目录

1 安全 4
1.1 安全说明书 4
1.2 使用目的 4
1.3 关于运行设备运转的重要提示 4

2 产品规格 4
2.1 BeTech 油温指示器 4
2.2 BeTech 绕组温度指示器 4
2.3 TT 版（选项） 5
2.4 Pt 100 版（选项） 5

3 安装 5
3.1 安装装置 5
3.2 毛细管 5
3.3 袋 5
3.4 防踢保护 5

4 电气连接 6
4.1 连接微动开关 6
4.2 模拟输出端 4 – 20 mA 电流环路信号 6
4.3 模拟输出端 4 – 20 mA 电流环路信号和 0 – 5 V 直流电压输出 7
4.4 模拟输出端 0 – 5 V 直流电压输出 8
4.5 模拟输出端 Pt 100 Ohm 电阻信号 9
4.6 开关设置 10
4.7 开关设置检查 10

5 恒温校准 10
5.1 恒温校准检查 10

6 梯度校准 11
6.1 通过加热电流进行校准 11
6.2 通过内置匹配电阻 MRB110-1 或 MRB110-2 进行校准 12

7 技术数据 13
8 附录 14
8.1 尺寸 14
8.2 模拟输出端 / 4 – 20 mA 电流环路信号 15
8.3 模拟输出端 / 4 – 20 mA 电流环路信号和 0 – 5 V 直流电压输出 16
8.4 模拟输出端 / 0 – 5 V 直流电压输出 17
8.5 模拟输出端 / Pt100 Ohm 电阻信号 18
8.6 布线图 / OTI 5 开关、WTI 5 开关和 WTI 4 开关 + MRB110 19
8.7 接线端子 20
8.8 编号 1 感温包尺寸 21
8.9 编号 2 感温包尺寸 21
8.10 编号 2F 感温包尺寸 21
8.11 编号 5 感温包尺寸 21
8.12 编号 6 感温包尺寸 22
8.13 编号 8 感温包尺寸 22
8.14 编号 9 感温包尺寸 23
8.15 编号 10 感温包尺寸 23
8.16 编号 27 感温包尺寸 23

备注
此处的数据在细节上可能与所交付运行设备中的数据有所不同。
我们保留进行更改的权利，恕不另行通知。

请妥善保存本手册以备将来参考！
1 安全

1.1 安全说明书
参与本运行设备的安装、调试、运行或维修的所有人员都必须:
- 具备相应的专业资格，并
- 严格遵守本操作说明书。
违规操作或错误使用可能会导致
- 严重或致命的伤害,
- 损坏本运行设备或用户的其他财产
- 降低本运行设备的效能。
本手册中的安全说明书采用以下三种格式来强调重要信息。

警告
此信息表示可能会对生命与健康造成一定危险。忽视此类警告可导致严重或致命的伤害。

小心
此信息表示可能会对本运行设备或用户的其他财产造成一定危险。不排除造成严重或致命伤害的可能。

备注
这些备注将给出有关特定事项的重要信息。

1.2 使用目的
MESSKO® BeTech 油和绕组温度指示器用于测量电源和配电变压器、电抗器或类似运行设备的温度。

调试装置前，务必查阅并遵守标示牌和操作说明书中所指示的操作限值。

1.3 关于运行设备运转的重要提示
用户有义务遵守国家的健康与安全法规。
特别要强调的是，在对带电部件（人接触到会发生危险）执行工作时，只有在这些部件已断电或具有直接接触保护的情况下，才可进行。

电气安装应遵守国家相关安全法规。为保证无故障运行，必须连接地线。

小心
只能由有资质的技术人员来进行装置的安装、电气连接、调试和维护，且必须遵循操作说明书中的指示进行操作。
用户有责任确保该装置仅用于指定应用。
为了安全起见，在未事先咨询 MESSKO 的情况下，严禁执行任何不当的未经授权操作（例如，对运行设备进行安装、改装、改造，对运行设备进行电气连接或调试）！

2 产品规格

2.1 BeTech 油温指示器
指针温度计具有多达五个可调节的微动开关，用以指示油温。所指示的是装置传感器中的油温。机械测量系统可以独立运作，而且不需要电源输入。

2.2 BeTech 绕组温度指示器
指针温度计具有多达五个可调节的微动开关，用以指示绕组温度（热成像）。冷却液（油）和绕组间的温升取决于绕组中的电流。换能器的二次电流与绕组中的电流成正比。该换能器供给机械温度计中的加热元件。这会导致测量油温的指示根据变压器负载而增加（梯度）。

