Viklingsomskifter
OILTAP® V
Brugervejledning
4427476/02 DA
© Alle rettigheder forbeholdt Maschinenfabrik Reinhausen

Udbredelse og reproduktion af dette dokument samt brug og offentliggørelse af indholdet heri er strengt forbudt, med mindre det udtrykkeligt tillades.

Overtrædelse vil medføre krav om erstatning. Alle rettigheder forbeholdes i tilfælde af udstedelse af patenter, brugsmodel- eller mønsterbeskyttelse.

Dette produkt kan være ændret efter udgivelsen af dette dokument.

Vi forbeholder os ret til at ændre tekniske data, konstruktion og leveringsomfang.

Generelt er den information, der gives, og de aftaler, der træffes ved behandling af individuelle tilbud og ordrer, bindende.

Den originale brugervejledning er udarbejdet på tysk.
Indholdsfortegnelse

1 **Indledning** .. 6
 1.1 Producent ... 6
 1.2 Fuldstændighed .. 6
 1.3 Opbevaring ... 6
 1.4 Notationskonventioner .. 6
 1.4.1 Farekommunikationssystem .. 6
 1.4.2 Informationssystem .. 8
 1.4.3 Instruktionskionsystem ... 8

2 **Sikkerhed** .. 10
 2.1 Passende brug .. 10
 2.2 Anvendelse ikke i overensstemmelse sit formål ... 11
 2.3 Grundlæggende sikkerhedsanvisninger .. 11
 2.4 Personalekvalifikation ... 13
 2.5 Personligt beskyttelsesudstyr ... 14

3 **Produktbeskrivelse** .. 15
 3.1 Leveringsomfang ... 15
 3.2 Viklingsomskifter ... 15
 3.2.1 Funktionsbeskrivelse .. 15
 3.2.2 Opsætning/versioner ... 16
 3.2.3 Typeskilt ... 19
 3.2.4 Beskyttelsesanordninger .. 19
 3.3 Drivaksel .. 25
 3.3.1 Funktionsbeskrivelse .. 25
 3.3.2 Design/versioner ... 26
 3.4 OF 100 oliefiltersystem .. 31

4 **Idriftsættelse** .. 32
 4.1 Idriftsættelse af transformatoren på driftsstedet .. 32
 4.1.1 Påfyldning af viklingsomskifterens oliebeholder med isolerende væske 32
 4.1.2 Udluftning af viklingsomskifterens top og sugeledningen .. 34
 4.1.3 Kontrol af motordrevet .. 35
 4.1.4 Kontrol af beskyttelsesrelæet ... 36
 4.1.5 Kontrol af trykovervågningsenheden ... 37
Indholdsfortegnelse

4.1.6 Idriftsættelse af transformatoren .. 38

5 Drift ... 39
5.1 Betjening af motordrevet med håndswinget ... 39

6 Fejleliminering .. 41
6.1 Udløsning af beskyttelsesrelæet og idriftsættelse af transformatoren igen .. 43
6.1.1 Klapventil i positionen OPERATION ... 44
6.1.2 Klapventil på positionen OFF ... 44
6.1.3 Idriftsættelse af transformatoren igen ... 44
6.2 Udløsning af trykovervågningsenheden og idriftsættelse af transformatoren igen 45
6.2.1 Sensoren er på positionen OPERATION ... 45
6.2.2 Sensoren på positionen OFF ... 46
6.2.3 Idriftsættelse af transformatoren igen ... 46

7 Vedligeholdelse .. 47
7.1 Inspektion ... 48
7.2 Vedligeholdelsesintervaller ... 49
7.3 Skift af den isolerende væske .. 52
7.3.1 Flytning af viklingsomskifteren til justeringsposition ... 52
7.3.2 Afmontering af vandret drivaksel ... 52
7.3.3 Tømning af oliebeholder og oliekonservator .. 55
7.3.4 Fyldning af oliebeholderen og oliekonservatoren med ny isolerende væske 57
7.3.5 Montering af vandret drivaksel .. 60
7.3.6 Centrering af viklingsomskifteren og motordrevet ... 61
7.4 Gennemførelse af måling af DC-modstand på transformatoren .. 62

8 Tekniske data ... 63
8.1 Tekniske data for viklingsomskifter .. 63
8.1.1 Egenskaber for viklingsomskifter .. 63
8.1.2 Tilladte omgivelsesbetingelser .. 65
8.2 Tekniske data for beskyttelsesrelæet .. 67
8.3 Specialmodeller af beskyttelsesrelæet ... 69
8.3.1 Beskyttelsesrelæ med CO-omkoblerkontakt som udløsningskontakt .. 69
8.3.2 Beskyttelsesrelæ med flere tør-reed magnetkontakter ... 70
8.4 Tekniske data for trykovervågningsenhed .. 71
8.5 Grænseværdier for dielektrisk styrke og vandindholdet af isolerende væsker 72
Indholdsfortegnelse

9 Tegninger ... 73
9.1 OILTAP® V 200, montagetegning (893945) .. 73
9.2 OILTAP® V 350, montagetegning (893821) .. 74
9.3 OILTAP® V, opmærkningsskabelon til viklingsomskiftertop (893787) .. 75
9.4 OILTAP® V, viklingsomskiftertop (893779) .. 76
9.5 OILTAP® V, støtteflange til speciel tankmontageversion af klokke-typen (893864) 77
9.6 OILTAP® V, løftetravers (893805) .. 78
9.7 Vinkelgear CD 6400, dimensionstegning (892916) .. 79
9.8 894566 ... 80

Ordliste .. 81
1 Indledning

Dette tekniske dokument indeholder detaljerede beskrivelser vedrørende overvågning under drift, fejleliminering og vedligeholdelse.

Det omfatter også sikkerhedsforskrifter og generel information om produktet.

Information om montage kan findes i monterings- og ibrugtagningsvejledningerne.

Dette tekniske dokument er udelukkende beregnet til specialuddannede og autoriseret personale.

1.1 Producent

Dette produkt er fremstillet af:

Maschinenfabrik Reinhausen GmbH

Falkensteinstraße 8
93059 Regensburg, Tyskland
Tlf.: (+49) 9 41/40 90-0
E-mail: sales@reinhausen.com

Der findes flere oplysninger om produktet og om ønsket kopier af dette tekniske dokument på denne adresse.

1.2 Fuldstændighed

Dette tekniske dokument er ikke komplett uden de medfølgende dokumenter.

Følgende dokumenter betragtes som medfølgende dokumenter.

- Udpakningsvejledning
- Bilag
- Rutinetestrapport
- Forbindelsesdiagrammer
- Dimensionstegninger
- Ordrebekræftelse

1.3 Opbevaring

Dette tekniske dokument og alle medfølgende dokumenter skal opbevares let tilgængeligt, så de altid er klar til brug.

1.4 Notationskonventioner

1.4.1 Farekommunikationssystem

Advarsler i dette tekniske dokument vises på følgende måde.
1.4.1.1 Advarsel med relation til afsnit

Advarsler med relation til afsnit henviser til hele kapitler eller afsnit, under-afsnit eller flere afsnit i dette tekniske dokument. Advarsler med relation til afsnit bruger følgende format:

⚠️ ADVARSEL

Faretype!

Farekilde og resultat.

► Handling

► Handling

1.4.1.2 Integreret advarselsinformation

Integrerede advarsler henviser til en bestemt del inden for et afsnit. Disse advarsler gælder for mindre informationsenheder end advarsler med relation til sektioner. Integrerede advarsler bruger følgende format:

⚠️ FARE

Instruksion til at undgå en farlig situation.

1.4.1.3 Signalord og piktogrammer

Følgende signalord bruges:

<table>
<thead>
<tr>
<th>Signalord</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FARE</td>
<td>Indikerer en farlig situation, som vil resultere i dødsfald eller alvorlig personskade, hvis den ikke undgås.</td>
</tr>
<tr>
<td>ADVARSEL</td>
<td>Indikerer en farlig situation, som kunne resultere i dødsfald eller alvorlig personskade, hvis den ikke undgås.</td>
</tr>
<tr>
<td>FORSIGTIG</td>
<td>Indikerer en farlig situation, der kunne resultere i mindre eller moderat personskade, hvis den ikke undgås.</td>
</tr>
<tr>
<td>BEMÆRK</td>
<td>Indikerer foranstaltninger, der skal træffes, for at forhindre skader på ejendom.</td>
</tr>
</tbody>
</table>

Tabel 1: Signalord i advarselsnotitser
Piktogrammer advarer mod farer:

<table>
<thead>
<tr>
<th>Piktogram</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Exclamation mark]</td>
<td>Advarsel om farligt punkt</td>
</tr>
<tr>
<td>![Electric plug]</td>
<td>Advarsel om farlig, elektrisk spænding</td>
</tr>
<tr>
<td>![Fire]</td>
<td>Advarsel om brændbare stoffer</td>
</tr>
<tr>
<td>![Warning triangle]</td>
<td>Advarsel om fare for at vælte</td>
</tr>
<tr>
<td>![Hand]</td>
<td>Advarsel om knusefare</td>
</tr>
</tbody>
</table>

Tabel 2: Piktogrammer brugt i advarselsnotitser

1.4.2 Informationssystem

Informationen er designet til at forenkle og forbedre forståelsen af bestemte procedurer. I dette tekniske dokument er den fremstillet som følger:

Vigtig information.

1.4.3 Instruktionsystem

Dette tekniske dokument indeholder enkelttrins- og multitrinsinstruktioner.

Enkelttrinsinstruktioner

Instruktioner, der kun består af et enkelt processtrin, er strukturerede på følgende måde:
1 Indledning

Formål med handling
✓ Krav (valgfrit).
▶ Trin 1 af 1.
⇨ Resultat af trin (valgfrit).
⇨ Resultat af handling (valgfrit).

Flertrinsinstruktioner

Instruktioner, der kun består af flere procestrin, er strukturerede på følgende måde:

Formål med handling
✓ Krav (valgfrit).
1. Trin 1.
⇨ Resultat af trin (valgfrit).
2. Trin 2.
⇨ Resultat af trin (valgfrit).
⇨ Resultat af handling (valgfrit).
2 Sikkerhed

- Læs dette tekniske dokument igennem omhyggeligt for at blive fortrolig med produktet.
- Dette tekniske dokument er en del af produktet.
- Læs og overhold sikkerhedsanvisningerne, der er angivet i dette kapitel.
- Læs og overhold advarslerne i dette tekniske dokument for at undgå funktionsrelaterede farer.
- Produktet er fremstillet på grundlag af state-of-the-art-teknologi. Alligevel kan der som følge af funktionen opstå fare for tilskadekomst eller død for brugeren, forringelse af produktet eller andre materielle skader i tilfælde af forkert anvendelse.

2.1 Passende brug

Produktet er en viklingsomskifter, som justerer transformatorers udvekslingsforhold uden at afbryde belastningsstrømmen. Produktet er kun beregnet til brug i elektriske energisystemer og faciliteter. Hvis produktet bruges efter hensigten og i overensstemmelse med de krav og betingelser, der er anført i dette tekniske dokument samt advarselserne i dette tekniske dokument og på produktet, udgør produktet ikke fare for mennesker, ejendom eller miljø. Dette gælder i hele produktets levetid fra levering, montage og drift, til demontage og bortskaffelse.

Følgende anses som værende anvendelse i henhold til formål:
- Produktet må kun bruges sammen med den transformator/det motordrev, der er specificeret i ordren.
- Serienumrene på viklingsomskifter og viklingsomskiftertilbehør (drev, dri-vaksel, vinkelgear, beskyttelsesrelæ etc.) skal passe sammen, hvis viklingsomskifter og viklingsomskiftertilbehør leveres samlet som ét sæt til én ordre.
- Den gældende standard for produktet og udstedelsesåret er angivet på typeskiltet.
- Anvend produktet i overensstemmelse med dette tekniske dokument, de aftalte leveringsbetingelser og de tekniske data.
- Sørg for, at alt nødvendigt arbejde kun udføres af kvalificeret personale.
- Brug kun det udstyr og specialværktøj, der er indeholdt i leveringsomfanget, til det tilsvarende formål og i overensstemmelse med specifikationerne i dette tekniske dokument.

Tilladte elektriske driftsbetingelser

Ud over dimensioneringsdata i henhold til ordrebekræftelsen skal følgende grænseværdier for gennemgangstrøm og trinspænding overholdes:

I standardversionen er viklingsomskifteren konstrueret til sinusformet 50/60 Hz vekselstrøm med en symmetrisk kurveform i forhold til nulaksen og kan ved sin mærke-gennemgangsstrøm I, koble 2 gange sin mælke-trinspænding U₀.
2 Sikkerhed

Det er tilladt kortvarigt at overskride mærke-trinsspændingen U_r med op til 10 %, så længe den tilladte mærke-effekt P_{StN} for den pågældende trinsspænding ikke overskrider.

2.2 Anvendelse ikke i overensstemmelse sit formål

Brugen anses ikke som værende i overensstemmelse med sit formål, hvis produktet anvendes på anden vis end beskrevet i afsnittet ”Anvendelse iht. formål”. Vær i øvrigt opmærksom på følgende:

Ikke tilladte elektriske driftsbetingelser

Driftsbetingelser, som ikke stemmer overens med dimensioneringsdata i henhold til ordrebekræftelsen, er ikke tilladt.

Der kan f.eks. forekomme højere spændinger som følge af overmagnetisering af transformatoren efter lastfrakobling.

Drift udenfor de tilladte driftsbetingelser kan medføre personskader og beskadigelse af produktet.

