Laststufenschalter
VACUTAP® VRF I 1601/1801

Technische Daten
Inhaltsverzeichnis

1 Einleitung ... 4
 1.1 Laststufenschalterbezeichnungen ... 4
 1.1.1 Beispiel für Laststufenschalterbezeichnung ... 4
 1.1.2 Stufenzahl und Grundschaltung .. 4
 1.2 Grundschaltungen .. 6

2 Technische Daten .. 9
 2.1 Laststufenschaltereigenschaften ... 9
 2.2 Zulässige Spannungsbeanspruchungen .. 9
 2.2.1 Bemessungsisolationspegel am Lastumschalter ... 13
 2.2.2 Bemessungsisolationspegel der inneren Isolation am Wähler .. 14
 2.3 Stufenleistungsdiagramm bei Netzbetrieb ... 15
 2.4 Potenzialanlenkung der Feinstufenwicklung .. 16
 2.5 Brücken für die Parallelschaltung von Anschlusskontakten ... 17
 2.6 Zulässige Umgebungsbedingungen .. 18

3 Zeichnungen .. 19
 3.1 Maßzeichnungen .. 19
 3.2 Einbauzeichnungen ... 22
 3.3 Laststufenschalterkopf .. 25
 3.4 Wähler ... 31
 3.5 Potenzialanlenkungseinheit .. 39
 3.6 Schaltbilder (Beispiele) .. 43
1 Einleitung
Diese technische Unterlage enthält detaillierte Informationen zu den technischen Eigenschaften des Produkts. Grundlegende Informationen finden Sie in den Technischen Daten TD 61 – Allgemeiner Teil.

1.1 Laststufenschalterbezeichnungen

1.1.1 Beispiel für Laststufenschalterbezeichnung
Laststufenschalter VACUTAP® VRF I 1601–72,5 / RC–10 19 1 WR.

<table>
<thead>
<tr>
<th>Typenbezeichnung</th>
<th>VACUTAP® VRF I 1601-72,5 / RC-10 19 1 WR</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACUTAP® VRF</td>
<td>Laststufenschaltetyp</td>
</tr>
<tr>
<td>I</td>
<td>Anzahl der Phasen</td>
</tr>
<tr>
<td>1601</td>
<td>maximaler Bemessungsdurchgangsstrom I_m in A, sowie Anzahl der bestückten Sektoren (letzte Ziffer) bei einphasigen Laststufenschaltern</td>
</tr>
<tr>
<td>72,5</td>
<td>höchste Spannung für Betriebsmittel U_m in kV</td>
</tr>
<tr>
<td>RC</td>
<td>Wählerbaureihe</td>
</tr>
<tr>
<td>10 19 1 WR</td>
<td>Grundschaltbild</td>
</tr>
</tbody>
</table>

Tabelle 1: Beispiel für die Bezeichnung eines Laststufenschalters

1.1.2 Stufenzahl und Grundschaltung

Beispiel: 10 19 1 WR

<table>
<thead>
<tr>
<th>Bezeichnung der Grundschaltung</th>
<th>10 19 1 WR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Kontaktkreisteilung des Wählers</td>
</tr>
<tr>
<td>19</td>
<td>Anzahl der maximalen Betriebsstellungen</td>
</tr>
<tr>
<td>1</td>
<td>Anzahl der Mittelstellungen</td>
</tr>
<tr>
<td>Bezeichnung der Grundschaltung</td>
<td>10 19 1 WR</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>W</td>
<td>Vorwählerausführung:</td>
</tr>
<tr>
<td></td>
<td>W=Wender</td>
</tr>
<tr>
<td></td>
<td>G=Grobstufe</td>
</tr>
</tbody>
</table>

Art der Potenzialanlenkung:
- R=angebaute Anlenkwiderstände
- S=Anlenkschalter und Anlenkwiderstände auf Platte
- P=Anlenkschalter mit angebauten Anlenkwiderständen

Tabelle 2: Beispiel für die Bezeichnung der Grundschaltung
1.2 Grundschaltungen

Im Folgenden finden Sie einige Beispiele für die Grundschaltungen des Laststufenschalters mit Bezeichnung der Wähleranschlusskontakte nach MR-Standard. Die tatsächlich ausführbaren Schaltungen finden Sie im Abschnitt „Zulässige Spannungsbeanspruchungen“.

Abbildung 1: Grundschaltungen ohne Vorwähler
Abbildung 2: Grundschaltungen bei Wenderschaltung
Abbildung 3: Grundschaltungen bei Grobstufenschaltung
2 Technische Daten

2.1 Laststufenschaltereigenschaften

<table>
<thead>
<tr>
<th>Laststufenschalter</th>
<th>VRF I 1601</th>
<th>VRF I 1801</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximaler Bemessungsdurchgangsstrom I_{rm} [A]</td>
<td>1 600</td>
<td>1 800</td>
</tr>
<tr>
<td>Bemessungskurzzeitstrom [kA]</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Bemessungskurzschlussdauer [s]</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Bemessungsstoßstrom [kA]</td>
<td>47,5</td>
<td>47,5</td>
</tr>
<tr>
<td>maximale Bemessungsstufenspannung U_{sm} [V]</td>
<td>4 000</td>
<td>4 000</td>
</tr>
<tr>
<td>Stufenleistung P_{stm} [kVA]</td>
<td>3 750</td>
<td>3 750</td>
</tr>
<tr>
<td>Bemessungsfrequenz [Hz]</td>
<td>50…60</td>
<td>50…60</td>
</tr>
</tbody>
</table>

