충격 렌치로 인한 스파크 발생 위험).

참고 사항
부하시 탭 절환장치 손상!
유격실 안에 있는 작은 부품에 다이버터 스위치 장착부가 끼어서 부하시 탭 절환장치가 손상될 수 있습니다.

► 부품이 유격실 안으로 떨어지지 않게 하십시오.

► 작은 부품이 모두 있는지 확인하십시오.

1. 관측 유리를 커버로 막았는지 확인합니다.
2. 부하시 탭 절환장치 헤드 커버에서 나사와 와셔를 제거합니다.

그림 41: 부하시 탭 절환장치 헤드 커버
3. 부하시 탭 절환장치 헤드 커버를 제거합니다.

5.2.6.2.1.3 다중 코스 채인지 오버 선택기가 없는 위치 표시 디스크 제거하기

► 스프링 클립을 당겨 축단에서 분리하고 위치 표시 디스크를 제거합니다.

5.2.6.2.1.4 다이버터 스위치 장착부 들어 올리기

1. 다이버터 스위치 장착부의 캐리어 플레이트에 있는 부가 장치 및 안전 부품을 제거합니다.
2. 리프팅 기어를 다이버터 스위치 장착부의 캐리어 플레이트에 있는 브래킷 안에 끼우고 다이버터 스위치 장착부 위에 수직으로 배치합니다.

![그림 45: 캐리어 플레이트의 브래킷](image)

3. 다이버터 스위치 장착부를 수직으로 천천히 들어올립니다.

![그림 46: 다이버터 스위치 장착부 들어올리기](image)

4. **주의!** 불안정하게 위치한 다이버터 스위치 장착부는 넘어져 부상을 입거나 재산상 피해가 발생할 수 있습니다. 다이버터 스위치 장착부를 평평한 면에 놓고, 기울지 않게 고정합니다.

5. 다이버터 스위치 장착부가 A면 또는 B면의 최종 끝 위치에 있는지 적어 듭니다. 최종 끝 위치에 있는 진공 인터럽터가 닫힙니다. 부록의 예에서는 B면이 최종 끝 위치에 있습니다.
5.2.6.2.2 등유 배출 플러그 열기

먼저, 등유 배출 플러그를 완전히 제거하지 마십시오. 등유 배출 플러그를 완전히 열지 말고 열기 힘들 정도까지 시계 반대 방향으로 여십시오.

5.2.6.2.3 다이버터 스위치 장착부 장착하기

5.2.6.2.3.1 다이버터 스위치 장착부 장착하기

1. 다이버터 스위치 장착부를 장착하기 위해 탭 선택기 커플링과 표시 기어를 조정 위치에 두십시오.
2. 리프팅 기어를 다이버터 스위치 장착부의 캐리어 플레이트에 있는 브래킷 안에 끼우고 다이버터 스위치 장착부 위에 수직으로 배치합니다.

![그림 49: 캐리어 플레이트의 브래킷](image)

3. 다이버터 스위치 장착부가 제거되었을 때 같은 면의 최종 끝 위치에 있는지 확인합니다(A면 또는 B면). 다이버터 스위치 장착부가 A면의 최종 끝 위치에 있는 경우 A면의 진공 인터럽터가 닫히며, 그 반대의 경우도 마찬가지입니다. 부록의 예에서는 다이버터 스위치 장착부가 B면의 최종 끝 위치에 있습니다.
4. 에너지 축적기 상부의 빨간색 삼각형과 부하시 톱 젠환장치 헤드의 빨간색 삼각형이 일직선이 되도록 다이버터 스위치 장착부를 정렬합니다.

![그림 50: 다이버터 스위치 장착부 정렬하기](image1)

5. 연결 튜브를 돌리면서 연결 튜브의 빨간색 삼각형과 캐리어 플레이트 위치를 맞춥니다.

![그림 51: 연결 튜브](image2)

6. 다이버터 스위치 장착부를 천천히 낮춥니다.
7. 캐리어 플레이트가 부하시 텝 절환장치 헤드의 올바른 위치에 있는지 확인합니다. 빨간색으로 표시된 영역은 자유롭게 남아 있어야 합니다.

8. 표준 변압기 버전에는 나사가 있는 다이버터 스위치 장착부의 캐리어 플레이트가, 벨 탑형 탱크 변압기 버전과 안전 요소에는 너트가 있는지 확인하십시오.

![그림 52: 표준 변압기 버전용 다이버터 스위치 장착부의 캐리어 플레이트](image1)

![그림 53: 벨 탑형 탱크 변압기 버전용 다이버터 스위치 장착부의 캐리어 플레이트](image2)

5.2.6.2.3.2 다중 코오스 체인지 오버 센서가 없는 위치 표시 기우기

위치 표시 디스크에는 연결 핀이 있으므로, 정확한 위치에서만 설치할 수 있습니다.
5 장착

▶ 위치 표시 디스크를 표시 구동축에 놓고, 스프링 클립을 축단까지 밀니다.

그림 54: 위치 표시 디스크

5.2.6.2.3.3 부하시 탭 절환기 헤드 커버 고정하기

참고 사항

부하시 탭 절환장치 손상!
O-링이 없거나 손상되고 씰 표면이 깨끗하지 않으면 절연 액체가 새어 나와 부하시 탭 절환장치가 손상됩니다.
▶ O-링이 부하시 탭 절환장치 헤드 커버에 바睽리지 않은 상태로 설치되도록 하십시오.
▶ 커버를 장착할 때 O-링이 손상되지 않도록 하십시오.
▶ 부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 헤드의 일봉 표면이 깨끗한지 확인하십시오.

1. 페더 키가 어댑터 사프트에 단단히 고정되었는지 확인합니다. 필요한 경우 Vaseline을 사용하여 페더 키가 박으로 떨어지지 않도록 고정하십시오.

그림 55: 페더 키
2. 부하시 탭 절환장치 헤드와 부하시 탭 절환장치 헤드 커버의 빨간색 삼각 형 표시가 정렬되도록 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드 위에 놓습니다.

3. 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드에 나사로 고정합니다.

5.2.6.2.4 부하시 탭 절환장치 건조하기
1. 부하시 탭 절환장치 헤드의 파이프 커넥션 R과 Q를 공유 리드 한 개로 등 유 증기 리드에 연결합니다.
2. 사용하지 않은 파이프 커넥션을 적당한 표준 마개로 일봉합니다.
변압기 탱크에서 등유 건조
1. 약 90°C 온도의 등유 증기를 공급합니다. 이 온도를 약 3~4시간 동안 일정하게 유지합니다.
2. 등유 증기 온도를 원하는 최종 온도(부하시 탭 절환장치에서 최대 125°C)까지 약 10°C/시간 높입니다.
3. 부하시 탭 절환장치를 105°C ~ 최대 125°C에서 최소 50시간 동안 진공 건조합니다.
4. 잔류 압력은 10⁻³bar 이하여야 합니다.

5.2.6.2.5 등유 배출 플러그 닫기

참고 사항
부하시 탭 절환장치 손상!
유격실에 습기가 있는 경우 절연 액체의 절연 강도가 저하되어 부하시 탑 절환장치가 손상됩니다.
▶ 건조 10시간 내로 유격실을 부하시 탑 절환장치 헤드 커버와 함께 밀봉합니다.

1. 다이버터 스위치 장착부를 제거 [▶절 5.2.6.2.1, 페이지 55]합니다.
2. 참고 사항 등유 배출 플러그가 열려 있으면 유격실에서 절연 액체가 새어나와 부하시 탑 절환장치가 손상됩니다. 등유 배출 플러그를 연장 체켓 렌치로 시계 반대 방향으로 돌려서 닫습니다(조임 토크 20 Nm).
3. 다이버터 스위치 장착부를 삽입 [▶절 5.2.6.2.3, 페이지 59]합니다.

건조 후에 변압비 측정 시험을 다시 수행하고자 할 경우 "건조 후 변압비 측정 시험 수행" [▶절 5.2.8, 페이지 67] 섹션에 설명된 대로 진행하십시오.

5.2.7 부하시 탑 절환장치의 유격실에 절연 액체 충전하기

참고 사항
부하시 탑 절환장치 손상!
부적합한 미네랄 절연유를 사용하면 부하시 탑 절환장치가 손상될 수 있습니다.
건조 후에 과도한 양의 습기가 주변으로부터 흡수되지 않도록 가능한 빨리 유격실(다이버터 스위치 장착부에 설치됨)을 절연유로 완전히 채웁니다.
1. 유격실을 비우는 동안 유격실과 변압기 안의 압력이 동일하도록 파이프 커넥션 E2와 파이프 커넥션 R, S 또는 Q 중 하나 사이에 연결 케이블을 연결합니다.

2. 부하시 탭 절환장치 헤드의 파이프 커넥션 두 개 중 하나를 사용하여 부하시 탭 절환장치를 새 절연유로 채웁니다.
5.2.8 건조 후 변압비 측정 시험 수행

<table>
<thead>
<tr>
<th>참고 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>부하시 탭 절환장치 손상!</td>
</tr>
</tbody>
</table>

변압비 측정 시험을 잘못 수행하면 부하시 탭 절환장치 손상입니다.

► 선택기/무전압 탭 체인지를 천연 액체 속에 완전히 담그고 부하시 탭 절환장치의 유격실에 천연 액체를 완전히 재입한지 확인하십시오.

► 부하시 탭 절환장치를 상부 기어 유닛을 통해 작동 위치에서 다음 위치로 만 전환합니다. 이를 위해 예를 들어 연결 볼트(지름 12mm)가 고정된 짧은 튜브(지름 25mm)를 수동 휠 또는 크랭크와 함께 사용할 수 있습니다. 드릴을 사용할 때 최대 속도 250 rpm을 넘으십시오.

► 부하시 탭 절환장치 헤드 커버의 관측 유리를 통해 작동 위치에 도달하는지 항상 확인하십시오. 납품 시에 공급된 결선도에 표시된 말단 위치를 결코 넘어가지 마십시오.

► 공유 구동장치로 여러 탭을 사용할 경우 수평 구동축 부품을 사용하여 모든 부하시 탭 절환장치 헤드를 서로 연결해야 합니다.

체인저 오버 선택기를 작동시킬 때는 더 높은 토크가 필요합니다.

1. 부하시 탭 절환장치를 원하는 작동 위치로 전환합니다. 다이버터 스위치 작동음이 드렷하게 들림 것입니다.
2. **참고 사항** 탭 변환 구동이 제대로 완료되지 않으면 부하시 탭 절환장치가 온전히 작동할 수 없습니다. 다이버터 스위치를 작동한 후 탭 변환 구동을 올바르게 끝내기 위해 상부 기어 유닛의 구동축을 같은 방향으로 2.5바퀴 회전합니다.
3. 변압비 측정 시험을 수행합니다.
4. 모든 작동 위치에서 변압비 측정 시험을 반복합니다.
5. 부하시 탭 절환장치를 조정 위치로 전환합니다(등록된 부하시 탭 절환장치용 결선도 참고).
5.3 부하시 탭 절환장치를 변압기에 설치하기(별 타입형 탱크 버전)

5.3.1 부하시 탭 절환기를 지지 구조물 안에 끼우기

1. 참고 사항! 인장력으로 인해 부하시 탭 절환장치가 손상되거나 오작동할 수 있습니다. 스페이서를 사용하여 부하시 탭 절환장치를 부하 지지 구조물 안에 수직으로(수직과의 편차는 최대 1°) 끼웁니다. 끼운 후 부하시 탑 절환장치는 최종 설치 높이에 도달하여 탭 권선 및 부하시 탑 체인저 유도체를 연결하고 벨 타입형 탱크를 설치한 후에는 최대 5~20mm만 올리면 되도록 해야 합니다.

그림 61: 부하 지지 구조물에 스페이서가 있는 부하시 탑 절환장치

| 1 지지플랜지 | 3 부하시 지지 구조물 |
| 2 스페이서 |

2. 선택기 기반에서 빨간색 지지대를 제거합니다(있는 경우).
3. 부하시 탑 절환장치를 부하 지지 구조물에 임시로 고정합니다. 지지플랜지에 이 용도의 구멍이 있습니다.

그림 62: 부하시 탑 절환장치 고정
5 장착

5.3.2 탭권선과 부하시 탭 체인지 유도체 연결

참고 사항
부하시 탭 절환장치 손상!
부하시 탭 절환장치에 기계적 긴장을 가하는 연결 케이블은 부하시 탭 절환 장치에 손상을 입힙니다.
► 주의해서 연결하십시오.
► 연결 접점을 비틀지 마십시오.
► 연결 케이블을 뒤틀거나 변형하지 않고 탭 선택기에 연결하십시오.
► 필요 시에는 연결 케이블에 신축관을 사용하십시오.
► 나사 연결부에 제공된 차폐 캡을 맞추십시오.

탭권선과 부하시 탭 체인지 유도체는 납품시에 포함된 결선도에 따라 연결해야 합니다.

5.3.2.1 탭 선택기 연결 접점

탭 선택기 연결 접점에는 M8 나사용 구멍이 가로로 드려 있습니다.
1. 제공된 결선도에 따라 탭 권선 연결 케이블을 탭 선택기에 고정합니다. 케이블 러그 및 고정 부품은 납품 범위에 포함되지 않습니다.
2. 적절한 조치(예: 클램핑 와셔 사용)를 취하여 각 고정 부위가 느슨해지거나 침하되지 않도록 합니다. 차폐 캡이 납품 범위에 포함될 경우 그림에 표시된 대로 차폐 캡을 연결해야 합니다.
3. 차폐 캡을 닫고 올바르게 장착되었는지 확인합니다. 나사 헤드 및 너트를 완전히 덮어야 합니다.

그림 63: 탭 선택기 연결 접점
5.3.2.2 극성 체인지 오버 선택기 연결용 체인지 오버 선택기 연결 접점

참고 사항

부하시 탭 절환장치 손상!
체인지 오버 선택기의 가동 부품에 너무 가까이 배치한 탭권선 연결 케이블은 체인지 오버 선택기 동작을 방해하고, 이로 인해 부하시 탭 절환장치가 손상됩니다.

► 체인지 오버 선택기 구역에 있는 탭권선 연결 케이블은 체인지 오버 선택기의 가동 부품과 충분히 떨어져 있도록 배치해야 합니다.

(+)-연결 접점은 리버싱 체인지 오버 선택기 연결을 위해 M8 나사용 구멍이 있는 연결 접점으로서 설계되었습니다.

연결 접점 K는 확장된 파인 탭 선택기 연결 접점(또한 M8 나사용 구멍이 있음)으로 설계되었습니다.

그림 64: 리버싱 체인지 오버 선택기 연결용 체인지 오버 선택기 연결 접점
5 장착

5.3.2.3 코오스 체인지 오버 선택기 연결용 체인지 오버 선택기 연결 접점

참고 사항
부하시 탭 절환장치 손상!
체인지 오버 선택기의 가동 부품에 너무 가까이 배치한 탭권선 연결 케이블은 체인지 오버 선택기 동작을 방해하고, 이로 인해 부하시 탭 절환장치가 손상됩니다.

► 체인지 오버 선택기 구역에 있는 탭권선 연결 케이블은 체인지 오버 선택기의 가동 부품과 충분히 떨어져 있도록 배치해야 합니다.

코스 탭 선택기 결선이 있으면, (+)와 (-) 체인지 오버 선택기 연결 접점은 코스 체인지 오버 선택기의 적층 중이 바에 각각 고정됩니다. 접점을 외관은 탭 선택기 접점과 동일합니다(언제나 가로 방향인 M8 나사용 구멍이 있음).

그림 65: 리버싱 체인지 오버 선택기 결선의 회전 범위

그림 66: 코스 탭 선택기 결선용 체인지 오버 선택기 연결 접점
5.3.2.4 유격실에 직접 인출 리드 연결

1. 케이블 러그와 나사를 이용하여 부하시 채인자 유도체를 인출 리드 연결부에 연결합니다. 케이블 러그 및 고정 부품은 제공 범위에 포함되지 않습니다.

2. 적절한 조치(예: 클램핑 와셔 사용)를 취하여 각 고정 부위가 느슨해지거나 침하되지 않도록 합니다.

그림 68: 유격실의 인출 리드 연결
5 장착

5.3.3 건조 전 변압비 측정 시험 수행

부하시 탭 절환장치 손상!
변압비 측정 시험을 잘못 수행함으로 인해 발생하는 부하시 탑 절환장치 손상입니다.

► 부하시 탑 절환장치에서 탑 변환 구동을 250회 이상 수행하지 마십시오.
 탑 변환 구동을 250회 넘게 수행할 예정인 경우 유격실에 절연 액체를 끌까지 채우고 센타기와 탑 센타기 기어의 접점 슬라이딩 표면에 절연 액체를 도포하십시오.

► 부하시 탑 절환장치를 상부 기어 유닛을 통해 작동 위치에서 다음 위치로만 전환합니다. 이를 위해 예를 들어 연결 볼트(지름 12mm)가 고정된 윈드 브레이크(지름 25mm)를 수동 환향 또는 크랭크와 함께 사용할 수 있습니다. 드릴을 사용할 때 최대 속도 250 rpm을 넘으면 안 됩니다.

► 부하시 탑 절환장치 헤드 커버의 관측 유리를 통해 작동 위치에 도달했는지 항상 확인하십시오. 납품 시에 공급된 결선도에 표시된 말단 위치를 긴 주의 깊게 지켜야만 합니다.

► 공유 구동장치로 여러 탑을 사용할 경우 수평 구동축 부분을 사용하여 모든 부하시 탑 절환장치 헤드를 서로 연결해야 합니다.

채인저 오버 센타기를 작동시킬 때는 더 높은 토크가 필요합니다.

1. 부하시 탑 절환장치를 원하는 작동 위치로 전환합니다. 다이버터 스위치 작동음이 두드릴하게 들립니다.

2. 참고 사항: 탑 변환 구동이 제대로 완료되지 않으면 부하시 탑 절환장치가 손상될 수 있습니다. 다이버터 스위치를 작동한 후 탑 변환 구동을 올바르게 끝내기 위해 상부 기어 유닛의 구동축을 같은 방향으로 2.5바퀴 회전합니다.

3. 변압비 측정 시험을 수행합니다.

4. 모든 작동 위치에서 변압비 측정 시험을 반복합니다.

5. 부하시 탑 절환장치를 조정 위치로 전환합니다("등록된 부하시 탑 절환장치용 결선도 참고" 참고).

부하시 탑 절환장치를 변압기 링크 안에서 등유로 건조해야 한다면 변압비 측정 시험 후에 유격실 내 등유 배출 플러그를 개방하십시오. 건조 후에는 다이버터 스위치 장착부를 제거해야 하고, 유격실 내 등유 배출 플러그를 닫아야 하고, 다이버터 스위치 장착부를 재장착해야 합니다.

5.3.4 변압기 직류 저항 측정 수행

권선 과열을 방지하기 위해, 측정되는 직류 저항은 대개 측정된 변압기 권선의 정격 전류의 10%로 제한됩니다.
여러 부하시 탭 절환장치 작동 위치에서 직류 저항 측정을 수행합니다. 작동 위치를 변경할 때 측정 전류 차단 여부를 여기에서 구별해야 합니다.