- Enhver form for drift udenfor de tilladte driftsbetingelser skal forhindres ved egnede forholdsregler.

2.3 Grundlæggende sikkerhedsanvisninger

For at forhindre ulykker, nedbrud og skader samt uacceptable, negative miljøpåvirkninger, skal de ansvarlige for transport, montage, drift, vedligeholdelse og bortskaffelse af produktet eller dele af produktet, sørge for følgende:

Personligt værneudstyr

Løstsiddende eller uegnet beklædning øger faren for at hænge fast eller blive indfanget af roterende dele og faren for at hænge fast i fremspringende dele. Dette udgør en fare for tilskadekomst eller død.

- Brug egnede personlige værnemidler som hjelm, arbejdsdrakt etc. ved de respektive aktiviteter.
- Brug aldrig beskadiget personligt værneudstyr.
- Bær aldrig ringe, halskæder eller andre smykker.
- Personer med langt hår skal bruge hårnet.
Arbejdsområde
Røde og dårligt belyste arbejdsområder kan føre til ulykker.
- Hold arbejdsområdet rent og ryddeligt.
- Sørg for, at arbejdsområdet er godt belyst.
- Overhold gældende lovgivning for ulykkesforebyggelse i det pågældende land.

Arbejde under drift
Produktet må udelukkende betjenes, hvis det er i god driftsmæssig tilstand. Hvis det ikke er det, udgør det en fare for kvæstelse og død.
- Kontrollér regelmæssigt sikkerhedsudstyrets driftsmæssige stabilitet.
- Overhold intervallerne for inspektionsarbejde, vedligeholdelsesarbejde og vedligeholdelse, som er beskrevet i dette tekniske dokument.

Beskyttelse mod eksplosion
Yderst antændelige eller eksplosive gasser, dampe og støvpartikler kan forårsage alvorlige eksplosioner og brand. Dette øger faren for kvæstelser eller død.
- Monter, betjen og udfør ikke vedligeholdelsesarbejde på produktet i områder, hvor der er risiko for eksplosion.

Sikkerhedsmarkeringer
Sikkerhedsmarkeringerne på produktet består af advarselsskilte og sikkerhedsoplysningsskilt. De er vigtige aspekter af sikkerhedskonceptet.
- Overhold alle sikkerhedsmarkeringer på produktet.
- Sørg for, at alle sikkerhedsmarkeringer på produktet forbliver intakte og læselige.
- Udskift sikkerhedsmarkeringer, der er beskadigede eller mangler.

Omgivelsesbetingelser
Pålidelig og sikker drift sikres ved kun at bruge produktet i de omgivelsesbetingelser, der er specificeret i de tekniske data.
- Overhold de specifice de driftsbetingelser og krav til montagedestedet.

Hjælpematerialer og driftsmaterialer
Hjælpematerialer og driftsmaterialer, som ikke er godkendt af producenten, kan føre til personskader, materielle beskadigelse og fejlfunktioner af produktet.
- Brug kun isolerende væsker [Sektion 8.1.2, Side 65], der er godkendt af producenten.
- Brug kun ledende og jordede slanger, rør og pumpeudstyr, der er godkendt til brandfarlige væsker.
2 Sikkerhed

- Brug udelukkende smøremidler og hjælpematerialer, som er godkendt af producenten.
- Kontakt producenten.

Ændringer og konverteringer

Uautoriserede eller uegnede ændringer af produktet kan medføre personskade, materiel skade og driftsforstyrrelser.
- Produktet må kun ændres efter aftale med Maschinenfabrik Reinhausen GmbH.

Reservedele

Reservedele, der ikke er godkendt af Maschinenfabrik Reinhausen GmbH, kan medføre fysisk skade, beskadigelse af produktet og funktionsfejl.
- Brug kun reservedele, som er godkendt af Maschinenfabrik Reinhausen GmbH.
- Kontakt Maschinenfabrik Reinhausen GmbH.

2.4 Personalekvalifikation

Den person, der er ansvarlig for samling, idriftsættelse, drift, vedligeholdelse og inspektion, skal sikre, at personalet er tilstrækkeligt kvalificeret.

Elektrisk uddannet person

Den elektrisk uddannede person har en teknisk kvalificering og har derfor den nødvendige viden og erfaring og er også fuldt ud bekendt med gældende standarder og bestemmelser. Den elektrisk uddannede person har også indgående viden om følgende:
- Kan selvstændigt identificere potentielle farer og kan undgå dem.
- Kan udføre arbejde på elektriske systemer.
- Er specialuddannet til det arbejdsmiljø, hvori vedkommende arbejder.
- Skal opfylde kravene i gældende lovforskrifter for ulykkesforebyggelse.

Elektrisk uddannede personer

En elektrisk trænet person modtager instruktion og vejledning fra en elektrisk uddannede person i forbindelse med de opgaver, der udføres, og de potentielle farer i tilfælde af upassende håndtering samt beskyttelsesanordninger og sikkerhedsforholdsregler. Den elektrisk trænede person arbejder eksklusivt under en elektrisk uddannet persons vejledning og supervision.

Operator

Operatøren bruger og betjener produktet i overensstemmelse med dette tekniske dokument. Drifts virksomheden giver operatøren instruktion og træning i specifikke opgaver og de dermed forbundne potentielle farer, der opstår som følge af forkert håndtering.
Teknisk service

Vi anbefaler på det kraftigste at få vedligeholdelse, reparationer og eftermontering foretaget af vores tekniske serviceafdeling. Dette sikrer, at alt arbejdet er udført korrekt. Hvis vedligeholdelse ikke udføres af vores tekniske serviceafdeling, skal du sikre, at det personale, der udfører vedligeholdelsen, er trænet og autoriseret af Maschinenfabrik Reinhausen GmbH til at udføre arbejdet.

Autoriseret personale

Autoriseret personale er trænet af Maschinenfabrik Reinhausen GmbH til at udføre speciel vedligeholdelse.

2.5 Personligt beskyttelsesudstyr

Der skal bæres personligt værneudstyr under arbejdet for at minimere sundhedsrisici.

• Brug altid det personlige værneudstyr, der kræves til den respektive arbejdsopgave.
• Brug aldrig beskadiget personligt værneudstyr.
• Vær opmærksom på oplysningerne om det personlige værneudstyr, som er opsat i arbejdsområdet.

<table>
<thead>
<tr>
<th>Beskyttelsesøj</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tætsiddende arbejdstøj</td>
<td>Tætsiddende arbejdstøj med lav brudstyrke, stramme ærmer og uden fremspringende dele. Det tjener hovedsageligt til at beskytte bæreren mod at blive fanget af maskindele i bevægelse.</td>
</tr>
<tr>
<td>Sikkerhedssko</td>
<td>Til beskyttelse mod faldende, tunge genstande og mod glidning på glatte overflader.</td>
</tr>
<tr>
<td>Sikkerhedsbriller</td>
<td>Til beskyttelse af øjnene mod flyvende dele og sprøjtende væsker.</td>
</tr>
<tr>
<td>Ansigtsskærme</td>
<td>Til beskyttelse af ansigtet mod flyvende dele og sprøjtende væsker eller andre farlige substancer.</td>
</tr>
<tr>
<td>Hjelm</td>
<td>Til beskyttelse mod faldende og flyvende dele og materi- aler.</td>
</tr>
<tr>
<td>Høreværn</td>
<td>Til beskyttelse mod høreskader.</td>
</tr>
<tr>
<td>Beskyttelseshandsker</td>
<td>Til beskyttelse mod mekaniske, termiske og elektriske farer.</td>
</tr>
</tbody>
</table>

Tabel 3: Personligt værneudstyr
3 Produktbeskrivelse

3.1 Leveringsomfang

Produktet er emballeret med beskyttelse mod fugt og leveres normalt som følger:

▪ Viklingsomskifter
▪ Drivaksel med koblingsdele og vinkelgear
▪ Beskyttelsesanordninger
▪ Teknisk dokument

Der henvises til følgesedlen for alle detaljer om leveringsomfanget.

Viklingsomskiftere kan også leveres som viklingsomskiftersæt med et fælles motordrev.

Bemærk følgende information:

▪ Kontrollér, hvorvidt forsendelsen er komplet på grundlag af forsendelses-dokumenterne.
▪ Opbevar delene på et tørt sted indtil montagen.
▪ Produktet skal forblive i dets lufttætte, beskyttende indpakning og må kun tages ud umiddelbart før montagen.

Der kan findes flere oplysninger i kapitlet "Emballering, transport og opbevaring".

3.2 Viklingsomskifter

3.2.1 Funktionsbeskrivelse

Viklingsomskiftere bruges til at justere transformatorers udvekslingsforhold uden at afbryde belastnings-flowet. Det gør det muligt at kompensere for aspekter såsom spændingsudsving, der opstår i transmissionsnettet. Til dette formål monteres viklingsomskiftere i transformatorer og forbindes til den aktive del af transformatoren.
Et motordrev, der modtager en kontrolimpuls (eksempelvis fra en spændingsregulator), ændrer driftsstillingen på viklingsomskifteren, hvorved transformatorens udvekslingsforhold tilpasses de fremherskende driftskrav.

Illustration 1: Systemoverblik over viklingsomskiftertransformator

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transformatortank</td>
</tr>
<tr>
<td>2</td>
<td>Motordrev</td>
</tr>
<tr>
<td>3</td>
<td>Lodret drivaksel</td>
</tr>
<tr>
<td>4</td>
<td>Vinkelgear</td>
</tr>
<tr>
<td>5</td>
<td>Horisontal drivaksel</td>
</tr>
<tr>
<td>6</td>
<td>Øverste gearenhed</td>
</tr>
<tr>
<td>7</td>
<td>Viklingsomskifter</td>
</tr>
<tr>
<td>8</td>
<td>RS beskyttelsesrelæ</td>
</tr>
<tr>
<td>9</td>
<td>Oliekonservator</td>
</tr>
<tr>
<td>10</td>
<td>Aktiv del af transformatoren</td>
</tr>
</tbody>
</table>

3.2.2 Opsætning/versioner

Viklingsomskifteren er designet i rørform og kombinerer funktionerne fra en lastomkobler og en lastvælger. Den isolerende væske er adskilt fra transformatorolien ved hjælp af den cylindriske, tryktætte oliebeholder.

Viklingsomskifteren er fastgjort til transformatordækslet med viklingsomskifterens top. Hvis nødvendigt, er viklingsomskifteren udstyret med en omkoblerkontakt.

Viklingsomskifteren og motordrevet afsendes i indstillingspositionen.

Designet af og betegnelsen for viklingsomskifterens vigtigste komponenter er vist på montagetegningerne i tillægget.
For det maksimale antal driftsstillinger på viklingsomskifteren henvises der til de tekniske data.

Illustration 2: OILTAP® V viklingsomskifter

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprængskive</td>
<td>Viklingsomskifterens topdæksel</td>
<td>Viklingsomskifterens top</td>
<td>Oliebeholder</td>
<td>Rørbøjning</td>
</tr>
</tbody>
</table>

3.2.2.1 Rørtilslutninger

Viklingsomskifterens top har 4 rørtilslutninger til forskellige formål.
Afhængigt af ordren er visse eller alle disse rørtilslutninger forsynet med rørbøjninger fra fabrikken. Alle rørbøjninger kan drejes frit, når først trykningen er løsnet.

Illustration 3: Rørtilslutninger med rørbøjninger

Rørtilslutning Q

Rørtilslutningen Q er lukket med et blinddæksel og er beregnet til tilslutning af oliefiltersystemet.

Funktionerne for rørtilslutningerne R og Q kan byttes om

Rørtilslutning S

Rørbøjningen på rørtilslutning S er udstyret med en udluftningsskrue og kan tilsluttes et rør, der ender med en drænventil på siden af transformatortanken i driftshøjde. Hvis viklingsomskifteren er udstyret med et oliesugerør, kan viklingsomskifteren tømmes helt via rørtilslutning S.

Rørtilslutning R

Rørtilslutning R er beregnet til fastgørelse af beskyttelsesrelæet og tilslutning af viklingsomskifterens oliekonservator og kan byttes om med rørtilslutning Q.

Rørtilslutning E2

3.2.3 Typeskilt

Typeskiltet befinder sig på viklingsomskifterens topdæksel.

![Illustration 4: Typeskiltets placering](image)

3.2.4 Beskyttelsesanordninger

Viklingsomskifteren er udstyret med følgende beskyttelsesanordninger.

3.2.4.1 Beskyttelsesrelæ

3.2.4.1.1 Funktionsbeskrivelse

Beskyttelsesrelæet er indkoblet i effektfabryders udløserkredsløb. Det udløser, når den specificerede strømningshastighed fra viklingsomskifterens top til oliekonservatoren overskrider som følge af en fejl. Den strømmende isolerende væske aktiverer klapventilen, der drejer over på positionen OFF. Kontakten i tør-reed magnetkontakten aktiveres derved, effektfabryderen udløses, og transformatoren bliver spændingsfri.