Tabelle 3: Elektrische Daten VACUTAP® VRF I 1601/1801

<table>
<thead>
<tr>
<th>Anzahl der Betriebsstellungen</th>
<th>ohne Vorwähler: maximal 18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mit Vorwähler: maximal 35</td>
</tr>
<tr>
<td>Anzahl der bestückten Sektoren</td>
<td>1</td>
</tr>
<tr>
<td>Wählerbaureihen</td>
<td>RC, RD, RDE</td>
</tr>
<tr>
<td>Abmessungen</td>
<td>Siehe Maßzeichnungen (Seite 19)</td>
</tr>
<tr>
<td>Gewicht</td>
<td></td>
</tr>
<tr>
<td>Verdrängungsvolumen und Ölinhalt</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4: Mechanische Daten VACUTAP® VRF I 1601/1801

2.2 Zulässige Spannungsbeanspruchungen

Dieser Abschnitt beschreibt die zulässigen Spannungsbeanspruchungen von einphasigen und mehrphasigen Laststufenschaltern.

Sie müssen bei der Auswahl des Laststufenschalters überprüfen, ob die höchsten auftretenden Beanspruchungen die zugehörigen Bemessungsstehspannungen an den Isolationsstrecken nicht überschreiten.
Isolationsstrecken

Folgende Abbildung zeigt die Isolationsstrecken am Wähler für Schaltung ohne Vorwähler, Wenderschaltung und Grobstufenschaltung.

<table>
<thead>
<tr>
<th>ohne Vorwähler</th>
<th>mit Wender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mit Grobwähler in Position +</th>
<th>mit Grobwähler in Position -</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximale Beanspruchung bei Bemessungsstehblitzstoßspannung an a₀ in Mittelstellung beachten!

Abbildung 4: Isolationsstrecken

<table>
<thead>
<tr>
<th>a₀</th>
<th>zwischen gewählter und vorgewählter Anzapfung am Lastumschalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>zwischen Feinwählerkontakten der Wicklung einer Stufe (beschaltet oder unbeschaltet)</td>
</tr>
</tbody>
</table>
2 Technische Daten

Spalte a zwischen Anfang und Ende einer Feinstufenwicklung und bei Ausführung mit Grobstufenwicklung auch zwischen Anfang und Ende einer Grobstufenwicklung.

Hinweis für Grobstufenschaltung in Position (-) des Vorwählers:

Bei Beanspruchung mit Stoßspannung ist die zulässige Stehspannung "a" zwischen dem mit dem K-Feinwählerkontakt verbundenen Ende einer Grobstufenwicklung und dem Feinwählerkontakt am Ende der Feinstufenwicklung der gleichen Phase zu beachten.

Spalte b zwischen den Feinwählerkontakten verschiedener Phasen und zwischen Vorwählerkontakten verschiedener Phasen, die mit dem Anfang/Ende einer Feinstufenwicklung oder mit einem Feinwählerkontakt verbunden sind

f zwischen Lastumschalterableitung und Erde

Zusätzlich bei Grobstufenschaltung in Position (+) des Vorwählers:

Spalte c1 von einem Vorwählerkontakt (-) zur Ableitung der gleichen Phase

Spalte c2 zwischen Vorwählerkontakten (-) verschiedener Phasen

Ausführbare Schaltungen mit dazugehörigen Wählerbaureihen

Die nachfolgend aufgeführten Schaltungen sind auch für Vorwähler mit Wender und 3 Mittelstellungen (3W) und für Vorwähler mit Grobstufe und 3 Mittelstellungen (3G) ausführbar.

<table>
<thead>
<tr>
<th>ohne Vorwähler</th>
<th>mit Wender</th>
<th>mit Grobwähler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaltung</td>
<td>Wählerbaureihe</td>
<td>Schaltung</td>
</tr>
<tr>
<td>10050</td>
<td>RC/RD/RDE</td>
<td>10071W</td>
</tr>
<tr>
<td>10060</td>
<td>RC/RD/RDE</td>
<td>10081W</td>
</tr>
<tr>
<td>10070</td>
<td>RC/RD/RDE</td>
<td>10091W</td>
</tr>
<tr>
<td>10080</td>
<td>RC/RD/RDE</td>
<td>12101W</td>
</tr>
<tr>
<td>10090</td>
<td>RC/RD/RDE</td>
<td>14111W</td>
</tr>
<tr>
<td>10100</td>
<td>RC/RD/RDE</td>
<td>14121W</td>
</tr>
<tr>
<td>12110</td>
<td>RC/RD/RDE</td>
<td>16131W</td>
</tr>
<tr>
<td>12120</td>
<td>RC/RD/RDE</td>
<td>16141W</td>
</tr>
<tr>
<td>14130</td>
<td>RC/RD/RDE</td>
<td>18151W</td>
</tr>
<tr>
<td>14140</td>
<td>RC/RD/RDE</td>
<td>18161W</td>
</tr>
<tr>
<td>16150</td>
<td>RC/RD/RDE</td>
<td>10191W</td>
</tr>
<tr>
<td>16160</td>
<td>RC/RD/RDE</td>
<td>12231W</td>
</tr>
<tr>
<td>18170</td>
<td>RC/RD/RDE</td>
<td>14271W</td>
</tr>
<tr>
<td>18180</td>
<td>RC/RD/RDE</td>
<td>16311W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18351W</td>
</tr>
</tbody>
</table>