<table>
<thead>
<tr>
<th>유격실 상태</th>
<th>측정 전류에서 차단하지 않는 경우</th>
<th>차단하는 경우(작동 위치 변경 전 측정 전류 = 0 A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>유격실이 비었음</td>
<td>최대 10 A DC</td>
<td>최대 50 A DC</td>
</tr>
<tr>
<td>절연유를 충전한 유격실</td>
<td>최대 50 A DC</td>
<td>최대 50 A DC</td>
</tr>
</tbody>
</table>

표 6: 변압기에서 직류 저항 측정 시 최대 허용 측정 전류

5.3.5 진공 오븐에서 부하시 탭 절환장치 건조

참고 사항

부하시 탭 절환장치 손상!
유격실에 습기가 있는 경우 절연 액체의 절연 강도가 저하되어 부하시 탭 절환장치가 손상됩니다.

► 건조 10시간 내로 유격실을 부하시 탭 절환장치 에드 커버와 함께 밀봉합니다.

MR이 보장하는 부하시 탭 절환장치 절연 값을 보장하기 위해 다음 지침에 따라 부하시 탭 절환장치를 건조시키시십시오.

진공 오븐에서 건조하는 경우 다음과 같은 방법을 사용할 수 있습니다.

- 진공 건조
- 등유 건조

부하시 탭 절환장치를 진공 오븐에서 건조시키지 않고 변압기 탱크에서 대신 건조시킬 수도 있습니다.

5.3.5.1 진공 오븐에서 진공 건조

건조 후에 변압비 축정 시험을 다시 수행하고자 할 경우 "건조 후 변압비 축정 시험 수행" [▶ 절 5.3.10, 페이지 111] 섹션에 설명된 대로 진행하십시오.

5.3.5.1.1 부하시 탭 절환장치를 조정 위치로 이동시키기

► 부하시 탭 절환장치를 조정 위치로 이동합니다. 조정 위치는 납품에 포함된 부하시 탭 절환장치 결선도에 나와 있습니다.
5 장착

5.3.5.1.2 부하시 탭 절환장치 헤드 커버 제거하기

▲ 경고
폭발 위험!
부하시 탭 절환장치 헤드 커버 아래의 폭발성 가스가 연소되거나 폭발하여 사람이 심하게 다치거나 사망할 수 있습니다.

► 주변에 불꽃, 뜨거운 표면 또는 (예를 들어 점전기가 축적되어 발생하는) 스파크 같은 점화원이 없는지 확인하고 점화원이 새로 생기지 않도록 하십시오.

► 부하시 탭 절환장치 헤드 커버를 제거하기 전에 모든 보조 전류 회로(예: 탭 변환 감시 장치, 압력 경감 밸브)에서 전원을 단절하십시오.

► 작업하는 동안 어떠한 전기 장치도 가동하지 마십시오(예: 충격 렌치로 인한 스파크 발생 위험).

참고 사항
부하시 탭 절환장치 손상!
유격실 안에 있는 작은 부품에 다이버터 스위치 장착부가 끼어서 부하시 탭 절환장치가 손상될 수 있습니다.

► 부품이 유격실 안으로 떨어지지 않게 하십시오.

► 작은 부품이 모두 있는지 확인하십시오.

1. 관측 유리를 커버로 막았는지 확인합니다.
2. 부하시 탭 절환장치 헤드 커버에서 나사와 와셔를 제거합니다.

그림 69: 부하시 탭 절환장치 헤드 커버
3. 부하시 탭 절환장치 헤드 커버를 제거합니다.

![그림 70: 부하시 탭 절환장치 헤드 커버]

5.3.5.1.3 부하시 탭 절환장치 건조하기

참고 사항

부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 부속품 손상.

부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 부속품을 건조시키면 모두 손상됩니다.

► 부하시 탭 절환장치 헤드나 모터 구동 장치, 구동축, 보호 계전기, 압력 동작 릴레이, 압력 경감 밸브, 베릴 기어, 온도 센서, 오일 여과기 등의 부속품을 절대로 건조시키지 마십시오.

1. 부하시 탭 절환장치를 대기압 공기 속에서 최고 110°C의 최종 공기온도까지 약 10°C/1에서 증가시키며 가열합니다.
2. 부하시 탭 절환장치를 최고 온도 110°C의 공기 순환 속에서 20시간 이상 예비 건조합니다.
3. 부하시 탭 절환장치를 105°C ~ 최대 125°C에서 최소 50시간 동안 진공 건조합니다.
4. 잔류 압력은 10⁻³ bar 이하하여야 합니다.

5.3.5.1.4 부하시 탭 절환기 헤드 커버 고정하기

참고 사항

부하시 탭 절환장치 손상!

O-링이 없거나 손상되고 씰 표면이 깨끗하지 않으면 절연 액체가 새어 나와 부하시 탭 절환장치가 손상됩니다.

► O-링이 부하시 탭 절환장치 헤드 커버에 비틀리지 않은 상태로 설치되도록 하십시오.
► 커버를 장착할 때 O-링이 손상되지 않도록 하십시오.
► 부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 헤드의 일봉 표면이 깨끗한지 확인하십시오.
1. 페더 키가 어댑터 샤프트에 단단히 고정되었는지 확인합니다. 필요한 경우 Vaseline을 사용하여 페더 키가 밖으로 떨어지지 않도록 고정하십시오.

![그림 71: 페더 키]

2. 부하시 탭 절환장치 헤드와 부하시 탭 절환장치 헤드 커버의 빨간색 삼각형 표시가 정렬되도록 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드 위에 놓습니다.

![그림 72: 삼각형 표시와 O형]

3. 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드에 나사로 고정합니다.

![그림 73: 부하시 탭 절환장치 헤드 커버]
5.3.5.2 진공 오븐에서의 등유 건조

건조 후에 변압비 측정 시험을 다시 수행하고자 할 경우 '건조 후 변압비 측정 시험 수행' [▶절 5.3.10, 페이지 111] 섹션에 설명된 대로 진행하십시오.

5.3.5.2.1 부하시 탭 절환장치를 조정 위치로 이동시키기

▶ 부하시 탭 절환장치를 조정 위치로 이동합니다. 조정 위치는 납품에 포함된 부하시 탭 절환장치 설계도에 나와 있습니다.

5.3.5.2.2 부하시 탭 절환장치 헤드 커버 제거하기

⚠ 경고
폭발 위험!
부하시 탭 절환장치 헤드 커버 아래의 폭발성 가스가 연소되거나 폭발하여 사람이 심하게 다치거나 사망할 수 있습니다.

▸ 주변에 불꽃, 뜨거운 표면 또는 (예를 들어 정전기가 축적되어 발생하는) 스파크 같은 점화원이 없는지 확인하고 점화원이 새로 생기지 않도록 하십시오.

▸ 부하시 탭 절환장치 헤드 커버를 제거하기 전에 모든 보조 전류 회로(예: 탭 변환 감시 장치, 압력 경감 밸브)에서 전원을 단절하십시오.

▸ 작업하는 동안 어떠한 전기 장치도 가동하지 마십시오(예: 충격 렌치로 인한 스파크 발생 위험).

참고 사항
부하시 탭 절환장치 손상!
유격실 안에 있는 작은 부품에 다이버터 스위치 장착부가 끼어서 부하시 탭 절환장치가 손상될 수 있습니다.

▸ 부품이 유격실 안으로 떨어지지 않게 하십시오.

▸ 작은 부품이 모두 있는지 확인하십시오.

1. 관측 유리를 커버로 막았는지 확인합니다.
2. 부하시 탭 절환장치 헤드 커버에서 나사와 와셔를 제거합니다.

그림 74: 부하시 탭 절환장치 헤드 커버
3. 부하시 탭 절환장치 헤드 커버를 제거합니다.

![그림 75: 부하시 탭 절환장치 헤드 커버](image)

5.3.5.2.3 등유 배출 플러그 열기

- 참고 사항! 등유 배출 플러그를 완전히 제거하지 마십시오. 유격실 하부와 탭 선택기 상부 사이의 등유 배출 플러그를 열기 힘들어질 정도까지만 열습니다.

![그림 76: 등유 배출 플러그](image)

5.3.5.2.4 부하시 탭 절환장치 건조하기

- 참고 사항

부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 부속품 손상. 부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 부속품을 건조시키면 모두 손상됩니다.

- 부하시 탭 절환장치 헤드나 모터 구동 장치, 구동축, 보호 계전기, 압력 동작 텔레레이, 압력 경감 밸브, 배럴 기어, 온도 센서, 오일 여과기 등의 부속품을 절대로 건조시키지 마십시오.
1. 약 90°C 온도의 등유 증기를 공급합니다. 이 온도를 약 3~4시간 동안 일정하게 유지합니다.
2. 등유 증기 온도를 원하는 최종 온도(부하시 탭 절환장치에서 최대 125°C)까지 약 10°C/h씩 높입니다.
3. 부하시 탭 절환장치를 105°C ~ 최대 125°C에서 최소 50시간 동안 진공 건조합니다.
4. 진류 압력은 10⁻³ bar 이하여야 합니다.

5.3.5.2.5 등유 배출 플러그 닫기

참고 사항!
등유 배출 플러그가 열려 있으면 유격실에서 절연 액체가 새어나와 부하시 탭 절환장치가 손상됩니다. 등유 배출 플러그를 단이십시오 (조임 토크 20Nm).

5.3.5.2.6 부하시 탭 절환기 헤드 커버 고정하기

참고 사항
부하시 탭 절환장치 손상!
O-링이 없거나 손상되고 빨 표면이 깨끗하지 않으면 절연 액체가 새어 나와 부하시 탭 절환장치가 손상됩니다.

► O-링이 부하시 탭 절환장치 헤드 커버에 비틀리지 않은 상태로 설치되도록 하십시오.

► 커버를 장착할 때 O-링이 손상되지 않도록 하십시오.

► 부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 헤드의 일봉 표면이 깨끗한지 확인하십시오.

1. 페더 키가 어댑터 사프트에 단단히 고정되었는지 확인합니다. 필요한 경우 Vaseline을 사용하여 페더 키가 밖으로 열어지지 않도록 고정하십시오.

그림 77: 페더 키
2. 부하시 탭 절환장치 헤드와 부하시 탭 절환장치 헤드 커버의 빨간색 삼각형 표시가 정렬되도록 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드 위에 놓습니다.

3. 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드에 나사로 고정 합니다.

5.3.6 지지플랜지(하단)에서 부하시 탭 절환장치 헤드 상단을 들어 올리기

5.3.6.1 부하시 탭 절환장치 헤드 커버 제거하기

메모리

폭발 위험!

부하시 탭 절환장치 헤드 커버 아래의 폭발성 가스가 연소되거나 폭발하여 사람이 심하게 다치거나 사망할 수 있습니다.

- 주변에 불꽃, 뜨거운 표면 또는 (예를 들어 정전기가 축적되어 발생하는) 스파크 같은 점화원이 없는지 확인하고 점화원이 새로 생기지 않도록 하십시오.
- 부하시 탭 절환장치 헤드 커버를 제거하기 전에 모든 보조 전류 회로(예: 탭 변환 감시 장치, 압력 경감 밸브)에서 전원을 단절하십시오.
- 작업하는 동안 어떠한 전기 장치도 가동하지 마십시오(예: 충격 렌치로 인한 스파크 발생 위험).
부하시 탭 절환장치 손상!

유격실 안에 있는 작은 부품에 다이버터 스위치 장착부가 끼어서 부하시 탭 절환장치가 손상될 수 있습니다.

► 부품이 유격실 안으로 떨어지지 않게 하십시오.
► 작은 부품이 모두 있는지 확인하십시오.

1. 관측 유리를 커버로 막았는지 확인합니다.
2. 임시 고정장치와 스페이서를 제거하고 부하시 탭 절환장치를 천천히 내립니다.

그림 80: 임시 고정장치와 스페이서

3. 부하시 탭 절환장치 헤드 커버에서 나사와 와셔를 제거합니다.

그림 81: 부하시 탭 절환장치 헤드 커버
4. 부하시 탭 절환장치 헤드 커버를 제거합니다.

5.3.6.2 다중 코스 체인지 오버 선택기가 없는 위치 표시 디스크 제거하기
 ► 스프링 클립을 당겨 축단에서 분리하고 위치 표시 디스크를 제거합니다.

5.3.6.3 다이버터 스위치 장착부 들어 올리기
 1. 다이버터 스위치 장착부의 캐리어 플레이트에 있는 부가 장치 및 안전 부품을 제거합니다.
2. 리프팅 기어를 다이버터 스위치 장착부의 캐리어 플레이트에 있는 브래킷 안에 깔우고 다이버터 스위치 장착부 위에 수직으로 배치합니다.

3. 다이버터 스위치 장착부를 수직으로 천천히 들어올립니다.

4. 주의! 불안정한 위치에 놓인 다이버터 스위치 장착부는 넘어질 수 있어 부상과 재산 피해를 입을 수 있습니다. 다이버터 스위치 장착부를 평평한 면에 놓고, 기울지 않게 고정합니다.

5. 다이버터 스위치 장착부가 A면 또는 B면의 최종 끝 위치에 있는지 적어둡니다. 다이버터 스위치 장착부가 A면의 최종 끝 위치에 있는 경우 A면의 진공 인터럽터가 닫히며, 그 반대의 경우도 마찬가지입니다. 부록의 예에서 다이버터 스위치 장착부가 B면의 최종 끝 위치에 있습니다.
5.3.6.4 오일 흡입 파이프 제거하기

► 부하시 탭 점화장치 헤드에서 오일 흡입 파이프의 체결 부품을 안쪽에서 배냅니다. O 림에 주의하십시오.

![그림 87: 오일 흡입 파이프](image)

5.3.6.5 지지플랜지에서 부하시 탭 점화장치 헤드 상단을 들어올리기

1. 지지플랜지와 부하시 탭 점화장치 헤드 상단 사이의 너트와 잠금 소자를 제거합니다.

![그림 88: 너트가 있는 부하시 탭 점화장치 헤드 상단](image)
2. 지지플랜지에서 부하시 탭 절환장치 헤드 상단을 들어 올립니다.

![그림 89: 부하시 탭 절환장치 헤드 상단](image)
5.3.7 부하시 탭 절환장치 헤드 상단에 벨 타입형 탱크 부착 및 부하시 탭 절환장치 연결

5.3.7.1 벨 타입형 탱크 부착하기
1. 지지플랜지의 공면 표면을 깨끗이 한 다음에 지지플랜지에 O-링을 놓습니다.
2. 벨 타입형 탱크를 변압기의 유효 부품 위로 들어올립니다.
5.3.7.2 벨 타입 탱크에 부하시 탭 절환기 헤드 상단 배치하기

1. **참고 사항!** 부적합한 개스킷을 사용하면 오일이 새어나와 부하시 탭 절환 장치가 손상될 수 있습니다. 사용하는 절연유에 적합한 개스킷을 장착 플랜지에 설치합니다. 마운팅 플랜지와 부하시 탭 절환장치 헤드의 일봉 표면을 깨끗이 합니다.

![그림 92: 개스킷이 있는 마운팅 플랜지](image)
2. 부하시 탭 절환장치 헤드의 상단을 아래로 내려서 부하시 탭 절환장치 헤드 상단과 하단의 삼각형 표시, 핀 및 취부 구멍이 정렬되도록 마운팅 플랜지에 위치시킵니다.

5.3.7.3 부하시 탭 절환장치 헤드 상단에 부하시 탭 절환장치 연결하기

참고 사항
부하시 탭 절환장치를 부정확하게 들어 올리면 손상을 입습니다!
지지플랜지의 연결 나사를 사용해 부하시 탭 절환장치를 들어 올리면 나사가 손상될 수 있습니다. 나사가 손상되면 부하시 탭 절환장치와 부하시 탭 절환장치 헤드를 나사로 고정할 수 없습니다!
▶ 부하시 탭 절환장치를 항상 지정 리프팅 트래버스와 함께 들어 올리고 지지플랜지의 연결 나사와 들어 올리지 마십시오.
5 장착

1. 리프팅 트래버스를 부하시 텔램환장치 헤드에 삽입하십시오.

그림 94: 리프팅 트래버스
2. 참고 사항: 부하시 탭 절환장치 헤드를 지지플랜지에 부정확하게 정렬하면 부하시 탭 절환장치를 들어올릴 때 손상됩니다. 부하시 탭 절환장치를 리프팅 트래버스와 함께 들어올리고 삼각형 표시가 정렬되고 모든 지지 플랜지 스터드 볼트가 부하시 탭 절환장치 헤드의 취부 구멍을 쉽게 통과하는지 확인합니다.

그림 95: 부하시 탭 절환장치 들어올리기

3. 부하시 탭 절환장치 헤드의 상부와 하부를 함께 빨간색으로 표시된 부분에 나사로 고정합니다.

그림 96: 부하시 탭 절환장치 헤드를 지지플랜지에 고정하기
4. 리프팅 트래버스를 제거합니다.

그림 97: 리프팅 트래버스 제거하기

5. 부하시 탭 절환장치 헤드를 마운팅 플랜지에 나사로 고정합니다.

그림 98: 부하시 탭 절환장치 헤드를 마운팅 플랜지에 나사로 고정하기
5.3.7.4 오일 흡입 파이프 깔우기
1. 오일 흡입 파이프의 O링에 윤활유를 얇게 바릅니다.
2. 오일 흡입 파이프를 부하시 텅 접환장치 헤드에 깔습니다. O링이 제대로 깔여져 있는지 확인합니다.

그림 99: 오일 흡입 파이프

5.3.7.5 다이버터 스위치 장착부 장착하기
1. 다이버터 스위치 장착부를 장착하기 위해 탕 선태기 커플링과 표시 기어 를 조정 위치에 두십시오.

그림 100: 조정 위치
2. 리프팅 기어를 다이버터 스위치 장착부의 캐리어 플레이트에 있는 브래킷 안에 깔우고 다이버터 스위치 장착부 위에 수직으로 배치합니다.

3. 다이버터 스위치 장착부가 제거되었을 때 같은 면의 최종 끝 위치에 있는지를 확인합니다(A면 또는 B면). 다이버터 스위치 장착부가 A면의 최종 끝 위치에 있는 경우 A면의 진공 인터럽터가 닫히며, 그 반대의 경우도 마찬가지입니다. 부록의 예에서는 다이버터 스위치 장착부가 B면의 최종 끝 위치에 있습니다.
4. 에너지 축적기 상부의 빨간색 삼각형과 부하시 탭 절환장치 헤드의 빨간색 삼각형이 일직선이 되도록 다이버터 스위치 장착부를 정렬합니다.

5. 연결 튜브를 돌리면서 연결 튜브의 빨간색 삼각형과 캐리어 플레이트 위치를 맞춥니다.