Beskyttelsesrelæet reagerer på strømning, og ikke på akkumuleret gas i beskyttelsesrelæet. Det er ikke nødvendigt at udlufte beskyttelsesrelæet, når transformatoren fyldes med isolerende væske. Akkumulering af gas i beskyttelsesrelæet er normalt.
3.2.4.1.2 Design/versioner

Set forfra

Illustration 5: Beskyttelsesrelæ RS 2001

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspektionsvindue</td>
<td>Trykudligningselement</td>
</tr>
</tbody>
</table>

Set bagfra

Illustration 6: Beskyttelsesrelæ RS 2001

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blindprop</td>
<td>Typeskilt</td>
</tr>
</tbody>
</table>

Beskyttelsesrelæ RS 2001/R har et ekstra inspektionsvindue på bagsiden.
Illustration 7: Beskyttelsesrelæ RS 2001

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pakning</td>
</tr>
<tr>
<td>2</td>
<td>Jordkabel</td>
</tr>
<tr>
<td>3</td>
<td>Terminalboksælksel</td>
</tr>
<tr>
<td>4</td>
<td>Skrue med lige kærv til jordkabel</td>
</tr>
<tr>
<td>5</td>
<td>DRIFT (nulstilling), testknap</td>
</tr>
<tr>
<td>6</td>
<td>Skrue med lige kærv til beskyttelsesdæksel</td>
</tr>
<tr>
<td>7</td>
<td>OFF (testudløsning) testknap</td>
</tr>
<tr>
<td>8</td>
<td>Kabelforskruing</td>
</tr>
<tr>
<td>9</td>
<td>Beskyttelsesdæksel</td>
</tr>
<tr>
<td>10</td>
<td>Blindprop</td>
</tr>
<tr>
<td>11</td>
<td>Tilslutningsterminal</td>
</tr>
<tr>
<td>12</td>
<td>Trykudligningselement</td>
</tr>
<tr>
<td>13</td>
<td>Skrue med cylinderhoved til beskyttelsesledertilslutningen</td>
</tr>
</tbody>
</table>

Beskyttelsesrelæerne RS 2003 og RS 2004 har en 1/2"-14NPT-adapter i stedet for kabelforskruingen.
3.2.4.1.3 Typeskilt

Typeskiltet findes på bagsiden af beskyttelsesrelæet.

Illustration 8: Typeskilt

3.2.4.2 Trykovervågningsenhed DW

3.2.4.2.1 Funktionsbeskrivelse

DW 2000-trykovervågningsenheden beskytter viklingsomskifteren mod uacceptable trykstigninger, hvilket bidrager til transformatorens sikkerhed. Trykovervågningsenheten er monteret på ydersiden af viklingsomskifteren og udløses ved uacceptable statiske og dynamiske tryk i viklingsomskifterens oliebeholder.

Trykovervågningsenheten er baseret på et koncept, hvor en bølget slange fungerer som et barometer sammen med en modtryksfjeder. Denne samling er forbundet mekanisk med sensoren på springkontakten.

Trykstigningen aktiverer sensoren på springkontakten, der kipper over på OFF-positionen. Dette udløser effektafbryderen og afbryder spændingen til transformatoren. Sensoren på springkontakten skal nulstilles manuelt til den indledende position efter udløsning.

Lavenergiinterferens får ikke trykovervågningsenheten til at udløse, fordi det krævede udløsertryk ikke nås. Udløsertrykket er indstillet fra fabrikken og kan ikke ændres.

Trykovervågningsenheten reagerer hurtigere på store trykstigninger end beskyttelsesrelæet. Beskyttelsesrelæet er en del af det standardmæssige MR-beskyttelsessystem og leveres som standard.

Yderligere brug af en trykovervågningsenhed kræver også montage af det medfølgende beskyttelsesrelæ.

Trykovervågningsenhedens funktioner og karakteristika stemmer overens med den respektive, gældende version af IEC-publikation 60214-1.
Lastomkobleraktiviteter ved nominel koblingskapacitet eller tilladt overbelastning får ikke det trykdrevne relæ til at udløse.

Det trykdrevne relæ reagerer på en trykændring og ikke på en gasakkumulering under det trykdrevne relæ. Gasakkumulering under det trykdrevne relæ er normal.

3.2.4.2.2 Design/versioner

Der er to varianter af trykovervågningsenheden:

- DW 2000 til lodret montering
- DW 2000 til vandret montering

Huset og dækkappen på trykovervågningsenheden består af korrosionsbestandigt letvægtsmetal.

Illustration 9: Springkontakt og trykmåleelement

<table>
<thead>
<tr>
<th></th>
<th>Springkontakt</th>
<th>Trykmåleelement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.4.3 Sprængskive

Sprængskiven er en trykaflastningsenhed uden signalkontakt i overensstemmelse med IEC 60214-1 og er anbragt i dækslet på viklingsomskifterens top.

Sprængskiven reagerer på et defineret overtryk i oliebeholderen i viklingsomskifteren.

3.2.4.4 Overtrykssikring MPreC®

Efter anmodning vil MR levere en formonteret MPreC®-trykaflastningsenhed i stedet for sprængskiven. Denne enhed reagerer på et defineret overtryk i oliebeholderen i viklingsomskifteren.

Viklingsomskifteren opfylder således kravene i IEC 60214-1 vedrørende trykaflastningsenheder.

3.2.4.5 Temperaturovervågning

Temperaturovervågningssystemet overvåger temperaturen af den isolerede væske i oliebeholderen i viklingsomskifteren.
3.3 Drivaksel

3.3.1 Funktionsbeskrivelse

Drivaksel er den mekaniske forbindelse mellem motordrevet og viklingsomskifteren / den spændingsfri omskifter.

Vinkelgearet skifter retning fra lodret til vandret.

Derfor skal den lodrette drivaksel monteres mellem drevet og vinkelgearet og den vandrette drivaksel mellem vinkelgearet og viklingsomskifteren eller den spændingsfri viklingskobler.
3.3.2 Design/versioner

Drivakslen består af et firkantrør og er koblet sammen med to koblingsbeslag og en koblingsbolt i begge ender til den kørende eller drevne akselende af den enhed, der skal tilsluttes.

Illustration 11: Komponenter i drivakslen

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Komponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vinkelgear</td>
</tr>
<tr>
<td>2</td>
<td>Slangebånd</td>
</tr>
<tr>
<td>3</td>
<td>Teleskopisk beskyttelsesrør</td>
</tr>
<tr>
<td>4</td>
<td>Koblingsbeslag</td>
</tr>
<tr>
<td>5</td>
<td>Firkantrør</td>
</tr>
<tr>
<td>6</td>
<td>Koblingsbolt</td>
</tr>
<tr>
<td>7</td>
<td>Adapterring</td>
</tr>
<tr>
<td>8</td>
<td>Beskyttelsesdæksel</td>
</tr>
</tbody>
</table>
3.3.2.1 Drivaksel uden kardanled og uden isolator

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th>V 1 min</th>
<th>Mellemleje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midten af håndvinget – midten af vinkelgearet (maksimalt tilladt aksialforskydning 2°)</td>
<td>536 mm</td>
<td>Når maksimumsværdien på 2472 mm overskrides, er det nødvendigt at bruge et mellemleje. V 1 ≤ 2472 mm (uden mellemleje) V 1 > 2472 mm (med mellemleje)</td>
</tr>
</tbody>
</table>
3.3.2.2 Drivaksel uden kardanled og med isolator

Illustration 13: Drivaksel uden kardanled og med isolator (= specialmodel)

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th>V 1 min</th>
<th>Mellemleje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midten af håndsvinget – midten af vinkelgearet (maksimalt tilladt aksialforskydning 2°)</td>
<td>706 mm</td>
<td>Når maksimumsværdien på 2472 mm overskrides, er det nødvendigt at bruge et mellemleje.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 1 ≤ 2472 mm (uden mellemleje)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 1 > 2472 mm (med mellemleje)</td>
</tr>
</tbody>
</table>
3.3.2.3 Drivaksel med kardanled, uden isolator

Illustration 14: Drivaksel med kardanled, uden isolator (= specialmodel)

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th>V 1 min [mm]</th>
<th>Mellemleje til [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midten af håndsvinget – midten af vinkelgearet (maksimalt tilladt aksial-</td>
<td>798</td>
<td>V 1 > 2564</td>
</tr>
<tr>
<td>forskydning 20°)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.2.4 Drivaksel med kardanled, med isolator

Illustration 15: Drivaksel med kardanled, med isolator (= specialmodel)

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th>V 1 min [mm]</th>
<th>Mellemleje til [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midten af håndsvinget – midten af vinkelgearet (maksimalt tilladt aksialforskydning 20°)</td>
<td>978</td>
<td>V 1 > 2772</td>
</tr>
</tbody>
</table>
3 Produktbeskrivelse

3.4 OF 100 oliefiltersystem

Formålet med OF 100 oliefiltersystemet er at rense viklingsomskifterens isolerende væske med papirfilterindsatsen og at rense og tørre væsken med den kombinerede filterindsats.

På viklingsomskiftere, hvor antallet af trinkoblinger pr. år er højere end 15.000, anbefaler vi brug af OF 100 oliefiltersystemet med papirfilterindsats. Det kan forlænge intervallerne mellem vedligeholdelse.

Se MR-brugervejledningen til "OF 100-oliefiltersystem" for at få flere oplysninger.

Når OILTAP® V III 200 D- og V III 350 D-viklingsomskiftere bruges i lande med tropisk eller subtropisk klima, hvor den relative luftfugtighed er meget høj, og temperaturen i oliekonservatoren normalt falder ned under dugpunktet hver dag, anbefaler vi, at der bruges et OF 100-oliefiltersystem med kombineret filterindsats for at opretholde de dielektriske egenskaber i den isolerende væske. Hvis, under sådanne omstændigheder, den højeste driftsspænding mellem faserne i viklingsomskifteren er > 55 kV, skal OF 100 oliefiltersystemet med kombineret filterindsats bruges.
4 Idriftsættelse

Eksplosionsfare!

Eksplosive gasser i oliebeholderen på viklingsomskifteren, transformatoren, rørsystemet, oliekonservatoren og ved dehydreringsenhedens åbning kan forbrænde hurtigt eller eksplodere, hvilket kan føre til alvorlig personskade eller død!

- Sørg for, at der ikke er nogen antændingskilder, f.eks. åben ild, varme overfladader eller gnister (f.eks. forårsaget af statisk elektricitet) i de umiddelbare omgivelser under idriftsættelse, og at sådanne ikke opstår.
- Undlad at bruge elektriske apparater (der er f.eks. risiko for gnister forårsaget af en slagnøgle).
- Brug kun ledende og jordede slanger, rør og pumpeudstyr, der er godkendt til brandfarlige væsker.

Eksplosionsfare!

Overbelastning af viklingsomskifteren kan føre til eksplosion. Udsprøjtende warm isolerende væske og udkastede dele kan føre til død og alvorlige personskader. Materiel beskadigelse er højst sandsynlig.

- Sørg for, at viklingsomskifteren ikke er overbelastet.
- Sørg for, at brugen af viklingsomskifteren er i overensstemmelse med afsnittet "Passende brug".
- Forhindre operationer uden for de tilladte driftsbetingelser ved at tage passende forholdsregler.

4.1 Idriftsættelse af transformatoren på driftstedet

4.1.1 Påfyldning af viklingsomskifterens oliebeholder med isolerende væske

BEMÆRK

Skader på viklingsomskifteren!

Uegnede isolerende væsker forårsager beskadigelse af viklingsomskifteren.

- Brug kun isolerende væsker [Sektion 8.1.2, Side 65], der er godkendt af producenten.

1. **BEMÆRK** Kontroller, om viklingsomskifterens topdæksel har en flange til fastgørelse af en overtrykssikring. Hvis den har, er drift uden en overttrykssikring ikke tilladt og kan resultere i beskadigelse af viklingsomskifteren.

- Monter en overtrykssikring, der er godkendt til denne viklingsomskifter, på viklingsomskifterens top.
2. Etabler en tilslutningsledning mellem rørtilslutningen E2 og én af rørtilslutningerne R, S eller Q for at sikre ensartet tryk i oliebeholderen og transformatoren under tømning.

Illustration 16: Tilslutningsledning mellem E2 og Q

3. Fyld viklingsomskifteren med ny isolerende væske ved at bruge én af de to ledige rørtilslutninger på viklingsomskifterens top.

Illustration 17: Rørtilslutninger S og R

4. Tag en prøve af den isolerende væske fra oliebeholderen.
5. Noter prøvens temperatur, som den var umiddelbart efter udtagningen.
6. Bestem den dielektriske styrke og vandindholdet ved en prøvetemperatur på 20 °C ± 5 °C. Den dielektriske styrke og vandindholdet skal overholde de grænseværdier, der er anført i de tekniske data.
4.1.2 Udluftning af viklingsomskifterens top og sugeledningen

4.1.2.1 Udluftning af viklingsomskifterens top

1. Luk op for alle fremløbsventiler og returventiler i rørsystemet.
2. Fjern skruedækslet på udluftningeventil E1 på viklingsomskifterens top-dæksel.

Illustration 18: Udluftningsventil E1

3. Brug en skruetrækker til at løfte ventilstødstangen på udluftningsventil E1 og udluft viklingsomskifterens top.

Illustration 19: Ventilstødstang

4. Forsegl udluftningsventil E1 med skruedækslet (tilspændingsmoment 10 Nm).
4.1.2.2 Udluftning af sugeledningen på rørtilslutning S

1. Fjern skruedækslet fra rørtilslutning S.

Illustration 20: Rørtilslutning S

2. **BEMÆRK!** Et ukomplet udluftet sugerør hæmmer viklingsomskifterens isoleringskapacitet mod underlaget væsentligt. Åbn udluftningsskruen, og udluft sugerøret helt.

3. Luk for udluftningsskruen.

4. Forsegl udluftningsskruen med skruedækslet.

4.1.3 Kontrol af motordrevet

BEMÆRK

Beskadigelse af viklingsomskifteren/den spændingsfri viklingskobler!