Tabelle 5: Ausführbare Schaltungen VACUTAP® VRF I 1601/1801

Wähler nach Grundschaltbild 12111W(G) wird als 14111W(G) ausgeführt.
Wähler nach Grundschaltbild 14131W(G) wird als 16131W(G) ausgeführt.
Wähler nach Grundschaltbild 16151W(G) wird als 18151W(G) ausgeführt.
Wähler nach Grundschaltbild 18171W(G) ist nicht ausführbar.
2.2.1 Bemessungsisolationspegel am Lastumschalter

<table>
<thead>
<tr>
<th>U_m 1)</th>
<th>LI</th>
<th>LIC</th>
<th>SI</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>72,5</td>
<td>350</td>
<td>385</td>
<td>-</td>
<td>140</td>
</tr>
<tr>
<td>123</td>
<td>550</td>
<td>605</td>
<td>460</td>
<td>230</td>
</tr>
<tr>
<td>170</td>
<td>750</td>
<td>825</td>
<td>620</td>
<td>325</td>
</tr>
<tr>
<td>245</td>
<td>1050</td>
<td>1155</td>
<td>850</td>
<td>460</td>
</tr>
<tr>
<td>300 2)</td>
<td>1050</td>
<td>1155</td>
<td>850</td>
<td>460</td>
</tr>
<tr>
<td>362 2)</td>
<td>1175</td>
<td>1290</td>
<td>950</td>
<td>510</td>
</tr>
<tr>
<td>420 2)</td>
<td>1550</td>
<td>1705</td>
<td>1175</td>
<td>630</td>
</tr>
</tbody>
</table>

Tabelle 6: Bemessungsisolationspegel am Lastumschalter

LI: Vollwellenblitzstoßspannung (kV, 1,2/50 µs)

LIC: abgeschnittene Blitzstoßspannung (kV, 1,2/50/3 µs)

SI: Schaltstoßspannung (kV, 250/2500 µs)

AC: angelegte Spannung (kV, 50 Hz, 1 min)

2) Nur Einphasenlaststufenschalter
2.2.2 Bemessungsisolationspegel der inneren Isolation am Wähler

Die zulässige maximale Betriebsspannung an den einzelnen Wählerstrecken entspricht dem halben Wert der nachfolgend aufgeführten Werte für die angelegte Spannung (AC).

<table>
<thead>
<tr>
<th>Isolationsstrecke</th>
<th>Wählerbaureihe</th>
<th>RC</th>
<th>RD</th>
<th>RDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a0</td>
<td>LI</td>
<td>150<sup>2)</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIC</td>
<td>165<sup>2)</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>100<sup>2)</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a1</td>
<td>LI</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIC</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>LI</td>
<td>400</td>
<td>500</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>LIC</td>
<td>440</td>
<td>550</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>260</td>
<td>325</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>100</td>
<td>145</td>
<td>165</td>
</tr>
<tr>
<td>b<sup>1)</sup></td>
<td>LI</td>
<td>400</td>
<td>500</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>LIC</td>
<td>440</td>
<td>550</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>260</td>
<td>325</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>120</td>
<td>160</td>
<td>180</td>
</tr>
<tr>
<td>c1</td>
<td>LI</td>
<td>550</td>
<td>590</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>LIC</td>
<td>605</td>
<td>645</td>
<td>725</td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>355</td>
<td>385</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>180</td>
<td>210</td>
<td>250</td>
</tr>
<tr>
<td>c2<sup>1)</sup></td>
<td>LI</td>
<td>550</td>
<td>590</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>LIC</td>
<td>605</td>
<td>645</td>
<td>725</td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>355</td>
<td>385</td>
<td>528</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>195</td>
<td>230</td>
<td>280</td>
</tr>
</tbody>
</table>

Tabelle 7: Bemessungsisolationspegel der inneren Isolation am Wähler

LI: Vollwellenblitzstoßspannung (kV, 1,2/50 µs)

LIC: abgeschnittene Blitzstoßspannung (kV, 1,2/50/3 µs)

SI: Schaltstoßspannung (kV, 250/2500 µs)

AC: angelegte Spannung (kV, 50 Hz, 1 min)
1) entfällt bei Einphasenlaststufenschalter

2) Varistoransprechspannung bei 1,2/50 µs Blitzstoß: ab 55 kV ($U_{100\%}(t)_{normiert} \neq U_{75\%}(t)_{normiert}$), Restspannung bei 3 kA Stoßstrom: 70 kV

2.3 Stufenleistungsdiagramm bei Netzbetrieb

Abbildung 5: Stufenleistungen (Bemessungsspannung U_m, Bemessungsdurchgangsstrom I_r)
2.4 Potenzialanlenkung der Feinstufenwicklung

Die Feinstufenwicklung wird während ihrer Umschaltung durch Wender oder Grobwähler kurzzeitig galvanisch von der Stammwicklung getrennt. Dabei nimmt sie ein Potenzial an, das sich aus den Spannungen der Nachbarwicklungen sowie den Kopplungskapazitäten zu diesen Wicklungen oder zu geerdeten Teilen ergibt.

