Contents

1 Safety .. 4
 1.1 Safety labels ... 4
 1.2 Safety instructions ... 4
2 Structure/Design .. 5
 2.1 On-load tap-changer design .. 5
 2.2 Electrical components .. 6
 2.3 VACUTAP® AVT monitoring systems ... 7
3 Shipping ... 8
4 Transport to the operating site ... 9
5 OLTC function checkout at the transformer manufacturer's works 10
 5.1 Checking step-by-step operation ... 10
 5.2 Checking the motor protective switch ... 10
 5.3 Electrical transformer tests .. 10
6 Installation of the OLTC ... 11
7 Connecting the tap winding and the OLTC connecting lead 12
8 Electrical connection of the motor drive ... 13
 8.1 Grounding/supply connections ... 13
 8.2 Connecting the transformer's emergency shutdown .. 14
9 Mechanical functionality test ... 15
10 Commissioning at the installation site ... 17
11 Operating the VACUTAP® AVT by hand crank ... 18
12 Monitoring during operation and faults .. 19
 12.1 Information required when contacting MR regarding faults 19
 12.2 Failure mode A: The green signaling light H1 has gone out .. 19
 12.3 Failure mode B: The green signaling light H1 does not go out 19
13 Maintenance .. 20
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Technical data</td>
<td>22</td>
</tr>
<tr>
<td>14.1</td>
<td>Technical data for the on-load tap-changer</td>
<td>22</td>
</tr>
<tr>
<td>14.2</td>
<td>General technical data</td>
<td>23</td>
</tr>
<tr>
<td>14.3</td>
<td>Technical data for the drive unit</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>Appendix</td>
<td>24</td>
</tr>
<tr>
<td>15.1</td>
<td>On-load tap-changer VACUTAP® AVT, dimension drawing (899019)</td>
<td>24</td>
</tr>
<tr>
<td>15.2</td>
<td>On-load tap-changer VACUTAP® AVT, dimension drawing (899109)</td>
<td>25</td>
</tr>
<tr>
<td>15.3</td>
<td>On-load tap-changer VACUTAP® AVT, circuit diagram ZM030100/Schant 1</td>
<td>26</td>
</tr>
<tr>
<td>15.4</td>
<td>On-load tap-changer VACUTAP® AVT, circuit diagram ZM030100/Schant 2</td>
<td>27</td>
</tr>
<tr>
<td>15.5</td>
<td>On-load tap-changer VACUTAP® AVT, motor drive components</td>
<td>28</td>
</tr>
<tr>
<td>15.6</td>
<td>On-load tap-changer VACUTAP® AVT, wiring schematics (728180)</td>
<td>29</td>
</tr>
</tbody>
</table>

NOTE!

The product may have been modified after this document went to press. We expressly reserve the right to make changes to the technical data, the design or the scope of delivery. In general, the information provided and the arrangements agreed during processing of the relevant offers and orders are binding.
1 Safety

1.1 Safety labels
The following safety labels relating to the operation of the VA-CUTAP® AVT are used in these Operating Instructions.
These labels must be observed at all times!

<table>
<thead>
<tr>
<th>DANGER!</th>
<th>Refers to an imminent danger that may result in death or severe injury.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION!</td>
<td>Refers to a potentially harmful situation that may result in damage to the product or adjacent equipment.</td>
</tr>
<tr>
<td>NOTE!</td>
<td>Contains important information and special notes.</td>
</tr>
</tbody>
</table>

Special safety labels are used for certain hazards, such as electrical shock:

<table>
<thead>
<tr>
<th>Hazard-specific symbol, e.g.</th>
<th>DANGER!</th>
<th>Electric shock!</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Refers to an imminent danger through electricity that may result in death or severe injury.</td>
</tr>
</tbody>
</table>

The following specific safety warnings are used in these Operating Instructions:

| Risk of electric shock! |
| Risk of tipping! |

1.2 Safety instructions
As the operator it is your responsibility to make sure that the on-load tap-changer is used for the specified application only. The VA-CUTAP® AVT on-load tap-changer may only be used with the transformer specified in the order.