Beskadigelse af viklingsomskifteren/den spændingsfri viklingsomskifter på grund af aktivering af viklingsomskifteren/den spændingsfri viklingskobler uden isolerende væske.

► Sørg for, at vælgeren/den spændingsfri viklingskobler er helt nedsænket i den isolerende væske, og at oliebeholderen på viklingsomskifteren er helt fyldt med isolerende væske.
Skader på viklingsomskifteren og motordrevet!

Skader på viklingsomskifteren og motordrevet på grund af ukorrekt brug af positionstransmitteren.

- Det er kun kredsløb, der er anført i kapitlet Tekniske data for positionstransmittere, som kan være tilslutet positionstransmitterens modultilslutninger.

- Positionstransmitterens omskifterpunkt i motordrevet er ikke det samme som lastomkoblerens omskifterpunkt. Dette afhænger af lastomkobleretypen. Dette faktum skal bemærkes ved projektplanlægningen af låse-kredsløbene mellem motordrevet og eksternt udstyr (eksempelvis transformatorens kredsløbsafbryder).

- Derfor skal positionstransitkontakten "Viklingsomskifter i drift", som er vist i tilslutningsdiagrammet, bruges til ekstern overvågning, låsning og kontrolformål i stedet for positionstransmitteren.

Før idriftsættelse af transformatoren skal du kontrollere, om motordrevet og viklingsomskifteren er forbundet korrekt, og at motordrevet fungerer korrekt.

Test på motordrevet

1. Gennemfør funktionstest, som beskrevet i de relevante MR-brugervejledninger til motordrevet.

Dielektriske tests på transformatorens ledningsføring

- Bemærk oplysninger angående dielektriske test på transformatorledningsføringen i de relevante MR-brugervejledninger til motordrevet.

4.1.4 Kontrol af beskyttelsesrelæet

- Kontrollér, at beskyttelsesrelæet fungerer korrekt før idriftsættelse af transformatoren:
 2. Sørg for, at transformatoren forbliver spændingsfri under testen.
 3. Deaktiver den automatiske brandslukningsenhed.
 4. Løsn de tre skruer på terminalboksåbningen, og løft det af terminalboksåbningen.
5. Fjern skruen med lige kærv til jordkabel, og fjern terminalboksåbningstætslet med ledning.

6. Tryk på testknappen OFF.

7. Forlad transformatorens farezone.

8. Sørg for, at transformatorens kredsløbsafbryder ikke kan lukkes.

 ⇒ Passiv beskyttelsestest

9. Tryk på testknappen OPERATION.

10. Forlad transformatorens farezone.

11. Luk transformatorens kredsløbsafbryder med isoleringsafbryderne åbne og transformatoren jordet på alle sider.

12. Tryk på testknappen OFF.

13. Sørg for, at transformatorens kredsløbsafbryder er åben.

 ⇒ Aktiv beskyttelsestest

14. Tryk på testknappen OPERATION for at nulstille beskyttelsesrelæet.

4.1.4.2 Kontrol af beskyttelsesrelæet (RS 2004)

 ✔ Kontroller, at beskyttelsesrelæet fungerer korrekt før idriftsættelse af transformatoren:

1. Sørg for, at klappventilen står i positionen OPERATION.

2. Forlad transformatorens farezone.

3. Luk transformatorens kredsløbsafbryder med isoleringsafbryderne åbne og transformatoren jordet på alle sider.

4. Tryk på testknappen OFF.

5. Sørg for, at transformatorens kredsløbsafbryder er åben.

 ⇒ Aktiv beskyttelsestest

4.1.5 Kontrol af trykovervågningsenheden

2. Sørg for, at transformatoren forbliver spændingsfri under testen.

3. Deaktiver den automatiske brandslukningsenhed.

4. Fjern dækkappen.

5. Aktiver sensoren på springkontakten.

 ⇒ Sensoren er på position OFF.

6. Forlad transformatorens farezone.

7. Sørg for, at transformatorens effektforsyningsenhed ikke kan sluttet.

 ⇒ Passiv beskyttelsestest
8. Aktiver sensoren på springkontakten.
 ⇒ Sensoren er i position OPERATION.

10. Slut transformatorens effektafbryder med åbne isoleringsafbryderne og jordet transformator på alle sider.

11. Aktiver sensoren på springkontakten.
 ⇒ Sensoren er på position OFF.

12. Sørg for, at transformatorens effektafbryder er åben.
 ⇒ Aktiv beskyttelsestest.

13. Aktiver sensoren på springkontakten for at nulstille trykovervågningsenheden.
 ⇒ Sensoren er i position OPERATION.

4.1.6 Idriftsættelse af transformatoren

 ✓ Signalkontakten til fald under det minimale niveau af isolerende væske i viklingsomskifterens oliekonservator er indkoblet i kredsløbsafbryderens udløserkredsløb.
 ✓ Beskyttelsesrelæet og yderligere beskyttelsesanordninger er indkoblet i kredsløbsafbryderens udløserkredsløb.
 ✓ Motordrevet og alle beskyttelsesanordninger fungerer korrekt og er klar til brug.
 ✓ Oliebeholderen i viklingsomskifteren er helt fyldt med isolerende væske.
 ✓ Alle stophaner mellem viklingsomskifteren og oliekonservatoren på viklingsomskifteren er åbne.

1. Tænd transformatoren.

2. BEMÆRK! Startstrømsimpulser kan være betydeligt større end transformatorens nominelle strøm og kan føre til strømgange med asymmetriske former eller ikke-sinusformede bølgeformer og kan, som resultat heraf, overbelaste viklingsomskifteren under lastomkobleraktivitet. Udfør kun viklingsomskifteraktiviteter (uanset om det er under betingelser med eller uden belastning), når startstrømsimpulsen er aftaget.
5 Drift

5.1 Betjening af motordrevet med håndsvinget

Eksplosionsfare!
Uautoriseret betjening af motordrevet med håndsvinget kan føre til død eller alvorlig personskade.

► Betjen aldrig motordrevet elektrisk eller med håndsvinget, før transformatoren er blevet frakoblet, hvis du mener, at der kan være en fejl i transformatoren eller viklingsomskifteren/den spændingsfri viklingsskobler.
► Brug aldrig håndsvinget til at fuldføre en omkobleroperation, der blev indledt elektrisk, men som ikke blev afsluttet helt.
► Hvis det er svært at dreje håndsvinget skal du holde op med at bruge det.
► Når motordrevet betjenes med håndsvinget, må rotationsretningen aldrig ændres.
► Hvis der er nogen tvivl om, hvorvidt viklingsomskifteren/den spændingsfri viklingskobler er i korrekt fungerende tilstand, eller om årsagen til en fejl i motordrevet, skal du straks kontakte den tekniske serviceafdeling hos Maschinenfabrik Reinhausen GmbH.
► Manuel betjening af motordrevet må udelukkende ske vha. håndsvinget monteret i motordrevet.

Der findes oplysninger om afhjælpning af fejl i kapitlet "Fejlafhjælpning".

Normal drift
Under normal drift er der ikke behov for at betjene enheden med håndsvinget. Håndsvinget bruges primært under montage og ved test af transformatoranlægget.

Brug af håndsvinget til betjening af motordrevet er tilladt, hvis transformatoren er frakoblet, f.eks. ved vedligeholdelsesopgaver, hvis der ikke er nogen detekterbar fejl på transformatoren eller viklingsomskifteren/den spændingsfri viklingsskobler, og den tidligere omkobleroperation er blevet korrekt gennemført.

Undtagelse ved nødbetjening
En betjening betragtes som en nødbetjening, hvis det er absolut nødvendigt at udføre en omkobleroperation, mens en transformator står under spænding, på trods af en fejl i motordrevet. I så fald skal de ovenfor anførte advarsler overholdes.

Betjening af motordrevet med håndsvinget
Omkobleroperation med håndsvinget udføres på følgende måde:
1. Åbn døren på motordrevets beskyttelseshus.
2. Slå motorbeskyttelseskontakten Q1 fra (position 0).
3. Indsæt håndsvinget, der er monteret i motordrevet, i åbningen i den øverste dækplade.
 - Den indbyggede håndsvingslåsekontakt afbryder motorkredsløbet på to poler. Styrekr<ref>redsløbet bliver ikke afbrudt.

4. **BEMÆRK!** Beskadigelse af viklingsomskifteren som følge af, at omkobleroperationen ikke er fuldført korrekt. Drej håndsvinget i én retning, til markøren har bevæget sig en hel omgang rundt om trinkoblingsindikatoren og igen befinder sig i midterpositionen af det område, der er markeret med gråt på trinkoblingsindikatoren.
 - Omkobleroperationen er fuldført.

5. Fjern håndsvinget, og læg det tilbage i monteringsbeslaget.

6. Slå motorbeskyttelseskontakten Q1 til (position I).

7. Luk døren på motordrevets beskyttelseshus.
6 Fejleeliminering

ADVARSEL

Eksplosionsfare!

Eksplosive gasser under viklingsomskifterens topdæksel kan forbrænde hurtigt eller eksplodere, hvilket kan føre til alvorlig personskade eller død.

► Sørg for, at der ikke er nogen antændingskilder, f.eks. åben ild, varme overflader eller gnister (f.eks. forårsaget af statisk elektricitet) i de umiddelbare omgivelser, og at sådanne ikke opstår.

► Gør alle hjælperekredsløb spændingsfri (f.eks. trinkoblingens overvågningsenhed, overtryksforsikringen, trykovervågningsenhed) før viklingsomskifterens topdæksel fjernes.

► Undlad at bruge elektriske apparater under arbejdet (der er f.eks. risiko for gnister forårsaget af en slagnøgle).

BEMÆRK

Skader på viklingsomskifteren og transformatoren!

Hvis beskyttelsesrelæet eller andre beskyttelsesanordninger udløses, kan det indikere skader på viklingsomskifteren og transformatoren! Transformatoren må ikke strømforsynes uden forudgående inspektion!

► Kontrollér viklingsomskifteren og transformatoren, når beskyttelsesrelæet eller andre beskyttelsesanordninger har været udløst.

► Brug ikke udstyret igen, før der er sikkerhed for, at der ikke er nogen skader på viklingsomskifteren eller transformatoren.

BEMÆRK

Beskadigelse af motordrevet!

Beskadigelse af motordrevet på grund af kondensat i motordrevets beskyttelseshus.

► Hold altid motordrevets beskyttelseshus tæt lukket.

► Ved driftsafbrydelser på mere end 2 uger skal motordrevets anti-kondensvarmer tilsluttes og køres. Hvis dette ikke er muligt (f.eks. under transport), anbringes der en tilstrækkelig mængde tørremiddel i beskyttelseshuset.

Tabellen nedenfor er beregnet som en hjælp til detektering af fejl og om muligt til at afhjælpe af dem.

Der er yderligere oplysninger i brugervejledningerne for beskyttelsesrelæet eller den relevante beskyttelsesanordning.

I tilfælde af fejl ved viklingsomskifteren og motordrevet, der ikke uden videre kan rettes på stedet, eller hvis beskyttelsesrelæet eller yderligere beskyttelsesanordninger er blevet udløst, kontakt den autoriserede MR repræsentant, transformatorproducenten, eller kontakt MR direkte.

Maschinenfabrik Reinhausen GmbH
Teknisk service
Postboks 12 03 60
93025 Regensburg
<table>
<thead>
<tr>
<th>Fejlbeskrivelse</th>
<th>Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Udløsning af beskyttelsesrelæ</td>
<td>Se "Udløsning af beskyttelsesrelæ og idriftsættelse af transformator igen" Kontakt også MR.</td>
</tr>
<tr>
<td>Udløsning af trykovervågningsenhed (f.eks. DW 2000)</td>
<td>Se "Udløsning af trykovervågningsenhed og idriftsættelse af transformator igen" Kontakt også MR.</td>
</tr>
<tr>
<td>Udløsning af motorbeskyttelseskontakten i motordrevet</td>
<td>Se kapitlet "Fejlafhjælpning" i brugervejledningen til TAPMOTION® ED-motordrevet.</td>
</tr>
<tr>
<td>Udløsning af signalkontakt, der indikerer, at påfyldningsniveauet for isolerende væske er faldet til under minimum i viklingsomskifterens oliekonservator</td>
<td>Kontroller rørsystemet (rør etc.) og viklingsomskifterens top for utætheder. Kontroller fyldningsniveauet og kvaliteten af den isolerende væske i oliebeholderen i overensstemmelse med brugervejledningen for viklingsomskifteren. Hvis påfyldningsniveauet er faldet til under grænseværdierne, skal MR kontaktes.</td>
</tr>
<tr>
<td>Viklingsomskifteren ænder ikke koblingsposition (træghed, hævenøgler/sænkenøgler virker ikke, lastomkobling kan ikke høres)</td>
<td>Kontakt MR.</td>
</tr>
<tr>
<td>Ingen ændring af transformatorspænding trods ændring af motordrevets position</td>
<td>Kontakt MR.</td>
</tr>
<tr>
<td>Indikatoren til koblingsposition på motordrev og viklingsomskifter forskellig</td>
<td>Kontakt MR.</td>
</tr>
</tbody>
</table>
6 Fejleliniering

<table>
<thead>
<tr>
<th>Fejlbeskrivelse</th>
<th>Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rød meddelelse på overvågningsenhed</td>
<td>Om muligt skal databasen udlæses og sendes til MR sammen med fejlkoden.</td>
</tr>
<tr>
<td>Advarsel fra eller udløsning af Buchholz-relæet på transformatoren</td>
<td>Underret transformatorproducenten.</td>
</tr>
<tr>
<td>Afvigelser fra ønsket værdi ved måling af transformatoren viklingsmodstand</td>
<td>Kontakt transformatorproducenten og, om nødvendigt, MR, og oplyse målte værdier.</td>
</tr>
<tr>
<td>Afvigelser fra ønsket værdi under analyse af opløst gas (transformatorolie)</td>
<td>Kontakt transformatorproducenten og, om nødvendigt, MR, og oplyse målte værdier.</td>
</tr>
<tr>
<td>Afvigelser fra ønsket værdi under transformatorudvekslingsmåling</td>
<td>Kontakt transformatorproducenten og, om nødvendigt, MR, og oplyse målte værdier.</td>
</tr>
<tr>
<td>Afvigelser fra grænseværdien for isolerende væsker</td>
<td>Udskift den isolerende væske, og kontroller oliekonservatorenens udluftning på viklingsomskifteren.</td>
</tr>
</tbody>
</table>

Tabel 4: Fejlhjælpning

6.1 Udløsning af beskyttelsesrelæet og idriftsættelse af transformatoren igen

ADVARSEL

Eksplosionsfare!