6. 다이버터 스위치 장착부를 천천히 낮춥니다.
7. 캐리어 플레이트가 부착된 탭절환장치 헤드의 올바른 위치에 있는지 확인합니다. 빨간색으로 표시된 영역은 자유롭게 남아 있어야 합니다.
8. 표준 변압기 버전에는 나사가 있는 다이버터 스위치 장착부의 캐리어 플레이트가, 벨 타입형 탱크 변압기 버전과 안전 요소에는 너트가 있는지 확인하십시오.

![그림 104: 표준 변압기 버전용 다이버터 스위치 장착부의 캐리어 플레이트](image1)

![그림 105: 벨 타입형 탱크 변압기 버전용 다이버터 스위치 장착부의 캐리어 플레이트](image2)

5.3.7.6 다중 코오스 체인지 오버 센터기기 없는 위치 표시 가우기

이 위치 표시 디스크는 연결 관이 있으므로, 정확한 위치에서만 설치할 수 있습니다.
위치 표시 디스크를 표시 구동축에 놓고, 스프링 클립을 축단까지 박니다.

5.3.7.7 부하시 탭 절환기 헤드 커버 고정하기

부하시 탭 절환장치 손상!
O-링이 없거나 손상되고 훼 표면이 꼥끔하지 않으면 절면 액체가 새어 나와 부하시 탭 절환장치가 손상됩니다.

- O-링이 부하시 탭 절환장치 헤드 커버에 비틀리지 않은 상태로 설치되도록 하십시오.
- 커버를 장착할 때 O-링이 손상되지 않도록 하십시오.
- 부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 헤드의 일종 표면이 깨끗한지 확인하십시오.

1. 페더 키가 어댑터 샤프트에 단단히 고정되었는지 확인합니다. 필요한 경우 Vaseline을 사용하여 페더 키가 박으로 떨어지지 않도록 고정하십시오.
2. 부하시 탭 절환장치 헤드와 부하시 탭 절환장치 헤드 커버의 빨간색 삼각형 표시가 정렬되도록 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드 위에 놓습니다.

3. 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드에 나사로 고정합니다.

5.3.8 변압기 탱크 안에서 부하시 탭 절환장치 건조하기

MR이 보장하는 부하시 탭 절환장치 절연 값을 보장하기 위해 다음 지침에 따라 부하시 탭 절환장치를 건조시키십시오.

부하시 탭 절환장치를 변압기 탱크에서 건조시키려면 먼저 변압기를 완전히 조립한 후 건조시키십시오.

변압기 탱크에서 건조하는 경우 다음과 같은 방법을 사용할 수 있습니다.
- 진공 건조
- 등유 건조

부하시 탭 절환장치를 변압기 탱크에서 건조시키지 않고 진공 오븐에서 대신 건조시킬 수도 있습니다.
5 장착

5.3.8.1 변압기 탱크에서 진공 건조하기

부하시 탭 절환장치 헤더 커버는 건조 과정 내내 닫혀 있어야 합니다.

1. 부하시 탭 절환장치 헤드에서 연결 E2와 Q 사이 또는 연결 E2와 R 사이에 연결 케이블을 연결합니다.
2. 사용하지 않은 파이프 커넥션을 적합한 표준 마개로 밀봉합니다.

그림 110: 연결 케이블

변압기 탱크에서 진공 건조

1. 부하시 탭 절환장치를 대기압 공기 속에서 최고 110°C의 최종 공기온도까지 약 10°C/h씩 공기온도를 증가시키며 가열합니다.
2. 부하시 탭 절환장치를 최고 온도 110°C의 공기 순환 속에서 20시간 이상 예비 건조합니다.
3. 부하시 탭 절환장치를 105°C ~ 최대 125°C에서 최소 50시간 동안 진공 건조합니다.
4. 전류 압력은 10⁻³bar 이하여야 합니다.

건조 후에 변압비 측정 시험을 다시 수행하고자 할 경우 "건조 후 변압비 측정 시험 수행" [▶절 5.3.10, 페이지 111] 섹션에 설명된 대로 진행하십시오.

5.3.8.2 변압기 탱크에서 등유 건조

등유 배출 플러그를 이미 연 경우(예: 변압비 측정 시험 후) 바로 건조 [▶절 5.3.8.2.4, 페이지 108]를 시작할 수 있습니다.

그렇지 않은 경우 먼저 등유 배출 플러그를 열어야 건조를 시작할 수 있습니다.
5 장착

5.3.8.2.1 다이버터 스위치 장착부 제거하기

5.3.8.2.1.1 부하시 탭 절환장치를 조정 위치로 이동시키기

► 부하시 탭 절환장치를 조정 위치로 이동합니다. 조정 위치는 납품에 포함된 부하시 탭 절환장치 결선도에 나와 있습니다.

5.3.8.2.1.2 부하시 탭 절환장치 헤드 커버 제거하기

경고
폭발 위험!
부하시 탭 절환장치 헤드 커버 아래의 폭발성 가스가 연소되거나 폭발하여 사람이 심하게 다치거나 사망할 수 있습니다.

► 주변에 불꽃, 뜨거운 표면 또는 (예를 들어 정전기가 축적되어 발생하는) 스파크 같은 점화원이 없는지 확인하고 점화원이 새로 생기지 않도록 하십시오.

► 부하시 탭 절환장치 헤드 커버를 제거하기 전에 모든 보조 전류 회로(예: 탭 변환 감시 장치, 압력 경감 밸브)에서 전원을 단절하십시오.

► 작업하는 동안 어떠한 전기 장치도 가동하지 마십시오(예: 충격 렌치로 인한 스파크 발생 위험).

참고 사항
부하시 탭 절환장치 손상!
유격실 안에 있는 작은 부품에 다이버터 스위치 장착부가 끼어서 부하시 탭 절환장치가 손상될 수 있습니다.

► 부품이 유격실 안으로 떨어지지 않게 하십시오.

► 작은 부품이 모두 있는지 확인하십시오.

1. 관측 유리를 커버로 막았는지 확인합니다.
2. 부하시 탭 절환장치 헤드 커버에서 나사와 와셔를 제거합니다.

그림 111: 부하시 탭 절환장치 헤드 커버
3. 부하시 탭 절환장치 헤드 커버를 제거합니다.

![그림 112: 부하시 탭 절환장치 헤드 커버](image)

5.3.8.2.1.3 다중 코스 채인지 오버 선택기가 없는 위치 표시 디스크 제거하기

- 스프링 클립을 당겨 축단에서 분리하고 위치 표시 디스크를 제거합니다.

![그림 113: 위치 표시 디스크](image)

5.3.8.2.1.4 다이버터 스위치 장착부 들어 올리기

1. 다이버터 스위치 장착부의 캐리어 플레이트에 있는 부가 장치 및 안전 부품을 제거합니다.

![그림 114: 다이버터 스위치 장착부의 캐리어 플레이트](image)
2. 리프팅 기어를 다이버터 스위치 장착부의 캐리어 플레이트에 있는 브래킷 안에 깔우고 다이버터 스위치 장착부 위에 수직으로 배치합니다.

3. 다이버터 스위치 장착부를 수직으로 천천히 들어올립니다.

4. 주의! 불안정한 위치에 놓인 다이버터 스위치 장착부는 넘어질 수 있어 부상과 재산 피해를 입을 수 있습니다. 다이버터 스위치 장착부를 평평한 면에 놓고, 기울지 않게 고정합니다.

5. 다이버터 스위치 장착부가 A면 또는 B면의 최종 끝 위치에 있는지 적어 듭니다. 다이버터 스위치 장착부가 A면의 최종 끝 위치에 있는 경우 A면의 진공 인터럽터가 닫히며, 그 반대의 경우도 마찬가지입니다. 부록의 예에서 다이버터 스위치 장착부가 B면의 최종 끝 위치에 있습니다.
5.3.8.2.2 등유 배출 플러그 열기

참고 사항! 등유 배출 플러그를 완전히 제거하지 마십시오. 등유 배출 플러그를 완전히 열지 말고 열기 힘들 정도까지만 시계 반대 방향으로 여십시오.

5.3.8.2.3 다이버터 스위치 장착부 장착하기

5.3.8.2.3.1 다이버터 스위치 장착부 장착하기
1. 다이버터 스위치 장착부를 장착하기 위해 탭 섹션기 커플링과 표시 기어를 조정 위치에 두십시오.
2. 리프팅 기어를 다이버터 스위치 장착부의 캐리어 플레이트에 있는 브래킷 안에 깔우고 다이버터 스위치 장착부 위에 수직으로 배치합니다.

![그림 119: 캐리어 플레이트의 브래킷](image)

3. 다이버터 스위치 장착부가 제거되었을 때 같은 면의 최종 끝 위치에 있는지 확인합니다(A면 또는 B면). 다이버터 스위치 장착부가 A면의 최종 끝 위치에 있는 경우 A면의 진공 인터럽터가 닫히며, 그 반대의 경우도 마찬가지입니다. 부록의 예에서는 다이버터 스위치 장착부가 B면의 최종 끝 위치에 있습니다.
4. 에너지 축적기 상부의 빨간색 삼각형과 부하시 탑 절환장치 헤드의 빨간색 삼각형이 일직선이 되도록 다이버터 스위치 장착부를 정렬합니다.

![그림 120: 다이버터 스위치 장착부 정렬하기](image)

5. 연결 튜브를 돌리면서 연결 튜브의 빨간색 삼각형과 캐리어 플레이트 위치를 맞춥니다.

![그림 121: 연결 튜브](image)

6. 다이버터 스위치 장착부를 천천히 낮춥니다.
5 장착

7. 캐리어 플레이트가 부하시 탭 절환장치 헤드의 올바른 위치에 있는지 확인합니다. 빨간색으로 표시된 영역은 자유롭게 남아 있어야 합니다.
8. 표준 변압기 버전에는 나사가 있는 다이버터 스위치 장착부의 캐리어 플레이트가, 별 타입형 탱크 변압기 버전과 안전 요소에는 너트가 있는지 확인하십시오.

![그림 122: 표준 변압기 버전용 다이버터 스위치 장착부의 캐리어 플레이트](image)

![그림 123: 별 타입형 탱크 변압기 버전용 다이버터 스위치 장착부의 캐리어 플레이트](image)

5.3.8.2.3.2 다중 코오스 체인지 오버 센서가 있는 위치 표시 깔우기

위치 표시 디스크에는 연결핀이 있으므로, 정확한 위치에서만 설치할 수 있습니다.
5 장착

► 위치 표시 디스크를 표시 구동축에 놓고, 스프링 클립을 축단까지 밀니다.

![그림 124: 위치 표시 디스크](image)

5.3.8.2.3.3 부하시 탭 절환기 헤드 커버 고정하기

참고 사항

부하시 탭 절환장치 손상!

O-링이 없거나 손상되고 셀 표면이 깨끗하지 않으면 절연 액체가 새어 나와
부하시 탭 절환장치가 손상됩니다.

► O-링이 부하시 탭 절환장치 헤드 커버에 비틀리지 않은 상태로 설치되도록 하십시오.

► 커버를 장착할 때 O-링이 손상되지 않도록 하십시오.

► 부하시 탭 절환장치 헤드 커버와 부하시 탭 절환장치 헤드의 일봉 표면이

1. 페더 키가 어댑터 샤프트에 단단히 고정되었는지 확인합니다. 필요한 경우 Vaseline을 사용하여 페더 키가 밖으로 떨어지지 않도록 고정하십시오.

![그림 125: 페더 키](image)
2. 부하시 탭 절환장치 헤드와 부하시 탭 절환장치 헤드 커버의 빨간색 삼각형 표시가 정렬되도록 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드 위에 놓습니다.

![그림 126: 삼각형 표시와 O형](image)

3. 부하시 탭 절환장치 헤드 커버를 부하시 탭 절환장치 헤드에 나사로 고정합니다.

![그림 127: 부하시 탭 절환장치 헤드 커버](image)

5.3.8.2.4 부하시 탭 절환장치 건조하기

1. 부하시 탭 절환장치 헤드의 파이프 커넥션 R과 Q를 공유 리드 한 개로 등유 증기 리드에 연결합니다.
2. 사용하지 않은 파이프 커넥션을 적당한 표준 마개로 일봉합니다.

![그림 128: 공유 리드](image)
변압기 탱크에서 등유 건조
1. 약 90°C 온도의 등유 증기를 공급합니다. 이 온도를 약 3~4시간 동안 일정하게 유지합니다.
2. 등유 증기 온도를 원하는 최종 온도(부하시 탭 절환장치에서 최대 125°C)까지 약 10°C/h씩 높입니다.
3. 부하시 탭 절환장치를 105°C ~ 최대 125°C에서 최소 50시간 동안 진공 건조합니다.
4. 진류 압력은 10⁻³bar 이하여야 합니다.

5.3.8.2.5 등유 배출 플러그 닫기

참고 사항
부하시 탭 절환장치 손상!
유격실에 습기가 있는 경우 절연 액체의 절연 강도가 저하되어 부하시 탭 절환장치가 손상됩니다.

참고 사항
부하시 탭 절환장치 손상!
부적합한 미네랄 절연유를 사용하면 부하시 탭 절환장치가 손상될 수 있습니다.

5.3.9 부하시 탭 절환장치의 유격실에 절연 액체 충전하기

참고 사항
부하시 탭 절환장치 손상!
부적합한 미네랄 절연유를 사용하면 부하시 탭 절환장치가 손상될 수 있습니다.
건조 후에 과도한 양의 습기가 주변으로부터 흡수되지 않도록 가능한 빨리 유격실(다이버터 스위치 장착부에 설치됨)을 절연유로 완전히 채웁니다.

1. 유격실을 비우는 동안 유격실과 변압기 안의 압력이 동일하도록 파이프 커넥션 E2와 파이프 커넥션 R, S 또는 Q 중 하나 사이에 연결 케이블을 연결합니다.

2. 부하시 탑 절환장치 헤드의 파이프 커넥션 두 개 중 하나를 사용하여 부하시 탑 절환장치를 새 절연유로 채웁니다.
5.3.10 건조 후 변압비 측정 시험 수행

참고 사항

변압비 측정 시험을 잘못 수행함으로 인해 발생하는 부하시 탭 절환장치 손상입니다.

► 선택기/무전압 탭 체인지를 절연 액체 속에 완전히 담그고 부하시 탭 절환장치의 유격실에 절연 액체를 완전히 재넣는지 확인하십시오.

► 부하시 탭 절환장치를 상부 기어 유닛을 통해 작동 위치에서 다음 위치로 만 전환합니다. 이를 위해 예를 들어 연결 볼트(지름 12mm)가 고정된 짧은 튜브(지름 25mm)를 수동 휠 또는 크랭크와 함께 사용할 수 있습니다. 드릴을 사용할 때 최대 속도 250 rpm을 넘으면 안 됩니다.

► 부하시 탭 절환장치 헤드 커버의 관측 유리를 통해 작동 위치에서 도달했는지 항상 확인하십시오. 납품 시에 공급된 결선도에 표시된 말단 위치를 결코 넘어가지 마십시오.

► 공유 구동장치로 여러 칼럼을 사용할 경우 수평 구동축 부품을 사용하여 모든 부하시 탭 절환장치 헤드를 서로 연결해야 합니다.

채인저 오버 선택기를 작동시킬 때는 더 높은 토크가 필요합니다.

1. 부하시 탭 절환장치를 원하는 작동 위치로 전환합니다. 다이버터 스위치 작동음이 드听得입니다.

2. 참고 사항. 탭 변환 구동이 제대로 완료되지 않으면 부하시 탭 절환장치가 손상될 수 있습니다. 다이버터 스위치를 작동한 후 탭 변환 구동을 올바르게 끝내기 위해 상부 기어 유닛의 구동축을 같은 방향으로 2.5바퀴 회전합니다.

3. 변압비 측정 시험을 수행합니다.

4. 모든 작동 위치에서 변압비 측정 시험을 반복합니다.

5. 부하시 탭 절환장치를 조정 위치로 전환합니다(동봉된 부하시 탭 절환장치용 결선도 참고).
5 장착

5.4 보호 장치 및 드라이브 구성품 설치하기

5.4.1 온도 센서 전기 연결

구동축을 장착하는 과정에서 필요 시 센서를 돌릴 수 있도록 온도 센서의 전기 연결용 케이블을 조정합니다.

► 제공된 결선도에 따라 온도 센서에 전기를 연결합니다.

5.4.2 파이프 및 연결에 보호 계전기 설치하기

경고

폭발 위험!

보호 계전기 안에 있는 폭발성 가스가 연소되거나 폭발하여 사람이 심하게 다치거나 사망할 수 있습니다.

► 보호 계전기와 관련된 추가 작업을 시작하기 전에 가스가 흩어질 수 있도록 변압기의 스위치를 꺼 후 약 15분 동안 가다리십시오.

► 주변에 불꽃, 뜨거운 표면 또는 (예를 들어 정전기가 축적되어 발생하는) 스파크 같은 점화원이 없는지 확인하고 점화원이 새로 생기지 않도록 하십시오.

► 작업을 시작하기 전에 모든 보조 전류 회로의 전압을 끊으십시오.

► 작업하는 동안 어떠한 전기 장치도 가동하지 마십시오(예: 충격 렌치로 인한 스파크 발생 위험).

모든 변압기 시험은 항상 부착 및 연결된 보호 계전기를 사용하여 수행하십시오.
5 장착

5.4.2.1 보호 계전기 기능 확인

부하시 탭 접환장치 헤드와 오일 컨서베이터 사이의 파이프에 설치하기 전에 보호 계전기의 기능을 확인합니다. 전기적 연속성 확인을 위한 관련 접점 위치는 제공된 치수도에서 나타냅니다.

1. 단자함 커버에서 나사 3개를 풀고 단자함 커버를 들어냅니다.

![그림 131: 단자함 커버](image1)

2. 전위 타이인용 일자형 헤드 나사를 제거하고 단자함을 선과 함께 깨냅니다.

![그림 132: 단자함 커버](image2)

참고 사항

보호 계전기 손상!
부적절한 구동으로 인한 보호 계전기 손상 위험
► 두 테스트 버튼을 동시에 누르지 마십시오.
3. TRIP 테스트 버튼을 누릅니다.
☞ 플랩 값이 기울어집니다. 라인 마커가 관측 유리 중앙에 나타납니다.

그림 133: TRIP 위치

4. RESET 테스트 버튼을 누릅니다.
☞ 플랩 밸브가 수직입니다.

그림 134: RESET 위치
5 장착

5. 단자함 케버용 선을 위치에 놓고 일자형 헤드 나사를 이용하여 부착합니다.

외부

그림 135: 단자함 케버

6. 단자함 케버를 부착하고 나사로 고정합니다.