For safety reasons, any unauthorized work, i.e. installation, modification, alteration of the on-load tap-changer equipment, electrical connection or commissioning of the equipment is forbidden without first consulting Jiangsu MR Manufacturing Co., Ltd.!

Otherwise, the trouble-free operation of the drive, the on-load tap-changer and the transformer may be put at risk.

- **All warnings and safety instructions must be observed at all times!**
 Failure to follow the safety instructions may lead to accidents and severe personal injury.

- **Please read these operating instructions before commissioning the equipment!**
 Please read these instructions before switching on the VA-CUTAP® AVT. As the operator, you are responsible for ensuring that users of the equipment have fully understood the operating and safety instructions.

- **Train your staff!**
 Before asking staff to work with the VA-CUTAP® AVT, provide training regarding general and special safety instructions and accident prevention regulations.

- **Only suitably qualified personnel should work with the VA-CUTAP® AVT!**
 VA-CUTAP® AVT is designed exclusively for application in electrical or energy systems and facilities operated by appropriately trained staff, i.e. staff who are familiar with the installation, assembly, commissioning and operation of such products.
2 Structure/Design

2.1 On-load tap-changer design

The on-load tap-changer type VACUTAP® AVT (see Fig. 1) for indoor installation is used to set the ratio for dry-type transformers under load.

The on-load tap-changer VACUTAP® AVT works according to the high-speed resistor-type on-load tap-changer principle. Vacuum interrupters are used as diverter switch contacts.

The drive unit of the on-load tap-changer VACUTAP® AVT is integrated into the on-load tap-changer housing (see Fig. 2). Electrical contacts prevent operation beyond the end positions.

In addition, the mechanical predetermined breaking point prevents a tap change operation beyond the regulation range.

The indicator gear mechanically indicates the tap change operation in the indication field.

DANGER!

Electric shock! Danger of death and risk of injury!

To protect against misuse and against touching accessible, live and movable components, the VACUTAP® AVT should be installed in an enclosed environment which can only be entered by authorized personnel.

Be sure to secure the danger zone of the electrical connections and leads between the transformer and the VACUTAP® AVT rear side extensively and over a wide range.

Fig. 1: On-load tap-changer VACUTAP® AVT, front view (without housing)

Fig. 2: On-load tap-changer VACUTAP® AVT, rear side (without housing)
2 Structure/Design

2.2 Electrical components

The control elements (see Fig. 3) of the control unit are located at the front side of the VACUTAP® AVT, covered by a window.

- S3: Raise/Lower control switch
- H1: Green signal lamp
- Q1A: Trip coil of the motor protective switch
- Q1: Motor protective switch
- Q1H: Auxiliary current switch

The control unit of the VACUTAP® AVT (see Fig. 4) is hinged-mounted inside the device.

- K29: Time delay relay
- K1/2: Green signal lamp
- K13/14: Auxiliary contactor
- K20: Auxiliary contactor

DANGER!

Risk of personal injury and heavy material damage!
The function of the monitoring systems is at risk!
Never change the settings (preset by MR) at time delay relay K29 and motor protective switch Q1!

NOTE!

The „Green signaling light H1“ shows that the monitoring systems are ready for operation.
The signaling light will go out for a short time during electrical operation.

Fig. 3: VACUTAP® AVT control elements

Fig. 4: VACUTAP® AVT control unit
2.3 VACUTAP® AVT monitoring systems

2.3.1 Arc monitoring

The arc monitoring system F2 (see Fig. 5) is mounted at the same level as the transfer switches, and is used for detecting arcs with a light sensor. Detection of an arc triggers transformer emergency shutdown and the green signaling light goes out.

![Fig. 5: Arc monitoring of the VACUTAP® AVT](image)

DANGER!
Risk of injury or death and heavy material damage!
Monitoring system faults!
The green signal lamp H1 indicates that the VACUTAP® AVT monitoring systems in service are active. If the lamp is not lit the transformer should be switched off immediately!

