Table of contents

1 Introduction ... 6
 1.1 Manufacturer .. 6
 1.2 Completeness ... 6
 1.3 Safekeeping ... 6
 1.4 Notation conventions .. 6
 1.4.1 Hazard communication system ... 7
 1.4.2 Information system .. 8
 1.4.3 Instruction system ... 8
2 Safety .. 10
 2.1 Appropriate use .. 10
 2.2 Fundamental safety instructions ... 10
 2.3 Personnel qualification .. 13
 2.4 Personal protective equipment .. 14
3 Product description ... 16
 3.1 Scope of delivery ... 16
 3.2 Function description ... 16
 3.3 Design .. 16
 3.3.1 Indication field .. 18
 3.3.2 Anti-condensation heater ... 18
 3.3.3 Swing frame/terminal rail ... 18
 3.3.4 Position transmitter equipment .. 20
 3.3.5 Transmission gear cover plate ... 20
 3.3.6 Oil cooling unit controller ... 21
 3.4 Type designation .. 21
 3.5 Protective devices .. 22
4 Packaging, transport and storage ... 23
 4.1 Packaging ... 23
 4.1.1 Suitability .. 23
 4.1.2 Markings .. 24
 4.2 Transportation, receipt and handling of shipments .. 24
 4.3 Storage of shipments .. 25
 4.4 Unpacking shipments and checking for transportation damages ... 26
Table of contents

5 **Mounting** ... 27
5.1 Fitting shielding housing and motor-drive unit on the transformer .. 27
5.2 Mounting drive shafts and bevel gear ... 32
5.3 Centering on-load tap-changer and motor-drive unit ... 32
5.4 Cable recommendation .. 39
5.5 Installing electrics for motor-drive unit .. 40

6 **Commissioning** .. 43
6.1 Starting up motor-drive unit .. 43
6.2 Tests on motor-drive unit .. 44
6.2.1 Checking correct electric switch-off .. 44
6.2.2 Checking mechanical and electric end stop of on-load tap-changer/off-circuit tap-changer and motor-drive unit...... 45
6.2.3 Checking tripping of motor protective switch .. 45
6.3 Tests on the transformer .. 46
6.3.1 High-voltage tests on the transformer ... 46
6.3.2 Dielectric tests on transformer wiring ... 46
6.4 Transporting transformer to the operating site .. 47
6.5 Commissioning the transformer at the operating site .. 47

7 **Fault elimination** .. 49
7.1 Safety instructions ... 49
7.2 General information .. 50
7.3 Fault in the environment of the motor-drive unit .. 50
7.4 Fault in the motor-drive unit when the switching operation has not ended 50
7.5 Fault in the motor-drive unit after the switching operation is ended correctly 51

8 **Inspection and maintenance** .. 54
8.1 Care ... 54
8.2 Inspection ... 54
8.3 Maintenance .. 54

9 **Disassembly** .. 56

10 **Disposal** .. 58

11 **Technical data** ... 59
11.1 Technical data for TAPMOTION® ED ... 59
11.2 Technical data for position transmitter equipment ... 59
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Permissible ambient conditions</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>Drawings</td>
<td>61</td>
</tr>
<tr>
<td>12.1</td>
<td>TAPMOTION® ED-L, protective housing (898802)</td>
<td>62</td>
</tr>
</tbody>
</table>
1 Introduction

This technical file contains detailed descriptions on the safe and proper installation, connection, commissioning and monitoring of the product.

It also includes safety instructions and general information about the product.

This technical file is intended solely for specially trained and authorized personnel.

1.1 Manufacturer

The product is manufactured by:

Maschinenfabrik Reinhausen GmbH
Falkensteinstraße 8
93059 Regensburg, Germany
Tel.: (+49) 9 41/40 90-0
Fax: (+49) 9 41/40 90-7001
E-mail: sales@reinhausen.com

Further information on the product and copies of this technical file are available from this address if required.

1.2 Completeness

This technical file is incomplete without the supporting documents.

The following documents also apply in addition to this technical file:

- Connection diagrams
- Routine test report
- Supplement

Also observe generally valid legislation, standards, and guidelines as well as specifications on accident prevention and environmental protection in the respective country of use.

1.3 Safekeeping

Keep this technical file and all supporting documents ready at hand and accessible for future use at all times.

1.4 Notation conventions

This section contains an overview of the symbols and textual emphasis used.
1.4.1 Hazard communication system

Warnings in this technical file are displayed as follows.

1.4.1.1 Warning relating to section

Warnings relating to sections refer to entire chapters or sections, sub-sections or several paragraphs within this technical file. Warnings relating to sections use the following format:

Type of danger!
Source of the danger and outcome.
► Action
► Action

1.4.1.2 Embedded warning information

Embedded warnings refer to a particular part within a section. These warnings apply to smaller units of information than the warnings relating to sections. Embedded warnings use the following format:

DANGER! Instruction for avoiding a dangerous situation.

1.4.1.3 Signal words and pictograms

The following signal words are used:

<table>
<thead>
<tr>
<th>Signal word</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Indicates a hazardous situation which, if not avoided, will result in death or serious injury.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Indicates a hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.</td>
</tr>
<tr>
<td>NOTICE</td>
<td>Indicates measures to be taken to prevent damage to property.</td>
</tr>
</tbody>
</table>

Table 1: Signal words in warning notices
Pictograms warn of dangers:

<table>
<thead>
<tr>
<th>Pictogram</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warning of a danger point</td>
</tr>
<tr>
<td></td>
<td>Warning of dangerous electrical voltage</td>
</tr>
<tr>
<td></td>
<td>Warning of combustible substances</td>
</tr>
<tr>
<td></td>
<td>Warning of danger of tipping</td>
</tr>
<tr>
<td></td>
<td>Warning of danger of crushing</td>
</tr>
</tbody>
</table>

Table 2: Pictograms used in warning notices

1.4.2 **Information system**

Information is designed to simplify and improve understanding of particular procedures. In this technical file it is laid out as follows:

Important information.