외부

그림 136: 단자함 케버

5.4.2.2 파이프에 보호 계전기 설치하기

보호 계전기 설치 및 적절한 작동을 위해 다음 사항을 확인합니다.
1. 파이프나 오일 컨서베이터에 이물질이 없는지 확인합니다.
2. 후속 유지 보수 작업을 위해 쉽게 접근할 수 있도록 보호 계전기를 설치합니다.
3. 성능이 좋은 지지대로 진동이 없도록 보호 계전기를 설치합니다.
4. 테스트 버튼은 상단에 있어야 합니다.
5. 파이프의 내부 지름은 최소 25mm여야 합니다.
6. 자기장 강도(부싱, 모선 등)는 20kA/m 미만이어야 합니다. 더 높은 자기 장 강도는 보호 계전기 기능에 부정적인 효과가 있습니다.
7. 보호 계전기에서 오일 컨서베이터로 연결되는 파이프는 전환 가스가 자유롭게 빠져나갈 수 있도록 최소 2% (1.2°)의 경사로 배관해야 합니다.

8. 보호 계전기는 부하시 탭 점화장치 헤드 가까이에서 수평 작동 위치로 사용하도록 설계되었습니다. 컨서베이터 방향으로 수평에서 최대 5° 이하의 양의 경사가 허용됩니다. 수직에서 양쪽으로 최대 5°까지의 경사가 허용됩니다.

그림 137: 보호 계전기 설치
9. 단자함 커버의 참조 화살표는 부하시 탭 절환장치의 오일 컨서베이터를 가리켜야 합니다.

그림 138: 부하시 탭 절환장치의 오일 컨서베이터를 가리키는 참조 화살표
10. 보호 계전기와 오일 컨서베이터 사이에 공칭 너비가 25mm 이상인 차단 코크를 설치합니다.

![Diagram of a valve and transformer](image)

그림 139: 차단 코크

5.4.2.3 보호 계전기의 전기 연결

보호 계전기의 리드형 자석 스위치 튜브는 NC 또는 NO 접점의 표준 버전으로 제공됩니다. 기타 접점 조합이 특수 버전으로 공급될 수 있으며 제공된 치수도에 표시됩니다.

경고

중상 또는 사망 위험!
보호 계전기의 부적절한 전기 연결로 인한 사망 또는 중상 위험.

- 보호할 변압기에 있는 차단기의 차단 회로에 보호 계전기를 루프로 연결하여 보호 계전기 차단 시에 변압기 전원이 차단기에 의해 즉시 차단되도록 하십시오.
- 경고 메시지만 생성하는 시스템은 허용되지 않습니다.

![그림 140: 나사 구멍](image1)

2. 나사 구멍을 더미 플러그로 일봉합니다.

![그림 141: 더미 플러그로 일봉](image2)

3. 단자함 커버에서 나사 3개를 풀고 단자함 커버를 들어냅니다.

![그림 142: 단자함 커버](image3)
4. 전위 타이인용 일자형 헤드 나사를 제거하고 단자함을 선과 함께 꺼냅니다.

![그림 143: 단자함 커버](image)

5. 보호판 나사를 제거하고 보호판을 벗겨냅니다.

![그림 144: 보호판](image)

6. 케이블 글랜드를 통해 케이블을 보호 케이스로 가이드합니다. 케이블 글랜드가 잘 연결되고 밀봉되었는지 확인합니다.

![그림 145: 케이블 부싱](image)
7. 치수도의 결선도에 따라 연결 단자에 전기 케이블을 연결합니다.

![그림 146: 전기 케이블](image1)

8. 보호 도체를 실린더 헤드 나사에 연결합니다.

![그림 147: 보호 도체](image2)

9. 보호판을 삽입하고 나사로 고정합니다.

![그림 148: 보호판](image3)
10. 단자함 커버용 선을 위치에 놓고 일자형 헤드 나사를 이용하여 부착합니 다.

![그림 149: 단자함 커버](image1)

11. 단자함 커버를 부착하고 나사로 고정합니다.

![그림 150: 단자함 커버](image2)
5.4.3 압력 동작 릴레이 설치 및 연결

5.4.3.1 압력 동작 릴레이 기능 점검하기

압력 동작 릴레이를 곡관 또는 부하시 탭 절환장치 헤드에 설치하기 전에 릴레이 기능을 점검하십시오.
1. 커버 캡을 제거합니다.
2. 스냅 동작 스위치를 활성화합니다.
 ⇒ 센서가 스냅 동작 스위치 위의 TRIP 위치에 있습니다.

![그림 151: TRIP 위치](image_url)

1. 스냅 동작 스위치
2. 센서가 TRIP 위치에 있음
3. 스냅 동작 스위치를 다시 활성화합니다.
 센서가 스냅 동작 스위치 아래의 RESET 위치에 있습니다.

![그림 152: RESET 위치](image)

1 스냅 동작 스위치
2 센서가 RESET 위치에 있음

4. 커버 캡을 고정시킵니다.

센서 위치를 항상 확인하십시오!

5.4.3.2 압력 동작 릴레이 설치

압력 동작 릴레이를 두 가지 방법으로 설치할 수 있습니다.
- 부하시 탭 절환장치 헤드에 고정하기(수직 설치)
- 곡관에 고정하기(수평 설치)

마운팅 링의 구멍을 통해 설치합니다. 설치 중에 마운팅 씰을 압력 동작 릴레이 아래에 설치해야 합니다.

고정하는 동안 환기구가 상부에 있는지 확인합니다.

압력 동작 릴레이 위에 커버 캡을 제거할 공간이 충분한지 확인하십시오.
5장착

5.4.3.3 압력 동작 릴레이의 전기 연결

▲ 위험
전압으로 인한 중상 위험!
장치를 조립 및 연결할 때 전압으로 인한 사망 위험
▶ 스위치가 다시 켜지는 것을 방지하기 위하여 장치와 시스템 주변부를 단전하고 잠그십시오.

▲ 경고
사망 또는 중상 위험!
압력 동작 릴레이의 잘못된 전기 연결로 인한 사망 또는 중상 위험.
▶ 보호할 변압기에 있는 차단기의 차단 회로에 압력 동작 릴레이를 루프로 연결하여 압력 동작 릴레이 작동 시에 변압기 전원이 차단기에서 차단되도록 하십시오.
▶ 경고 메시지만 생성하는 회로는 허용되지 않습니다.

1. 커버 캡을 제거합니다.
2. 삽입 이를 위해 케이블 배선을 위한 나사 구멍을 사용하십시오.
3. 케이블을 스냅 동작 스위치의 단자에 연결합니다.
 스냅 동작 스위치는 정상 열림 및 정상 닫힘 스위치로 설계되어 있습니다. 동작 후에 상태가 바뀌며 초기화할 수 있습니다.
4. 모든 전기 케이블과 보호 도체를 연결합니다.
 케이블 연결 단자 하나에 케이블을 1개 또는 2개씩 연결할 수 있습니다(Ø 0.75…2.5 mm²).
5. 커버 캡을 고정시킵니다.
6. 고정 나사를 올바르게 배치했는지 확인하고 제공된 치수 도면도 참고하십시오.

5.4.4 모터 구동 장치 장착하기
▶ 모터 구동 장치용 관련 MR 운영 설명서에 설명된 대로 모터 구동 장치를 변압기에 고정합니다.

5.4.5 구동축 장착하기
설치할 때 다음 사항을 준수하십시오.

컴포넌트의 내식성
사각관, 연결 브래킷, 연결 볼트, 나사 및 롱링 와셔는 부식에 강합니다. 그러므로 이러한 부품에는 변압기 링크에 입힌 것과 같은 외부 피복을 입히지 말 것을 권장합니다.
사각 관, 신축 보호 튜브 및 보호판 자르기

필요한 길이보다 긴 사각 관, 신축 보호 튜브 및 보호판이 (등급이 있는 표준 길이로) 제공됩니다. 이 부품은 필요한 크기로 잘라서 변압기에 설치해야 합니다. 드물게 어떤 경우에는 신축 보호 튜브의 안쪽 튜브를 원하는 길이로 잘라도 됩니다. 마지막 캐럼에서 구동 장치까지의 구동축 최대 허용 길이 = 15m.

<table>
<thead>
<tr>
<th>표준 길이</th>
<th>모터 구동 장치</th>
<th>수동 구동 장치</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>600</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>900</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>1300</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>1700</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>2000</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>2500</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

표 7: 등급 표준 길이의 사각 관

1) 2000은 축 보호가 없는 수직 설치만 가능합니다! 모터 구동 장치의 경우 시험 수직 치수 V1 > 2462인 수동 구동 장치용 신축 보호 튜브가 수직 중간 베어링과 함께 공급됩니다.
5.4.5.1 카르단 조인트가 없는 수직 구동축 장착하기

허용된 축방향 변위
수직 구동축의 축방향 변위는 사각 관의 길이 1000mm당 35mm(2°에 해당함)를 넘지 않는 사소한 변위이면 허용될 수 있습니다.

그림 153: 카르단 조인트가 없는 수직 구동축에 허용된 최대 축방향 변위
수직 구동축을 구동 장치에 장착하려면 다음과 같이 진행하십시오.

1. **주의!** 모터 구동 장치(위치 O)에서 모터 보호 스위치 Q1의 전원을 끕니다. 전원을 꺼지 않으면 모터 구동 장치가 실수로 작동하여 다칠 수 있습니다.

2. 베헬 기어를 변압기에 고정합니다.

![그림 154: 베헬 기어](image)
3. 구동 장치의 중공축과 베벨 기어 중공축 사이의 차수 A를 결정합니다. 사각 관 길이를 A-9mm로 줄입니다.

그림 155: 사각 관 줄이기
4. 사각 관의 절단면을 디버링합니다.

그림 156: 절단면 디버링하기
5. 나사로 느슨하게 결합된 연결 부품을 사각 관으로 정지부에 걸릴 때까지 이릅니다.

그림 157: 연결 부품을 밀어 사각 관에 꼬웁니다
6. 연결 볼트를 구동 장치의 중공축에 끼웁니다. 연결 부품, 연결 볼트 및 중공축에 그리스 (예: ISOFLEX TOPAS L32)를 바릅니다. 연결 부품을 사용하여 사각 관을 밀어 중공축에 끼웁니다.

그림 158: 연결 부품을 사용하여 사각 관을 밀어 중공축에 끼우기

7. 사각 관을 구동 장치에 연결합니다.

그림 159: 구동 장치에 사각 관 연결하기
8. 사각 관을 돌려 축에서 멀리 떨어트립니다.

![사각 관을 돌려 축에서 멀어트리기](image)

9. 신축 보호 튜브의 안쪽 튜브를 설치할 때 필요한 경우 슬롯이 없는 쪽의 길이를 줄입니다. 두 보호 튜브를 겹치는 최소 치수는 100mm입니다.
안쪽 튜브는 변형되지 않아야 하고, 바깥 튜브에 쉽게 끼우기 위해 디버링해야 합니다.

그림 161: 안쪽 튜브 디버링하기

<table>
<thead>
<tr>
<th>지수 A(= 구동 장치의 중공축과 벨 기어 중공축 사이의 거리)</th>
<th>안쪽 튜브</th>
<th>바깥 튜브</th>
</tr>
</thead>
<tbody>
<tr>
<td>170mm...190mm</td>
<td>200mm로 줄입니다.</td>
<td>= 200mm</td>
</tr>
<tr>
<td>191mm...1,130mm</td>
<td>지수 A + 20mm</td>
<td>= 200mm</td>
</tr>
<tr>
<td>1,131mm...1,598mm</td>
<td>= 700mm</td>
<td>= 1,150mm</td>
</tr>
<tr>
<td>1,599mm...2,009mm</td>
<td>= 1,150mm</td>
<td>= 1,150mm</td>
</tr>
</tbody>
</table>
10. 바깥 튜브를 밀어 안쪽 튜브에 깔립니다. 이 때 안쪽 튜브의 슬롯이 없는 쪽이 위를 향하도록 하십시오. 신축 보호 튜브를 밀어 사각 관에 깔립니다. 그런 다음 호스 클립을 신축 보호 튜브 위에서 밀립니다.

그림 162: 신축 보호 튜브 위로 밀기
11. 어댑터 링을 베페 기어의 베어링 칼라 위에 깔우고 위쪽으로 밀니다. 연결 볼트를 베릴 기어의 중공축에 꼬릅니다. 사각 관을 축까지 다시 돌립니다.

그림 163: 어댑터 링과 연결 볼트 장착하기
12. 연결 브래킷, 연결 볼트 및 중공축에 그리스(예: ISOFLEX TOPAS L32)를 바르고 연결 브래킷으로 사각 관을 벨 기어에 고정합니다. 연결 볼트와 위쪽 연결부 사이에 동일한 방향으로 축방향 틈새 3mm를 둡니다.

 그림 164: 연결 브래킷 장착하기

13. 호스 클립을 사용하여 하부 보호 튜브(안쪽 튜브)를 구동 장치의 벨 기어 칼라에 부착합니다 1. 그 다음 상부 보호 튜브(바깥 튜브)를 벨 기어의 어댑터 링 위에 끼웁니다 2. 호스 클립을 사용하여 상부 보호 튜브의 맨 윗부분과 연결 포인트를 하부 보호 튜브에 고정합니다 3.
그림 165: 보호 튜브 장착하기
5.4.5.2 카르단 조인트가 없는 수평 구동축 장착하기

허용된 축방향 변위
수평 구동축의 축방향 변위는 사각 관의 길이 1000mm당 35mm(2°에 해당함)을 넘지 않는 사소한 변위이면 허용될 수 있습니다.

![그림 166: 카르단 조인트가 없는 수평 구동축에 허용된 최대 축방향 변위](image)

부하시 탭 절환장치 헤드에 상부 기어 유닛 정렬하기
수평 구동축을 올바르게 설치하려면 상황에 따라 상부 기어 유닛이 베펠 기어에 플러시되도록 먼저 상부 기어 유닛을 정렬해야 할 수 있습니다. 멀티컬럼 부하시 탭 절환장치 모델의 경우, 부하시 탭 절환장치 컬럼을 함께 연결하려면 개별 부하시 탭 절환장치 컬럼의 상위 기어 유닛을 서로 정렬해야 할 수도 있습니다.
이렇게 하려면 다음 작업을 수행하십시오.

1. **참고 사항!** 유격실이 완전히 충전되지 않을 때 기어 유닛의 정렬로 인한 부하시 탑 절환장치 손상. 절연유로 유격실을 완전히 충전합니다.

2. 나사를 풀 다음 압박 링 세그먼트를 한쪽으로 돌립니다.

![그림 167: 압박 링 세그먼트](image)

3. **참고 사항!** 상부 기어 유닛의 잘못된 정렬로 인한 부하시 탑 절환장치 손상. 수평 구동축이 기어 유닛의 구동축으로 풀려있도록 기어 유닛을 정렬합니다. 기어 유닛을 정렬하는 동안 출력축이 원래 위치를 유지하도록 유닛의 구동축을 돌립니다.

![그림 168: 기어 유닛 정렬하기](image)
4. 압박 링 세그먼트를 다시 기어 유닛 쪽으로 회전한 다음 나사를 조입니다. 로킹 와셔가 나사 헤드와 압박 링 세그먼트 사이에 있으며 압박 링 세그먼트가 기어 유닛 하우징에 고정되어 있는지 확인합니다.

수평 구동축 장착하기

구동축 장착을 위해 필요에 따라 온도 센서를 돌립니다.

수평 구동축을 장착하기 위해 다음과 같이 진행하십시오.
1. 상부 기어 유닛의 중공축과 베벨 기어 중공축 사이의 지수 A를 계산한 다음, 사각 관의 길이를 A-9mm로 줄입니다.
2. 상부 기어 유닛과 베델 기어 하우징 사이의 내부 너비 B를 계산 합니다. 보호판을 B-2mm로 자르고 자른 가장자리를 디버링합니다. 보호 판에 페인트를 칠하여 부식을 방지합니다.

![그림 171: 보호판의 길이 단축, 디버링 및 코팅](image)
3. 나사로 느슨하게 결합된 연결 부품을 사각 관 위에서 정지부에 걸릴 때까지 밀입니다.

그림 172: 연결 부품을 밀어 사각 관에 꼁우기
4. 베벨 기어의 연결 볼트, 연결 부품 및 중공축에 그리스(예: ISOFLEx TOPAS L32)를 바르고 연결 볼트를 중공축에 꼬웁니다. 호스 클립을 사각 관에 꼬우고 연결 부품을 사용하여 사각 관을 중공축에 깔끔합니다.

![그림 173: 연결 부품을 사용하여 사각 관을 밀어 중공축에 꼬우기](image1)

5. 사각 관을 베벨 기어에 고정합니다.

![그림 174: 사각 관을 베벨 기어에 고정하기](image2)
6. 상부 기어 유닛의 연결 볼트, 연결 브래킷 및 중공축에 그리스(예: ISOFLEX TOPAS L32)를 바르고 연결 볼트를 중공축에 기워줍니다. 연결 브래킷을 사용하여 사각 관을 상부 기어 유닛에 고정합니다.

그림 175: 사각 관을 상부 기어 유닛에 고정합니다.
7. 단축된 보호판을 부하시 탭 절환장치 헤드의 하우징 러그와 베벨 기어의 하우징 러그에 부착합니다. 보호판의 양쪽 끝을 호스 클립으로 고정합니다.

그림 176: 보호판 장착하기
8. 베어링 블록이나 앵글 기어를 사용하는 경우 캡을 보호판에 부착합니다. 캡을 부착하기 전에 드릴 비트를 끼운 핸드 드릴을 사용하여 보호판의 측면에 3.5mm의 구멍을 두 개 뚫습니다.

그림 177: 베어링 블록 캡

그림 178: 앵글 기어 캡
5장착

5.4.5.2.1 부하시 탭 절환장치 세트와 조합

2컬럼 및 3컬럼 부하시 탭 절환장치 모델의 경우 개별 부하시 탭 절환장치 컬럼이 일반 모터 구동 장치 또는 여러 모터 구동 장치에 의해 구동될 수 있습니다.

부하시 탭 절환장치 컬럼 및 모터 구동 장치의 수에 관계없이, 모든 부하시 탭 절환장치 및 모터 구동 장치는 동일한 작동 위치에 있어야 하고 동시에 전환해야 합니다 (ABC 스위칭 시퀀스의 경우 적용되지 않음).

일반 모터 구동 장치에 의해 구동되는 부하시 탭 절환장치 컬럼이 동시에 전환되도록 하려면, 이러한 부하시 탭 절환장치를 변압기 케이블을 통해 수평 구동축과 연결해야 합니다. 전환하는 동안 해당 부하시 탭 절환장치 간의 오프셋은 최대 1개의 탭 변환 표시기 구간입니다.

부하시 탭 절환장치 컬럼을 연결하려면 다음과 같이 진행하십시오.

부하시 탭 절환장치 컬럼 및 모터 구동 장치를 수평 구동축과 연결하려면 다음과 같이 진행하십시오.

1. 참고 사항!
 유격실이 완전히 충전되지 않을 때 기어 유닛의 정렬로 인한 부하시 탭 절환장치 손상.
 절연유로 유격실을 완전히 충전합니다.
 2. 나사를 풀 다음 압박 링 세그먼트를 한쪽으로 돌립니다.