2.3.2 Latch monitoring

The latch monitoring system S70/71 (see Fig. 6) is used for detecting, via sensor, non-latching of the energy accumulator. Activation of the latch monitoring system triggers transformer emergency shutdown and the green signaling light goes out.

![Fig. 6: Latch monitoring of the energy accumulator](image)

DANGER!
Risk of injury or death and heavy material damage!
Monitoring system faults!
It is imperative that the transformer is switched off immediately both on the high-voltage and low-voltage side whenever the monitoring systems (arc monitoring and latch monitoring) are energized! Otherwise the effectiveness of the monitoring systems will be compromised.

Fig. 7 shows an example of a circuit diagram section containing the VACUTAP® AVT monitoring systems. An example of a complete circuit diagram can be found in the Appendix.

![Fig. 7: Example of a circuit diagram section](image)
3 Shipping

The VACUTAP® AVT on-load tap-changer with integrated motor drive is shipped in the adjustment position.

Only transport the on-load tap-changer (max. 350 kg) using one of the methods below:

- using a lifting device connected to the four transport loops (internal diameter 35 mm) fixed to the housing (see Fig. 8),
- using a forklift truck to lift the equipment from underneath (see Fig. 9).

Please be sure to always use appropriate hoisting gear when lifting and transporting the on-load tap-changer. When using cranes to lift the on-load tap-changer, be sure to use only the four (4) eyelets situated atop the on-load tap-changer.

Be sure to lift the on-load tap-changer simultaneously by all four eyelets, making sure that the lifting force is distributed over all four eyelets as evenly as possible. When using forklifts to transport the VACUTAP® AVT, be sure to insert the forks centrally underneath the unit.

Tilting must be avoided at all cost!

DANGER!

Risk of tipping!
Risk of severe injuries or death!
All equipment must be supported securely when working on the on-load tap-changer, the motor drive unit or other components!
Uncontrolled tipping of the device must be prevented!

NOTE!

The consignment is to be checked for completeness based on the shipping documents
It is very important to store and transport the on-load tap-changer in the original factory packing and in a dry environment before its arrival and installation at the final destination point.
4 Transport to the operating site

Be sure to move the VACUTAP® AVT into its adjusting position (bottom end position) prior to transporting it to the operating site.

Please be sure to check the VACUTAP® AVT for visible damages upon its arrival at the operating site. Transportation damage may compromise the functions of the VACUTAP® AVT.

NOTE!

It is very important to store and transport the on-load tap-changer in the original factory packing and in a dry environment before its arrival and installation at the final destination point.

Furthermore, it is very important to secure the on-load tap-changer against violent shocks during transportation and installation, and to protect it from tilting and toppling over. Especially transports of longer duration require original factory packing to protect the on-load tap-changer against dirt and moisture.

CAUTION!

Violent shocks or toppling-over may damage the finely tuned mechanics of the on-load tap-changer and lead to malfunctions or increased wear and tear. It is therefore imperative to notify the manufacturer of any such excessive stress or any externally visible damage. It is then up to the manufacturer to decide whether the on-load tap-changer concerned will be replaced, repaired, or reinspected at the manufacturer’s premises. Damage and failure caused by improper handling of the on-load tap-changer during transportation, inspection and installation will under no circumstances be covered by the manufacturer’s product liability!
5 OLTC function checkout at the transformer manufacturer’s works

Please be sure to check the VACUTAP® AVT for visible damage before the functional test. Transportation damage may compromise the functions of the VACUTAP® AVT. To check the on-load tap-changer’s functions, please be sure – before applying voltage to the transformer – to perform operational tests involving the entire range of operations, starting from the adjusting position (bottom end position; anti-clockwise rotation of the hand crank) all the way to the top end position, and back to the adjusting position (clockwise rotation of the hand crank).