1.4.3 **Instruction system**

This technical file contains single-step and multi-step instructions.

Single-step instructions

Instructions which consist of only a single process step are structured as follows:
Aim of action
✓ Requirements (optional).
► Step 1 of 1.
⇒ Result of step (optional).
⇒ Result of action (optional).

Multi-step instructions
Instructions which consist of several process steps are structured as follows:
Aim of action
✓ Requirements (optional).
1. Step 1.
 ⇒ Result of step (optional).
2. Step 2.
 ⇒ Result of step (optional).
 ⇒ Result of action (optional).
2 Safety

2.1 Appropriate use

The motor-drive unit adjusts the operating position of on-load tap-changers in regulating transformers to the individual operating requirements. The motor-drive unit is designed solely for use in electrical energy systems and facilities. If used as intended and in compliance with the requirements and conditions specified in this technical file as well as the warning notices in this technical file and attached to the product, then the motor-drive unit does not present any danger to people, property or the environment. This applies throughout service life of the product, from delivery to installation and operation through to disassembly and disposal.

The following is considered appropriate use:

▪ Only use the motor-drive unit with the transformer specified in the order.
▪ Only operate the motor-drive unit in combination with the shielding housing provided.
▪ Always lock the motor-drive unit with the padlock provided.
▪ Only actuate the motor-drive unit remotely if the transformer is energized.
▪ The hand crank provided is only for actuating the motor-drive unit during installation and tests in the transformer plant or during maintenance tasks if the transformer has been disconnected.
▪ The serial numbers of on-load tap-changer / de-energized tap-changer and on-load tap-changer accessories / de-energized tap-changer accessories (drive, drive shaft, bevel gear, protective relay, etc.) must match if these products are supplied as a set for one order.
▪ You will find the standard valid for the motor-drive unit and the year of issue on the nameplate.
▪ Only operate the motor-drive unit in accordance with this technical file and the agreed delivery conditions and technical data.
▪ Ensure that all necessary work is performed by qualified personnel only.
▪ Use the equipment and special tools supplied solely for the intended purpose and in accordance with the specifications of this technical file.

2.2 Fundamental safety instructions

To prevent accidents, disruptions and damage as well as unacceptable adverse effects on the environment, those responsible for transport, installation, operation, maintenance and disposal of the product or parts of the product must ensure the following:
Personal protective equipment

Loosely worn or unsuitable clothing increases the danger of becoming trapped or caught up in rotating parts and the danger of getting caught on protruding parts. This increases the danger to life and limb.

- All necessary devices and personal protective equipment required for the specific task, such as a hard hat, safety footwear, etc. must be worn. Observe the section "Personal protective equipment" [► Section 2.4, Page 14].
- Never wear damaged personal protective equipment.
- Never wear rings, necklaces, or other jewelry.
- If you have long hair, wear a haimnet.

Work area

Untidy and poorly lit work areas can lead to accidents.

- Keep the work area clean and tidy.
- Make sure that the work area is well lit.
- Observe the applicable laws for accident prevention in the relevant country.

Drying transformer

Drying the drive with the transformer in an autoclave will cause damage to property and drive malfunctions.

- Never dry the drive in an autoclave.

Working during operation

The product may only be operated in a sound, operational condition. Otherwise it poses a danger to life and limb.

- Regularly check the operational reliability of safety equipment.
- Comply with the inspection work, maintenance work and maintenance intervals described in this technical file.

Explosion protection

Highly flammable or explosive gases, vapors and dusts can cause serious explosions and fire. This increases the danger to life and limb.

- Do not install, operate or perform maintenance work on the product in areas where a risk of explosion is present.
Explosion protection

Impermissible on-load tap-change operations can lead to severe explosions and fire. This poses a danger to life and limb.

▪ Never actuate the motor-drive unit with the hand crank if the transformer is energized.
▪ Never actuate the motor-drive via the RAISE key / LOWER key on the motor-drive unit if the transformer is energized.
▪ Never actuate the motor-drive unit manually via the voltage regulator in the danger zone of the transformer if the transformer is energized.
▪ Ensure that no persons are in or enter the danger zone of the transformer during an on-load tap-change operation.

Safety markings

Warning signs and safety information plates are safety markings on the product. They are an important aspect of the safety concept.

▪ Observe all safety markings on the product.
▪ Make sure all safety markings on the product remain intact and legible.
▪ Replace safety markings that are damaged or missing.

Ambient conditions

To ensure reliable and safe operation, the product must only be operated under the ambient conditions specified in the technical data.

▪ Observe the specified operating conditions and requirements for the installation location.

Auxiliary materials and operating materials

Auxiliary materials and operating materials not approved by the manufacturer can lead to personal injury, damage to property and malfunctions of the product.

▪ Only use conductive and grounded hoses, pipes, and pump equipment that are approved for flammable liquids.
▪ Only use lubricants and auxiliary materials approved by the manufacturer.
▪ Contact the manufacturer.

Modifications and conversions

Unauthorized or inappropriate changes to the product may lead to personal injury, material damage and operational faults.

▪ Only modify the product after consultation with the manufacturer.
Spare parts

Spare parts not approved by the manufacturer may lead to physical injury, damage to the product and operational faults.

- Only use spare parts approved by the manufacturer.
- Contact the manufacturer.

2.3 Personnel qualification

The person responsible for assembly, commissioning, operation, maintenance and inspection must ensure that the personnel are sufficiently qualified.

Electrically skilled person

The electrically skilled person has a technical qualification and therefore has the required knowledge and experience, and is also conversant with the applicable standards and regulations. The electrically skilled person is also proficient in the following:

- Can identify potential dangers independently and is able to avoid them.
- Is able to perform work on electrical systems.
- Is specially trained for the working environment in which (s)he works.
- Must satisfy the requirements of the applicable statutory regulations for accident prevention.