带加热元件的指针温度计（第 6.1 章）必须通过设置加热线的方式进行校准。

带加热元件和内置匹配电阻 MRB110-1 或 MRB110-2 的类型（第 6.2 章）必须通过设置电阻器的方式进行校准。
2.3 TT 版本（选项）
这些装置还另外配有一个传感器，该传感器可将温度值转换为电信号（4 到 20 mA 和/或 0 到 5 V 直流电）。该传感器需要电源供电（24 V 直流电）。

2.4 Pt100 版本（选项）
在该装置中，模拟的 Pt100 Ohm 电阻输出是线性的，并与仪表盘中所指示的温度成正比。

3 安装
3.1 安装装置

小心
必须严格满足本安装和操作说明书中操作与安装条件要求。

交付内容包含防震安装，且必须使用这种安装方式以防仪表发生机械磨损。

3.2 毛细管（图 1/8）
切勿通过毛细管拿起温度计。不要将其过度扭曲或弯折。最小弯折半径为 25 mm。以大约 400 mm 的间隔夹紧毛细管。剩余的所有毛细管均应绕成一个最小直径为 200 mm 的螺旋。

3.3 袋
不应过度填充充油袋 - 将感温包插入袋中之后，应留出 15% 的空间以应对油的热膨胀。确保垫圈或密封件是合适的。

3.4 防踢保护
出于安全原因，感温包均配有内置的防踢保护。

图 2
示例感温包编号 5
4 电气连接

4.1 连接微动开关
要连接微动开关，需通过机箱门的四个螺丝来打开机箱（图1/2）。将连接电缆的外护套移除约160 mm的长度，然后将各个导体的绝缘材料移除约6 mm的长度。将提供的电缆密封套宽松地安装在进线电缆和机箱上。请密切关注电缆密封套的装配情况，并确保密封件妥善安装，以避免进水。请按照接线图（附录中的第8.2章 - 第8.6章）将进线连接到端子排（附录中的第8.7章）。

4.2 模拟输出端 4 – 20 mA 电流环路信号（有关安装示例，请参见第8.2章）
此模拟输出端是 MESSKO® BeTech 油和绕组温度指示器的附加部件。此输出是线性的，并与仪表盘中所指示的温度成正比，其中，在仪表盘中指示最低值时输出4 mA，最高值时输出20 mA。例如，0 °C 时输出4 mA，150 °C 时输出20 mA。（见下图）。

该输出具有多种用途，例如连接到计算机、连接到 SCADA 系统，或者通过远方模拟或数字指示器进行远方监控。由于允许高负载，同一输出可同时用于实现多个目的。

由于输出是根据指示提供的，所以可在本地和远方同时显示相同的温度 - 不会因设置等的不同而造成差异，而是像使用多个独立的信号传送器。

电线可以很容易地连接到 OTI 或 WTI 内的接线端子板（请参见附录中的第8.2章）。

小心
在绝缘测试过程中，端子 61、62 和 63 必须短路。测试电压必须逐渐升高。测试完成后，请将钳夹从端子板上移除。

警告
电压，危险！打开装置之前，所有接线都必须不带电压。

小心
关闭机箱时，以最大1 Nm 的转矩将螺丝拧紧。

建议将独立的屏蔽电缆接线到 4 – 20 mA 的模拟输出端。这包括电源电压和 mA 输出信号（= 端子 61、62 和 63）。不应通过同一条电缆与其他信号接线，并应确保屏蔽仅在一段接地。

图 3
输出信号与温度示例

指示温度，°C

输出信号，毫安
4.3 模拟输出端 4 - 20 mA 电流环路信号和 0 - 5 V 直流电压输出（有关安装示例，另请参见第 8.3 章）

此模拟输出端是 MESSKO® BeTech 油和绕组温度指示器的附加部件，提供了两个输出，它们都是线性的，并与仪表盘中所指示的温度成正比。其中，在仪表盘中指示最低值时输出 4 mA 和 0 V 直流电，指示最高值时输出 20 mA 和 5 V 直流电（见下图）。

这两个输出可具有多种用途，例如连接到计算机，连接到 SCADA 系统，或者通过远方模拟或数字指示器进行远方监控。常见的安装将使用 mA 信号进行远方监控，并使用 V 直流电输出与 SCADA 或计算机进行连接。