5.1 Checking step-by-step operation

Press the Raise/Lower control switch S3 (see Fig. 3) to trigger a step-by-step operation in direction 9 and keep the control switch pressed during the entire operating time of the motor-drive mechanism.

- Now check to make sure that the motor-drive mechanism switches off automatically following a tap change by the on-load tap-changer. Should this not be the case, verify the connection of the control unit!
- Please perform this check for both directions of rotation of control switch S3 (Raise/Lower).

5.2 Checking the motor protective switch

Please check the tripping functions of motor protective switch Q1 (see Fig. 10) as follows:

- Please disconnect the motor protective switch from the supply and secure it.
- Connect terminal X1B:4 with terminal X1B:5.
- Reapply voltage. Motor protective switch Q1 must now be triggered immediately, closing must be impossible.
- Remove the jumper between terminals X1B:4 and X1B:5.

5.3 Electrical transformer tests

All electrical tests required for transformer acceptance can be performed after completion of the previous works.

The following standards were valid at the time this documentation was prepared:

- GB 6450-86 „Dry-type power transformers“
- GB 50150-91 "Standard for handover test of electric equipment installation engineering"
6 Installation of the OLTC

Fixing the on-load tap-changer beside the transformer

Drill holes (ø 18 mm) are provided on the U-frames on the underside of the on-load tap-changer for fixing the on-load tap-changer securely before commissioning (see Appendix 899019, 899109 and Fig. 11).

Use studs M16 (max. 45 mm long) for fixing. The U-frames can be mounted on the on-load tap-changer housing so they point inwards (see Fig. 11) or outwards.

NOTE!
Before fixing the on-load tap-changer, ensure there is easy access to the tap selector connection terminals on the rear of the housing (see Fig. 11).

Fig. 11: On-load tap-changer VACUTAP® AVT, rear side
7 Connecting the tap winding and the OLTC connecting lead

Connect the tap winding and the on-load tap-changer connecting lead according to the connection diagram supplied with the delivery.

<table>
<thead>
<tr>
<th>CAUTION!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage to the on-load tap-changer!</td>
</tr>
<tr>
<td>Carefully connect and secure all connections. The tap selector connecting leads must be connected to the VACUTAP® AVT without tension. If necessary, guide the ends of the leads using an extension loop. Ensure the connecting terminals are fixed in position and cannot be forcibly twisted.</td>
</tr>
</tbody>
</table>

Connecting the tap selector connecting leads and the on-load tap-changer connecting leads

The tap selector connecting terminals are marked on the rear side of the housing (see Fig. 12, illustration is only an example). The maximum tightening torque for an M10 screw connection is 40 Nm.

Use screws M10 (max. 35 mm long) for the connection. Ensure the screws are properly tightened.

Fig. 12: Connecting the terminal contact with the transformer connecting lead

Fig. 13: Terminal contacts
8 Electrical connection of the motor drive

8.1 Grounding/supply connections

DANGER!

Danger of death!
When carrying out the electrical connection of the motor drive ensure that the relevant safety regulations are adhered to.

CAUTION!

Damage to the on-load tap-changer!
Please make sure that the motor-drive mechanism is duly supplied with the voltage indicated on the rating plate (see Fig. 10).

Connect the mains supply of the motor drive according to the connection diagram in the accompanying documentation.

PG cable glands are provided on the rear side (Fig. 14, no.1) or optionally on the underside (see Fig. 14, no. 2) of the motor drive for this. The connecting leads are guided through these cable glands to the on-load tap-changer housing interior.

![Fig. 14: Plates with through-hole and PG cable gland](image)

Fix the leads with the cable ties provided on the attachment elements on the inside of the housing. To earth the on-load tap-changer properly, connect the on-load tap-changer ground screws (M10) to the transformer (see Fig. 15).

![Fig. 15: Ground screws and terminal strips](image)

Feed the connecting leads from the PG cable glands to the terminal strips in the housing interior. Fig. 16 shows an example of a terminal strip assignment. The specific terminal strip assignment for your VACUTAP® AVT on-load tap-changer be found the circuit diagram in the VACUTAP® AVT documentation.