Eksplosive gaser i beskyttelsesrelæet kan forbrænde hurtigt eller eksplodere, hvilket kan føre til alvorlig personskade eller død.

► Vent til 15 minutter efter, at du har slukket transformatoren, før du starter yderligere arbejde på beskyttelsesrelæet, så gasserne kan spredes.

► Sørg for, at der ikke er nogen antændingskilder, f.eks. åben ild, varme overflader eller gnister (f.eks. forårsaget af statisk elektricitet) i de umiddelbare omgivelser, og at sådanne ikke opstår.

► Gør alle hjælpekredsløb spændingsfri før indledning af arbejdet.

► Undlad at bruge elektriske apparater under arbejdet (der er f.eks. risiko for gnister forårsaget af en slagnøgle).

ADVARSEL

Fare for alvorlig personskade eller dødsfald!

Fare for alvorlig personskade eller død, hvis viklingsomskifieren og transformatoren ikke er testet tilstrækkeligt!

► Sørg for at kontakte Maschinenfabrik Reinhausen for at få kontrolleret viklingsomskifteren og transformatoren efter udløsning af beskyttelsesrelæet.

► Brug kun udstyret igen, når der er sikkerhed for, at der ikke er nogen skader på viklingsomskifteren eller transformatoren.

Når kredsløbsafbryderne er blevet udløst af beskyttelsesrelæet, så gå frem som følger:

1. Få fastslået tidspunktet for udløsningen.
2. Bestem viklingsomskifterens arbejdsstilling.
3. Som en sikkerhedsforanstaltning blokeres motordrevet ved at udløse motorbeskyttelseskontakten for at forhindre viklingsomskifteren i at blive aktiveret via fjernbetjening.

5. Kontrollér, om beskyttelsesrelæets klapventil står på positionen OFF eller OPERATION.

6.1.1 Klapventil i positionen OPERATION

6.1.2 Klapventil på positionen OFF

Hvis klapventilen er på positionen OFF, så gå frem som følger:

1. Få tilsikret, at transformatoren ikke er startet op under nogen omstændigheder.

2. Kontakt og informér Maschinenfabrik Reinhausen om følgende:
 - Serienummeret på beskyttelsesrelæet og viklingsomskifteren
 - Hvilken belastning var transformatoren udsat for i det øjeblik, der blev udløst?
 - Blev viklingsomskifteren bevæget umiddelbart før eller under udløsningen?
 - Var der nogen af de andre beskyttelsesanordninger på transformatoren, der reagerede i det øjeblik der blev udløst?
 - Blev der udført omkoblinger i netværket i det øjeblik der blev udløst?
 - Blev der registreret overspændinger i det øjeblik der blev udløst?

3. Enhver yderligere handling skal ske efter aftale med Maschinenfabrik Reinhausen.

6.1.3 Idriftsættelse af transformatoren igen

Når først man har fundet frem til grunden til at beskyttelsesrelæet er blevet udløst og fejlen er udbedret, kan transformatoren sættes i drift igen:

1. Kontrol af beskyttelsesrelæt [Sektion 4.1.4.1, Side 36].

2. Sæt transformatoren i drift.
6.2 Udløsning af trykovervågningsenheden og idriftsættelse af transformatoren igen

Fare for alvorlig personskade eller dødsfald!

Fare for alvorlig personskade eller død, hvis viklingsomskifteren og transformatoren ikke er testet tilstrækkeligt!

- Sørg for at kontakte Maschinenfabrik Reinhausen for at få kontrolleret viklingsomskifteren og transformatoren efter udløsning af trykovervågningsenheden.
- Brug kun udstyret igen, når der er sikkerhed for, at der ikke er nogen skader på viklingsomskifteren eller transformatoren.

Gør følgende, hvis kredsløbsafbryderen er blevet udløst af trykovervågningsenheden:

1. Få fastslået tidspunktet for udløsningen.
2. Bestem viklingsomskifterens arbejdsstilling.
3. Som en sikkerhedsforanstaltning blokeres motordrevet ved at udløse motorbeskyttelseskontakten for at forhindre viklingsomskifteren i at blive aktiveret via fjernbetjening.
5. Kontrollér, om trykovervågningsenhedens sensor er i positionen OFF eller positionen OPERATION.

6.2.1 Sensoren er på positionen OPERATION

6.2.2 Sensoren på positionen OFF

Hvis sensoren er på positionen OFF, så gå frem som følger.

1. Få tilsikret, at transformatoren ikke er startet op under nogen omstændigheder.

2. Kontakt og informér Maschinenfabrik Reinhausen om følgende:
 - Hvilken belastning var transformatoren udsat for i det øjeblik, der blev udløst?
 - Var der en trinkoblingsoperation på viklingsomskifteren umiddelbart før eller under udløsningen?
 - Var der nogen af de andre beskyttelsesanordninger på transformatoren, der reagerede i det øjeblik der blev udløst?
 - Blev der udført omkoblinger i netværket i det øjeblik der blev udløst?
 - Blev der registreret overspændinger i det øjeblik der blev udløst?
 - Hvor højt er det statiske tryk på overtryksikringen (højdeforskelle mellem olieniveauet i viklingsomskifterens oliekonservator og overtryksikringen)?

3. Enhver yderligere handling skal ske efter aftale med Maschinenfabrik Reinhausen.

6.2.3 Idriftsættelse af transformatoren igen

Transformatoren kan sættes i drift igen, når årsagen til udløsning af trykovägningseheden er blevet fastslået og løst:

1. Sørg for, at sensoren på springkontakten står på positionen OPERATION.
2. Sæt transformatoren i drift.
7 Vedligeholdelse

FARE

Elektrisk stød!

En strømførende transformator kan forårsage død eller alvorlig tilskade-
komst.

► Sluk transformatoren på høj- og lavspændingssiden.
► Lås transformatoren for at forhindre utilsigtet genstart.
► Sørg for, at alt er spændingsfrit.
► Forbind synligt alle transformatorterminaler til jord (jordledninger, jordaf-
brydere), og kortslut dem.
► Dæk eller afspær tilstående dele, der er under spænding.

FARE

Elektrisk stød!

Hvis der udføres arbejde på viklingsomskifteren, mens dens komponenter
forsynes med strøm, kan det føre til alvorlige persontskader eller død.

► Gør alle hjælpekredsløb spændingsfri, f.eks. trinkoblingens overväg-
ningskontrol, overtrykssikringen, trykovågningsenheden.
► Sørg for, at alt er spændingsfrit.

ADVARSEL

Eksplosionsfare!

Eksplosive gasser i oliebeholderen på viklingsomskifteren, transformatoren,
rørsystemet, oliekonservatoren og ved dehydreringsenhedens åbning kan
forbrænde hurtigt eller eksploedere, hvilket kan føre til alvorlig persontskade
eller død.

► Sørg for, at antændingskilder, som åben ild, varme overflader eller gnis-
ster (f.eks. forårsaget af statisk elektricitet) ikke findes og ikke kan opstå
umiddelbart i nærheden af transformatoren.
► Undlad at bruge elektriske apparater (der er f.eks. risiko for gnister forår
saget af en slagnøgle).
► Brug kun ledende og jordede slanger, rør og pumpeudstyr, der er god-
kendt til brandfarlige væsker.

BEMÆRK

Beskadigelse af motordrevet!

Beskadigelse af motordrevet på grund af kondensat i motordrevets beskyt-
telseshus.

► Hold altid motordrevets beskyttelseshus tæt lukket.
► Ved driftsafbrydelser på mere end 2 uger skal motordrevets anti-kon-
densvarmer tilsluttes og køres. Hvis dette ikke er muligt (f.eks. under
transport), anbringes der en tilstrækkelig mængde tørremiddel i beskyt-
telseshuset.
7.1 Inspektion

Overvågning af viklingsomskifter og motordrev/styrepanel er begrænset til lejlighedsvisse visuelle kontroller samt overvågning af kvaliteten af den isolerende væske. Af effektivitetsgrunde kan disse visuelle inspektioner kombineres med de sædvanlige kontroller af transformatoren.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Årligt</td>
<td>Kontroller dørtætning, kabelbøsninger og ventilation af motordrev/styrepanelets kabinet.</td>
</tr>
<tr>
<td>Årligt</td>
<td>Kontroller forsøegspunkter på viklingsomskifterens top, beskyttelsesrelæet og de tilsluttede rør.</td>
</tr>
<tr>
<td>Årligt</td>
<td>Kontroller, at den installerede elektriske varmer i motordrevet/styrepanel-kabinettet fungerer korrekt.</td>
</tr>
<tr>
<td>Årligt</td>
<td>Kontroller, at beskyttelsesrelæet [Sektion 4.1.4, Side 36] fungerer korrekt.</td>
</tr>
<tr>
<td>Årligt</td>
<td>Kontroller, at udluftningsrørret (silica-gel) til viklingsomskifterens oliekonservator er i korrekt stand.</td>
</tr>
<tr>
<td>Hvert 2. år</td>
<td>Kontroller kvaliteten af den isolerende væske i viklingsomskiftere, som er installeret i andre positioner end det neutrale viklingspunkt (klasse 2 i henhold til ICE 60214-1).</td>
</tr>
<tr>
<td></td>
<td>1. Tag en prøve af den isolerende væske fra oliebeholderen.</td>
</tr>
<tr>
<td></td>
<td>2. Noter temperaturen af prøven (isolerende væske) umiddelbart efter udtagning af prøven.</td>
</tr>
<tr>
<td></td>
<td>4. Hvis grænseværdierne ikke overholdes, skal den isolerende væske udskiftes i overensstemmelse med afsnittet "Skift af isolerende væske".</td>
</tr>
<tr>
<td>Hvert 7. år</td>
<td>Kontroller kvaliteten af den isolerende væske i viklingsomskiftere, der er monteret i viklingernes neutralpunkt (klasse 1 i henhold til 60214-1).</td>
</tr>
<tr>
<td></td>
<td>1. Tag en prøve af den isolerende væske fra oliebeholderen.</td>
</tr>
<tr>
<td></td>
<td>2. Noter temperaturen af prøven (isolerende væske) umiddelbart efter udtagning af prøven.</td>
</tr>
<tr>
<td></td>
<td>4. Hvis grænseværdierne ikke overholdes, skal den isolerende væske udskiftes i overensstemmelse med afsnittet "Skift af isolerende væske".</td>
</tr>
</tbody>
</table>

Tabel 5: Inspektionsplan
7 Vedligeholdelse

7.2 Vedligeholdelsesintervaller

Vedligeholdelsesintervallerne for viklingsomskifterens indsats og hele viklingsomskifteren er beskrevet nedenfor.

Vedligeholdelsesinterval for viklingsomskifterens indsats og gearenheden

Viklingsomskifterens indsats og hele gearenheden skal udskiftes efter 800.000 koblingsoperationer (motordrevets tælleraflesening). Kontakt teknisk service [Sektion 6, Side 41] hos Maschinenfabrik Reinhausen GmbH i den forbindelse.

Vedligeholdelsesintervaller uden MR-overvågningssystem

ADVARSEL

Eksplosionsfare!

Hvis ventende vedligeholdelsesarbejde ikke udføres med det samme, kan det føre til alvorlig personskade eller død som resultat af en gradvis kortslutning for eksempel.

- Overholdelse af følgende vedligeholdelsesintervaller er obligatorisk.
En mærkat på indersiden af døren til ED-motordrevet angiver også det relevante vedligeholdelsesinterval.