Bei der Trennung der Vorwählerkontakte muss ein kapazitiver Strom unterbrochen werden, der durch die o. g. Kopplungskapazitäten der Feinstufenwicklung bedingt ist. Dieser Strom wird Ausschaltstrom I_S genannt.

Die Wiederkehrspannung U_W und der Ausschaltstrom I_S können zu unzulässigen Entladungsercheinungen am Vorwähler führen. Der zulässige Bereich von Wiederkehrspannung U_W und Ausschaltstrom I_S ist im Folgenden ersichtlich.

Das „Active Gas Inhibition System“ (AGIS) reduziert die erzeugte Gasmenge während einer Vorwählerschal tung. Für weitere Informationen zu Wiederkehrspannung und Ausschaltstrom siehe Technische Daten TD 61 - Allgemeiner Teil.

Wiederkehrspannung U_W und Ausschaltstrom I_S ohne Anlenkwiderstand

![Diagramm](Abbildung6: Richtwerte für U_W und I_S ohne Anlenkwiderstand R_p für Wählerbaureihen RC, RD, RDE)

<table>
<thead>
<tr>
<th>Wäählerbaureihe</th>
<th>RC, RD, RDE ohne AGIS</th>
<th>RC, RD, RDE mit AGIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Technische Daten

Wiederkehrspannung U_W und Ausschaltstrom I_s mit Anlenkwiderstand

Abbildung 7: Richtwerte für U_W und I_s mit Anlenkwiderstand R_P für Wählerbaureihen RC, RD, RDE

| 1 Wählerbaureihe RC, RD, RDE ohne AGIS | 2 Wählerbaureihe RC, RD, RDE mit AGIS |

2.5 Brücken für die Parallelschaltung von Anschlusskontakten

Brücken für die Parallelschaltung von Anschlusskontakten dienen zur Stromaufteilung an den Anschlusskon- takten von 2 Wählerebenen.

Die Brücken sind dann zwingend notwendig, wenn die Stufenwicklung in zwei oder mehrere Teilsträngen gewi- ckelt worden ist und jeder dieser Teilstränge als Anzapfung zu Anschlusskontakten des Wählers geführt wird.

Diese Maßnahme verhindert sicher Folgendes:

- die Verschleppung von Ausgleichströmen in die Strombahnen von Wähler und Lastumschalter
- einen Kommutierungslichtbogen an bewegten Wählerkontaktbrücken
- Überspannungen zwischen benachbarten parallelgeschalteten Wähleranschlusskontakten
2.6 Zulässige Umgebungsbedingungen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lufttemperatur im Betrieb</td>
<td>-25 °C...+50 °C</td>
</tr>
<tr>
<td>Temperatur der Isolierflüssigkeit im Betrieb</td>
<td>-25 °C...+105 °C (bei Notbetrieb des Transformators bis +115 °C)</td>
</tr>
<tr>
<td>Transporttemperatur, Lagertemperatur</td>
<td>-40 °C...+50 °C</td>
</tr>
<tr>
<td>Trocknungstemperaturen</td>
<td>Siehe Montage- und Inbetriebnahmeanleitung, Kapitel „Montage“</td>
</tr>
<tr>
<td>Druckfestigkeit</td>
<td>Siehe Technische Daten TD 61 – Allgemeiner Teil</td>
</tr>
<tr>
<td>Isolierflüssigkeit</td>
<td>▪ Ungebrauchte Isolieröle aus Erdölprodukten(^1) nach IEC60296 und ASTM D3487 (äquivalente Normen auf Anfrage)</td>
</tr>
<tr>
<td></td>
<td>▪ Ungebrauchte Isolieröle aus anderen unberührten Kohlenwasserstoffen nach IEC60296, oder Mischungen dieser Öle mit Erdölprodukten(^1) nach IEC60296, ASTM D3487 oder äquivalenten Normen auf Anfrage</td>
</tr>
<tr>
<td></td>
<td>▪ Alternative Isolierflüssigkeiten, z.B. natürliche und synthetische Ester oder Silikonöle, auf Anfrage</td>
</tr>
<tr>
<td>Montagehöhe des Ölausdehnungsgefässes</td>
<td>Siehe Technische Daten TD 61 – Allgemeiner Teil</td>
</tr>
<tr>
<td>Aufstellungshöhe über Meeresspiegel</td>
<td>Siehe Technische Daten TD 61 – Allgemeiner Teil</td>
</tr>
</tbody>
</table>

\(^1\) Gas-to-liquid-Öle (GTL-Öle) werden in diesem Zusammenhang als Erdölprodukte verstanden

| Tabelle 8: Zulässige Umgebungsbedingungen |
3 Zeichnungen

3.1 Maßzeichnungen
Für die Ausführung des Stufenschalterkopfes siehe auftragsspezifische Kopf- und Gestängezeichnung

- Antriebsseite des Wählers
- Laststufenschalterableitung
- liegt an Potential von A
- Schirmringe ab Um 170 kV
- Stützflansch für Glockenkesseleinbau
bei 725kV-300kV optional
bei 362kV-420kV zwingend erforderlich
1. untere, spannungsführende Teile, diese liegen auf dem Potential des zugehörigen bzw. beschalteten Anschlusskontakts
2. Wählerboden aus isolerendem Material