由于输出是根据指示提供的，所以可在本地和远方同时显示相同的温度 - 不会因设置等的不同而造成差异，而是好像使用多个独立的信号传送器。

电线可以很容易地连接到 OTI 或 WTI 内的接线端子板（请参见附录中的第 8.3 章）。

![小心]

在绝缘测试过程中，端子 61、62、63 和 64 必须短路。测试电压必须逐渐升高。测试完成后，请将钳夹从端子板上移除。

建议将独立的屏蔽电缆接线到此模拟输出端。这包括电源电压和 mA 与 V 直流电输出信号（= 端子 61、62、63 和 64）。不应通过同一条电缆与其他信号接线，并应确保屏蔽仅在一端接地。

如果只使用电压输出，则 mA 输出必须保持短路。请将钳夹放在端子 61 和 62 上。

输出信号与温度示例

<table>
<thead>
<tr>
<th>温度, °C</th>
<th>mA 输出信号</th>
<th>直流电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>

图 4
4.4 模拟输出端 0 - 5 V 直流电压输出（有关安装示例，请参见第 8.4 章）

此模拟输出端是 MESSK® BeTech 油和绕组温度指示器的附加部件，输出是线性的，并与仪表盘中所指示的温度成正比，其中，在仪表盘中指示最低值时输出 0 V 直流电，指示最高值时输出 5 V 直流电。例如，0 °C 时输出 0 V 直流电，而 150 °C 时输出 5 V 直流电（见图5）。

此输出可具有多种用途，例如连接到计算机、连接到 SCADA 系统，也可以用于远方监控。V 直流电输出通常用于与 SCADA 或计算机进行连接。

由于输出是根据指示提供的，所以可在本地和远方同时显示相同的温度 - 不会因设置等的不同而造成差异，而 是好像使用多个独立的信号传送器。

电线可以很容易地连接到 OTI 或 WTI 内的接线端子板（请参见附录中的第 8.4 章）。

小心
在绝缘测试过程中，端子 61、63 和 64 必须短路。测试电压必须逐渐升高。测试完成后，请将钳夹从端子板上移除。

建议将独立的屏蔽电缆接线到此模拟输出端。这包括电源电压和 V 直流电输出信号 (= 端子 61、63 和 64）。不应通过同一条电缆与其他信号接线，并应确保屏蔽仅在一端接地。

输出信号与温度示例

图 5
4.5 模拟输出端 Pt100 Ohm 电阻信号（有关安装示例，另请参见第 8.5 章）

此模拟输出端是 MESSKO® BeTech 油和绕组温度指示器的附加部件。模拟的 Pt100 Ohm 电阻输出是线性的，并与仪表盘中所示的温度成正比。有关典型电阻值，请参见下面的图和表。

此输出可具有多种用途，例如连接到计算机、连接到 SCADA 系统，或者用于远方监控。为此输出端提供的标准连接是 3 线连接，以促进导线电阻等的补偿。通常情况下，输出端将连接到信号换能器 Pt-MU 以进行较长距离的传输。

由于输出是根据指示提供的，所以可在本地和远方同时显示相同的温度 - 不会因设置等的不同而造成差异，而自然像是使用多个独立的信号传送器。

电线可以很容易地连接到 OTI 或 WTI 内的接线端子板（请参见附录中的第 8.5 章）。

小心

在绝缘测试过程中，端子 61、62 和 63 必须短路。测试电压必须逐渐升高。测试完成后，请将钳夹从端子板上移除。

建议将独立的屏蔽电缆接线到此模拟输出端。这包括所有端子 61、62 和 63。不应通过同一条电缆与其他信号接线，并应确保屏蔽仅在一端接地。

<table>
<thead>
<tr>
<th>温度 [°C]</th>
<th>电阻值 [Ohm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>25</td>
<td>109.73</td>
</tr>
<tr>
<td>50</td>
<td>119.40</td>
</tr>
<tr>
<td>100</td>
<td>138.50</td>
</tr>
<tr>
<td>150</td>
<td>157.31</td>
</tr>
</tbody>
</table>
4.6 开关设置