Illustration 21: Label, der viser vedligeholdelsesintervallerne

<table>
<thead>
<tr>
<th>Viklingsomskifter</th>
<th>Transformatorens nominelle strøm</th>
<th>Uden MR oliefiltersystem</th>
<th>Med MR oliefiltersystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>V III 200 Y, V III 200 D</td>
<td>op til 100 A</td>
<td>100.000</td>
<td>150.000</td>
</tr>
<tr>
<td>V III 200 Y, V III 200 D</td>
<td>op til 200 A</td>
<td>70.000</td>
<td>140.000</td>
</tr>
<tr>
<td>V III 250 Y, V III 250 D</td>
<td>op til 100 A</td>
<td>100.000</td>
<td>150.000</td>
</tr>
<tr>
<td>V III 250 Y, V III 250 D</td>
<td>op til 250 A</td>
<td>70.000</td>
<td>140.000</td>
</tr>
<tr>
<td>V III 350 Y, V III 350 D, V I 350</td>
<td>op til 200 A</td>
<td>100.000</td>
<td>150.000</td>
</tr>
<tr>
<td>V III 350 Y, V III 350 D, V I 350</td>
<td>op til 350 A</td>
<td>70.000</td>
<td>140.000</td>
</tr>
<tr>
<td>V III 400 Y, V III 400 D</td>
<td>op til 200 A</td>
<td>100.000</td>
<td>150.000</td>
</tr>
<tr>
<td>V III 400 Y, V III 400 D</td>
<td>op til 400 A</td>
<td>70.000</td>
<td>140.000</td>
</tr>
<tr>
<td>V III 500 Y, V III 500 D</td>
<td>op til 350 A</td>
<td>100.000</td>
<td>150.000</td>
</tr>
<tr>
<td>V III 500 Y, V III 500 D</td>
<td>op til 500 A</td>
<td>70.000</td>
<td>140.000</td>
</tr>
</tbody>
</table>

Tabel 6: Vedligeholdelsesplan uden MR-overvågningssystem (antal omkoblingsoperationer)
Hvis antallet af omkoblingsoperationer, der er angivet i tabellen, ikke er nået, skal vedligeholdelse udføres efter følgende perioder:

<table>
<thead>
<tr>
<th>Viklingsomskifter</th>
<th>Første vedligeholdelse</th>
<th>Yderligere vedligeholdelse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Med MR oliefiltersystem</td>
<td>Uden MR oliefiltersystem</td>
</tr>
<tr>
<td>V III 200 Y</td>
<td>7 år</td>
<td>7 år</td>
</tr>
<tr>
<td>V III 250 Y</td>
<td>7 år</td>
<td>7 år</td>
</tr>
<tr>
<td>V III 350 Y</td>
<td>7 år</td>
<td>7 år</td>
</tr>
<tr>
<td>V III 400 Y</td>
<td>7 år</td>
<td>7 år</td>
</tr>
<tr>
<td>V III 500 Y</td>
<td>7 år</td>
<td>7 år</td>
</tr>
</tbody>
</table>

Tabel 7: Vedligeholdelsesplan uden MR- overvågningssystem (perioder)

Hvis viklingsomskifteren ikke er placeret på transformatorens neutrale punkt, gælder følgende vedligeholdelsesperioder:

<table>
<thead>
<tr>
<th>Viklingsomskifter</th>
<th>Første vedligeholdelse</th>
<th>Yderligere vedligeholdelse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Med MR oliefiltersystem</td>
<td>Uden MR oliefiltersystem</td>
</tr>
<tr>
<td>V III 200 D</td>
<td>2 år</td>
<td>7 år</td>
</tr>
<tr>
<td>V III 250 D</td>
<td>7 år</td>
<td>4 år</td>
</tr>
<tr>
<td>V III 350 D</td>
<td>4 år</td>
<td>4 år</td>
</tr>
<tr>
<td>V I 350</td>
<td>4 år</td>
<td>4 år</td>
</tr>
<tr>
<td>V III 400 D</td>
<td>7 år</td>
<td>4 år</td>
</tr>
<tr>
<td>V III 500 D</td>
<td>7 år</td>
<td>4 år</td>
</tr>
</tbody>
</table>

Tabel 8: Vedligeholdelsesplan for en viklingsomskifter, der ikke er placeret på transformatorens neutrale punkt og uden MR-overvågningssystemer (perioder).

Vedligeholdelsesintervaller med MR-overvågningssystem

ADVARSEL

Eksplosionsfare!

Hvis ventende vedligeholdelsesarbejde ikke udføres med det samme, kan det føre til alvorlig personskade eller død som resultat af en gradvis kortslutning for eksempel.

► Kontakt Maschinenfabrik Reinhausen GmbHs tekniske serviceafdeling, så snart MR-overvågningssystemet afgiver en vedligeholdelsesadvarsel.

► I tilfælde af en fejl eller lukning af MR-overvågningssystemet skal de vedligeholdelsesintervaller, der er angivet i vedligeholdelsesplanen, overlodes uden MR-overvågningssystemet.

7.3 Skift af den isolerende væske

BEMÆRK

Skader på viklingsomskifteren!

Små dele i oliebeholderen kan blokere lastomkoblerens indsats og dermed beskadige viklingsomskifteren.

► Sørg for, at der ikke falder nogen dele ned i oliebeholderen.

► Kontrollér, at alle mindre dele er der.

Skift den isolerende væske i viklingsomskifterens oliebeholder og oliekonservator, hvis den dielektriske styrke og vandindholdet ikke er i overensstemmelse med de grænseværdier, der er specificeret i de tekniske data.

7.3.1 Flytning af viklingsomskifteren til justeringsposition

1. Noter den aktuelle arbejdsposition for viklingsomskifteren.

2. Flyt viklingsomskifteren til justeringspositionen. Justeringspositionen er angivet i viklingsomskifterens tilslutningsdiagram, der følger med i leveringen.

7.3.2 Afmontering af vandret drivaksel

BEMÆRK

Skader på viklingsomskifteren og transformatoren!

Beskadigelse af viklingsomskifteren og transformeren, hvis motordrevet bruges, mens det ikke er koblet.

 ► Betjen aldrig motordrevet, hvis den vandrette drivaksel er blevet fjernet.

 ► Som en forholdsregel skal du blokere motordrevet mod elektrisk funktion ved at aktivere motorbeskyttelseskontakten (se brugervejledningen til "Tapmotion® ED").
1. Løsn slangeklemmerne på den vandrette drivaksels beskyttelsesdæksel, og fjern beskyttelsesdækslet.

Illustration 22: Aftagning af beskyttelsesdæksel
2. Afhængigt af versionen skal du løsne 4 eller 6 skruer på koblingsbeslagene på øverste gearenhed og vinkelgear.

Illustration 23: Løsning af koblingsbeslag

Illustration 24: Afmontering af drivaksel
7.3.3 Tømning af oliebeholder og oliekonservator

Udluftning af viklingsomskifteren
1. Sørg for, at stophanen mellem oliekonservatoren og viklingsomskifteren er åben.
2. Fjern skruedækslet på udluftningsventil E1 på viklingsomskifterens topdæksel.

Illustration 25: Udluftningsventil E1

 ⇒ Gassen under viklingsomskifterens dæksel drænes af. Sørg for tilstrækkelig ventilation herunder.

Illustration 26: Ventilstødstang

4. Når først gassen er blevet frigivet, og den isolerende væske strømmer ud af udluftningsventilen, skal du lukke ventilen.
5. Luk stophanen mellem oliekonservatoren og viklingsomskifteren.
6. Åbn udluftningsventilen igen, og dræn omkring 5-10 liter isolerende væske af via rørtilslutningen S, indtil området under viklingsomskifterens topdæksel er fri for isolerende væske.
Afmontering af viklingsomskifterens topdæksel

1. Sørg for, at inspektionsvinduet er forseglet med dækslet.
2. Fjern skruer og skiver på viklingsomskifterens topdæksel.

3. Løft viklingsomskifterens topdæksel af.

Illustration 28: Viklingsomskifterens topdæksel

Tømning af oliebeholder og oliekonservator

1. Tøm isolerende væske ud via rørtilslutning S.
2. Åbn stophanen mellem oliekonservatoren og viklingsomskifteren.
 ⇒ Den isolerende væske flyder ud af oliekonservatoren ind i oliebeholderen.
3. Tøm isolerende væske ud via rørtilslutning S.
7.3.4 Fyldning af oliebeholderen og oliekonservatoren med ny isolerende væske

BEMÆRK

Skader på viklingsomskifteren!

Uegnede isolerende væsker forårsager beskadigelse af viklingsomskifteren.

► Brug kun isolerende væsker [Sektion 8.1.2, Side 65], der er godkendt af producenten.

► Sørg for, at den nye isolerende væske har samme kemiske, mekaniske, termiske og elektriske egenskaber. Kontakt i modsat fald Maschinenfabrik Reinhausen GmbHs tekniske serviceafdeling.

Fyldning af oliebeholderen

1. Fyld oliebeholderen på viklingsomskifteren med ny isolerende væske via rørtilslutningen S op til niveauet for den øverste kant af koblingsakslen.

2. Sæt den nye O-ring ind uden vridning i viklingsomskifterens topdæksel.

Fastgørelse af viklingsomskifterens topdæksel

1. Juster viklingsomskifterens topdæksel, så de røde trekantede markeringer på viklingsomskifterens top og på viklingsomskifterens topdæksel er justeret ud for hinanden.

Illustration 29: Viklingsomskifterens topdæksel
2. Skru viklingsomskifterens topdæksel på viklingsomskifterens top.

Illustration 30: Viklingsomskifterens topdæksel

Fyldning af oliekonservatoren

1. Fyld oliebeholderen og oliekonservatoren med ny isolerende væske.
2. Udluft viklingsomskifterens topdæksel via udluftningsventilen E1 på viklingsomskifterens topdæksel. Dette gøres ved at fjerne skruedækslet og løfte ventilstødstangen med en skruetrækker.
3. Forsegl udluftningsventil E1 med skruedækslet (tilspændingsmoment 10 Nm).
4. Fjern skruedækslet fra rørtilslutning S.

Illustration 31: Rørtilslutning S

5. Åbn udluftningsskruen, og udluft rørføringen.
6. Luk udluftningsskruen.
7. Forsegl udluftningsskruen med skruedækslet.
8. Kontroller niveauet af isolerende væske i oliekonservatoren, og fyld op med isolerende væske, hvis det er nødvendigt.
9. Udluft viklingsomskifterens top igen via udluftningsventilen E1 og rørtilslutning S via udluftningsskruen.
10. Gennemskyl oliesugerøret, og tag en prøve af den isolerende væske fra oliebeholderen via rørtilslutning S.
11. Noter temperaturen af prøven (isolerende væske) umiddelbart efter udtagning af prøven.
12. Bestem den dielektriske styrke og vandindholdet ved en temperatur af den isolerende væske på 20 °C ± 5 °C. Den dielektriske styrke og vandindholdet skal overholde de grænseværdier [Sektion 8.5, Side 72], der er anført i de tekniske data (efter vedligeholdelse).
7.3.5 Montering af vandret drivaksel

1. Fastgør den vandrette drivaksel mellem øverste gearenhed og vinkelgea-
ret med koblingsbeslag og 4 eller 6 skruer. Se brugervejledningen til dri-
vakslen for at få flere oplysninger.

Illustration 32: Fastgørelse af drivaksel
2. Brug slangeklemmer til at fastgøre beskyttelsesdækslet på den vandrette drivaksel.

Illustration 33: Fastgørelse af beskyttelsesdæksel

Du finder en detaljeret beskrivelse af, hvordan du monterer drivakslen, i MR-brugervejledningen "Drivaksel".

7.3.6 Centrering af viklingsomskifteren og motordrevet

► Centrer viklingsomskifteren og motordrevet, som beskrevet i de relevante MR-brugervejledninger til motordrevet.
7.4 Gennemførelse af måling af DC-modstand på transformatoren

Den målte DC-strøm er normalt begrænset til 10% af den nominelle strøm af den målte transformatorvikling for at forhindre viklingen i at blive overop-hedet.

Udfør målingen af DC-modstanden i viklingsomskifterens forskellige driftsstillinger. Det skal fastslås, om den målte strøm afbrydes, når der skiftes drifts-stilling eller ej.

<table>
<thead>
<tr>
<th>Status for oliebeholder</th>
<th>Uden afbrydelse i målt strøm</th>
<th>Med afbrydelse (målt strøm = 0 A før skift af driftsstilling)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oliebeholder tom</td>
<td>Maksimum 10 A DC</td>
<td>Maksimum 50 A DC</td>
</tr>
<tr>
<td>Oliebeholder fyldt med isolerende væske</td>
<td>Maksimum 50 A DC</td>
<td>Maksimum 50 A DC</td>
</tr>
</tbody>
</table>

Tabel 9: Maksimalt tilladte målte strømme ved måling af DC-modstand på transformatoren
8 Tekniske data

En oversigt over alle vigtige tekniske data for viklingsomskifteren og motordrevet eksisterer i form af separate dokumenter, som er tilgængelige på forespørgsel.