Electrically trained persons

An electrically trained person receives instruction and guidance from an electrically skilled person in relation to the tasks undertaken and the potential dangers in the event of inappropriate handling as well as the protective devices and safety measures. The electrically trained person works exclusively under the guidance and supervision of an electrically skilled person.

Operator

The operator uses and operates the product in line with this technical file. The operating company provides the operator with instruction and training on the specific tasks and the associated potential dangers arising from improper handling.

Technical Service

We strongly recommend having maintenance, repairs and retrofitting carried out by our Technical Service department. This ensures that all work is performed correctly. If maintenance is not carried out by our Technical Service department, please ensure that the personnel who carry out the maintenance are trained and authorized by Maschinenfabrik Reinhausen GmbH to carry out the work.
2 Safety

Authorized personnel

Authorized personnel are trained by Maschinenfabrik Reinhausen GmbH to carry out special maintenance.

2.4 Personal protective equipment

Personal protective equipment must be worn during work to minimize risks to health.

- Always wear the personal protective equipment required for the job at hand.
- Never wear damaged personal protective equipment.
- Observe information about personal protective equipment provided in the work area.

Personal protective equipment to be worn at all times

<table>
<thead>
<tr>
<th>Protective clothing</th>
<th>Close-fitting work clothing with a low tearing strength, with tight sleeves and with no protruding parts. It mainly serves to protect the wearer against being caught by moving machine parts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety shoes</td>
<td>To protect against falling heavy objects and slipping on slippery surfaces.</td>
</tr>
</tbody>
</table>

Special personal protective equipment for particular environments

<table>
<thead>
<tr>
<th>Safety glasses</th>
<th>To protect the eyes from flying parts and splashing liquids.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visor</td>
<td>To protect the face from flying parts and splashing liquids or other dangerous substances.</td>
</tr>
<tr>
<td>Hard hat</td>
<td>To protect from falling and flying parts and materials.</td>
</tr>
</tbody>
</table>

Hearing protection
To protect from hearing damage.

Protective gloves
To protect from mechanical, thermal, and electrical hazards.
3 Product description

This chapter contains an overview of the design and function of the product.

3.1 Scope of delivery

The motor-drive unit is packaged with protection against moisture and is delivered as follows:

- Motor-drive unit
- Shielding housing
- Product documentation

Please note the following:
1. Check the shipment for completeness using the shipping documents.
2. Store the parts in a dry place until installation.
3. The product must remain in its airtight, protective wrapping and may only be removed immediately before installation.

3.2 Function description

The motor-drive unit adjusts the operating position of on-load tap-changers in regulating transformers to the individual operating requirements.

The tap-change operation is activated by starting the motor-drive unit (a single control impulse triggered, for example, by a voltage regulator of the TAPCON®-series). This operation is always completed regardless of any other control pulses emitted during the tap-change operation. In the standard design, the next tap-change operation can only proceed once all control devices have reached their resting positions.

Behavior in the event of a voltage interruption

Should the voltage be interrupted during an on-load tap-change operation, once the voltage supply returns, the motor-drive unit completes the started on-load tap-change operation.

3.3 Design

This chapter contains an overview of the design of the motor-drive unit.
Components not described here in detail are described in the motor-drive unit's technical data.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Protective housing cover</td>
<td></td>
</tr>
<tr>
<td>2 Viewing window for indication field</td>
<td></td>
</tr>
<tr>
<td>3 Fixing lug</td>
<td></td>
</tr>
<tr>
<td>4 Ground connection</td>
<td></td>
</tr>
<tr>
<td>5 Output shaft</td>
<td></td>
</tr>
<tr>
<td>6 Hand crank aperture with hand crank interlock switch</td>
<td></td>
</tr>
<tr>
<td>7 Hand lamp</td>
<td></td>
</tr>
<tr>
<td>8 Hand crank</td>
<td></td>
</tr>
<tr>
<td>9 S3 control switch</td>
<td></td>
</tr>
<tr>
<td>10 Swing frame/anti-condensation heater</td>
<td></td>
</tr>
<tr>
<td>11 Indication field</td>
<td></td>
</tr>
<tr>
<td>12 Nameplate</td>
<td></td>
</tr>
<tr>
<td>13 Door contact S10</td>
<td></td>
</tr>
<tr>
<td>14 Motor protective switch Q1 (motor-drive unit)</td>
<td></td>
</tr>
<tr>
<td>15 Motor protective switch Q4 (oil cooling unit)</td>
<td></td>
</tr>
<tr>
<td>16 Indicator lamp for synchronization</td>
<td></td>
</tr>
<tr>
<td>17 Indicator lamp for status signal</td>
<td></td>
</tr>
<tr>
<td>18 Indicator lamp for status signal</td>
<td></td>
</tr>
</tbody>
</table>
3 Product description

<table>
<thead>
<tr>
<th>Number</th>
<th>Feature description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Indicator lamp for status signal</td>
</tr>
<tr>
<td>20</td>
<td>Short-circuit plug bridge</td>
</tr>
<tr>
<td>21</td>
<td>Operations counter for oil cooling unit activation/deactivation</td>
</tr>
<tr>
<td>22</td>
<td>Operating hour counter for oil cooling unit</td>
</tr>
<tr>
<td>23</td>
<td>Oil cooling unit rotary switch S30</td>
</tr>
<tr>
<td>24</td>
<td>Document pocket</td>
</tr>
<tr>
<td>25</td>
<td>Transmission-gear cover plate</td>
</tr>
</tbody>
</table>

3.3.1 Indication field

A clear indication field is fitted in the motor-drive unit. Pointer and operations counter are mechanically driven and indicate the tap-change operation sequence and operating position of the motor-drive unit. The reset wheel on the operations counter is lead-sealed at the factory.