可针对各个开关分别进行调节，并可在单独的刻度盘上设置任意温度，不管其他开关如何设置。可按如下步骤进行设置：

a. 旋松橙色指针上的固定螺钉

b. 旋转柱形的同时保持固定螺旋处在适当的位置，直到橙色指针在刻度盘上指向预期的温度设置。

c. 在此位置拧紧固定螺钉。

d. 按照如下所述检查开关设置。

4.7 开关设置检查

保持仪表处于垂直位置，通过柱形来转动轴以指向更高的温度（检查用于指示的指针是否按此方式进行移动），然后检查是否在预期值处获得接触。如有必要，请重新调节设置。

5 恒温校准

小心

请勿将柱形的轴转向其他方向，因为这样可能会导致恒温校准发生改变。

每一台仪表都进行了出厂校准，所以无需进行额外的校准。这适用于所有功能，包括指示，开关和模拟输出（如适用）。

5.1 恒温校准检查

将感温包（完全）放入沸水中，15 分钟后检查读数。如果误差大于规定的公差（如±3℃），请联系当地的代理商或制造商。除使用沸水之外，还可以在经过充分搅拌的（油）浴（容量至少为 51）中使用控制温度计，也可以使用 MESSKO® 恒温校准油槽。
6 梯度校准

6.1 通过加热电流进行校准

A) 梯度

梯度是指绕组温度指示器（WTI）超过油温的温升。WTI将显示变压器绕组温度的热成像。

B) 计算

可以使用图表来获取梯度，也可以按下面的公式计算温升：

\[G = K \times I_h^2 \]

其中

- \(G \) = 梯度 (°C)
- \(I_h \) = 加热电流 (A)
- \(K \) = 一个常数，该常数取决于感温包类型。

C) 技术数据

最大加热电流，\(I_h = 2.3 \) A，连续电流

最大加热电流，\(I_h = 10 \) A，持续 5 秒

热时间常数：9 分钟

显示油温 60°C 时的梯度

D) 检验

要检验梯度（温升），请按如下方式进行操作：

- 在测试过程中，请保持感应感温包处于恒温状态，最好将其放入油浴或水浴
- 为 WTI 加热元件供应稳定的电流（交流电或直流电），提供的电流应与所需温升相对应
- 将仪表的箱盖固定在仪表上
- 等待 45 分钟后再检查温度指示
- 最终温度和油/水浴温度之间的差值即为梯度

常数 K

<table>
<thead>
<tr>
<th>感温包类型</th>
<th>A: 0 到 150 °C</th>
<th>C: -20 到 +130 °C</th>
<th>E: 0 到 160 °C</th>
<th>G: -40 到 160 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1、2、2F、5、8、22、27</td>
<td>22</td>
<td>23.5</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>9、10</td>
<td>24.5</td>
<td>26</td>
<td>32.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*仅适用于感温包类型 1、2、2F、5、8、22 和 27 以及测量范围 A (0 至 150 °C) 和 C (-20 至 +130 °C)。

<table>
<thead>
<tr>
<th>加热电流，(I_h)</th>
<th>0.60</th>
<th>0.67</th>
<th>0.74</th>
<th>0.80</th>
<th>0.85</th>
<th>0.90</th>
<th>0.95</th>
<th>1.00</th>
<th>1.04</th>
<th>1.09</th>
<th>1.13</th>
<th>1.17</th>
<th>1.21</th>
</tr>
</thead>
<tbody>
<tr>
<td>单位为安，±5%</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

图 7

最大公差
额定
最小公差

*仅适用于感温包类型 1、2、2F、5、8、22 和 27 以及测量范围 A (0 至 150 °C) 和 C (-20 至 +130 °C)。

BA3527161/02 ZH
6.2 通过内置匹配电阻 MRB110-1 或 MRB110-2 进行校准

A) 以 °C (或 K) 为单位确定所需梯度（通过发热试验）。

B) 在 100% 负载的情况下检查 CT 中的电流（以安培为单位）。

C) 在 CT 电流线上找到 x 轴中的梯度与该线相交的点。

D) 检查该点在 y 轴上的电阻值（以欧姆为单位）。这是经过端子 5－5 的总电阻值（表示加热元件的电阻与匹配电阻并联）（请参见第 8.6 章的图 14）。

E) 将欧姆表连接到端子 5－5 并校准匹配电阻 MRB110-1 或 MRB110-2，直至达到预期电阻值。将锁紧螺母固定到此值。

F) 通过此设置，应能达到所选的 100% CT 电流的所需梯度。

G) 要验证设置，请为端子 5－5 供应相当于 100% CT 电流的稳定电流（直流电或交流电），将仪表的箱盖留在仪表上，然后等待 45 分钟再核实温度数和所获的温度梯度。如果有必要进行梯度校准，请校准以下内容：