![Fig. 16: Example for terminal strip assignment](image)
8 Electrical connection of the motor drive

8.2 Connecting the transformer’s emergency shutdown

![DANGER!]

Risk of personal injury and heavy material damage!
Effectiveness of the monitoring systems may be compromised!
It is imperative for the transformer to be switched off immediately both on the high-voltage and low-voltage side whenever the monitoring systems (arc monitoring and latch monitoring) are energized.

All connections must be established in accordance with the connection diagram enclosed with the VACUTAP® AVT (example shown in Fig. 17).

The switchgear control which serves to disconnect the transformer from the distribution system on the high-voltage and low-voltage sides if the VACUTAP® AVT monitoring systems are triggered must be connected to terminal X1A:4 and X1A:9 or X1A:10 (Fig. 17).

Fig. 17: Example of a circuit diagram section
9 Mechanical functionality test

Before commissioning the transformer, carry out a mechanical functionality test. This test must be performed from the lower end position (anti-clockwise rotation of the hand crank) through to the upper end position and back again (clockwise rotation of the hand crank).

Use the hand crank attached to the base of the housing to operate the on-load tap-changer.

Remove the cover of the drive shaft end (3 screws M6/w.s.10) and attach the hand crank. A single tap-change occurs after half a rotation of the large bevel wheel. Note the markings on this wheel. Make sure that the indicator is at 0° after a tap-change operation is complete. If it is not at 0°, the tap-change operation has not yet been completed properly.

Five rotations of the hand crank are required for each step. The tap-change operation of the diverter switch is clearly audible.
The end positions may not be exceeded under any circumstances. Therefore, always check the attained operating position through the inspection window on the on-load tap-changer and the rotation marking on the gear motor.

Once the mechanical functionality test has been completed, the on-load tap-changer must be moved back to the adjustment position (lower end position).
10 Commissioning at the installation site

Before commissioning the transformer, a functionality test must be carried out on the on-load tap-changer and the motor drive as described in Sections 5 and 9.

The door to the VACUTAP® AVT motor drive mechanism must be kept shut during operation. The door must only be opened by authorized staff.

The window of the control unit must be kept shut during automatic operation (see Fig. 21).

DANGER!

Danger of death!
Do not commission the transformer until the functional tests described in section 5 and 9 have been completed!

DANGER!

Risk of tipping!
Risk of severe injuries or death!
When carrying out any work on the on-load tap-changer, ensure it is positioned securely!
Uncontrolled tipping must be prevented!

Fig. 21: VACUTAP® motor drive door and control panel window
11 Operating the VACUTAP® AVT by hand crank

Recommendation: Please keep the transformer de-energized on the high-voltage and low-voltage sides when operating the VACUTAP® AVT by hand crank.

The following conditions must met if VACUTAP® AVT operation by hand crank under load is required:

- Switch off motor protective switch!
- Ensure that the green indicator light is switched on!
- Verify that the VACUTAP® AVT connected such that the transformer is immediately disconnected from the supply on the high-voltage and low-voltage sides whenever the VACUTAP® AVT monitoring system is energized (see Section 2.3 and 8.2)!
- Ensure that the transformer is disconnected from the supply of the VACUTAP® AVT monitoring systems are energized!

VACUTAP® AVT operation under load by hand crank as described in Section 9 is admissible if the required safety clearances are observed. Prior to electrical commissioning of the VACUTAP® AVT and following maintenance work, please be sure to perform operational tests involving the entire range of operations, starting from the adjustment position (bottom end position) all the way to the top limit position, and back to the adjustment position.

DANGER!