Verbindlich für die Bezeichnung der Anschlusskontakte und Phasen ist das Ausführungsschaltbild
- C-C siehe 10009030
- D-D - Ausführung mit Verbindungsleitungen 3W/3G siehe 10010019
- Verbindung für parallele Wählerebenen siehe 10009916

© MASCHINENFABRIK REINHAUSEN GMBH 2019
Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet!
VACUTAP® VRF

<table>
<thead>
<tr>
<th>Wählerbaureihe</th>
<th>RC</th>
<th>RD / RDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Um [kV]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72,5</td>
<td>123</td>
<td>170</td>
</tr>
<tr>
<td>245</td>
<td>300</td>
<td>362</td>
</tr>
<tr>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>216</td>
<td>229</td>
</tr>
<tr>
<td>g</td>
<td>446</td>
<td>446</td>
</tr>
<tr>
<td>j</td>
<td>346</td>
<td>446</td>
</tr>
<tr>
<td>s</td>
<td>-</td>
<td>191</td>
</tr>
<tr>
<td>z</td>
<td>-</td>
<td>969</td>
</tr>
<tr>
<td>n</td>
<td>369</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

Maße (mm)

- **Verdrängung [dm³]**: 278, 301, 324, 347, 370, 393, 416, 439, 462, 485, 508, 531, 554, 577, 600, 623, 646, 669, 692, 715, 738, 761, 784, 807, 830, 853, 876, 900, 923, 946, 969, 992

Laststufenschalter VACUTAP® VRF

VRF1601/1801-725...420–RC/RO/RDE

Maßzeichnung
3.2 Einbauzeichnungen
Aufbauflansch am Transformatordeckel
Befestigungsschraube M12
Laststufenschalterkopfdichtung
Stellungsanzeiger vor Lastumschaltereinsatzausbau demontieren
Schauflas
Antriebswelle für Stellungsanzeige
Bohrungen Ø15
Laststufenschalterkopf
Deckelschraube
Deckeldichtung
Laststufenschalterkopfdeckel
Zentrische Getriebestufe mit Antriebswelle 25a
Rohrleitungsanschluss R für Schutzrelais
Rohrleitungsanschluss S für Saugleitung
Rohrleitungsanschluss Q (optional)
Entlüftungsventil des Laststufenschalterkopfdeckels
Entlüftungsmöglichkeit für Ölabraum des Transformators
Entlüftungsschraube für Saugleitung

31. Lastumschalterolgefäß
32. Ölgefäßebohnen
33. Schirmringe (nur bei Um = 170 kV bis 420 kV)
34. Ölgefäßeanschlusskontakt
35. Anschlussring für Lastumschalterableitung
36. Verbindungslleitung
37. Saugleitung
38. Feinwähler
39. Vorwähler
40. Wähleranschlusskontakte (siehe 10009917)
41. Feinwählerverbindungsleitung
42. Wähleraufhängung
43. Wählergetriebe
44. Wählerdeckel
45. Überschaltwiderstände
46. Tragöse
47. Überschaltwiderstande
48. Ölgefäßeanschlusskontakt
49. Wasserablaufhahn
50. Rohrleitungsanschluss R für Schutzrelais
51. Ölgefäßeanschlusskontakt
52. Ölgefäßeanschlusskontakt
53. Ölgefäßeanschlusskontakt

© MASCHINENFABRIK REINHAUSEN GMBH 2019
Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

A1
Aufbauflansch am Transformatordeckel
B1
Befestigungsschraube M12
S1
Laststufenschalterkopfdichtung
T1
Stellungsanzeiger vor Lastumschaltereinsatzausbau demontieren
U1
Schauflas
V1
Antriebswelle für Stellungsanzeige
W1
Bohrungen Ø15
X1
Laststufenschalterkopf
Y1
Deckelschraube
Z1
Deckeldichtung
AA
Laststufenschalterkopfdeckel
BB
Zentrische Getriebestufe mit Antriebswelle 25a
CC
Rohrleitungsanschluss R für Schutzrelais
DD
Rohrleitungsanschluss S für Saugleitung
EE
Rohrleitungsanschluss Q (optional)
FF
Lastumschaltereinsatz
GG
Entlüftungsventil des Laststufenschalterkopfdeckels
HH
Entlüftungsmöglichkeit für Ölabraum des Transformators
II
Entlüftungsschraube für Saugleitung
JJ
Lastumschalterolgefäß
KK
Ölgefäßebohnen
LL
Schirmringe (nur bei Um = 170 kV bis 420 kV)
MM
Ölgefäßeanschlusskontakt
NN
Anschlussring für Lastumschalterableitung
OO
Verbindungslleitung
PP
Saugleitung
QQ
Feinwähler
RR
Vorwähler
SS
Wähleranschlusskontakte (siehe 10009917)
TT
Feinwählerverbindungsleitung
UU
Wähleraufhängung
VV
Wählergetriebe
WW
Wählerdeckel
XX
Überschaltwiderstände
YY
Tragöse

© MASCHINENFABRIK REINHAUSEN GMBH 2019
Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.
Einbauzeichnung

Laststufenschalter VACUTAP® VR
VRF - Wählerbaureihe RC/RD/ROE

© MASCHINENFABRIK REINHAUSEN GMBH 2019
Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet.