[그림 179: 압박 링 세그먼트]
3. **참고 사항** 상부 기어 유닛의 잘못된 정렬로 인한 부하시 탭 절환장치 손상. 수평 구동축이 기어 유닛의 구동축으로 플러시되도록 기어 유닛을 정렬합니다. 기어 유닛을 정렬하는 동안 출력축이 원래 위치를 유지하도록 유닛의 구동축을 돌립니다.

![그림 180: 기어 유닛 정렬하기](image1)

4. 압박 링 세그먼트를 다시 기어 유닛 쪽으로 회전한 다음 나사를 조입니다. 롤링 와셔가 나사 헤드와 압박 링 세그먼트 사이에 있으며 압박 링 세그먼트가 기어 유닛 하우징에 고정되어 있는지 확인합니다.

![그림 181: 압박 링 세그먼트 고정하기](image2)
부하시 탭 절환장치 컬럼 함께 연결하기

1. 구동축 플랜지에 찍힌 일련 번호 밑에 있는 모든 화살표가 같은 방향을 가리키는지 확인합니다. 화살표의 방향은 모터 구동 장치의 수동 크랭크를 시계 방향으로 돌릴 때의 회전 방향을 나타냅니다.

2. 부하시 탭 절환장치 컬럼을 다음 작동 위치로 차례로 전환합니다. 이렇게 하려면, 각 기어 유닛의 중공축을 부하시 탭 절환장치 컬럼이 위치를 전환할 때까지 시계 반대 방향으로 차례로 회전합니다.

3. 모든 부하시 탭 절환장치 컬럼이 동일한 위치에 있는지 확인합니다.
4. 부하시 탭 절환장치 컬럼을 수평 구동축을 통해 함께 연결합니다. 이렇게 하는 경우, 모터 구동 장치에 가장 가까이 위치한 부하시 탭 절환장치 컬럼부터 시작합니다.

![그림 183: 부하시 탭 절환장치 컬럼 연결하기](image)

5. 참고 사항: 불완전한 탭 변환 구동으로 인한 부하시 탭 절환장치 컬럼 손상, 모든 구동축을 설치한 후 탭 변환 구동을 완전히 완료하기 위해 기어 유닛의 구동축을 시계 반대 방향으로 2.5 회전 더 돌립니다.
6. 기어 유닛의 구동축을 시계 방향으로 돌려 부하시 탭 절환장치 컬럼을 조정 위치로 전환합니다. 조정 위치에 도달하고 부하시 탭 절환장치 컬럼이 전환된 후에 탭 변환 구동을 정확히 완료하기 위해 상부 기어 유닛의 구동축을 시계 반대 방향으로 2.5 회전 더 돌립니다.

그림 184: 부하시 탭 절환장치를 조정 위치로 전환하기

7. 모든 부하시 탭 절환장치 컬럼이 동시에 전환하는지 확인합니다. 여기서 기어 유닛의 구동축에서 최대 0.25 회전의 최소 오프셋이 허용됩니다.

8. 모든 부하시 탭 절환장치 컬럼이 동일한 위치에 있는지 확인합니다.
9. 베벨 기어와 기어 유닛 사이에 구동축을 설치합니다.

그림 185: 베벨 기어와 기어 유닛 사이에 구동축 설치하기

5.4.5.3 카르단 조인트가 있는 구동축 장착하기

카르단 조인트가 있는 구동축은 주로 모터 구동 장치와 베벨 기어 사이의 수직 구동축으로 설치합니다.

기술적으로 수평 구동축으로 설치하는 것도 가능합니다. 그러나 수평 구동축을 사용하는 경우에는 제공되는 보호판을 이에 따라 조정해야 하며, 카르단 조인트를 상부 기어 유닛에 사용하려면 카르단 조인트의 내경이 25mm여야 합니다.
허용된 축방향 변위

카르단 조인트가 있는 수직 및 수평 구동축에 허용된 축방향 변위는 20° 입니다.

그림 186: 카르단 조인트가 있는 수직 구동축에 허용된 최대 축방향 변위
그림 187: 카르단 조인트가 있는 수평 구동축에 허용된 최대 축방향 변위

참고 사항

재산 피해!
올바르지 않은 카르단 조인트의 장착은 손상 또는 오작동을 초래할 수 있습니다.

► 폴딩 카르단 조인트를 장착하는 도중 확장 벨로우를 손상시키지 않는지 확인하십시오.

► 굴절 α의 각도가 20°를 초과하지 않는지 확인하십시오.

► 양쪽 카르단 조인트의 굴절 α 각도가 동일한지 확인하십시오.
그림 188: 굴절 α의 각도
카르단 조인트가 있는 구동축을 장착하려면 다음과 같이 진행하십시오.
1. 연결 볼트, 연결 브래킷 및 중공축에 그리스(예: ISO FLEX TOPAS L32)를 바릅니다.

<table>
<thead>
<tr>
<th>위치</th>
<th>이름</th>
<th>수량</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 아래 1개</td>
<td>어댑터 둥글 Ø 82×102</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>어댑터 둥글 Ø 87×102.5</td>
<td>1</td>
</tr>
</tbody>
</table>
5 장착

<table>
<thead>
<tr>
<th>번호</th>
<th>어댑터 링</th>
<th>직경(mm)</th>
<th>개수</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>어댑터 링 Ø 94.5×102.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CD6400 위 4개</td>
<td>어댑터 링 Ø 71×102.5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

2. 어댑터 링을 회전 보호 튜브의 칼라에 끼웁니다. 1 회전 가능한 보호 튜브의 두 부분을 서로 맞추고 2 서로를 향해 돌려서 3 상응하는 각도를 설정합니다.

그림 190: 어댑터를 회전 가능한 보호 튜브에 꼬우기

3. 카르단 조인트는 연결 볼트에 장착된 상태로 공급됩니다. 1 중공축에 장착하기 위해 다음 단계를 수행해야 합니다: 호스 클립을 제거합니다 2 신축 벨로우즈를 위로 밑니다 3 연결 볼트를 제거합니다 4 카르단 조
인트를 장치의 출력축 위에 끼웁니다. 5. 연결 볼트를 밀어 넣습니다. 6. 신축 벨로우즈를 그 위로 밀어 올립니다. 7. 신축 벨로우즈를 호스 클립으로 고정합니다. 8.

그림 191: 카르단 조인트 장착하기

4. 연결 볼트를 사용하여 더 짧은 카르단 조인트를 모터 구동 장치의 중공축에 연결합니다.

그림 192: 카르단 조인트를 모터 구동 장치의 중공축에 부착하기
5. 참고 사항! 두 개의 카르단 조인트 러그가 베벨 기어와 모터 구동 장치에서 모두 같아지도록 더 긴 두 번째 카르단 조인트를 베벨 기어에 부착합니 다. 이렇게 하지 않으면 손상 또는 오작동이 발생할 수 있습니다.

![참고 사항! 두 개의 카르단 조인트 러그가 베벨 기어와 모터 구동 장치에서 모두 같아지도록 더 긴 두 번째 카르단 조인트를 베벨 기어에 부착합니다. 이럴게 하지 않으면 손상 또는 오작동이 발생할 수 있습니다.](image)

그림 193: 두 번째 카르단 조인트를 베ベル 기어에 장착하기

6. 신축 벨로우즈를 호스 클립으로 고정합니다.

![신축 벨로우즈를 호스 클립으로 고정합니다.](image)

그림 194: 신축 벨로우즈를 호스 클립으로 고정하기
7. 조인트의 느슨한 중공축을 앵글 바에 임시로 연결하고 서로 맞게 정렬합니다.

그림 195: 앵글 바로 중공축 연결하기
8. 중공축 사이의 치수 A를 결정합니다. 사각 관의 길이를
$LR = A + 100$ mm ($LR = 사각 관의 길이$)로 자릅니다. 사각 관의 절단
면을 디버링합니다.

![그림 196: 사각 관 줄이기]
9. 설치를 시작하기 전에 두 신축 튜브의 길이를 해당하는 치수 A (A = 카트 단 조인트의 양쪽 끝 사이의 치수)로 줄이고 디버링합니다.

![Diagram of a tube](image)

<table>
<thead>
<tr>
<th>치수 A(= 구동 장치와 배럴 기어 중공축 사이의 거리)</th>
<th>안쪽 튜브</th>
<th>바깥 튜브</th>
</tr>
</thead>
<tbody>
<tr>
<td>260mm</td>
<td>200mm로 줄입니다.</td>
<td>200mm</td>
</tr>
<tr>
<td>261mm...760mm</td>
<td>A-60mm로 줄입니다.</td>
<td>200mm</td>
</tr>
<tr>
<td>761mm...1,090mm</td>
<td>700mm</td>
<td>A-60mm로 줄입니다.</td>
</tr>
<tr>
<td>1,091mm...1,700mm</td>
<td>700mm</td>
<td>1,150mm</td>
</tr>
<tr>
<td>1,701mm...1,900mm</td>
<td>1,150mm</td>
<td>1,150mm</td>
</tr>
</tbody>
</table>
10. 어댑터 링 하나는 모터 구동 장치의 베어링 칼라에 장착하고 나머지 하나는 베ベル 기어의 베어링 칼라에 장착합니다.

그림 198: 어댑터 장착하기

11. 앞에서 길이를 줄이고 디버팅한 사각 관을 상부 카르단 조인트의 말단 위에 깔고 정지부에 걸릴 때까지 밉니다.

그림 199: 사각 관을 상부 카르단 조인트의 말단 위에 깔기
12. 상부 회전 가능 보호 튜브의 긴 출구가 위로 가게 한 상태로 사각 관의 입에서부터 꺼줍니다.

그림 200: 회전 가능 보호 튜브를 사각 관 위에 깔우기
13. 슬롯 있는 쪽을 아래로 둔 상태로 안쪽 튜브를 바깥 튜브에 끼웁니다. 호스 클립을 끼웁니다.

그림 201: 신축 튜브 깔우기
14. 모두 위로 밀어 올리고 나사 클램프로 고정합니다.

그림 202: 모두 나사 클램프로 고정합니다.
15. 하부 회전 가능 보호 튜브의 긴 출구가 위로 가게 한 상태로 사각관 위에 꼬우고 나사 클램프로 고정합니다.

그림 203: 하부 회전 가능 보호 튜브를 사각관 위에 꼬우기
5 장착

16. 사각 관을 좌우로 돌려가며 아래 끝까지 끼웁니다.

그림 204: 사각 관을 축까지 다시 돌리기
17. 하부 연결 볼트를 밀어 넣고 그리스를 바릅니다. 하부 연결 브래킷을 조립합니다. 연결 볼트와 연결 브래킷 사이에 축방향 틈새가 없도록 중공축과 연결 부품을 완전히 연결해야 합니다.

![그림 205: 하부 연결 브래킷 조이기](image-url)
18. 상부 연결 브래킷을 축방향 틈새가 3mm가 되도록 조립니다.

그림 206: 상부 연결 브래킷 장착하기

19. 위쪽부터 아래쪽 순서로 축 보호의 개별 부품을 장착합니다. 회전 가능한 보호 튜브의 두 부분 사이의 각 위치를 정하고 제공되는 호스 클립으로 고정합니다. 상부 보호 튜브와 하부 보호 튜브의 양쪽 끝을 호스 클립으로 고정합니다. 호스 클립으로 두 신축 보호 튜브를 상호 고정합니다.

회전 가능한 보호 튜브의 각 끝마다 플라스틱 어댑터가 있어야 합니다. 위쪽과 아래쪽 회전 보호 가능 보호 튜브 안으로 신축 보호 튜브를 어댑터 너비만큼 밀어 넣은 후 호스 클립으로 조여야 합니다.
5.4.5.4 절연체가 있는 구동축 장착하기
수직 구동축에 절연체가 있는 모델을 구매하여 구동축을 절연 상태로 설치할 수 있습니다.

그림 207: 호스 클립으로 신축 보호 튜브와 회전 가능 보호 튜브 고정하기
허용된 축방향 변위

절연체가 있는 수직 구동축의 축방향 변위는 사각 관의 길이 1,000mm당 35mm(2°에 해당함)를 넘지 않는 사소한 변위이면 허용될 수 있습니다.

그림 208: 절연체가 있는 수직 구동축에 허용된 최대 축방향 변위
5.4.5.4.1 절연체가 있는 수직 구동축 장착하기

수직 구동축을 장착하려면 다음과 같이 진행하십시오.

1. **주의!** 모터 구동 장치(위치 O)에서 모터 보호 스위치 Q1의 전원을 끕니다. 전원을 꺼지 않으면 모터 구동 장치가 실수로 작동하여 다칠 수 있습니다.

2. 베타 기어를 나사로 조여 변압기에 장착합니다. 나사는 제공 범위에 포함되지 않습니다.

![그림 209: 베타 기어](image_url)
3. 구동 장치의 중공축과 배럴 기어 중공축 사이의 차수 A를 결정합니다. 절
연체를 고려하여 사각 관의 길이를 A-179mm로 줄입니다.

그림 210: 사각 관 줄이기
4. 사각 관의 절단면을 디버링합니다.

![그림 211: 절단면 디버링하기](image)

5. 이중 연결 부품 및 공급된 절연체와 사각 관을 나사로 조립니다. 구동 장치를 바라보도록 절연체를 장착합니다.

![그림 212: 이중 연결 부품을 사용하여 사각 관 및 절연체를 나사로 조립니다.](image)
6. 나사로 느슨하게 결합된 연결 부품을 절연체 위에서 정지부에 걸릴 때까지 밀니다.

![그림 213: 연결 부품을 밀어서 절연체에 끼우기](image1)

7. 공급된 절연체 링을 모터 구동 장치의 베어링 칼라 위에 놓습니다.

![그림 214: 절연 링](image2)

8. 연결 볼트를 구동 장치의 중공축에 끼웁니다. 연결 부품, 연결 볼트 및 중공축에 그리스(예: ISOFLEX TOPAS L32)를 바릅니다. 연결 부품을 사용하여 사각 관을 밀어 중공축에 끼웁니다.

![그림 215: 연결 부품을 사용하여 사각 관을 밀어 중공축에 끼우기](image3)
9. 사각 관을 구동 장치에 연결합니다.

그림 216: 구동 장치에 사각 관 연결하기

10. 사각 관을 돌려 축에서 멀리 떨어트립니다.

그림 217: 사각 관을 돌려 축에서 멀리 떨어트리기

11. 신축 보호 튜브의 안쪽 튜브를 설치할 때 필요한 경우 슬롯이 없는 쪽의 길이를 줄입니다. 두 보호 튜브를 겹치는 최소 차수는 100mm입니다.
안쪽 튜브는 변형되지 않아야 하고, 바깥 튜브에 쉽게 끼우기 위해 디버링해야 합니다.

그림 218: 안쪽 튜브 디버링하기

<table>
<thead>
<tr>
<th>치수 A (구동 장치의 중공축과 베훼 기어 중공축 사이의 거리)</th>
<th>안쪽 튜브</th>
<th>바깥 튜브</th>
</tr>
</thead>
<tbody>
<tr>
<td>170mm...190mm</td>
<td>200mm로 줄입니다.</td>
<td>= 200mm</td>
</tr>
<tr>
<td>191mm...1,130mm</td>
<td>치수 A + 20mm</td>
<td>= 200mm</td>
</tr>
<tr>
<td>1,131mm...1,598mm</td>
<td>= 700mm</td>
<td>= 1,150mm</td>
</tr>
<tr>
<td>1,599mm...2,009mm</td>
<td>= 1,150mm</td>
<td>= 1,150mm</td>
</tr>
</tbody>
</table>
5 장착

12. 바깥 튜브를 일어 안쪽 튜브에 끼웁니다. 이 때 안쪽 튜브의 슬롯이 없는 쪽이 위를 향하도록 하십시오. 신축 보호 튜브를 일어 사각 관에 끼웁니다. 그런 다음 호스 클립을 신축 보호 튜브 위에서 밀입니다.

그림 219: 신축 보호 튜브 위로 밀기
13. 어댑터 링을 베벨 기어의 베어링 칼라 위에 끼우고 위쪽으로 잡습니다. 연결 볼트를 베벨 기어의 중공축에 끼웁니다. 사각 관을 축까지 다시 돌립니다.

그림 220: 어댑터 링과 연결 볼트 장착하기
14. 연결 브래킷, 연결 볼트 및 중공축에 그리스(예: ISOFLEX TOPAS L32)를 바르고 연결 브래킷으로 사각관을 베벨 기어에 고정합니다. 연결 볼트와 위쪽 연결부 사이에 동일한 방향으로 축방향 틈새 3mm를 둡니다.

그림 221: 연결 브래킷 장착하기

15. 호스 클립을 사용하여 하부 보호 튜브(안쪽 튜브)를 구동 장치의 베어링 칼라에 부착합니다 1 그 다음 상부 보호 튜브(바깥 튜브)를 베벨 기어의 어댑터 위에 끼웁니다 2 호스 클립을 사용하여 상부 보호 튜브의 맨윗부분과 연결 포인트를 하부 보호 튜브에 고정합니다 3.
5.4.5.5 절연체와 카르단 조인트가 있는 구동축 장착하기

수직 구동축에 절연체와 카르단 조인트가 있는 모델을 구매하여 구동축을 절연 상태로 설치할 수 있습니다.
허용된 축방향 변위

절연체와 카르단 조인트가 있는 구동축에 허용된 축방향 변위는 20°입니다.

![그림 223: 절연체와 카르단 조인트가 있는 수직 구동축에 허용된 최대 축방향 변위](image)

5.4.6 부하시 탭 절환장치와 모터 구동 장치의 중앙 위치 맞추기

► 모터 구동 장치의 관련 MR 사용 설명서에 설명된 대로 부하시 탭 절환장치와 모터 구동 장치의 중앙 위치를 맞춥니다.

5.4.7 모터 구동 장치의 전기 연결

► 모터 구동 장치의 관련 MR 사용 설명서에 설명된 대로 모터 구동 장치의 전기 연결을 수행합니다.
6 시운전

경고

폭발 위험!

부하시 탭 절환장치의 유격실, 변압기, 배관 시스템, 오일 컨서베이터 및 호흡기 개구부에 있는 폭발성 가스가 연소되거나 폭발하여 사람이 심하게 다치거나 사망할 수 있습니다!

► 변압기 주변에 불꽃, 뜨거운 표면 또는 (예를 들어 정전기가 축적되어 발생하는) 스파크 같은 점화원이 없는지 확인하고 점화원이 생기지 않도록 하십시오.

► 어떠한 전기 장치도 가동하지 마십시오(예: 충격 렌치로 인한 스파크 발생 위험).

► 반드시 인화성 액체용으로 승인된, 전도력 있고 접지된 호스, 팔파 및 펌프 장비를 사용하십시오.

경고

폭발 위험!

부하시 탭 절환장치가 과부하되면 폭발에 이를 수 있습니다. 뜨거운 절연 액체가 뺨고 부품이 납아가기 때문에 심각한 부상이나 사망 사고가 발생할 수 있습니다. 재산 피해의 가능성도 높습니다.

► 부하시 탭 절환장치가 과부하되어 있지 않은지 확인합니다.