![Figure 1: Indication field](image)

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tap position indicator</td>
</tr>
<tr>
<td>2</td>
<td>The two drag hands indicate the regulating range currently used</td>
</tr>
<tr>
<td>3</td>
<td>Tap-change indicator: Shows the current position of the control cam (33 tap-change indicator sections per operating position)</td>
</tr>
<tr>
<td>4</td>
<td>The mechanical operations counter shows the overall number of tap-change operations</td>
</tr>
</tbody>
</table>

3.3.2 Anti-condensation heater

The anti-condensation heater is designed as a panel heater which also acts as the front cover of the swing frame.

The design of the motor-drive unit and panel heater ensures that air circulates inside the motor-drive unit and therefore that there is a constant interior temperature which is always higher than the outside temperature.

3.3.3 Swing frame/terminal rail

The swing frame protects all electrical and mechanical parts of the motor-drive unit behind the swing frame against accidental contact.
The terminal rail behind the swing frame makes electrical connection of the motor-drive unit a simple task. The wiring is easily connected using vertically arranged cap rails with the corresponding installed terminal bars.

Figure 2: Terminal rail

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Swing frame</td>
</tr>
<tr>
<td>2</td>
<td>Position transmitter module</td>
</tr>
<tr>
<td>3</td>
<td>Terminal bar X1</td>
</tr>
</tbody>
</table>
3.3.4 Position transmitter equipment

NOTICE

Damage to the on-load tap-changer and motor-drive unit!

Damage to on-load tap-changer and motor-drive unit due to incorrect use of position transmitter equipment.

- Only circuits stated in the chapter Technical data for position transmitter equipment [► Section 11.2, Page 59] may be connected to the position transmitter module connections.
- The switchover point of the position transmitter equipment in the motor-drive unit is not the same as the switchover point of the diverter switch operation. This depends on the type of diverter switch. This fact should be noted when project planning the locking circuits between the motor-drive unit and external equipment (e.g. transformer circuit breaker).
- Therefore, the “Tap changer in operation” position transit contact shown in the connection diagram should be used for external monitoring, locking and control purposes instead of the position transmitter equipment.

The position transmitter equipment is used to indicate the operating position of the on-load tap-changer/off-circuit tap-changer when idle.

The remote display is available in various versions.

The position transmitter module for connection by the customer is located on the terminal rail [► Section 3.3.3, Page 18].

For more information about the position transmitter equipment, see Technical data for position transmitter equipment [► Section 11.2, Page 59].

3.3.5 Transmission gear cover plate

WARNING

Danger of death and severe injury from electrical voltage!

Danger of death and severe injury from electrical voltage if the transmission gear cover plate is not fitted.

- Never start up motor-drive unit without transmission gear cover plate.
The touch-protected transmission-gear cover plate features an opening for the hand crank used in manual mode.

Transmission-gear cover plate

3.3.6 Oil cooling unit controller

The electrical controller for the oil cooling unit is integrated into the motor-drive unit. The oil cooling unit cools the insulating fluid in the oil compartment in order that the on-load tap-changer insert is not exposed to impermissibly high temperatures. If the temperature of the insulating fluid rises above 100°C, the oil cooling unit is activated by the controller in the motor-drive unit. The insulating fluid in the oil compartment is thus cooled to the standard temperature. If the temperature falls below 80°C, the oil cooling unit is deactivated.

3.4 Type designation

The various basic designs of the TAPMOTION® ED are clearly identified by explicit product definitions.

<table>
<thead>
<tr>
<th>Type designation</th>
<th>Description</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED 100-ST</td>
<td>Product designation</td>
<td>Electric Drive</td>
</tr>
<tr>
<td>ED 100-ST</td>
<td>Transmission gear design</td>
<td>100 or 200 (depending on the torque required)</td>
</tr>
<tr>
<td>ED 100-FT</td>
<td>Protective housing design</td>
<td>S = small protective housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L = large protective housing</td>
</tr>
</tbody>
</table>
3.5 Protective devices

The following protective devices are fitted in the motor-drive unit:

- End stop device (mechanical and electric)
- Device protecting against unintentional passage
- Motor protection device
- Protection against accidental contact
4 Packaging, transport and storage

4.1 Packaging

The products are sometimes supplied with sealed packaging and sometimes in a dry state, depending on requirements.

Sealed packaging surrounds the packaged goods with plastic foil on all sides.

Products that have also been dried are identified by a yellow label on the sealed packaging. In the dry state, delivery is also possible in a transport container.

The information in the following sections should be applied as appropriate.

4.1.1 Suitability

NOTICE

Property damage due to incorrectly stacked crates!

Stacking the crates incorrectly can lead to damage to the packaged goods.

➢ The outer marking on the packaging states if, for example, the on-load tap-changer or selector has been packed upright. Never stack these crates.

➢ General rule: Do not stack crates above a height of 1.5 m.

➢ For other crates: Only stack up to 2 equally sized crates on top of one another.

The packaging is suitable to ensure undamaged and fully functional means of transportation in compliance with local transportation laws and regulations.

The packaged goods are packed in a sturdy crate. This crate ensures that, when in the intended transportation position, the packaged goods are stabilized to prevent impermissible changes in position, and that none of the parts touch the loading surface of the means of transport or touch the ground after unloading.

Sealed packaging surrounds the packaged goods with plastic foil on all sides. The packaged goods are protected from humidity using a desiccant. The plastic foil was bonded after the desiccant is added.
4.1.2 Markings

The packaging bears a signature with instructions for safe transport and correct storage. The following symbols apply to the shipment of non-hazardous goods. Adherence to these symbols is mandatory.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect against moisture</td>
<td>Top</td>
</tr>
<tr>
<td>Fragile</td>
<td>Attach lifting gear here</td>
</tr>
<tr>
<td>Center of mass</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Shipping pictograms

4.2 Transportation, receipt and handling of shipments

WARNING

Danger of death and damage to property!

Danger of death and damage to property due to tipping or falling load.

► Only transport the crate when closed.

► Do not remove the securing material used in the crate during transport.

► If the product is delivered on a pallet, secure it sufficiently.

► Only trained and authorized persons may select the sling gear and secure the load.

► Do not walk under the hanging load.