Maßangaben in mm, soweit nicht anders angegeben.
3.3 Laststufenschalterkopf
Varianten des Laststufenschalterkopfes

Der Laststufenschalter kann durch seine große Variantenmöglichkeit dem Transformator weitgehend angepasst werden, so dass sämtliche Einbaufälle realisiert werden können.

Die Einbaustellung des Wählers A und des Lastumschalterolgefässes B wird durch die Antriebsseite des Wählers M gekennzeichnet.

Der Laststufenschalterkopf C mit den darauf angeordneten Rohrleitungsanschlüssen D kann um 120° im oder gegen den Uhrzeigersinn gedreht werden. Daraus ergeben sich die Varianten 1, 2 und 3.

Kopfvarianten

Schwenkbereiche

Der Laststufenschalter kann durch seine große Variantenmöglichkeit dem Transformator weitgehend angepasst werden, so dass sämtliche Einbaufälle realisiert werden können.

Die Einbaustellung des Wählers A und des Lastumschalterolgefässes B wird durch die Antriebsseite des Wählers M gekennzeichnet.

Der Laststufenschalterkopf C mit den darauf angeordneten Rohrleitungsanschlüssen D kann um 120° im oder gegen den Uhrzeigersinn gedreht werden. Daraus ergeben sich die Varianten 1, 2 und 3.

<table>
<thead>
<tr>
<th>Skizze</th>
<th>Kopfvariante</th>
<th>Angebaute Komponenten</th>
<th>Einschränkungen des Schwenkbereichs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antriebswelle rechts</td>
<td>Kopfvariante 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antriebswelle links</td>
<td>Kopfvariante 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antriebswelle rechts</td>
<td>Kopfvariante 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antriebswelle links</td>
<td>Kopfvariante 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antriebswelle rechts</td>
<td>Kopfvariante 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Einschränkungen des Schwenkbereichs durch Rohrleitungsanschlüsse R und S:

Einschränkung des Schwenkbereiches durch optionale vorhandene Rohrleitungsanschlüsse Q, E2 und Druckentlastungsventil DV:

Schwenkbereich möglich, jedoch Abdeckung des Temperaturfühlers T und des Schauglases SR / SL.
Schwenkbereich siehe 720027.

Anordnung

<table>
<thead>
<tr>
<th>Normalausführung</th>
<th>G4</th>
<th>G9, G10</th>
<th>G11, G12</th>
<th>G13, G14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonderausführung</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
</tbody>
</table>

Mindestmaße\(^1\) (mechanisch be-
dingt, notwendige Isolationsabstände
sind nicht berücksichtigt)

\[
\begin{array}{cccc}
H1 & 535 & 545 & - \\
H2 & - & 323 & 515 & 323 \\
H3 \text{\(2\)} & - & - & 840 & 840 \\
H4 \text{\(2\)} & - & - & 840 & 840 \\
\end{array}
\]

Anmerkung:
1. Bei Laststufenschalter mit seitlich angebautem Vorwähler
sind die Abmessungen des Vorwählers nach Einbautage
zur Handhabenheit des Schalters zu beachten (siehe zugehörige
Maßzeichnung).
2. Im allgemeinen durch die polen A, B, C bestimmt.

Zwischenlager erforderlich bei

\[
\begin{array}{cccc}
H1 > & 2254 & 2309 & - \\
H2 > & - & 2259 & 2254 & 2259 \\
H3 > & - & - & 2249 & 2259 \\
H4 > & - & - & 2249 & 2259 \\
\end{array}
\]
Laststufenschalter
OILTAP® M, MS, R, RM und VACUTAP® VR®, VM®, VMS®
mit Flansch für Druckentlastungsventil

© MASCHINENFABRIK REINHAUSEN GMBH 2018
Weitergabe sowie Vervielfältigung dieser Dokumente, Verwertung und Mitteilung seines Inhaltes sind verboten, soweit nicht ausdrücklich gestattet.

Maßangaben in mm, soweit nicht anders angegeben

Antriebsseite des Wählers

φ 235

φ 525

Richtung 4,25 x 178,5 x 200

MA = 50 Nm

min. 100 mm

MA + 50 Nm

M 12
Rohrleitungsanschluss mit Schaltüberwachungsdurchführung ohne Ölfilteranlage

Achtung!
Die Entlüftungsschraube (2) am angebauten Gehäuse (1) muss sich oben befinden.

A 1:1
ohne Deckel dargestellt

M20x1,5
Klemmbereich für Anschlusskabel:
Außendurchmesser 7 – 13 mm

Anschlussklemmen der Schaltüberwachung
Verdrahtung siehe Ausführung Schaltbild des Motorantriebs
Funktionsdiagramm für Schaltüberwachung
siehe Motorantriebschaltbild

Bemessungsdauerstrom: 2A
Bemessungsspannung DC/AC (50Hz) 24V – 250V
Spannungsfestigkeit: 1150V / 50Hz / 1 min.
Isolationsprüfung aller spannungsführenden Anschlüsse gegen Erde:
2000V AC, 50Hz, Prüfdauer 1 min.
3.4 Wähler
Wählerbaureihe RC/RD/RDE/RE/RF
Wähleranschlusskontakta
Maßzeichnung

Materialnummer
Serialnummer
Datum
Dokunrnummer
Blatt
Änderungsnummer
© MASCHINENFABRIK REINHAUSEN GMBH 2015
Weitergabe sowie Verbreitung dieses Dokuments, Vervielfältigung und Mitteilung seiner Inhalte sind verboten, soweit nicht ausdrücklich genehmigt.