► "적절한 사용" 절에 따라 부하시 탭 절환장치를 사용해야 합니다.

► 적절한 방법을 사용하여 허용된 운전 조건을 벗어나지 않도록 예방하십시오.

6.1 변압기 제조자의 부지에서 부하시 탭 절환장치 시운전하기

변압기를 시운전하기 전에 다음 작업 및 기능 확인을 수행합니다.
6.1.1 부하시 탭 절환장치 헤드와 흡입 파이프 배기하기

6.1.1.1 부하시 탭 절환장치 헤드 배기하기

1. 파이프 시스템의 모든 포워드 밸브와 리턴 밸브를 엽니다.
2. 부하시 탭 절환장치 헤드 커버의 공기 배출 밸브 E1의 나사캡을 제거합니다.

![그림 224: 나사캡](image1)

3. 스크류드라이버를 사용해서 공기 배출 밸브 E1의 밸브 태핏을 들어올리고 부하시 탭 절환장치 헤드의 공기를 배기합니다.

![그림 225: 밸브 태핏](image2)

4. 나사캡으로 공기 배출 밸브 E1을 밀봉합니다(조임 토크 10 Nm).
6 시운전

6.1.1.2 파이프 커넥션 S의 흡입 파이프 배기하기
1. 파이프 커넥션 S에서 나사캡을 제거합니다.

2. 참고 사항! 흡입 파이프를 완전히 배기하지 않으면 접지할 부하시 탭 절환장치의 접지 기능이 크게 저하됩니다. 배기 나사와 배기 흡입 파이프를 끝까지 엽니다.
3. 배기 나사를 잠금니다.
4. 나사캡으로 배기 나사를 밀봉합니다.

6.1.2 부하시 탭 절환장치 접지하기
1. 부하시 탭 절환장치 헤드의 접지 나사를 변압기 커버에 연결합니다. 구리 및 알루미늄 복합 재료(CUPAL) 와셔가 양쪽의 연결 러그에 직접 배치되어 있어야 합니다. 구리 및 알루미늄 복합 재료(CUPAL) 와셔의 알루미늄 측면은 연결 러그를 마주보고 있어야 합니다.
2. 모터 구동 보호 하우징의 접지 나사를 변압기 탱크에 연결합니다. 구리 및 알루미늄 복합 재료(CUPAL) 와셔가 케이블 러그와 연결 러그 사이에 있어야 합니다. 구리 및 알루미늄 복합 재료(CUPAL) 와셔의 알루미늄 측면은 연결 러그를 마주보고 있어야 합니다.

![그림 228: 모터 구동 장치 상의 접지 나사](image)

3. 온도 센서를 사용할 때는 접지 나사를 사용해서 부하시 탭 절환장치 헤드 또는 변압기의 다른 접지 포인트에 온도 센서 하우징을 연결합니다. 구리 및 알루미늄 복합 재료(CUPAL) 와셔는 케이블 러그와 온도 센서 하우징 사이에 있어야 합니다. 구리 및 알루미늄 복합 재료(CUPAL) 와셔의 알루미늄 측면은 온도 센서 하우징을 마주보고 있어야 합니다.

![그림 229: 온도 센서 접지하기](image)

6.1.3 모터 구동 장치 점검하기

참고 사항

부하시 탭 절환장치/무전압 탭 체인저 손상!

절연 액체 없이 부하시 탭 절환장치/무전압 탭 체인저를 구동하여 발생한 부하시 탭 절환장치/무전압 탭 체인저 손상.

블록/무전압 탭 체인저를 절연 액체 속에 완전히 담그고 부하시 탭 절환장치의 유격실에 절연 액체를 완전히 채웠는지 확인하십시오.
변압기를 시운전하기 전에 모터 구동 장치와 부하시 텐 접환장치가 올바르게 연결되었고 모터 구동 장치가 올바르게 작동하는지 확인하십시오.

모터 구동 장치 시험
1. 모터 구동 장치용 관련 MR 운영 설명서에 설명된대로 기능 점검을 수행합니다.
2. 참고 사항! 모터 구동 장치를 잘못 연결하면 부하시 텐 접환장치가 손상됩니다. 모든 설정에 대해 시험 텐 변환 구동을 수행합니다. 각 작동 위치에서 모터 구동 장치와 부하시 텐 접환장치의 위치 표시(부하시 텐 접환장치 헤드의 관측 유리)가 일치하는지 확인합니다.

변압기 공선에서 절연 시험
▸ 모터 구동 장치용 관련 MR 운영 설명서에서 변압기 공선에 대한 절연 시험과 관련된 정보를 참고하십시오.

6.1.4 변압기에서 고전압 시험
변압기에서 고전압 시험을 수행하기 전에 다음 사항에 유의하십시오.
- 부하시 텐 접환장치의 유격실을 절연 액체로 완전히 충전해야 합니다.
- 부하시 텐 접환장치의 모든 보호 장치가 올바르게 작동 중이고 사용할 준비가 되었는지 확인하십시오.
- 모터 구동 보호 하우징과 보호 하우징 잠금부에 있는 접지 연결에는 페인트가 없어야 합니다.
- 모터 구동 장치 도어가 닫혀 있을 때만 고전압 시험을 수행하십시오.
- 고효압으로 인한 피해를 방지하기 위해 모터 구동 장치 내 전기 구성품의 외부 연결을 단선하십시오.
- 모터 구동 장치의 공급 전압을 연결할 때는 보호 하우징 하부의 리드 삽입용 케이블 부착만 사용하십시오.
- 모든 접지 연결 케이블을 하나의 중심 연결 지점으로 모으십시오(적절한 기준 접지 설비).
- 고전압 시험을 하기 전에 모든 전기 구성품을 단선하십시오. 배선 절연 시험 전에 내전압이 1000V 미만인 모든 장치를 제거하십시오.
- 시험에 사용되는 리드는 안테나로서 기능하므로 고전압 시험 전에 제거해야 합니다.
- 가능한 한 측정 리드와 데이터 리드는 각각 분리하여 에너지 케이블에 배치해야 합니다.
가능한 위험 요인에 대한 질문이 있으면 제조업체에 문의하십시오.
6.2 운전 부지에 변압기 운송하기

참고 사항
모터 구동 장치 손상!
모터 구동 장치의 보호 하우징 내 응축수로 인한 모터 구동 장치 손상.
► 항상 모터 구동 장치의 보호 하우징을 꽉 닫아 두십시오.
► 처음 시운전하기 전에 8주 넘게 장치를 구동하지 않은 경우 응축 방지 가열기를 연결하고 구동하십시오. 이렇게 할 수 없으면 보호 하우징 안에 충분한 양의 흡습제를 냉우십시오.

6.2.1 드라이브를 제거하고 수송
1. 부하시 탭 절환장치가 조정 위치에 있는지 확인합니다.
2. 구동 장치를 제거합니다.
3. 부하시 탭 절환장치가 연결되지 않은 상태에서는 구동 장치를 작동시키지 말고 출력축을 회전하지 마십시오.
4. 연결되지 않은 부하시 탭 절환장치를 작동시키지 말고 구동축을 회전하지 마십시오.
5. 구동 장치를 MR 제공 포장에 담아 설치 사이트로 운송합니다.
6. 설치 사이트에서 구동 장치 [설 5.4.4, 페이지 125]와 구동축 [설 5.4.5, 페이지 125]을 변압기에 고정합니다.

6.2.2 변압기 탱크를 채우고 오일 컨서베이터 없이 수송하기
변압기가 탱크를 채우고 오일 컨서베이터 없이 운송된 경우 부하시 탭 절환장치의 유격실과 변압기 탱크 사이에 연결 케이블을 부착합니다.
► 부하시 탭 절환장치 헤드에서 연결 E2와 Q 사이 또는 연결 E2와 R 사이에 연결 케이블을 연결합니다.

![그림 230: 연결 케이블]

오일 컨서베이터 없이 최장 4주간 단기 부동화할 경우에는 부하시 탭 절환장치 유격실 내 절연 액체를 약 5리터 제거하는 것으로도 충분합니다.
6.2.3 변압기 탱크를 비우고 수송하기

참고 사항

부하시 탱 절환장치 손상!

변압기에 절연 액체를 넣지 않고 부하시 탱 절환장치 유격실에 절연 액체를 넣어서 수송할 경우 변압기 수송 중에 부하시 탱 절환장치가 진동으로 인해 움직일 수 있습니다. 이처럼 진동으로 인해 움직이면 부하시 탱 절환장치가 손상될 수 있습니다.

► 변압기를 절연 액체 없이 수송하려면 유격실을 완전히 비우십시오.
► 유격실을 변압기와 같은 방식(예: N2로 채움)으로 보존하십시오.

6.2.3.1 파이프 커넥션 S를 통해 유격실 비우기

1. 모든 보조 전류 회로(예: 탱 변환 감시 장치, 압력 경감 밸브, 압력 동작 레이)의 전원을 단절합니다.
2. 오일 컨서베이터와 유격실 사이의 차단 코크(슬라이드 밸브)가 열린 상태에서 부하시 탱 절환장치 헤드의 공기 배출 밸브 E1을 엽니다.
3. 부하시 탱 절환장치 커버 아래에서 가스를 배출합니다. 이 때 (예를 들어 변압기 셀과 작업 텐트 안에) 충분한 양의 신선한 공기가 있어야 합니다.
4. 가스가 모두 배출되고 공기 배출 밸브에서 절연 액체가 흘러 나오기 시작하면 공기 배출 밸브를 닫고 오일 컨서베이터와 유격실 사이의 차단 코크를 닫습니다.
5. 공기 배출 밸브를 다시 열고 부하시 탱 절환장치 헤드 커버 아래 구역에 절연 액체가 없을 때까지 파이프 커넥션 S를 통해 절연 액체를 약 5~10리터 배출합니다.
6. 부하시 탱 절환장치 헤드 커버에서 잠금 소자가 있는 M10/렌치 사이즈 17 나사 24개를 느슨하게 풉니다.
7. 부하시 탱 절환장치 헤드 커버를 제거합니다.
8. 파이프 커넥션 S를 통해 절연 액체를 빼냅니다.
9. 오일 컨서베이터와 유격실 사이의 차단 코크를 열습니다.
 ⇒ 절연 액체가 오일 컨서베이터로부터 유격실 안으로 흘러듭니다.
10. 파이프 커넥션 S를 통해 절연 액체를 빼냅니다.
11. 부하시 탱 절환장치 헤드 커버를 부하시 탱 절환장치 헤드에 놓습니다.
12. M10/렌치 사이즈 17 나사 24개와 잠금 소자를 사용해 부하시 탱 절환장치 헤드 커버를 고정합니다(조임 토크 34Nm).
6.3 운전 부지에서 변압기 시운전하기

6.3.1 부하시 탭 절환장치의 유격실에 절연 액체 쏟전하기

참고 사항
부하시 탭 절환장치 손상!
부적합한 미네랄 절연유를 사용하면 부하시 탭 절환장치가 손상될 수 있습니다.

1. 참고 사항
압력 경감 밸브 부착용 플랜지가 부하시 탭 절환장치 헤드 커버에 있든지 확인합니다. 이러한 경우 압력 경감 밸브 없이 작동할 수 없으며, 작동하는 경우 부하시 탭 절환장치에 손상을 입힐 수 있습니다.
.passed 부하시 탭 절환장치 헤드에 이 부하시 탭 절환장치에 허용된 압력 경감 밸브를 장착합니다.

2. 유격실을 비우는 동안 유격실과 변압기 안의 압력이 동일하도록 파이프 커넥션 E2와 파이프 커넥션 R, S 또는 Q 중 하나 사이에 연결 케이블을 연결합니다.

! 그림 231: E2와 Q 사이의 연결 케이블
3. 부하시 탭 절환장치 헤드의 파이프 커넥션 두 개 중 하나를 사용하여 부하시 탭 절환장치에 새로운 절연 액체를 충전합니다.

4. 유격실에서 절연 액체 샘플을 채취합니다.
5. 샘플을 채취한 직후 샘플의 온도를 기록합니다.
6. 샘플 온도 20°C ± 5°C에서 절연 강도 수분 함량을 측정합니다. 절연 강도와 수분 함량은 기술 데이터에 지정된 한계값에 부합해야 합니다.
6.3.2 부하시 탭 절환장치 헤드와 흡입 파이프 배기하기

6.3.2.1 부하시 탭 절환장치 헤드 배기하기
1. 파이프 시스템의 모든 포워드 밸브와 리턴 밸브를 엽니다.
2. 부하시 탭 절환장치 헤드 커버의 공기 배출 밸브 E1의 나사캡을 제거합니다.

![그림 233: 나사캡]

3. 스크류드라이버를 사용해서 공기 배출 밸브 E1의 밸브 태핏을 들어올리고 부하시 탭 절환장치 헤드의 공기를 배기합니다.

![그림 234: 밸브 태핏]

4. 나사캡으로 공기 배출 밸브 E1을 밀봉합니다(조임 토크 10 Nm).
6.3.2.2 파이프 커넥션 S의 흡입 파이프 배기하기

1. 파이프 커넥션 S에서 나사캡을 제거합니다.

2. 참고 사항! 흡입 파이프를 완전히 배기하지 않으면 접지할 부하시 탭 절환장치의 절연 기능이 크게 저하됩니다. 배기 나사와 배기 흡입 파이프를 끝까지 엽니다.
3. 배기 나사를 잠금니다.
4. 나사캡으로 배기 나사를 밀봉합니다.

6.3.3 모터 구동 장치 점검하기

참고 사항
부하시 탭 절환장치/무전압 탭 체인저 손상!
절연 액체 없이 부하시 탭 절환장치/무전압 탭 체인저를 구동하여 발생한 부하시 탭 절환장치/무전압 탭 체인저 손상.
► 선택기/무전압 탭 체인저를 절연 액체 속에 완전히 담그고 부하시 탭 절환장치의 유격실에 절연 액체를 완전히 채웠는지 확인하십시오.

참고 사항
부하시 탭 절환장치와 모터 구동 장치의 손상!
위치 송신기 장비의 부정확한 사용으로 인한 모터 구동 장치와 부하시 탭 절환장치 손상.
► 위치 송신기 장비의 기술 데이터 장에 명시된 회로만 위치 송신기 모듈 연결에 연결할 수 있습니다.
► 모터 구동 장치 내 위치 송신기 장비의 변환접음 다이버터 스위치 구동의 변환접음 동일하지 않습니다. 이는 다이버터 스위치의 형식에 따라 다릅니다. 프로젝트에서 모터 구동 장치와 외부 장치 사이의 장치 회로(예: 변압기 차단기)를 계획할 때 이 점을 유의해야 합니다.
► 그러므로 결선도에 나와 있는 "구동 중 탭 절환장치" 위치 전달 접점을 위치 송신기 장비 대신 외부 모니터링, 잠금 및 제어 용도로 사용해야 합니다.
변압기를 시운전하기 전에 모터 구동 장치와 부하시 텔 절환장치가 올바르게 연결되었고 모터 구동 장치가 올바르게 작동하는지 확인하십시오.

모터 구동 장치 시험
1. 모터 구동 장치용 관련 MR 운영 설명서에 설명된 대로 기능 점검을 수행합니다.
2. 참고 사항! 모터 구동 장치를 잘못 연결하면 부하시 텔 절환장치가 손상됩니다. 모든 설정에 대해 시험 텔 변환 구동을 수행합니다. 각 작동 위치에서 모터 구동 장치와 부하시 텔 절환장치의 위치 표시(부하시 텔 절환장치 헤드의 관측 유리)가 일치하는지 확인합니다.

변압기 권선에서 절연 시험
▶ 모터 구동 장치용 관련 MR 운영 설명서에서 변압기 권선에 대한 절연 시험과 관련된 정보를 참고하십시오.

6.3.4 보호 계전기 점검하기

✓ 변압기를 시운전하기 전에 보호 계전기가 올바르게 작동하는지 확인합니다.
1. 고전압 및 저전압 측에 변압기를 접지합니다. 테스트하는 동안 변압기의 작업 연결 접지가 제거되지 않도록 합니다.
2. 테스트 중에 변압기 전원이 끊긴 상태로 유지되도록 합니다.
3. 자동 소화 장치를 비활성화합니다.
4. 단자함 커버에서 나사 3개를 풀고 단자함 커버를 들어냅니다.
5. 전위 타이인용 일자형 헤드 나사를 제거하고 단자함을 선과 함께 꺼냅니다.
6. TRIP 테스트 버튼을 누릅니다.
7. 변압기의 위험 영역은 그대로 됩니다.
8. 변압기의 차단기가 열려있다고 하도록 합니다.
 ⇒ 수동 보호 테스트
9. RESET 테스트 버튼을 누릅니다.
10. 변압기의 위험 영역은 그대로 됩니다.
11. 열려 있는 격리 스위치와 모든 방향에 접지된 변압기가 있는 변압기의 차단기를 닫습니다.
12. TRIP 테스트 버튼을 누릅니다.
13. 변압기의 차단기가 열려 있는지 확인합니다.
 ⇒ 보호 테스트를 활성화합니다.
14. RESET 테스트 버튼을 눌러 보호 계전기를 재설정합니다.
15. 단자함 커버용 선을 위치에 놓고 일자형 헤드 나사를 이용하여 부착합니다.
6 시운전

16. 단자함 커버를 부착하고 나사로 고정합니다.

6.3.4.2 보호 계전기(RS 2004) 점검하기
✓ 변압기를 시운전하기 전에 보호 계전기가 올바르게 작동하는지 확인합니 다.
1. 플랩 밸브가 RESET 위치에 있는지 확인합니다.
2. 변압기의 위험 영역은 그대로 둡니다.
3. 열려 있는 격리 스위치와 모든 방향에 접지된 변압기가 있는 변압기의 차 단기를 닫습니다.
4. TRIP 테스트 버튼을 누릅니다.
5. 변압기의 차단기가 열려 있는지 확인합니다.
⇒ 활성 보호 테스트

6.3.5 압력 동작 릴레이 점검하기
1. 고전압 및 저전압 측면에 변압기를 접지합니다. 테스트하는 동안 변압기 의 작동 연결 점지가 제거되지 않도록 합니다.
2. 테스트 중에 변압기 전원이 끊긴 상태로 유지되도록 합니다.
3. 자동 소화 장치를 비활성화합니다.
4. 커버 캡을 제거합니다.
5. 스냅 동작 스위치에서 센서를 활성화합니다.
⇒ 센서가 OFF 위치에 있습니다.
6. 변압기의 위험 영역은 그대로 둡니다.
7. 변압기의 차단기가 닫히지 않도록 합니다.
⇒ 수동 보호 테스트
8. 스냅 동작 스위치에서 센서를 활성화합니다.
⇒ 센서가 OPERATION 위치에 있습니다.
9. 변압기의 위험 영역은 그대로 둡니다.
10. 열려 있는 격리 스위치와 모든 방향에 접지된 변압기가 있는 변압기의 차단기를 닫습니다.
11. 스냅 동작 스위치에서 센서를 활성화합니다.
⇒ 센서가 OFF 위치에 있습니다.
12. 변압기의 차단기가 열려 있는지 확인합니다.
⇒ 보호 테스트를 활성화합니다.
13. 스냅 동작 스위치에서 센서를 활성화하여 압력 동작 릴레이를 초기화합 니다.
⇒ 센서가 OPERATION 위치에 있습니다.
14. 커버 캡을 고정합니다.
6 시운전

6.3.6 변압기 시운전하기

✔ 부하시 탭 절환장치 오일 컨서베이터에 있는 절연 액체가 최저 충전 수위 이하로 감소했음을 알려주는 신호 접점이 회로 차단기의 트립 회로에 루 프로 연결됨

✔ 보호 계전기와 추가 보호 장치가 차단기의 트립 회로에 루프로 연결됨

✔ 모터 구동 장치와 모든 보호 장치가 올바르게 작동 중이고 사용할 준비가 됨

✔ 부하시 탭 절환장치 유격실에 절연 액체가 가득 참

✔ 부하시 탭 절환장치와 부하시 탭 절환장치 오일 컨서베이터 사이의 모든 차단 코크가 열려 있음

1. 변압기 스위치를 켭니다.