a. 转向更高的电阻值是否能获得更高的梯度

b. 转向更低的电阻值是否能获得更低的梯度

H) 有关详细信息，另请参见第 6.1 章。

图 8 适用于感温包类型 1、2、2F、5、8、22 和 27 以及测量范围 0 至 150 °C 和 -20 至 130 °C 的梯度图。
7 技术数据

尺寸
请参见第8.1章

材料
机箱:
压铸铝制，聚酯粉末喷涂，RAL7033

观察窗玻璃:
层压安全玻璃（标准）；UV稳定的聚碳酸酯（可选）

毛细管:
4孔方形法兰：G3/4”；G1”
7/8”-14UNF；其他螺纹根据要求提供

电缆密封套:
模拟输出达到 3 x M20 x 1.5
和 1 x M16

规格
测量范围:
0...150 °C 或
-20...130 °C 或
0...160 °C 或
-40...160 °C;
其他范围根据要求提供

指示精度:
± 3 °C (30-150 °C)
(可选: ± 2 °C 或 1.5 °C)

安装位置:
室内和室外，热带与北极气候均可

环境温度:
-40 ...+70 °C
(可选: 极地执行时可低至
-60 °C)

绝缘电压:
1 分钟 2.5 kV 50 Hz

保护类:
按照 IEC 60 529,
IP 55 (可选: IP 65)

模拟输出端:
4-20 mA; 4-20 mA 和 5 V 直流电; 5 V 直流电; Pt100

重量:
约 4 kg

微动开关
数量:
2, 3, 4 或 5

开关额定值:
标准 SPDT 250 V 交流电 / 15 A;
(可选: MBO SPDT 250 V 交流电 / 10 A 或 250 V 直流电 / 5 A; DPDT 或镀金 SPDT)

开关滞后:
12 °C ± 2 °C; 其他按要求提供
8.1 尺寸

图 9
8.2 模拟输出端 / 4 - 20 mA 电流环路信号（可选）

安装示例 A:

安装示例 B:
（SNT36 位于 OTI/WTI 旁，远方指示器在距离它们更远的位置）

安装示例 C:
（串联多个负载）

缩写:
SNT36 = 供电设备
RIA = 远方指示器模拟
D1272AT = 远方指示器数字

有关这些产品的详细信息，请参见相应的操作说明书。

图 10
8.3 模拟输出端 / 4 - 20 mA 电流环路信号和 0 - 5 V 直流电压输出（可选）

安装示例 A:

安装示例 B:
（SNT36 位于 OTI/WTI 旁，远方指示器和 SCADA/计算机在距离它们更远的位置）

缩写：
SNT36 = 供电设备
RIA = 远方指示器模拟
D1272AT = 远方指示器数字

有关这些产品的详细信息，请参见相应的操作说明书。
8.4 模拟输出端 / 0 - 5 V 直流电压输出（可选）

安装示例 A:

安装示例 B:
（SNT36 位于 OTI/WTI 旁，SCADA/计算机在距离它们更远的位置）

缩写:
SNT36 = 供电设备

图 12 有关此产品的详细信息，请参见相应的操作说明书。
8.5 模拟输出端 / Pt100 Ohm 电阻信号（可选）

安装示例：

布线图示例：含 4 个开关的 OTI + Pt100

布线图示例：含 4 个开关和 MRB110 的 WTI + Pt100

缩写：
RIA = 远方指示器模拟
D1272AT = 远方指示器数字
Pt-MU = 信号换能器
MRB = 匹配电阻

图 13
8.6 布线图 / OTI 5 开关, WTI 5 开关和 WTI 4 开关 + MRB110（可选）

图 14
8.7 接线端子
8.8 编号 1 感温包尺寸

图 16

8.9 编号 2 感温包尺寸

图 17

8.10 编号 2F 感温包尺寸

图 18
8.11 编号 5 感温包尺寸

8.12 编号 6 感温包尺寸

8.13 编号 8 感温包尺寸
8.14 编号 9 感温包尺寸

8.15 编号 10 感温包尺寸

8.16 编号 27 感温包尺寸