Maßangaben in mm, soweit nicht anders angegeben

Name
Norm.
Gez.
Datum

Name
Norm.
Gez.
Datum

<table>
<thead>
<tr>
<th>Name</th>
<th>Norm.</th>
<th>Gez.</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipinski</td>
<td>43228100001</td>
<td>10/10/2016</td>
<td>10/10/2016</td>
</tr>
<tr>
<td>Hiltner</td>
<td>43228100001</td>
<td>10/10/2016</td>
<td>10/10/2016</td>
</tr>
</tbody>
</table>

Maßzahlung

38
50
12
13
9
29,5
15
6
23,5

<table>
<thead>
<tr>
<th>Maßzahlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>29,5</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>23,5</td>
</tr>
</tbody>
</table>
Kontaktanordnung - ohne Vorwähler

Bezeichnung der Wähleranschlusskontakte, z. B.:

- 3 = obere Wählerebene
- (4) = untere Wählerebene

Verbindlich für die Bezeichnung der Anschlusskontakte und Phasen ist das Ausführungsschaltbild.
Kontaktanordnung - Wender

Wählerbaureihe RC/RO/RDE

Maßanordnung

Maßzeichnung

Datum: 07.02.2016

Serie: 100090300D

Maßangaben in mm, soweit nicht anders angegeben
Kontaktanordnung - Grobwähler

Maßangaben in mm, soweit nicht anders angegeben.
Grobwähler

3 Wählerebenen mit Parallelbrücke
2 Wählerebenen mit Parallelbrücke
ohne Parallelbrücke
Wählerbaureihe RC/RD/RDE
Verbindungsleitungen 3W/3G
Maßzeichnung

M Antriebseite des Wählers

Verbindlich für die Bezeichnung der Anschlusskontakte und Phasen ist das Ausführungsschaltbild.
3.5 Potenzialanlenkungseinheit
Laststufenschalter VACUTAP® VR

VRF1601/1801 – *Potenzialanlenkung WR/GR – RC/RD/RDE*

Maßzeichnung

Bauprogramm Potenzialanlenkungseinheit ohne Anlenkschalter WR/GR

<table>
<thead>
<tr>
<th>Laststufenschalter</th>
<th>VACUTAP®</th>
<th>Anzahl Phasen</th>
<th>Schaltung</th>
<th>Widerstände</th>
<th>mögliche Anzahl Widerstände je Phase</th>
<th>max. Maß a [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>1</td>
<td>parallel</td>
<td>725 ... 420</td>
<td>3 ... 22</td>
<td>663</td>
<td>894</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-fach parallel</td>
<td>725 ... 420</td>
<td>123</td>
<td>3 ... 18</td>
<td>894</td>
</tr>
</tbody>
</table>

Die Verschraubung (falls vorhanden) ist vom Transformatorhersteller auszuführen.

Mit Vorwähler

Anzahl und Lage Anschlusskontakte

Verschraubung Potenzialanlenkungseinheit zu Ableitung

M – Antriebseite des Wählers

A – Laststufenschalterableitung

B – liegt an Potential von

PK – Anschlusskontakt

I – siehe Maßzeichnung

2 – ist Auftragspezifisch, siehe Auftragsmaßzeichnung

Verbindlich für die Bezeichnung der Anschlusskontakte und Phasen ist das Ausführungsschaltbild.
Bauprogramm Potenzialanlenkungseinheit mit Anlenkschalter WP/GP

<table>
<thead>
<tr>
<th>Laststufenschalter VACUTAP®</th>
<th>Anzahl Phasen</th>
<th>Schaltung Widerstände</th>
<th>mögliche Anzahl Widerstände je Phase</th>
<th>max. Maß a [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>1</td>
<td>parallel</td>
<td>725 ... 420</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x3 ... 2x20</td>
<td>804</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-fach parallel</td>
<td>725 ... 123</td>
<td>804</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3x3 ... 3x14</td>
<td>804</td>
<td></td>
</tr>
</tbody>
</table>

Anzahl und Lage Anschlusskontakte

Verschraubung Potenzialanlenkungseinheit zu Ableitung

Die Verschraubung (falls vorhanden) ist vom Transformatorenanlagenhersteller auszuführen.

- Antriebseite des Wählers
- Laststufenschalterableitung
- liegt an Potential von
- Anschlusskontakt
- Anlenkschalter
- siehe Maßzeichnung
- ist Auftragspezifisch, siehe Auftragsmaßzeichnung
- Verbündig für die Bezeichnung der Anschlusskontakte und Phasen ist das Ausführungsschaltbild
Wählerbaureihe RC/RD/RDE
Anlenkschalter WS/GS
Maßzeichnung
3.6 Schaltbilder (Beispiele)

Nachfolgend finden Sie Beispiele zu den Schaltbildern.