2. 참고 사항: 동일 전류 임펄스는 변압기 정격 전류보다 훨씬 더 커질 수 있고 비대칭 또는 비정현파 커브 형태의 전류 경로로 이어질 수 있으며, 결과적으로 다이버터 스위치 운전 시 부하시 탭 절환장치에 과부하를 줄 수 있습니다. 부하 상태와 무부하 상태에서 모두 동일 전류 임펄스가 감소한 후에만 탭 변환 구동을 수행합니다.
7 고장 제거

⚠ 경고 ⚠

폭발 위험!

부하시 탭 절환장치 헤드 커버 아래의 폭발성 가스가 연소되거나 폭발하여 사람이 심하게 다치거나 사망할 수 있습니다.

► 주변에 불꽃, 뜨거운 표면 또는 (예를 들어 정전기가 축적되어 발생하는) 스파크 같은 점화원이 없는지 확인하고 점화원이 새로 생기지 않도록 하십시오.

► 부하시 탭 절환장치 헤드 커버를 제거하기 전에 모든 보조 전류 회로(예: 탭 변환 감시 장치, 압력 경감 밸브)에서 전원을 단절하십시오.

► 작업하는 동안 어떠한 전기 장치도 가동하지 마십시오(예: 충격 렌치로 인한 스파크 발생 위험).

참고 사항

부하시 탭 절환장치와 변압기 손상!

보호 계전기 또는 기타 보호 장치가 트립되면 부하시 탭 절환장치와 변압기가 손상되었음을 의미할 수 있습니다. 변압기를 먼저 검사하지 않고 변압기 전원을 공급해서는 안 됩니다.

► 보호 계전기나 기타 보호 장치가 트립되었을 때는 부하시 탭 절환장치와 변압기를 점검하십시오.

► 부하시 탭 절환장치 또는 변압기에 손상이 없음을 확인할 때까지는 그 장치를 사용하지 마십시오.

참고 사항

모터 구동 장치 손상!

모터 구동 장치의 보호 하우징 내 응축수로 인한 모터 구동 장치 손상.

► 항상 모터 구동 장치의 보호 하우징을 폐 닫아 두십시오.

► 구동을 2주 넘게 중단할 경우 모터 구동 장치의 응축수 방지 가열기를 연 결하고 구동하십시오. 예를 들어 수송 중이기 때문에 이렇게 할 수 없는 경우 보호 하우징 안에 충분한 양의 흡습제를 넣으십시오.

아래의 표는 가능한 곳에서 오류를 감지하고 수정하는 데 도움을 주도록 고 안되었습니다.

자세한 정보를 보려면 보호 계전기나 관련 보호 장치의 사용 설명서를 참고 하십시오.

부하시 탭 절환장치와 모터 구동 장치에 현장에서 쉽게 해결할 수 없는 고장 이 있거나 보호 계전기나 기타 보호 장치가 트립된 경우, 공인 MR 대리점이나 변압기 제조사에 알려거나 아래 연락처로 MR에 직접 문의해 주십시오.

Maschinenfabrik Reinhausen GmbH
기술 서비스
Postfach 12 03 60
93025 Regensburg
Germany
전화: +49 94140 90-0
<table>
<thead>
<tr>
<th>고장 설명</th>
<th>조치</th>
</tr>
</thead>
<tbody>
<tr>
<td>보호 계전기 트립</td>
<td>"보호 계전기 트립 및 변압기 다시 시운전하기"를 참조하시십시오. MR에도 문의하십시오.</td>
</tr>
<tr>
<td>압력 경감 밸브(예: MPreC®) 트립</td>
<td>부하시 탭 절환장치와 변압기를 확인해야 합니다. 트립 원인에 따라 변압기에서 측정을 수행하거나 점검을 수행합니 다. MR에도 문의하여 부하시 탭 절환장치를 확인합니다.</td>
</tr>
<tr>
<td>탭 변환 감시 장치 활성화</td>
<td>탭 변환 감시 장치가 활성화되면 모터 구동 장치를 더 이상 전기적으로 작동할 수 없습니다. 변압기가 커졌을 때 수동 크랭크를 통한 모터 구동 장치의 수동 작동은 금지됩니다. 부하시 탭 절환장치와 변압기를 확인해야 합니다. 트립 원 인에 따라 변압기에서 측정을 수행하거나 점검을 수행합니 다. MR에도 문의하여 부하시 탭 절환장치를 확인합니다.</td>
</tr>
<tr>
<td>부하시 탭 절환장치 헤드 커버에서 파열판 활성화</td>
<td>부하시 탭 절환장치와 변압기를 확인해야 합니다. 트립 원 인에 따라 변압기에서 측정을 수행하거나 점검을 수행합니 다. MR에도 문의하여 부하시 탭 절환장치를 확인합니다.</td>
</tr>
<tr>
<td>모터 구동 장치에서 모터 보호 스위치의 트립</td>
<td>TAPMOTION® ED 모터 구동 장치의 사용 설명서에 있는 "고장 제거" 장을 참조하시십시오.</td>
</tr>
<tr>
<td>부하시 탭 절환장치 오일 컨서베이터에서 절연액 레벨이 최저 레벨 밑으로 감소했음을 의미하는 신호 접점 트립</td>
<td>파이프 시스템(파이프 등)과 부하시 탭 절환장치 하드에서 누수가 있는지 점검하십시오. 부하시 탭 절환장치 사용 설명서에 따라 유격실의 절연액 충전 레벨과 높음을 점검하십시오. 충전 레벨이 하한 값으로 떨어지는 경우에도 MR에도 문의하십시오.</td>
</tr>
<tr>
<td>모터 구동 장치의 위치 변화에도 불구하고 변압기에서 전 압 변화 없음</td>
<td>MR에도 문의하십시오.</td>
</tr>
<tr>
<td>모터 구동 장치와 부하시 탭 절환장치의 위치 표시가 서로 다른</td>
<td>MR에도 문의하십시오.</td>
</tr>
<tr>
<td>탭 위치의 변화가 미세하지 않음(속도가 느림, 출입 케/내림 케가 작동하지 않음, 데이터 스위치 동작 시 소리 나지 않음)</td>
<td>MR에도 문의하십시오.</td>
</tr>
<tr>
<td>모니터링 장치에 빨간색 메시지 표시</td>
<td>가능하면 데이터베이스를 확인한 후 오류 코드와 함께 MR 에 보내십시오.</td>
</tr>
<tr>
<td>변압기에서 경고 또는 부흐홀즈 밸레이 트립</td>
<td>변압기 제조업체에 알려십시오.</td>
</tr>
</tbody>
</table>
7 고장 제거

<table>
<thead>
<tr>
<th>고장 설명</th>
<th>조치</th>
</tr>
</thead>
<tbody>
<tr>
<td>변압기의 권선 저항을 측정할 때 희망값에서 이탈</td>
<td>변압기 제조업체와 MR(필요 시)에 문의하고, 측정된 값을 알려주십시오.</td>
</tr>
<tr>
<td>오일 내 가스 분석(변압유)에서 희망값으로부터 이탈</td>
<td>변압기 제조업체와 MR(필요 시)에 문의하고, 측정된 값을 알려주십시오.</td>
</tr>
<tr>
<td>변압비 측정 시 희망값에서 이탈</td>
<td>변압기 제조업체와 MR(필요 시)에 문의하고, 측정된 값을 알려주십시오.</td>
</tr>
<tr>
<td>절연액의 한계값에서 이탈</td>
<td>절연액을 교체하고 부하시 탭 절환장치의 오일 컨서베이터 호흡기를 점검하십시오.</td>
</tr>
</tbody>
</table>

표 8: 고장 제거

7.1 보호 계전기 트립하기 및 변압기 다시 시운전하기

⚠ 경고
보호 계전기 안에 있는 폭발성 가스가 연소되거나 폭발하여 사람이 심하게 다치거나 사망할 수 있습니다.
► 보호 계전기와 관련된 추가 작업을 시작하기 전에 가스가 흩어질 수 있도록 변압기의 스위치를 꼭 후 약 15분 동안 기다리십시오.
► 주변에 불꽃, 뜨거운 표면 또는 (예를 들어 정전기가 축적되어 발생하는) 스파크 같은 점화원이 없는지 확인하고 점화원이 새로 생기지 않도록 하십시오.
► 작업을 시작하기 전에 모든 보조 전류 회로의 전압을 끄십시오.
► 작업하는 동안 어떠한 전기 장치도 가동하지 마십시오(예: 충격 렌치로 인한 스파크 발생 위험).

⚠ 경고
부하시 탭 절환장치와 변압기를 충분히 테스트하지 않으면 중상이나 사망 위험이 발생합니다.
► 보호 계전기가 트립된 경우 반드시 Maschinenfabrik Reinhausen에 문의하여 부하시 탭 절환장치와 변압기를 점검하십시오.
► 부하시 탭 절환장치와 변압기에 손상이 없음이 확인될 때만 해당 장비를 다시 사용합니다.

보호 계전기에서 차단기를 트립한 경우 다음과 같이 진행하십시오.
1. 차단 시간을 설정합니다.
2. 부하시 탭 절환장치의 작동 위치를 결정합니다.
3. 예방책으로, 원격 제어로 부하시 탭 절환장치가 작동되는 것을 막기 위해 모터 보호 스위치를 차단하여 모터 구동 장치를 차단합니다.
4. 부하시 탭 절환장치 헤드 커버를 확인합니다. 절연 액체가 새는 경우 오일 컨서베이터 스톱 밸브를 즉시 닫습니다.
5. 보호 계전기의 플랩 밸브가 TRIP 위치에 있는지 RESET 위치에 있는지 확인합니다.
7 고장 제거

7.1.1 플랩 밸브가 RESET 위치에 있음

플랩 밸브가 RESET 위치에 있는 경우 차단 회로에 오류가 있기 때문일 수 있습니다. 이 경우 차단 회로를 확인합니다. 보호 계전기가 트립된 이유가 명확하지 않은 경우 Maschinenfabrik Reinhausen에 문의하여 부하시 턴 절환 장치를 확인합니다.

7.1.2 TRIP 위치에 있는 플랩 값

보호 계전기 RS 2004는 플랩 값이 트립 후 TRIP 위치에 유지되지 않는 자동 초기화 메커니즘을 특징으로 합니다. 보호 계전기 RS 2004가 차단 회로 오류로 인해 트립되지 않은 경우에도 RS 2004에 대해 아래에 설명된 대로 진행하십시오.

1. 변압기가 어떤 환경에서도 가동되지 않도록 합니다.
2. Maschinenfabrik Reinhausen에 연락하여 다음을 알립니다.
 - 보호계전기 및 부하시 턴 절환장치의 일련 번호
 - 차단 순간에 변압기 부하는 얼마였습니까?
 - 차단하기 바로 전이나 차단하는 동안 부하시 턴 절환장치가 쳐서 이동 되었습니까?
 - 차단 순간에 변압기의 다른 보호 장치가 반응을 했습니까?
 - 차단 순간에 수행 중인 네트워크에서 스위칭 구동이 있었습니까?
 - 차단 순간에 과전압이 등록되었습니까?

7.1.3 변압기 다시 사운전하기

보호계전기 트립에 대한 사유가 명확되고 수정되면 변압기를 다시 사운전할 수 있습니다.

1. 보호계전기를 점검하십시오 [▶절 6.3.4.1, 페이지 196].
2. 변압기를 사운전합니다.
7.2 압력 동작 릴레이 차단 및 변압기 재작동

사망 또는 중상 위험!
부하시 탭 절환장치와 변압기를 충분히 테스트하지 않으면 중상이나 사망 위험이 발생합니다.
▶ 보호 계전기가 트립되어 있으면 Maschinenfabrik Reinhausen에 문의하여 부하시 탭 절환장치와 변압기를 확인합니다.
▶ 부하시 탭 절환장치와 변압기에 손상이 없음을 확인할 때만 해당 장비를 다시 사용합니다.

압력 동작 릴레이에서 차단기를 차단한 경우 다음과 같이 진행하십시오.
1. 차단 시간을 설정합니다.
2. 부하시 탭 절환장치의 작동 위치를 결정합니다.
3. 예방책으로, 원격 제어로 부하시 탭 절환장치가 작동되는 것을 막기 위해 모터 보호 스위치를 차단하여 모터 구동 장치를 차단합니다.
4. 부하시 탭 절환장치 헤드 커버를 확인합니다. 절연 액체가 새는 경우 오일 컨서베이터 스냅 밸브를 즉시 닫습니다.
5. 압력 동작 릴레이 센서가 TRIP 위치 또는 RESET 위치에 있는지 확인합니다.

7.2.1 센서가 RESET 위치에 있음

센서가 RESET 위치에 있는 경우 차단 회로에 오류가 있을 수 있습니다. 이 경우 차단 회로를 확인합니다. 압력 동작 릴레이가 차단된 이유가 명확하지 않은 경우 Maschinenfabrik Reinhausen에 문의하여 부하시 탭 절환장치를 확인합니다.

7.2.2 센서가 TRIP 위치에 있음

센서가 TRIP 위치에 있는 경우 다음과 같이 진행하십시오.
1. 변압기가 어떤 환경에서도 작동되지 않도록 합니다.
2. Maschinenfabrik Reinhausen에 연락하여 다음을 알립니다.
 ⇒ 차단 순간에 변압기 부하는 얼마였습니까?
 ⇒ 차단하기 바로 전이나 차단하는 동안 부하시 탭 절환장치에서 탭 변환 구동이 있었습니까?
 ⇒ 차단 순간에 변압기의 다른 보호 장치가 반응을 했습니까?
 ⇒ 차단 순간에 수형 중인 네트워크에서 스위칭 구동이 있었습니까?
 ⇒ 차단 순간에 과전압이 등록되었습니까?
 ⇒ 압력 경감 밸브에서 정적 압력의 높이는 얼마입니까(부하시 탭 절환장치 오일 컨서베이터와 압력 경감 밸브의 오일 레벨 간 높이 차이)?
7.2.3 변압기 다시 시운전하기

압력 동작 릴레 체단 원인이 확인 및 해결된 후에 변압기를 다시 시운전할 수 있습니다.
1. 스냅 동작 스위치의 센서가 RESET 위치에 있는지 확인합니다.
2. 변압기를 시운전합니다.
8 처분

처분 시 사용 국가에서 적용되는 국가 요건을 준수하십시오.
해체 및 처분에 관한 질문이 있을 경우, Maschinenfabrik Reinhausen GmbH의 기술 서비스 부서에 문의하십시오.
9 기술 데이터
부하시 탭 절환장치 및 모터 구동 장치의 모든 키 기술 데이터에 대한 개요는 요청 시 사용할 수 있는 별도 문서 양식에 있습니다.

9.1 부하시 탭 절환장치의 기술 데이터

9.1.1 부하시 탭 절환장치 속성

전기 데이터

<table>
<thead>
<tr>
<th>부하시 탭 절환장치</th>
<th>VMS III 400 Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>최대 정격 통과 전류 I_m [A]</td>
<td>400</td>
</tr>
<tr>
<td>정격 단시간 전류 [kA]</td>
<td>4</td>
</tr>
<tr>
<td>정격 단락 시간 [초]</td>
<td>3</td>
</tr>
<tr>
<td>정격 참여 내전류 [kA]</td>
<td>10</td>
</tr>
<tr>
<td>최대 정격 스텝 전압 U_{im} [V]</td>
<td>1 300</td>
</tr>
<tr>
<td>스텝 용량 P_{sn} [kVA]</td>
<td>520</td>
</tr>
<tr>
<td>정격 주파수 [Hz]</td>
<td>50~60</td>
</tr>
</tbody>
</table>

표 9: VACUTAP® VMS®® III의 전기 데이터, 탭 선택기 크기 B

1) 스텝 용량이 정격값으로 제한되면 최대 정격 스텝 전압은 변압기의 과여자로 인해 10% 초과될 수 있습니다.

기계 데이터

<table>
<thead>
<tr>
<th>작동 위치 개수</th>
<th>체인지 오버 선택기 없음: 최대 14개</th>
</tr>
</thead>
<tbody>
<tr>
<td>체인지 오버 선택기 있음: 최대 27개</td>
<td></td>
</tr>
<tr>
<td>장착된 섹터 개수</td>
<td>3</td>
</tr>
<tr>
<td>탭 선택기 크기</td>
<td>B</td>
</tr>
<tr>
<td>지수</td>
<td>지수도 참조</td>
</tr>
<tr>
<td>무게</td>
<td></td>
</tr>
<tr>
<td>변위 및 오일 체적</td>
<td></td>
</tr>
</tbody>
</table>

표 10: VACUTAP® VMS®® III의 기계 데이터, 탭 선택기 크기 B

9.1.2 허용 주변 조건

운전 중 대기 온도: -25°C~+50°C
운전 중 절연유 온도: -25°C~+105°C(변압기 비상 가동 시 최고 +115°C)
수송 온도, 보관 온도: -40°C...+50°C
건조 온도: 조립 및 작동 개시 설명서의 "장착" 장 참조
압축 강도: 기술 데이터 TD 61 - 일반 접 참조
Insulating fluid

- IEC60296 및 ASTM D3487(요청 시 동등한 표준)에 따라 석유 제품1)에서 얻은 미사용 절연유
- IEC60296에 따라 다른 버전 탄화수소 물질에서 얻은 미사용 절연유, 또는 이런 절연유를 IEC60296 및 ASTM D3487 또는 요청 시 동등한 표준에 따라 석유 제품1)과 섞은 혼합물
- 요청 시 천연 및 합성 에스테르 또는 실리콘 오일 같은 대체 절연유 제공.

1) 여기서 GTL(Gas-to-liquid) 오일은 석유 제품으로 간주됩니다.