► Use means of transport and lifting gear with a sufficient carrying capacity in accordance with the weight stated on the delivery slip.

In addition to oscillation stress, jolts must also be expected during transportation. In order to prevent possible damage, avoid dropping, tipping, knocking over and colliding with the product.

If a crate tips over, falls from a certain height (e.g. when slings tear) or is subject to an unbroken fall, damage must be expected regardless of the weight.

Every delivered shipment must be checked for the following by the recipient before acceptance (acknowledgment of receipt):

- Completeness based on the delivery slip
- External damage of any type

The checks must take place after unloading when the crate or transport container can be accessed from all sides.
Visible damage If external transport damage is found upon receipt of the shipment, proceed as follows:

- Immediately record the identified transport damage in the shipping documents and have this countersigned by the carrier.
- In the event of severe damage, total loss or high damage costs, immediately notify the manufacturer and the relevant insurance company.
- After identifying damage, do not modify the condition of the shipment further and retain the packaging material until an inspection decision has been made by the transport company or the insurance company.
- Record the details of the damage immediately on site together with the carrier involved. This is essential for any claim for damages.
- Photograph damage to packaging and packaged goods. This also applies to signs of corrosion on the packaged goods due to moisture inside the packaging (rain, snow, condensation).
- **NOTICE!** If the product is delivered in sealed packaging, inspect this immediately. If the sealed packaging is damaged, do not under any circumstances install or commission the packaged goods. Either re-dry the dried packaged goods as per the operating instructions, or contact the manufacturer to agree on how to proceed. Failure to do so may result in damage to the packaged goods.
- Identify the damaged parts.

Hidden damage When damages are not determined until unpacking after receipt of the shipment (hidden damage), proceed as follows:

- Make the party responsible for the damage liable as soon as possible by telephone and in writing, and prepare a damage report.
- Observe the time periods applicable to such actions in the respective country. Inquire about these in good time.

With hidden damage, it is very hard to make the transportation company (or other responsible party) liable. Any insurance claims for such damages can only be successful if relevant provisions are expressly included in the insurance terms and conditions.

4.3 Storage of shipments

Packaged goods dried by Maschinenfabrik Reinhausen

Upon receipt of the shipment, immediately remove the packaged goods dried by Maschinenfabrik Reinhausen from the sealed packaging and store air-tight in dry insulating oil until used if the packaged goods were not supplied in oil.

Non-dried packaged goods

Non-dried packaged goods but with a functional sealed packaging can be stored outdoors when the following conditions are complied with.
When selecting and setting up the storage location, ensure the following:

- Protect stored goods against moisture (flooding, water from melting snow and ice), dirt, pests such as rats, mice, termites and so on, and against unauthorized access.
- Store the crates on timber beams and planks as a protection against rising damp and for better ventilation.
- Ensure sufficient carrying capacity of the ground.
- Keep entrance paths free.
- Check stored goods at regular intervals. Also take appropriate action after storms, heavy rain or snow and so on.

Protect the packaging foil from direct sunlight so that it does not disintegrate under the influence of UV rays, which would cause the packaging to lose its sealing function.

If the product is installed more than 6 months after delivery, suitable measures must be taken without delay. The following measures can be used:

- Correctly regenerate the drying agent and restore the sealed packaging.
- Unpack the packed goods and store in a suitable storage space (well ventilated, as dust-free as possible, humidity < 50% where possible).

4.4 Unpacking shipments and checking for transportation damages

- **NOTICE!** Transport the packaged crate to the place where installation will take place. Do not open the sealed packaging until just before installation. If this is not done, damage to the packaged goods may occur due to ineffectively sealed packaging.

- **WARNING!** When unpacking, check the condition of the packaged goods. Secure packaged goods in an upright crate from tipping out. If this is not done, the packaged goods may be damaged and serious injuries may result.

- Check completeness of supplementary parts on the basis of the delivery slip.
5 Mounting

This chapter describes how to correctly install and connect the device.

WARNING

Danger of death or severe injury!

An energized transformer and energized on-load tap-changer components can cause death or serious injuries during installation of the drive!

► Ensure the de-energized state of the transformer and on-load tap-changer components during installation of the drive.

5.1 Fitting shielding housing and motor-drive unit on the transformer

Ensure the maximum permissible offset between the vertical shaft of the bevel gear and the output shaft of the motor-drive unit as well as the dimension V1 when fitting the shielding housing motor-drive unit.

![Figure 3: Vertical drive shaft without cardan joints with/without insulator, permissible offset](image)

Figure 3: Vertical drive shaft without cardan joints with/without insulator, permissible offset
Figure 4: Vertical drive shaft with cardan joints with/without insulator, permissible offset

<table>
<thead>
<tr>
<th>Vertical drive shaft version</th>
<th>V1 min</th>
<th>Intermediate bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without cardan joints, without insulator</td>
<td>536 mm</td>
<td>V1 > 2472 mm: intermediate bearing necessary</td>
</tr>
<tr>
<td>Without cardan joints, with insulator</td>
<td>706 mm</td>
<td>V1 > 2472 mm: intermediate bearing necessary</td>
</tr>
<tr>
<td>With cardan joints, without insulator</td>
<td>798 mm</td>
<td>V1 > 2564 mm: intermediate bearing necessary</td>
</tr>
<tr>
<td>With cardan joints, with insulator</td>
<td>978 mm</td>
<td>V1 > 2772 mm: intermediate bearing necessary</td>
</tr>
</tbody>
</table>

Table 5: Dimension V1
To fit the shielding housing and the motor-drive unit, proceed as follows:

1. Fit 4 stud bolts (not supplied by MR) to the transformer tank. The arrangement and diameter of the fixing lugs can be found in the drawings in the Annex.

![Figure 5: Stud bolts](image)

2. Attach to shielding housing without cover or base vertically to the transformer tank.

![Figure 6: Shielding housing](image)

3. **NOTICE!** Attach the motor-drive unit vertically and without warping or deforming to the transformer tank. Otherwise, the motor-drive unit and drive shaft may be damaged and increased noise may be produced.