Das auftragsspezifische Schaltbild erhalten Sie mit der Lieferung.
1. **MR VERBINDUNGEN**
 - KUNDEN VERBINDUNGEN
 - CUSTOMER CONNECTIONS
2. **TS_1**
 - WAHLEREBENE
 - TAP SELECTOR PLANE
3. **TS_2**
 - WAHLEREBENE
 - TAP SELECTOR PLANE
4. **TS_3**
 - WAHLEREBENE
 - TAP SELECTOR PLANE
5. **TS_4**
 - WAHLEREBENE
 - TAP SELECTOR PLANE
6. **PS_3**
 - WENDER
 - REVERSING CHANGE-OVER SELECTOR
7. **PS_4**
 - WENDER
 - REVERSING CHANGE-OVER SELECTOR
8. **TW_0**
 - TRAFOWICKLUNG
 - TRANSFORMER WINDING
9. **TW_1**
 - STUFENWICKLUNG
 - TAP WINDING
10. **LU**
 - LASTUMSCHALTER
 - DIVERTER SWITCH

STELLUNG DES WENDERS
- POSITION OF REVERSING CHANGE-OVER SELECTOR

REGELBEREICH (kV)
- REGULATION RANGE (kV)

BEZEICHNUNG DER WÄHLERKONTAKTE
- DESIGNATION OF TAP SELECTOR CONTACTS

BEZEICHNUNG DER STELLUNGEN
- DESIGNATION OF POSITIONS
MR worldwide

Australia
Reinhausen Australia Pty. Ltd.
17/20-22 St Albans Road
Kingsgrove NSW 2228
Phone: +61 2 9502 2202
Fax: +61 2 9502 2224
E-Mail: sales@au.reinhausen.com

Brazil
MR do Brasil Indústria Mecânica Ltda.
Av. Elias Yazbek, 465
CEP: 06803-000
Embu - São Paulo
Phone: +55 11 4785 2150
Fax: +55 11 4785 2185
E-Mail: vendas@reinhausen.com.br

Canada
Reinhausen Canada Inc.
3755, rue Java, Suite 180
Brossard, Québec J4Y 0E4
Phone: +1 514 370 3737
Fax: +1 450 659 3092
E-Mail: m.foata@ca.reinhausen.com

India
Easun-MR Tap Changers Ltd. (Joint Venture)
612, CTH Road
Tirunirravur, Chennai 602 024
Phone: +91 44 26300883
Fax: +91 44 26300881
E-Mail: service@easunmr.com

Indonesia
Pt. Reinhausen Indonesia
German Center, Suite 6310, Jl. Kap. Subijanto Dj.
BSD City, Tangerang
Phone: +62 21 5315-3183
Fax: +62 21 5315-3184
E-Mail: chauer@id.reinhausen.com

Iran
Iran Transfo After Sales Services Co. (Joint Venture)
Zanjan, Industrial Township No. 1 (Aliabad) Corner of Morad Str.
Postal Code 453344551
E-Mail: sales@iran-transfo.com

Italy
Reinhausen Italia S.r.l.
Via Alserio, 16
20159 Milano
Phone: +39 02 69434766
Fax: +39 02 69434766
E-Mail: sales@it.reinhausen.com

Japan
MR Japan Corporation
German Industry Park
1-18-2 Hakusan, Midori-ku
Yokohama 226-0006
Phone: +81 45 929 5728
Fax: +81 45 929 5741

Luxembourg
Reinhausen Luxembourg S.A.
72, Rue de Près
L-7333 Steinsel
Phone: +352 27 3347 1
Fax: +352 27 3347 99
E-Mail: sales@lu.reinhausen.com

Malaysia
Level 11 Chulan Tower
No. 3 Jalan Conlay
50450 Kuala Lumpur
Phone: +60 3 2142 6481
Fax: +60 3 2142 6422
E-Mail: mr_rap@my.reinhausen.com

P.R.C. (China)
MR China Ltd. (MRT)
开德贸易(上海)有限公司
中国上海浦东新区浦东南路360号
新上海国际大厦4楼E座
邮编：200120
电话：+86 21 61634588
传真：+86 21 61634582
邮箱：mr-sales@cn.reinhausen.com

Russian Federation
OOO MR
Naberezhnaya Akademika Tupoleva
15, Bld. 2 ("Tupolev Plaza")
105005 Moscow
Phone: +7 495 980 89 67
Fax: +7 495 980 89 67
E-Mail: mrr@reinhausen.ru

South Africa
Reinhausen South Africa (Pty) Ltd.
No. 15, Third Street, Booyens Reserve
Johannesburg
Phone: +27 11 8352077
Fax: +27 11 8353806
E-Mail: support@za.reinhausen.com

South Korea
Reinhausen Korea Ltd.
21st floor, Standard Chartered Bank Bldg.,
47, Chongro, Chongro-gu,
Seoul 110-702
Phone: +82 2 767 4909
Fax: +82 2 736 0049
E-Mail: you-mi.jang@kr.reinhausen.com

U.S.A.
Reinhausen Manufacturing Inc.
2549 North 9th Avenue
Humboldt, TN 38343
Phone: +1 731 784 7881
Fax: +1 731 784 7882
E-Mail: sales@reinhausen.com

United Arab Emirates
Reinhausen Middle East FZE
Dubai Airport Freezone, Building Phase 6
3rd floor, Office No. 6EB, 341 Dubai
Phone: +971 4 2368 451
Fax: +971 4 2368 225
Email: service@ae.reinhausen.com

Maschinenfabrik Reinhausen GmbH
www.reinhausen.com
+49(0)941 4090-0
+49(0)941 4090-7001
sales@reinhausen.com
5224580/04 DE • 10/21 • F0343304