8.1 Tekniske data for viklingsomskifter

8.1.1 Egenskaber for viklingsomskifter

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maks. mærkestrøm I_m [A]</td>
<td>200</td>
<td>200</td>
<td>350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korttidsmærkestrøm [kA]</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominel varighed af kortslutninger [s]</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominel dynamisk korttidsstrøm [kA]</td>
<td>10</td>
<td>10</td>
<td>12,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks. mærkestigningsspænding U_{im} [V] $^{1)}$</td>
<td>1500 (10-stigning)</td>
<td>1500 (10-stigning)</td>
<td>1500 (10-stigning)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200...1400 (12-stigning)</td>
<td>1200...1400 (12-stigning)</td>
<td>1200...1400 (12-stigning)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 (14-stigning)</td>
<td>1000 (14-stigning)</td>
<td>1000 (14-stigning)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinkapacitet (P_{in}) [kVA]</td>
<td>300 (10-stigning)</td>
<td>300 (10-stigning)</td>
<td>525 (10-stigning)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>280 (12-stigning)</td>
<td>280 (12-stigning)</td>
<td>420 (12-stigning)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 (14-stigning)</td>
<td>200 (14-stigning)</td>
<td>350 (14-stigning)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominel frekvens [Hz]</td>
<td>50...60</td>
<td>50...60</td>
<td>50...60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$^{1)}$ Den maksimale mærkestigningsspænding kan overskrides med 10% på grund af overaktivering af transformatoren, hvis trinkapaciteten er begrænset til dens nominelle værdi.

| Elektriske data for OILTAP® V: V III 400 Y, V III 400 D, V III 500 Y, V III 500 D |
|---|---|---|---|
| Maks. mærkestrøm I_m [A] | 350 | 500 |
| Korttidsmærkestrøm [kA] | 5 | 7 |
| Nominel varighed af kortslutninger [s] | 3 | 3 |
| Nominel dynamisk korttidsstrøm [kA] | 12,5 | 17,5 |
| Maks. mærkestigningsspænding U_{im} [V] $^{1)}$ | 1500 (10-stigning) | 1500 (10-stigning) |
| | 1200...1400 (12-stigning) | 1400 (12-stigning) |
| | 1000 (14-stigning) |
8 Tekniske data

<table>
<thead>
<tr>
<th></th>
<th>V III 400 Y</th>
<th>V III 400 D</th>
<th>V III 500 Y</th>
<th>V III 500 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trinkapacitet (P_{sn}) [kVA]</td>
<td>525 (10-stigning)</td>
<td>420 (12-stigning)</td>
<td>350 (14-stigning)</td>
<td>400(^2)...525(^2) (10-stigning)</td>
</tr>
<tr>
<td>Nominel frekvens [Hz]</td>
<td>50...60</td>
<td>50...60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Den maksimale mærkestigningsspænding kan overskrides med 10% på grund af overaktivering af transformatoren, hvis trinkapaciteten er begrænset til dens nominelle værdi.

2) Forøgelse af funktion ved den maksimale mærkestrøm med reduceret mærkestrøm: 10-stigning op til 525 kVA, 12-stigning op til 420 kVA

<table>
<thead>
<tr>
<th></th>
<th>V III 200 Y</th>
<th>V III 200 D</th>
<th>V III 250 Y</th>
<th>V III 250 D</th>
<th>V III 350 Y</th>
<th>V III 350 D</th>
<th>V I 350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal driftspositioner</td>
<td>Uden omkoblerkontakt: maks. 14</td>
<td>Med omkoblerkontakt: maks. 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensioner</td>
<td>Se dimensionstegninger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vægt uden isolerende væske i kg (ca.)</td>
<td>130</td>
<td>140</td>
<td>130</td>
<td>140</td>
<td>140</td>
<td>150</td>
<td>120</td>
</tr>
<tr>
<td>Forskydning i dm(^3) (uden omkoblerkontakt)</td>
<td>125</td>
<td>165</td>
<td>125</td>
<td>165</td>
<td>140</td>
<td>185</td>
<td>85</td>
</tr>
<tr>
<td>Forskydning i dm(^3) (med omkoblerkontakt)</td>
<td>155</td>
<td>200</td>
<td>155</td>
<td>200</td>
<td>170</td>
<td>220</td>
<td>115</td>
</tr>
<tr>
<td>Fyldevolumen for isolerende væske V_S og minimal volumen $\Delta V(^1)$ af oliekonservator i dm(^3) (uden omkoblerkontakt)</td>
<td>V_S</td>
<td>ΔV</td>
<td>V_S</td>
<td>ΔV</td>
<td>V_S</td>
<td>ΔV</td>
<td>V_S</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>14</td>
<td>145</td>
<td>19</td>
<td>100</td>
<td>14</td>
<td>145</td>
</tr>
<tr>
<td>Fyldevolumen for isolerende væske V_S og minimal volumen $\Delta V(^1)$ af oliekonservator i dm(^3) (med omkoblerkontakt)</td>
<td>V_S</td>
<td>ΔV</td>
<td>V_S</td>
<td>ΔV</td>
<td>V_S</td>
<td>ΔV</td>
<td>V_S</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>16</td>
<td>165</td>
<td>20</td>
<td>125</td>
<td>16</td>
<td>165</td>
</tr>
</tbody>
</table>

1) Gælder for en temperatur af isolerende væske på $\theta = -30 \, ^\circ C...+100 \, ^\circ C$
8 Tekniske data

Mekaniske data for OILTAP® V: V III 400 Y, V III 400 D, V III 500 Y, V III 500 D

<table>
<thead>
<tr>
<th></th>
<th>V III 400 Y</th>
<th>V III 400 D</th>
<th>V III 500 Y</th>
<th>V III 500 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal driftspositioner</td>
<td>Uden omkoblerkontakt: maks. 14 Med omkoblerkontakt: maks. 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensioner</td>
<td>Se dimensionstegninger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vægt uden isolerende væske i kg (ca.)</td>
<td>140 150 190 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forskydning i dm³ (uden omkoblerkontakt)</td>
<td>140 185 205 240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forskydning i dm³ (med omkoblerkontakt)</td>
<td>170 220 235 275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fyldevolumen for isolerende væske Vₘ og minimal volumen ∆V³ af oliekonservator i dm³ (uden omkoblerkontakt)</td>
<td>110 15 165 21 160 20 200 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fyldevolumen for isolerende væske Vₘ og minimal volumen ∆V³ af oliekonservator i dm³ (med omkoblerkontakt)</td>
<td>135 18 180 22 185 22 225 26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 13: Mekaniske data for OILTAP® V

1) Gælder for en temperatur af isolerende væske på θ = -30 °C…+100 °C

8.1.2 Tilladte omgivelsesbetingelser

<table>
<thead>
<tr>
<th>Betingelse</th>
<th>Beliggenhed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lufttemperatur under drift</td>
<td>-25°C…+50°C</td>
</tr>
<tr>
<td>Temperatur af den isolerende væske under drift</td>
<td>-25 °C…+105 °C (op til +115 °C, når transformatoren er i nød-drift)</td>
</tr>
<tr>
<td>Transporttemperatur, opbevaringstemperatur</td>
<td>-40°C…+50°C</td>
</tr>
<tr>
<td>Terretemperaturer</td>
<td>Se monterings- og ibrugtagningsvejledningerne, kapitlet "Samling"</td>
</tr>
<tr>
<td>Trykstyrke</td>
<td>Se tekniske data TD 61 – afsnittet Generelt</td>
</tr>
<tr>
<td>Isolerende væske</td>
<td>• Ubrugte isolerende olier på råoliebasis) i overensstemmelse med IEC60296 og ASTM D3487 (tilsvarende standarder på anmodning)</td>
</tr>
<tr>
<td></td>
<td>• Ubrugte isolerende olier på basis af andre ubrugte kulbrinte-forbindelser i overensstemmelse med IEC60296 eller blanding af sådanne olier med råoliebaserede produkter) i overensstemmelse med IEC60296, ASTM D3487 eller tilsvarende standarder på anmodning</td>
</tr>
<tr>
<td></td>
<td>• Alternative isolerende væsker, som naturlige og syntetiske estere eller siliconeolier på anmodning.</td>
</tr>
<tr>
<td></td>
<td>¹) I denne sammenhæng menes der med råolieprodukter Gasto-liquid olier GTL-olier</td>
</tr>
<tr>
<td>Oliekonservatorens installationshøjde</td>
<td>Se tekniske data TD 61 – afsnittet Generelt</td>
</tr>
<tr>
<td>Installationshøjde over havets overflade</td>
<td>Se tekniske data TD 61 – afsnittet Generelt</td>
</tr>
</tbody>
</table>

Tabel 14: Tilladte omgivelsesbetingelser
8 Tekniske data

8.2 Tekniske data for beskyttelsesrelæet

De tekniske data for beskyttelsesrelæet RS 2001 er angivet herefter. I overensstemmelse med DIN EN 60255-1, driftsnøjagtighed = basisnøjagtighed

<table>
<thead>
<tr>
<th>Hus</th>
<th>Udendørs model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beskyttelsesgrad</td>
<td>IP66</td>
</tr>
<tr>
<td>Relæaktivering</td>
<td>Klapventil med åbning</td>
</tr>
<tr>
<td>Vægt</td>
<td>ca. 3,5 kg</td>
</tr>
</tbody>
</table>
| Oliestrømningshastighed ved tilgængelige typer ved udløsning (olietemperatur 20 °C) | 0,65 ± 0,15 m/s
 | 1,20 ± 0,20 m/s
 | 3,00 ± 0,40 m/s
 | 4,80 ± 0,60 m/s |

Tabel 15: Generelle tekniske data

Udløserkredsled

Beskyttelsesrelæet kan udstyres enten med en normalt åben (NO) eller en normalt lukket (NC) tør-reed magnetkontakt (se medfølgende måltegning). Andre kontaktkombinationer er tilgængelige som specialversion.

Elektriske data for normalt lukket (NC) tør-reed magnetkontakt

<table>
<thead>
<tr>
<th>Elektriske data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DC kontaktkapacitet</td>
<td>1,2 W…200 W</td>
</tr>
<tr>
<td>AC-kontaktkapacitet (50 Hz)</td>
<td>1,2 VA…400 VA</td>
</tr>
<tr>
<td>Spændingsomskift AC/DC</td>
<td>24 V…250 V</td>
</tr>
<tr>
<td>Brydestrom AC/DC</td>
<td>4,8 mA…2 A</td>
</tr>
</tbody>
</table>

Tabel 16: Elektriske data

<table>
<thead>
<tr>
<th>Kontaktkapacitet (slår belastning til eller fra)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum skiftestrom AC/DC (laveste spænding)</td>
<td>50 mA (ved 24 V)</td>
</tr>
<tr>
<td>Minimum skiftestrom AC/DC (højeste spænding)</td>
<td>4,8 mA (ved 250 V)</td>
</tr>
<tr>
<td>Maksimal skiftestrom DC (højeste strøm)</td>
<td>1,6 A (ved 125 V med V/H= 40 ms)</td>
</tr>
<tr>
<td>Maksimal skiftestrom DC (højeste spænding)</td>
<td>0,9 A (ved 250 V med V/H= 40 ms)</td>
</tr>
<tr>
<td>Maksimal skiftestrom AC (højeste strøm)</td>
<td>2 A (ved 125 V med cos φ = 0,6)</td>
</tr>
<tr>
<td>Maksimal skiftestrom AC (højeste spænding)</td>
<td>1,6 A (ved 250 V med cos φ = 0,6)</td>
</tr>
<tr>
<td>Koblingsoperationer</td>
<td>1000 cyklusser</td>
</tr>
</tbody>
</table>

Tabel 17: Kontaktkapacitet (slår belastning til eller fra)
Dielektrisk styrke

<table>
<thead>
<tr>
<th>Oplysning</th>
<th>Specifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC dielektrisk styrke mellem alle spændingsførende</td>
<td>2500 V, 50 Hz, testvarighed 1 minut</td>
</tr>
<tr>
<td>tilslutninger og de jordforbundne dele</td>
<td></td>
</tr>
<tr>
<td>AC dielektrisk styrke mellem de åbne kontakter</td>
<td>2000 V, 50 Hz, testvarighed 1 minut</td>
</tr>
</tbody>
</table>

Tabel 18: Dielektrisk styrke

Elektriske data for normalt åben (NO) tør-reed magnetkontakt

<table>
<thead>
<tr>
<th>Oplysning</th>
<th>Specifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC kontaktkapacitet</td>
<td>1,2 W...250 W</td>
</tr>
<tr>
<td>AC-kontaktkapacitet (50 Hz)</td>
<td>1,2 VA...400 VA</td>
</tr>
<tr>
<td>Spændingsomskift AC/DC</td>
<td>24 V...250 V</td>
</tr>
<tr>
<td>Brydestrom AC/DC</td>
<td>4,8 mA...2 A</td>
</tr>
</tbody>
</table>

Tabel 19: Elektriske data

<table>
<thead>
<tr>
<th>Oplysning</th>
<th>Specifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontaktkapacitet (slår belastning til eller fra)</td>
<td></td>
</tr>
<tr>
<td>Minimum skiftestrom AC/DC (laveste</td>
<td>50 mA (ved 24 V)</td>
</tr>
<tr>
<td>spænding)</td>
<td></td>
</tr>
<tr>
<td>Minimum skiftestrom AC/DC (højeste</td>
<td>4,8 mA (ved 250 V)</td>
</tr>
<tr>
<td>spænding)</td>
<td></td>
</tr>
<tr>
<td>Maksimal skiftestrom DC (højeste strøm)</td>
<td>2 A (ved 125 V med V/H= 40 ms)</td>
</tr>
<tr>
<td>Maksimal skiftestrom DC (højeste spæn-</td>
<td>1 A (ved 250 V med V/H= 40 ms)</td>
</tr>
<tr>
<td>ding)</td>
<td></td>
</tr>
<tr>
<td>Maksimal skiftestrom AC (højeste strøm)</td>
<td>2 A (ved 125 V med cos φ = 0,6)</td>
</tr>
<tr>
<td>Maksimal skiftestrom AC (højeste spæn-</td>
<td>1,6 A (ved 250 V med cos φ = 0,6)</td>
</tr>
<tr>
<td>ding)</td>
<td></td>
</tr>
<tr>
<td>Koblingsoperationer</td>
<td>1000 cyklusser</td>
</tr>
</tbody>
</table>

Tabel 20: Kontaktkapacitet (slår belastning til eller fra)

Dielektrisk styrke

<table>
<thead>
<tr>
<th>Oplysning</th>
<th>Specifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC dielektrisk styrke mellem alle spændingsførende</td>
<td>2500 V, 50 Hz, testvarighed 1 minut</td>
</tr>
<tr>
<td>tilslutninger og de jordforbundne dele</td>
<td></td>
</tr>
<tr>
<td>AC dielektrisk styrke mellem de åbne kontakter</td>
<td>2000 V, 50 Hz, testvarighed 1 minut</td>
</tr>
</tbody>
</table>

Tabel 21: Dielektrisk styrke

Omgivelsesbetingelser

<table>
<thead>
<tr>
<th>Oplysning</th>
<th>Specifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omgivelsestemperatur Ta</td>
<td>-40°C...+50°C</td>
</tr>
<tr>
<td>Olietemperatur</td>
<td><130 °C</td>
</tr>
<tr>
<td>Lufttryk</td>
<td>Svarer til 0 m...4000 moh</td>
</tr>
</tbody>
</table>

Tabel 22: Omgivelsesbetingelser
8.3 Specialmodeller af beskyttelsesrelæet

8.3.1 Beskyttelsesrelæ med CO-omkoblerkontakt som udloesningskontakt

Beskyttelsesrelæet kan udstyres med en tør-reed magnetkontakt, CO-omkobler (variant 3) (se medfølgende dimensionstegning).