![Figure showing motor-drive unit](image)
The assembly holes for this purpose are located externally on the protective housing's fixing lugs.

4. Attach the cover and base of the shielding housing.
5. Connect the grounding screw on the motor-drive unit to the transformer tank. It is essential that a CUPAL washer is placed between the cable shoe and connecting lug. The aluminum side of the CUPAL washer must be facing the connecting lug.

![Figure 9: Grounding screw on motor-drive unit](image)

6. Connect the grounding screw on the motor-drive unit to the shielding housing and check the linkage to the motor-drive unit.

![Figure 10: Ground connection on the motor-drive unit and shielding housing](image)
5. Connect the main protective conductor to the protective conductor terminal on terminal bar X1 (minimum connection cross-section 2.5 mm²).

![Figure 11: Main protective conductor](image)

5.2 Mounting drive shafts and bevel gear

The process of mounting the drive shafts and bevel gear is described in the installation and commissioning instructions for the on-load tap-changer / de-energized tap-changer.

5.3 Centering on-load tap-changer and motor-drive unit

WARNING

Danger of death or severe injury!

Danger of death or severe injury due to motor-drive unit starting up by accident and due to electric voltage!

- Before starting any coupling work make sure that the motor protective switch is tripped.
- Carry out any adjustment work in manual mode only.
- When manually operating the motor-drive unit only use the hand crank provided for this purpose.
- Note that the hand crank safety switch causes a 2-pole disconnection of the motor circuit but that the control circuit is not interrupted.
NOTICE

Damage to property!

The on-load tap-changer will be damaged by incorrectly centering the motor-drive unit.

- Do not perform more than 250 tap-change operations on the on-load tap-changer. If more than 250 tap-change operations are performed, completely fill oil compartment with insulating oil and lubricate sliding surfaces of contacts on selector and selector gear with insulating oil.

The following steps for centering the on-load tap-changer and motor-drive unit do not apply to the DEETAP® DU and COMTAP® ARS. The process for centering the motor-drive unit and DEETAP® DU or COMTAP® ARS is described in the relevant operating instructions.

One on-load tap-change operation is represented by one rotation of the tap-change indicator. This indicator is divided into 33 tap-change indicator sections, each of which corresponds to one hand crank revolution in the standard motor-drive unit design. The time of the switchover depends on the on-load tap-changer/de-energized tap-changer type, but is always 2 tap-change indicator sections before the area marked in gray on the tap-change indicator at the latest.

To center the on-load tap-changer and motor-drive unit, proceed as follows.

1. **NOTICE!** Move the on-load tap-changer/de-energized tap-changer and the motor-drive unit into the adjustment position before commencing any adjustment work. Ensure that the tap position indicators for the motor-drive unit and the on-load tap-changer/de-energized tap-changer match. Otherwise damage to the on-load tap-changer and transformer may result.

Figure 12: Adjustment position
2. Attach the hand crank in the motor-drive unit to the shaft end located in the upper cover plate. This activates a hand crank interlock switch, which disconnects the motor circuit at 2 poles.

![Figure 13: Hand crank](image13.png)

3. Turn clockwise using the hand crank until the diverter switch operation begins. When turning the hand crank, observe the tap-change indicator, which mechanically reflects the progress of the tap-change operation.

![Figure 14: Turning the hand crank](image14.png)
4. Once the diverter switch operation begins, continue to turn in the same direction while counting the tap-change indicator sections required for the pointer to reach the mid-position of the area marked in gray on the tap-change indicator. Note the number counted (value A) and the direction of rotation (example: A=2).

Figure 15: Counting the tap changes needed to reach the mid-position

5. If value A is greater than 8 tap-change indicator sections, the tap-change operation has been completed correctly. If value A is less than 8 tap-change indicator sections, turn another 8-A tap-change indicator sections in the same direction (example: 8-2=6) to complete the tap-change operation. Then turn in the opposite direction until the pointer is in the mid-position of the area marked in gray on the tap-change indicator.

Figure 16: Completing the diverter switch operation
6. Turn the hand crank counter-clockwise until the diverter switch operation begins.

![Figure 17: Turning the hand crank in the opposite direction](image)

7. Once the diverter switch operation begins, continue to turn in the same direction while counting the tap-change indicator sections required for the pointer to reach the mid-position of the area marked in gray on the tap-change indicator. Note the number counted (value B) and the direction of rotation (example: B=5).

![Figure 18: Counting the tap-change indicator sections needed to reach the mid-position](image)
8. If value B is greater than 8 tap-change indicator sections, the tap-change operation has been completed correctly. If value B is less than 8 tap-change indicator sections, turn another 8-B tap-change indicator sections in the same direction (example: 8-5=3) to complete the tap-change operation. Then turn in the opposite direction until the pointer is in the mid-position of the area marked in gray on the tap-change indicator.

![Figure 19: Completing the diverter switch operation](image)

9. If the values obtained for A and B are identical, the on-load tap-changer and the motor-drive unit are correctly coupled (a slight imbalance of maximum 1 tap-change indicator section is permitted). If the values obtained for A and B are different, establish correction value C by halving the difference between A and B: \(C = \frac{1}{2} (A - B) \)

Example: \(C = \frac{1}{2} (2 - 5) = -1.5 \)

Also take numbers after the decimal point into account.

10. If the correction value \(|C|\) is less than 0.5 tap-change indicator sections, no further action is required. Refer to point 18 for how to proceed next.

11. Use the hand crank to crank in the direction in which the determined value A or B was higher (example: counter-clockwise, because B > A) until the diverter switch operation begins.

12. Once the diverter switch operation begins, continue turning another 8 hand crank revolutions in the same direction to correctly complete the diverter switch operation.
13. Uncouple the motor-drive unit and vertical drive shaft by removing the coupling brackets. After uncoupling, do not turn the drive shaft any further.