Risk of personal injury and heavy material damage!
The transformer may only be reconnected to the supply once all faults have been rectified and the green indicator light is on.
12 Monitoring during operation and faults

12.1 Information required when contacting MR regarding faults

The following information is required when contacting MR regarding faults:

- On-load tap-changer number (see nameplate on the control panel, Fig. 20)
- Operation counter reading (see control panel in Fig. 20)
- Operating position (see control panel in Fig. 20)
- Date
- State of green indicator light H1 (on/off)
- Other information identified by the user

12.2 Failure mode A: The green signaling light H1 has gone out

- Please check whether supply voltage is available at the VACUTAP® AVT monitoring system.
- If yes: The VACUTAP® AVT monitoring system has detected a fault.
- If not: Please apply supply voltage at the VACUTAP® AVT monitoring system according to the circuit diagram.
- If the green signaling light comes on, please perform operational tests as outlined in Section 11.
- The transformer must not be connected to the supply until the green indicator light has come on!

DANGER!

Danger of death!

It is imperative for the user/transformer manufacturer to ensure that the transformer will be switched off immediately both on the high-voltage and low-voltage side whenever the monitoring systems (arc monitoring and latch monitoring) are energized.

12.3 Failure mode B: The green signaling light H1 does not go out

- Please close the motor protective switch.
 If this is not possible a fault has occurred in the control system.
 In the event of on-load tap-changer faults (tripping of the motor protective switch) that cannot be rectified on site, please contact your MR representative, the transformer manufacturer, or Jiangsu MR Manufacturing Co., Ltd. direct.
- Please perform operational tests with the motor protective switch closed.
 If necessary, with the loads disconnected move from the adjusting position (bottom end position) to the top end position and back to the adjusting position by operating the Raise/Lower control switch S3.

Please contact your MR representative, the transformer manufacturer, or:
Jiangsu MR Manufacturing Co., Ltd.
No. 1 Xia Sheng Road, Suzhou Industrial Park Suzhou, Jiangsu Province, P.R.C.
PC: 215126
Phone: (+86) 512- 8555 6100, Fax: (+86) 512- 8555 6195,
mr-sales@cn.reinhausen.com
13 Maintenance

Service, cleaning and lubrication

It is imperative to clean and lubricate the on-load tap-changer every 2 years or every 100,000 tap-change operations, whichever comes first.

The first service (after 2 years or 100,000 tap-change operations) is to be carried out by the Technical Service department of MR or of MR’s subsidiary Jiangsu MR Manufacturing Co., Ltd.

Provided all relevant preparations have been carried out, further inspections can usually be carried out within one day by qualified personnel or personnel trained by MR.

We always recommend that inspections be performed by the Technical Service department of our subsidiary Jiangsu MR Manufacturing Co., Ltd. This ensures that the inspection is carried out by an expert and that individual components are retrofitted to the latest manufacturing standard.

A relevant report supplementing Jiangsu MR Manufacturing Co., Ltd.’s maintenance file must be prepared.

The on-load tap-changer must be replaced after 500,000 tap-change operations.

On-load tap-changer type VACUTAP® AVT: cleaning, visual inspections and lubrication

The following components must be lubricated after 2 years or 100,000 tap-change operations, whichever comes first:
- Toothed wheels
- Silver-plated contacts and connecting leads (see Fig. 22, 23)
- Tap selector step-by-step gear (see Fig. 24)
- Rollers, coupling bearings, locking mechanism (see Fig. 25)
- Link guides on the energy accumulator and on the vacuum-interrupter control (see Fig. 26)
- Position transmitter (see Fig. 27)

Lubrication diagram

Lubricant: ISOFLEX TOPAS NCA 5051, MR item no. 09947300

Carefully carry out this work according to the lubrication diagram.

The lubricating points and insulation distances should be cleaned with a dry cloth.

DANGER!

Danger of death!
Strictly ensure that the following tasks are correctly carried out on the transformer and on-load tap-changer before working at the VACUTAP® AVT:
- Safely disconnect the VACUTAP® AVT on the HV and LV side!
- Ensure that it cannot be reenergized!
- Ensure no voltage is present!
- Ground and short-circuit the device in a clearly visible manner!
- The working area must be closed

NOTE!