<table>
<thead>
<tr>
<th>오일 컨서버터의 설치 높이</th>
<th>기술 데이터 TD 61 - 일반 절 참조</th>
</tr>
</thead>
<tbody>
<tr>
<td>해발 설치 높이</td>
<td>기술 데이터 TD 61 - 일반 절 참조</td>
</tr>
</tbody>
</table>

표 11: 허용 주변 조건
9.2 보호 계전기용 기술 데이터
보호 계전기 RS 2001용 기술 데이터는 다음에 나열되어 있습니다. DIN EN 60255-1에 따라 운전 정확도 = 기본 정확도

<table>
<thead>
<tr>
<th>하우징</th>
<th>옥외 모델</th>
</tr>
</thead>
<tbody>
<tr>
<td>보호 등급</td>
<td>IP66</td>
</tr>
<tr>
<td>계전기 작동</td>
<td>구멍 있는 플랩 밸브</td>
</tr>
<tr>
<td>무게</td>
<td>약 3.5kg</td>
</tr>
<tr>
<td>구매 가능한 유형의 트립 시 오일 유속 (오일 온도 20°C)</td>
<td>0.65 ± 0.15m/s</td>
</tr>
<tr>
<td></td>
<td>1.20 ± 0.20m/s</td>
</tr>
<tr>
<td></td>
<td>3.00 ± 0.40m/s</td>
</tr>
<tr>
<td></td>
<td>4.80 ± 0.60m/s</td>
</tr>
</tbody>
</table>

표 12: 일반 기술 데이터

트립 회로
보호 계전기는 normally open(NO) 또는 normally closed(NC) 리드형 자석 스위치와 함께 공급됩니다(공급된 치수도 참고). 기타 접점 조합을 특수 버전으로 구매할 수 있습니다.

NC(normally closed) 리드형 자석 스위치의 전기 데이터

<table>
<thead>
<tr>
<th>전기 데이터</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DC 스위칭 용량</td>
<td>1.2W ~ 200W</td>
</tr>
<tr>
<td>AC 스위칭 용량(50Hz)</td>
<td>1.2VA ~ 400VA</td>
</tr>
<tr>
<td>스위칭 전압 AC/DC</td>
<td>24V…250V</td>
</tr>
<tr>
<td>스위치 전류 AC/DC</td>
<td>4.8mA…2A</td>
</tr>
</tbody>
</table>

표 13: 전기 데이터

스위칭 용량(스위칭 부하 켜기 꺼기)

<table>
<thead>
<tr>
<th>최소 스위치 전류 AC/DC(최저 전압)</th>
<th>최소 스위치 전류 AC/DC(최고 전압)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mA(24V)</td>
<td>4.8mA(250V)</td>
</tr>
<tr>
<td>최대 스위치 전류 AC/DC(최고 전류)</td>
<td>최대 스위치 전류 AC/DC(최고 전류)</td>
</tr>
<tr>
<td>1.6A(125V, L/R = 40ms)</td>
<td>1.6A(250V, cos φ = 0.6)</td>
</tr>
<tr>
<td>최대 스위치 전류 AC(최고 전압)</td>
<td>최대 스위치 전류 AC(최고 전압)</td>
</tr>
<tr>
<td>0.9A(250V, L/R = 40ms)</td>
<td>2A(125V, cos φ = 0.6)</td>
</tr>
<tr>
<td>스위칭 운전</td>
<td></td>
</tr>
<tr>
<td>1000주기</td>
<td></td>
</tr>
</tbody>
</table>

표 14: 스위칭 용량(스위칭 부하 켜기 꺼기)
절연 강도

<table>
<thead>
<tr>
<th></th>
<th>AC 접점 사이 AC 접점 강도</th>
<th>DC 접점 사이 AC 접점 강도</th>
</tr>
</thead>
<tbody>
<tr>
<td>모든 통전 연결부와 접지 부품 사이 AC 접점 강도</td>
<td>2500V, 50Hz, 테스트 지속시간 1분</td>
<td>2000V, 50Hz, 테스트 지속시간 1분</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NO(normally open) 리드형 자석 스위치의 전기 데이터</th>
</tr>
</thead>
<tbody>
<tr>
<td>전기 데이터</td>
<td>DC 스위칭 용량: 1.2W ~ 250W</td>
</tr>
<tr>
<td></td>
<td>AC 스위칭 용량 (50Hz): 1.2VA ~ 400VA</td>
</tr>
<tr>
<td></td>
<td>스위칭 전압 AC/DC: 24V…250V</td>
</tr>
<tr>
<td></td>
<td>스위칭 전류 AC/DC: 4.8mA…2A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>표 15: 전기 데이터</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>표 16: 전기 데이터</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>스위칭 용량(스위칭 부하 켜기 끄기)</th>
</tr>
</thead>
<tbody>
<tr>
<td>최소 스위치 전류 AC/DC(최저 전압)</td>
<td>50mA(24V)</td>
</tr>
<tr>
<td>최소 스위치 전류 AC/DC(최고 전압)</td>
<td>4.8mA(250V)</td>
</tr>
<tr>
<td>최대 스위치 전류 DC(최고 전압)</td>
<td>2A(125V, L/R = 40ms)</td>
</tr>
<tr>
<td>최대 스위치 전류 AC(최고 전압)</td>
<td>1A(250V, L/R = 40ms)</td>
</tr>
<tr>
<td>최대 스위치 전류 AC(최고 전압)</td>
<td>2A(125V, cos φ = 0.6)</td>
</tr>
<tr>
<td>최대 스위치 전류 AC(최고 전압)</td>
<td>1.6A(250V, cos φ = 0.6)</td>
</tr>
<tr>
<td>스위칭 운전</td>
<td>1000주기</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>표 17: 스위칭 용량(스위칭 부하 켜기 끄기)</th>
</tr>
</thead>
</table>

주변 조건

<table>
<thead>
<tr>
<th></th>
<th>주변 온도 Ta: -40°C…+50°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>오일 온도: <130 °C</td>
</tr>
<tr>
<td></td>
<td>공기압</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>표 19: 주변 조건</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>표 18: 절연 강도</td>
</tr>
</tbody>
</table>

Maschinenfabrik Reinhausen GmbH 2021 5993476/03 KO VACUTAP® VMS® 209
9.3 보호 계전기의 특수 모델

9.3.1 CO 체인저 오버 접점에 차단 스위치로 사용되는 보호 계전기

보호 계전기는 리드형 자석 스위치, CO 체인저 오버(변수 3)와 함께 공급될 수 있습니다(제공된 치수도 참고).

CO 체인저 오버 리드형 자석 스위치의 전기 데이터

<table>
<thead>
<tr>
<th>전기 데이터</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DC 스위칭 용량</td>
<td>1.2W ~ 150W</td>
</tr>
<tr>
<td>AC 스위칭 용량(50Hz)</td>
<td>1.2VA ~ 200VA</td>
</tr>
<tr>
<td>스위칭 전압 AC/DC</td>
<td>24V...250V</td>
</tr>
<tr>
<td>스위치 전류 AC/DC</td>
<td>4.8mA...1A</td>
</tr>
</tbody>
</table>

표 20: 전기 데이터

<table>
<thead>
<tr>
<th>스위칭 용량(스위칭 부하 켜기 꼴개)</th>
</tr>
</thead>
<tbody>
<tr>
<td>최소 스위치 전류 AC/DC(최저 전압)</td>
</tr>
<tr>
<td>최소 스위치 전류 AC/DC(최고 전압)</td>
</tr>
<tr>
<td>최대 스위치 전류 AC(최고 전압)</td>
</tr>
<tr>
<td>스위칭 운전</td>
</tr>
</tbody>
</table>

표 21: 스위칭 용량(스위칭 부하 켜기 꼴개)

<table>
<thead>
<tr>
<th>절연 강도</th>
</tr>
</thead>
<tbody>
<tr>
<td>모든 통전 연결부와 접지 부품 사이 AC</td>
</tr>
<tr>
<td>열림 접점 사이 AC 접연 강도</td>
</tr>
</tbody>
</table>

표 22: 절연 강도

9.3.2 여러 리드형 자석 스위치가 있는 보호 계전기

보호 계전기는 여러 독립적 리드형 자석 스위치와 함께 제공될 수 있습니다. 상시 열림(NO) 또는 상시 닫힘(N) 접점으로 설계할 수 있으며 전기적으로 분리되어 있습니다(제공된 치수도 참고).

상시 열림(NO) 및 상시 닫힘(NC) 리드형 자석 스위치의 전기 데이터
9.4 압력 동작 레이의 기술 데이터

일반 기술 데이터

<table>
<thead>
<tr>
<th>사항</th>
<th>세부사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>셋업</td>
<td>옥외 모델</td>
</tr>
<tr>
<td>주변 온도</td>
<td></td>
</tr>
<tr>
<td>시계적: -40°C...+80°C</td>
<td></td>
</tr>
<tr>
<td>케이블 글랜드</td>
<td>M25x1.5</td>
</tr>
<tr>
<td>보호도</td>
<td>IEC 60529에 따라 IP55(밀폐 장치)</td>
</tr>
<tr>
<td>개전기 작동</td>
<td>역압 스프링이 있는 파형관</td>
</tr>
<tr>
<td>오일 온도</td>
<td></td>
</tr>
<tr>
<td>시계적: -40°C...+100°C</td>
<td></td>
</tr>
<tr>
<td>무게</td>
<td>약 1.2kg</td>
</tr>
<tr>
<td>장비</td>
<td>표준 절연 유체(IEC60296 및 IEC60422)</td>
</tr>
<tr>
<td>밀봉 재료 (오일 - 공기)</td>
<td>VITON</td>
</tr>
<tr>
<td>허용된 압력 범위 (절대압)</td>
<td>1bar...6bar, 진공 허용되지 않음</td>
</tr>
<tr>
<td>상위 스위칭 압력</td>
<td>3.8 ±0.2bar (차단 압력)</td>
</tr>
<tr>
<td>하위 스위칭 압력</td>
<td>2.8 ±0.2bar</td>
</tr>
<tr>
<td>스냅-작동 스위치</td>
<td></td>
</tr>
<tr>
<td>연결 단말기</td>
<td>리드 연결: 단자망 리드 1개 또는 2개 (Ø 0.75…2.5mm²)</td>
</tr>
<tr>
<td>접점</td>
<td>1xNO(정상 열림), 1xNC(정상 닫힘)</td>
</tr>
<tr>
<td>활용 범주</td>
<td>IEC 60947-5-1:</td>
</tr>
<tr>
<td></td>
<td>AC 15: 230V/1A</td>
</tr>
<tr>
<td></td>
<td>DC 13: 60V/0.5A</td>
</tr>
<tr>
<td>최대 연속 전류</td>
<td>10A</td>
</tr>
<tr>
<td>정격 절연 전압</td>
<td>AC: 2.5kV/min</td>
</tr>
</tbody>
</table>

표 23: 일반 기술 데이터
9.5 절연 액체의 절연 강도 및 수분 함량 한계값

아래 표에는 절연유의 절연 강도(IEC 60156에 따라 측정)와 수분 함량(IEC 60814에 따라 측정)의 한계값이 나와 있습니다. 이 값은 IEC 60422를 기반으로 규명되었습니다.

<table>
<thead>
<tr>
<th>IEC 60296에 따른 절연 액체용 한계값</th>
<th>(U_d)</th>
<th>(H_2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>변압기를 처음으로 시운전할 때</td>
<td>> 60kV/2.5mm</td>
<td>< 12ppm</td>
</tr>
<tr>
<td>운용 중</td>
<td>> 30kV/2.5mm</td>
<td>< 30ppm</td>
</tr>
<tr>
<td>정비 후</td>
<td>> 50kV/2.5mm</td>
<td>< 15ppm</td>
</tr>
</tbody>
</table>

표 24: IEC 60296에 따른 절연 액체용 한계값
10 도면

10.1 치수도
ON-LOAD TAP-CHANGER VACUTAP® VMS®
SELECTOR SIZE B (CENTRIC DRIVE)
INSTALLATION DRAWING

11 MOUNTING FLANGE ON TRANSFORMER COVER
12 FIXING BOLT M12
13 ON-LOAD TAP-CHANGER HEAD DRAKE
14 TAP POSITION INDICATOR
15 INSPECTION WINDOW
16 DRIVE SHAFT FOR TAP POSITION INDICATOR
17 THROUGH-HOLES 15 mm IN DIAMETER
21 ON-LOAD TAP-CHANGER HEAD
22 COVER BOLT
23 COVER GASKET
24 ON-LOAD TAP-CHANGER HEAD COVER
25 CENTRIC GEAR UNIT WITH DRIVE SHAFT 25a
26 PIPE CONNECTION R FOR PROTECTIVE RELAY
27 PIPE CONNECTION S FOR SUCTION PIPE
28 PIPE CONNECTION Q FOR OIL RETURN (WITH OIL FILTER ONLY)
29a AIR-VENT VALVE OF ON-LOAD TAP-CHANGER HEAD COVER
29b BLEEDING FACILITY FOR TRANSFORMER OIL COMPARTMENT
29c VENT SCREW FOR SUCTION PIPE

31 DIVERTER SWITCH OIL COMPARTMENT
32 OIL COMPARTMENT BASE WITH SCREW FOR SELECTOR BRACKET
33 OIL COMPARTMENT CONNECTION TERMINAL
34 TAKE-OFF TERMINAL / NEUTRAL CONNECTION
35 SUCTION PIPE
36 SCREENING RINGS (WITH Um = 170 kV AND 245 kV ONLY)
37 SCREENING RING (WITH Um = 123 kV ONLY)
41 SELECTOR
42 SELECTOR GEAR
43 TAP SELECTOR
44 CHANGE OVER SELECTOR
45 SELECTOR CONNECTION CONTACT
46 SELECTOR CONNECTING LEAD

51 DIVERTER SWITCH INSERT
52 SUPPORTING CYLINDER
53 BASE PLATE
54 FIXING SCREW
55 EYEBOLT WITH THROUGH-HOLE 25 mm IN DIAMETER
56 TRANSITION RESISTORS
10.2 부하시 탑 절환장치 헤드
ON-LOAD TAP-CHANGER HEAD, CENTRIC DRIVE

E1 = BLEEDING FACILITY FOR ON-LOAD TAP-CHANGER HEAD
E2 = BLEEDING FACILITY FOR SPACE UNDER THE HEAD OUTSIDE
Q = CONNECTION FOR OIL RETURN PIPE OR TAP-CHANGE SUPERVISORY CONTROL
R = CONNECTION FOR PROTECTIVE RELAY (EXCHANGEABLE WITH CONNECTION Q)
S = CONNECTION FOR SUCTION PIPE
T = THERMOMETER BAG / TEMPERATURE SENSOR (OPTIONALLY)
SR = INSPECTION WINDOW, RIGHT
SL = INSPECTION WINDOW, LEFT
W = DRIVE SHAFT
M = DRIVE SIDE OF SELECTOR

CONNECTIONS SWIVELING
DIMENSIONS AND SELECTION 899496 / 899497:

© MASCHINENFABRIK REINHAUSEN GMBH 2018
THE REPRODUCTION, DISTRIBUTION AND UTILIZATION OF THIS DOCUMENT AS WELL AS THE COMMUNICATION OF ITS CONTENTS TO OTHERS WITHOUT EXPRESS AUTHORIZATION IS PROHIBITED. OFFENDERS WILL BE HELD LIABLE FOR THE PAYMENT OF DAMAGES. ALL RIGHTS RESERVED IN THE EVENT OF THE GRANT OF A PATENT, UTILITY MODEL OR DESIGN.
PIPE CONNECTION WITH TAP-CHANGE SUPERVISORY CONTROL BUSHING WITHOUT OIL FILTER UNIT

NOTICE! THE VENT SCREW (2) OF THE MOUNTED HOUSING (1) HAS TO BE ON THE TOP.

ON-LOAD TAP-CHANGER HEAD

A 1:1
REPRESENTED WITHOUT COVER

M20x15 CLAMPING RANGE FOR CONNECTION CABLE:
EXTERNAL DIAMETER: 7 – 13 mm

CONNECTION TERMINALS FOR TAP-CHANGE SUPERVISORY CONTROL
WIRING SEE CONNECTION DIAGRAM OF THE MOTOR-DRIVE UNIT
FUNCTION DIAGRAM FOR TAP-CHANGE SUPERVISORY CONTROL SEE MOTOR-DRIVE CONNECTION DIAGRAM

RATED CONTINUOUS CURRENT: 2A
RATED VOLTAGE DC/AC 50Hz: 24V – 250V
DIELECTRIC STRENGTH: 1150V / 50Hz / 1 MIN.
DIELECTRIC TEST OF ALL VOLTAGE CARRYING TERMINALS TO GROUND: 2000V AC, 50Hz, TEST-DURATION 1 MIN.
Der Drehlauf wird bei Bestellung festgelegt. / THE DIRECTION OF ROTATION IS DEFINED DURING ORDERING.
10.3 도구
SOCKET WRENCH

<table>
<thead>
<tr>
<th>ITEM NO. 014820:</th>
<th>ITEM NO. 017660:</th>
</tr>
</thead>
<tbody>
<tr>
<td>L = 1350 mm</td>
<td>L = 1660 mm</td>
</tr>
<tr>
<td>TO BE USED FOR ON-LOAD TAP-CHANGERS</td>
<td>TYPE M (EXCEPT M Δ)</td>
</tr>
<tr>
<td>TYPE MS</td>
<td>TYPE VM®</td>
</tr>
<tr>
<td>TYPE T</td>
<td>TYPE VR®</td>
</tr>
<tr>
<td>TYPE R</td>
<td>TYPE G</td>
</tr>
<tr>
<td>TYPE RM</td>
<td>TYPE VR®</td>
</tr>
</tbody>
</table>
10.4 추가 도면
BASIC CONNECTION DIAGRAMS 10010326
BASIC CONNECTION DIAGRAM 890 616

INSTALLATION DRAWINGS
M III 350 Y ... M I 1503 893 978
VM III 350 Y ... VM I 1503 746 230

ON-LOAD TAP-CHANGER HEAD M III 350 Y ... M I 1503
AND VM III 350 Y ... VM I 1503 893 899

VARIANTS OF THE ON-LOAD TAP-CHANGER HEAD 720 026

SWIVEL RANGE OF THE GEAR UNIT 720 027

SCREENINGS ON OIL COMPARTMENT CONTACTS 730 336

CONTACT ARRANGEMENT ON SELECTOR 898 013

INSTALLATION POSITION OF THE
SECTOR CONNECTION CONTACTS 890 477

CONNECTING LEAD 3W, 1G, 3G 723 590

SCREENINGS AT TAP SELECTOR
AND CHANGE-OVER SELECTOR 730 335

PARALLEL BRIDGES 899 598

HORIZONTAL DRIVE SHAFT 893 896

ARRANGEMENT OF SELECTOR CONTACTS
M III 350 / 500 / 600 Y, M II 352 / 502 / 602
VM III 350 / 500 / 650 Y, VM II 352 / 502 / 652
VMS III 400 / 650 Y - C 891 107

M I 351 / 501 / 601
VM I 351 / 501 / 651 891 108

M I 1203 / 1503
VM I 1203 / 1503 891 109

M I 802
VM I 802 / 1002 891 110