Figure 20: Uncoupling the motor-drive unit and drive shaft

14. Operate the motor-drive unit using the hand crank in the same direction, continuing by C tap-change indicator sections on the tap-change indicator (example: 1.5 tap-change indicator sections).

15. Couple the motor-drive unit and on-load tap-changer by refitting the vertical drive shaft (tightening torque 9 Nm). Do not turn the drive shaft and output shaft of the bevel gear and motor-drive unit any further.

16. Continue to turn in the same direction while counting the tap-change indicator sections required for the pointer to reach the mid-position of the area marked in gray on the tap-change indicator. Note the number counted (value A) and the direction of rotation. If value A is greater than 8 tap-change indicator sections, the tap-change operation has been completed correctly. If value A is less than 8 tap-change indicator sec-
5 Mounting

17. The pointer of the tap-change indicator must be in the mid-position of the area marked in gray once the on-load tap-change operation with the hand crank is complete.

18. Once coupling is complete in both directions, check by undertaking several on-load tap-change operations and check that the on-load tap-changer and motor-drive unit are in the same tap position.

5.4 Cable recommendation

Electromagnetic interference on signal lines, which can be expected due to the environment of the transformer, can disrupt the proper operation of the motor-drive unit.

That is why Maschinenfabrik Reinhausen GmbH recommends using shielded signal lines when possible.

NOTICE

Damage to the device!

Current flow through the shielding of signal lines can lead to the device getting damaged.

► For signal lines between the motor-drive unit and transformer, connect the shielding of the signal line to the motor-drive unit only.

► For all other signal lines, connect the shielding on both sides, as long as there is no potential difference between the two devices. If there is a potential difference, then connect the shielding only on one side for these signal lines, too.
Table 6: Recommendation for connection cable

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Function</th>
<th>Cable type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor circuit</td>
<td>Power supply</td>
<td>Unshielded, separate cable</td>
</tr>
<tr>
<td>Control circuit</td>
<td>Power supply</td>
<td>Unshielded, separate cable</td>
</tr>
<tr>
<td>Tap-change supervisory control</td>
<td>Shielded</td>
<td></td>
</tr>
<tr>
<td>Pulse circuit, raise/lower</td>
<td>Shielded</td>
<td></td>
</tr>
<tr>
<td>Trigger circuit Q1-Off</td>
<td>Shielded</td>
<td></td>
</tr>
<tr>
<td>Monitoring circuit</td>
<td>Temperature sensor</td>
<td>Shielded</td>
</tr>
<tr>
<td>Signaling circuits</td>
<td>Signal transmission</td>
<td>Shielded</td>
</tr>
<tr>
<td>Cross wiring between motor-drive units</td>
<td>Power supply</td>
<td>Unshielded, separate cable</td>
</tr>
<tr>
<td></td>
<td>Tap-change supervisory control</td>
<td>Shielded</td>
</tr>
<tr>
<td></td>
<td>Pulse circuit, raise/lower</td>
<td>Shielded</td>
</tr>
<tr>
<td></td>
<td>Trigger circuit Q1-Off</td>
<td>Shielded</td>
</tr>
</tbody>
</table>

5.5 Installing electrics for motor-drive unit

⚠️ WARNING ⚠️

Danger of death or severe injury!

An energized transformer and energized on-load tap-changer components could cause death or serious injuries when installing the electrics!

► Adherence to the following safety precautions is mandatory.

The drive may only be connected to circuits that are equipped with an external and all-pole isolating device as close to the drive as possible, in order that the unit can be fully de-energized if required (service, maintenance etc.).

Furthermore, a drive without its own overcurrent protective device may only be connected to circuits that are equipped with an external overcurrent protective device. The protective device must ensure protection against indirect touching. The protection recommended by Maschinenfabrik Reinhausen GmbH close to the drive is 1.6 A C (3.0 A C is to be used in a heating circuit with additional heating and supply voltage < 127 V AC/DC). This is to be verified after installation by measurement.

Suitable equipment includes isolating devices in accordance with IEC 60947-1 and IEC60947-3 (e.g. circuit breaker). When selecting the circuit breaker type, the properties of the relevant circuits (voltage, maximum currents) must be observed. The following should also be noted during installation:

▪ It must be easy for the operator to access the isolating device
▪ The isolating device must be labeled for the device and circuits to be isolated
▪ The isolating device may not be a part of the power line
▪ The isolating device may not interrupt the main protective conductor
5 Mounting

Unless specified otherwise, the connections for the supply circuits must have a conductor cross-section of at least 2.5 mm² (14 AWG). Check applicable standards and directives to ensure that the specified minimum cross-section of the supply line is sufficient.

The voltage supply for the motor-drive unit must be able to provide 5…7 times the nominal operating current of the motor-drive unit for one second.

A maximum voltage tolerance of -20…+10% of the nominal voltage must be observed to avoid damage to the drive.

To electrically connect the motor-drive unit, proceed as follows:
1. Switch off the voltage supply.
2. Lock the voltage supply to prevent unintentional restart.
3. Make sure everything is de-energized.
4. Visibly ground and short circuit the motor-drive unit.
5. Cover or cordon off adjacent energized parts.
6. Connect the motor-drive unit in accordance with the connection diagrams provided in the document pocket. Observe the supply voltages (motor circuit, control circuit, heater circuit) and pin assignments stated in the connection diagram.

7. Connect the PT 100 temperature sensor installed in the transformer (available as an option from Maschinenfabrik Reinhausen GmbH) to the ISM in accordance with the connection diagram provided.
8. Connect the PT 100 temperature sensors in the on-load tap-changer head and pump unit in the oil cooling unit in accordance with the connection diagram provided.

9. When operating the motor-drive unit, ensure that a current corresponding to that stated in the Technical Data chapter (load capacity of micro-switches, see page) flows across the micro-switches in the motor-drive unit at all times to ensure correct functioning of the switches.
6 Commissioning

6.1 Starting up motor-drive unit

To electrically start up the motor-drive unit, proceed as follows.