Elektriske data for CO-omkobler, tør-reed magnetkontakt

<table>
<thead>
<tr>
<th>Elektriske data</th>
<th>DC kontaktkapacitet</th>
<th>1,2 W…150 W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC-kontaktkapacitet (50 Hz)</td>
<td>1,2 VA…200 VA</td>
</tr>
<tr>
<td>Spændingsomskift AC/DC</td>
<td>24 V…250 V</td>
<td></td>
</tr>
<tr>
<td>Brydestrøm AC/DC</td>
<td>4,8 mA…1 A</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 23: Elektriske data

Kontaktkapacitet (slår belastning til eller fra)

Minimum skiftestrøm AC/DC (laveste spænding)	50 mA (ved 24 V)
Minimum skiftestrøm AC/DC (højeste spænding)	4,8 mA (ved 250 V)
Maksimal skiftestrøm DC (højeste strøm)	1,0 A (ved 150 V med V/H= 40 ms)
Maksimal skiftestrøm DC (højeste spænding)	0,6 A (ved 250 V med V/H= 40 ms)
Maksimal skiftestrøm AC (højeste strøm)	1 A (ved 200 V med cos φ = 0,6)
Maksimal skiftestrøm AC (højeste spænding)	0,8 A (ved 250 V med cos φ = 0,6)
Koblingsoperationer	1000 cyklusser

Tabel 24: Kontaktkapacitet (slår belastning til eller fra)

Dielektrisk styrke

| AC dielektrisk styrke mellem alle spændingsførerne tilslutninger og de jordforbundne dele | 2500 V, 50 Hz, testvarighed 1 minut |
| AC dielektrisk styrke mellem de åbne kontakter | 1150 V, 50 Hz, testvarighed 1 minut |

Tabel 25: Dielektrisk styrke
8.3.2 Beskyttelsesrelæ med flere tør-reed magnetkontakter

Beskyttelsesrelæet kan udstyres med flere, uafhængige tør-reed magnetkontakter. Disse kan være udformet som normalt åbne (NO) eller normalt lukkede (NC) kontakter og er elektrisk isolerede (se medfølgende dimensionstegning).

Elektriske data for normalt åben (NO) og normalt lukket (NC) tør-reed magnetkontakt
Tekniske data for trykovervågningsenhed

Generelle tekniske data

<table>
<thead>
<tr>
<th>Beskrivelse</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opsætning</td>
<td>Udendørs model</td>
</tr>
<tr>
<td>Omgivelsestemperatur</td>
<td>-40 °C...+80 °C (mekanisk)</td>
</tr>
<tr>
<td>Kabelforskruing</td>
<td>M25x1,5</td>
</tr>
<tr>
<td>Beskyttelsesgrad</td>
<td>IP 55 i henhold til IEC 60529 (lukket enhed)</td>
</tr>
<tr>
<td>Relæaktivering</td>
<td>Bølget slange med modtryksfjeder</td>
</tr>
<tr>
<td>Olietemperatur</td>
<td>-40 °C...+100 °C</td>
</tr>
<tr>
<td>Vægt</td>
<td>ca. 1,2 kg</td>
</tr>
<tr>
<td>Udstyr</td>
<td>For standardisolerende væsker (IEC60296 og IEC60422)</td>
</tr>
<tr>
<td>Forseglingsmateriale</td>
<td>VITON</td>
</tr>
<tr>
<td>(olie – luft)</td>
<td></td>
</tr>
<tr>
<td>Tilladt trykområde</td>
<td>1 bar...6 bar, vakuum ikke tilladt</td>
</tr>
<tr>
<td>Øvre koblingstryk</td>
<td>3,8 ±0,2 bar (udløsertryk)</td>
</tr>
<tr>
<td>Nedre koblingstryk</td>
<td>2,8 ± 0,2 bar</td>
</tr>
<tr>
<td>Springkontakt</td>
<td></td>
</tr>
<tr>
<td>Tilslutningsterminaler</td>
<td>Ledningstilslutning: 1 eller 2 ledninger pr. terminal (Ø 0,75…2,5 mm²)</td>
</tr>
<tr>
<td>Kontakter</td>
<td>1xNO (normalt åben), 1xNC (normalt lukket)</td>
</tr>
<tr>
<td>Brugskategori</td>
<td>IEC 60947-5-1:</td>
</tr>
<tr>
<td></td>
<td>AC 15: 230 V/1 A</td>
</tr>
<tr>
<td></td>
<td>DC 13: 60 V/0,5 A</td>
</tr>
<tr>
<td>Maksimal kontinuerlig strøm</td>
<td>10 A</td>
</tr>
<tr>
<td>Nominel isoleringsspænding</td>
<td>AC: 2,5 kV/min</td>
</tr>
</tbody>
</table>

Tabel 26: Generelle tekniske data
8.5 Grænseværdier for dielektrisk styrke og vandindholdet af isolerende væsker

De følgende tabeller giver grænseværdierne for dielektrisk styrke (målt i henhold til IEC 60156) og vandindholdet (målt i henhold til IEC 60814) af isolerende væsker til OILTAP® viklingsomskiftere. Værdierne er fastsat på grundlag af IEC 60422.

<table>
<thead>
<tr>
<th>Under drift</th>
<th>(U_d)</th>
<th>(H_2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Når transformatoren sættes i drift første gang</td>
<td>> 60 kV/2,5 mm</td>
<td>< 12 ppm</td>
</tr>
<tr>
<td>Under drift</td>
<td>> 30 kV/2,5 mm</td>
<td>< 40 ppm</td>
</tr>
<tr>
<td>Efter vedligeholdelse</td>
<td>> 50 kV/2,5 mm</td>
<td>< 15 ppm</td>
</tr>
</tbody>
</table>

Tabel 27: Grænseværdier for isolerende væsker til neutralpunktanvendelser

<table>
<thead>
<tr>
<th>Under drift</th>
<th>(U_d)</th>
<th>(H_2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Når transformatoren sættes i drift første gang</td>
<td>> 60 kV/2,5 mm</td>
<td>< 12 ppm</td>
</tr>
<tr>
<td>Under drift</td>
<td>> 40 kV/2,5 mm</td>
<td>< 30 ppm</td>
</tr>
<tr>
<td>Efter vedligeholdelse</td>
<td>> 50 kV/2,5 mm</td>
<td>< 15 ppm</td>
</tr>
</tbody>
</table>

Tabel 28: Grænseværdier for isolerende væsker til ikke-neutralpunktanvendelser
9 Tegninger

9.1 OILTAP® V 200, montagetegning (893945)

11 - MOUNTING FLANGE ON TRANSFORMER COVER
12 - FIXING BOLT M12
13 - GASKET FOR TAP CHANGER HEAD
14 - INSPECTION WINDOW FOR POS. INDICATION
15 - THROUGH-HOLE
21 - TAP CHANGER HEAD
22 - COVER OF TAP CHANGER HEAD
23 - PIPE CONNECTION A FOR PROTECTIVE RELAY
24 - PIPE CONNECTION B FOR RETURN PIPE (WITH OIL FILTER UNIT ONLY)
25 - PIPE CONNECTION C FOR SUCTION PIPE
26 - BLEEDER SCREW OF TAP CHANGER HEAD COVER
26a - BLEEDER SCREW FOR TRANSFORMER OIL
26b - BLEEDER SCREW FOR SUCTION PIPE
27 - UPPER GEAR UNIT WITH DRIVE SHAFT 27a
31 - SELECTOR SWITCH OIL COMPARTMENT
32 - BOTTOM OF OIL COMPARTMENT WITH KEROSENE SCREW 32a
33 - SELECTOR SWITCH TERMINAL
34 - OUTPUT TERMINAL OR NEUTRAL-L TERMINAL
35 - CHANGE-OVER SELECTOR TERMINAL "+" AND "-"
36 - CHANGE-OVER SELECTOR TERMINAL "0"
9.2 OILTAP® V 350, montagetegning (893821)

Transformertankbotten

Verafej:

11 = MOUNTING FLANGE OF TRANSFORMER COVER
12 = FIXING BOLT M12
13 = GAUGES FOR TAP CHANGER HEAD
14 = INSPECTION WINDOW FOR POS. HEAD
15 = THROUGH-HOLE
21 = TAP CHANGER HEAD
22 = COVER OF TAP CHANGER HEAD
23 = PIPE CONNECTION F FOR PROTECTIVE RELAY
24 = PIPE CONNECTION D FOR RETURN PIPES (WITH OIL FILTER UNIT ONLY)
25 = PIPE CONNECTION S FOR SUCTION PIPES
26-a = BOLTED SCREW OF TAP CHANGER HEAD COVER
26-b = BOLTED SCREW FOR TRANSFORMER OIL
27 = BOLTED SCREW FOR SUCTION PIPES
27 = BOLTED SCREW WITH DRIVE SHAFT 27 A
31 = SELECTOR SWITCH OR COMPARTMENT
32 = BOTTOM OF OIL COMPARTMENT WITH ACETYLENE SCREW 32 A
33 = SELECTOR SWITCH TERMINAL
34 = OUTPUT TERMINAL
34-a = OUTPUT TERMINAL OR NEUTRAL TERMINAL
34-b = STARTPOINT CONNECTION
35 = CHARGE OVER SELECTOR TERMINAL " + " AND " - "
36 = CHARGE OVER SELECTOR TERMINAL " - " AND " + "
37 = CHARGE OVER SELECTOR TERMINAL V/TUO " + " AND " - "
38 = CHARGE OVER SELECTOR TERMINAL V/TUO " - "
9.3 OILTAP® V, opmærkningsskabelon til viklingsomskiftetop (893787)
9.4 OILTAP® V, viklingsomskiftetop (893779)

- E1 = BLEEDING FACILITY FOR TAP-CHANGER HEAD
- E2 = BLEEDING FACILITY FOR SPACE UNDER THE HEAD OUTSIDE THE TAP-CHANGER OIL COMPARTMENT
- R = CONNECTION FOR PROTECTIVE RELAY (EXCHANGEABLE WITH CONNECTION Q)
- Q = CONNECTION FOR OIL RETURN (ONLY FOR OIL FILTER)
- S = CONNECTION FOR SUCTION PIPE
- / = EARTH CONNECTION M 12
- M = DRIVE SIDE OF ON-LOAD TAP-CHANGER

Connections Orientable Through 360°
9.5 OILTAP® V, støtteflange til speciel tankmontageversion af klokke-typen (893864)
9.6 OILTAP® V, løftetravers (893805)
9.7 Vinkelgear CD 6400, dimensionstegning (892916)

Der Drehsinm wird bei Bestellung festgelegt. / THE DIRECTION OF ROTATION IS DEFINED DURING ORDERING.
11 - MOUNTING FLANGE ON TRANSFORMER COVER
12 - FIXING BOLT M12
13 - GASKET FOR TAP CHANGER HEAD
14 - INSPECTION WINDOW FOR POS. INDICATION
15 - THROUGH HOLE 15MM DIA.

21 - TAP CHANGER HEAD
22 - COVER OF TAP CHANGER HEAD
23 - PIPE CONNECTION R FOR PROTECTIVE RELAY
24 - PIPE CONNECTION Q FOR RETURN PIPE (WITH OIL FILTER UNIT ONLY)
25 - PIPE CONNECTION S FOR SUCTION PIPE
26a - BLEEDER SCREW OF TAP CHANGER HEAD COVER
26b - BLEEDER SCREW FOR TRANSFORMER OIL
26c - BLEEDER SCREW FOR SUCTION PIPE
27 - UPPER GEAR UNIT WITH DRIVE SHAFT 27a

31 - SELECTOR SWITCH OIL COMPARTMENT
32 - BOTTOM OF OIL COMPARTMENT WITH KEROSENE DRAIN SCREW 32c
33 - SELECTOR SWITCH TERMINAL
34 - OUTPUT TERMINAL OR NEUTRAL TERMINAL
35 - CHANGE OVER SELECTOR TERMINAL "A" AND "C"
36 - CHANGE OVER SELECTOR TERMINAL "E"
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Omkoblerkontakt</td>
</tr>
<tr>
<td>DC</td>
<td>Jævnstrøm</td>
</tr>
</tbody>
</table>

Dielektrisk styrke

Materialespecifik egenskab ved isolatorer [kV/2,5 mm], maksimal, elektrisk feltstyrke uden nedbrud (bue)

IEC

IEC (International Electrotechnical Commission) er involveret i udarbejdelsen og udgivelsen af internationale standarder for elektriske, elektroniske og relaterede teknologier.