Inspections on the on-load tap-changer should be carried out according to the instructions in order to maintain a high level of operating safety.
13 Maintenance

Fig. 22: Tap selector contacts

Fig. 23: Change-over contacts

Fig. 24: Tap selector step-by-step gear

Fig. 25: Energy accumulator

Fig. 26: Vacuum cell link guides

Fig. 27: Position transmitter drive
14 Technical data

14.1 Technical data for the on-load tap-changer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of phases</td>
<td>3</td>
</tr>
<tr>
<td>Max. rated through-current I_{um} per phase (A)</td>
<td>170</td>
</tr>
<tr>
<td>Rated short-time withstand current (kA)</td>
<td>4</td>
</tr>
<tr>
<td>Rated duration of short-circuits (s)</td>
<td>2</td>
</tr>
<tr>
<td>Rated peak withstand current (kA)</td>
<td>7.5</td>
</tr>
<tr>
<td>Rated step voltage U_{m} (V)</td>
<td>500</td>
</tr>
<tr>
<td>Rated frequency (Hz)</td>
<td>50 to 60</td>
</tr>
<tr>
<td>Number of operating positions</td>
<td>9</td>
</tr>
<tr>
<td>Tap-change operation</td>
<td>max. of every 30 seconds</td>
</tr>
<tr>
<td>Temperature range (ambient temperature)</td>
<td>-20 °C...+ 65 °C</td>
</tr>
<tr>
<td>Insulation to ground (f) and phase/phase (b)</td>
<td>12</td>
</tr>
<tr>
<td>Highest voltage for equipment U_m (kV)</td>
<td></td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage (f+b) (kV, 1.2/50 ms)</td>
<td>75</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage (f+b) (kV)</td>
<td>35</td>
</tr>
<tr>
<td>Internal insulation</td>
<td></td>
</tr>
<tr>
<td>Rated impulse withstand voltage over 1 tap (a0, a1) (kV)</td>
<td>10</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage over 1 tap (a0, a1) (kV)</td>
<td>3</td>
</tr>
<tr>
<td>Rated impulse withstand voltage over the setting range (a) (kV)</td>
<td>45</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage over the settings range (a) (kV)</td>
<td>15</td>
</tr>
</tbody>
</table>

Fig. 28: Insulation distances
14 Technical data

14.2 General technical data

<table>
<thead>
<tr>
<th>Housing dimensions</th>
<th>(w x h x d) = 1750 x 1612 x 460 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>350 kg</td>
</tr>
<tr>
<td>On-load tap-changer design according to</td>
<td>ICE 60214-1 and GB 10230</td>
</tr>
</tbody>
</table>

14.3 Technical data for the drive unit

<table>
<thead>
<tr>
<th>Drive (integrated in on-load tap-changer housing)</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power motor (kW)</td>
<td>0.1 / 0.03</td>
</tr>
<tr>
<td>Power control (kW)</td>
<td></td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>3 ACN 220 / 380</td>
</tr>
<tr>
<td>Rated current (A)</td>
<td>1.55 / 0.9</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>50</td>
</tr>
</tbody>
</table>
15 Appendix

15.1 On-load tap-changer VACUTAP® AVT, dimension drawing (899019)
15 Appendix
15.2 On-load tap-changer VACUTAP® AVT, dimension drawing (899109)
On-load tap-changer VACUTAP® AVT, motor drive components
15 Appendix
15.6 On-load tap-changer VACUTAP® AVT, wiring schematics (728180)

AVT- SCHEMATIC DIAGRAM

Transition Contact of Vacuum Interrupter in Transition Path

Main Switching Contact of Vacuum Interrupter in Main Path

Transfer Switch

TS2 Tap Selector 2

TS1 Tap Selector 1

Transition Resistor

DESIGNATION OF TAP SELECTOR CONTACTS

<table>
<thead>
<tr>
<th>DESIGNATION OF POSITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>