Preparation
1. Make sure that the motor-drive unit is connected as shown in the connection diagram provided.
2. Ensure that all protective conductors are connected correctly.
3. Ensure that the preliminary fuse is selectively configured for the protective devices in the motor-drive unit.
4. Ensure that motor-drive unit and on-load tap-changer are correctly coupled and the operating positions of the motor-drive unit and on-load tap-changer match.
5. Ensure that the hand crank is not inserted in the hand crank aperture.
6. Ensure that all signaling contacts provided in the connection diagram are output and monitored in the control room.
7. Ensure that the motor protective switch and control circuit fuse are disabled.

Commissioning
1. Apply voltage to motor-drive unit.
2. Measure voltage and frequency of motor circuit at terminal X1 and compare with details on nameplate. The details must match.
3. As an option with separate control-circuit supply: Measure voltage and frequency of control circuit at terminal X1 and compare with details on nameplate. The details must match.
4. As an option with separate heating-circuit supply: Measure the voltage of the heater circuit at terminal X1 and compare with details on connection diagram. The details must match.
5. As an option with three-phase motor: Make sure that voltage applied to the connection terminals has a clockwise phase sequence.
6. As an option with DC motor: Make sure that the motor voltage has the right polarity.
7. Engage motor protective switch and fuses for control circuit and heater circuit (if present).
 ➔ The voltage monitor LED and thermostat LED (if present) on rear of the swing frame must light up green.
8. Set the oil cooling unit rotary switch S30 to the Operation position.

If you have successfully completed the above steps, you can undertake the following tests on the motor-drive unit and transformer. Please contact Maschinenfabrik Reinhausen GmbH if anything is not clear or you encounter problems during commissioning.
6.2 Tests on motor-drive unit

Electric shock!

Risk of severe injury or death due to electrical voltage!

► The relevant safety instructions must be observed.

► Make sure that the motor-drive unit is correctly connected as shown in the connection diagrams provided.

► Make sure that the supply voltage is matched to the technical data of the motor-drive unit.

► Provide protection against accidental contact before energizing the drive. The transmission gear cover plate must be fitted and the motor and swing frame closed.

► Ensure that the motor-drive unit and on-load tap-changer/de-energized tap-changer are correctly coupled and that they are in the same tap position for each operating position.

Please contact Maschinenfabrik Reinhausen GmbH (MR) if any aspect of the tests is not clear.

6.2.1 Checking correct electric switch-off

1. Change over motor-drive unit by moving control switch S3.

2. Check that the pointer of the tap-change indicator stops within the gray field after completing a tap-change operation.

3. Carry out this test in both directions.
6.2.2 Checking mechanical and electric end stop of on-load tap-changer/off-circuit tap-changer and motor-drive unit

1. Press the S3 control switch to switch the motor-drive unit to the second-to-last operating position.

2. Open motor-drive unit door and switch off motor protective switch Q1 (position O).

3. Using the hand crank, operate the motor-drive to move it to its last operating position. If the last operating position isn’t reached, check coupling between on-load tap-changer/de-energized tap-changer and motor-drive unit.

4. Continue turning the motor-drive unit in the same direction with the hand crank until the motor-drive unit is mechanically blocked.

5. Turn back motor-drive unit with hand crank to mid-position of tap-change indicator.

6. Remove the hand crank.

7. Switch on motor protective switch Q1 (position I).

8. Check that the motor-drive unit no longer starts up when the S3 switch is turned further in the same operating direction as under item 1.

9. Perform check for both end positions.

6.2.3 Checking tripping of motor protective switch

Proceed as follows to check tripping of the motor protective switch:

✓ The motor protective switch Q1 is switched on (position I).

1. Close X1:14 - X1:15 Q1 OFF connection to trip the motor protective switch.
 ⇒ The motor protective switch is tripped (position O). If the motor protective switch is not tripped, contact Maschinenfabrik Reinhausen GmbH.

2. Switch on motor protective switch again (position I).
 ⇒ The tripping of the motor protective switch is checked.
6.3 Tests on the transformer

Please contact Maschinenfabrik Reinhausen GmbH (MR) if any aspect of the tests is not clear.

6.3.1 High-voltage tests on the transformer

Note the following points before performing high voltage tests on the transformer:

▪ Ensure that the temperature of the insulating fluid both in the oil compartment and in the transformer does not exceed 60°C during the high-voltage test.
▪ Ensure that the oil compartment of the on-load tap-changer is completely filled with insulating fluid.
▪ Ensure that all protective devices for the on-load tap-changer are functioning correctly and are ready for use.
▪ Ensure that the ground connections on the motor-drive protective housing and protective housing fastening are free of paint.
▪ Only perform high voltage test if motor-drive unit door is closed.
▪ Disconnect external connections to electronic components in the motor-drive unit to prevent damage from overvoltage.
▪ When connecting the motor-drive unit's supply voltage, only use the cable bushings in the protective housing base intended for lead insertion.
▪ Guide all ground connecting leads to one central connection point (establishment of suitable reference earth).
▪ Disconnect all electronic components before the high voltage test. Before a dielectric test of the wiring, remove all devices with a withstand voltage of < 1000 V.
▪ Remove leads used for testing before the high voltage test as these function as antennas.
▪ Wherever possible, route the measurement leads and data leads separately to the energy cables.

Contact the manufacturer if you have any questions about possible sources of danger.

6.3.2 Dielectric tests on transformer wiring

Note the following points for dielectric tests on the transformer wiring:

The motor-drive unit is put through dielectric tests before delivery.

► Before the dielectric test for the transformer wiring, disconnect drive from the section to be tested to rule out increased component loading for those components fitted in the motor-drive unit.
6.4 Transporting transformer to the operating site

If the drive must be removed in order to transport the transformer, proceed as follows:

1. Ensure that the drive and the on-load tap-changer / de-energized tap-changer / ARS are in the adjustment position.
2. Remove the drive.
3. Do not actuate the drive while the on-load tap-changer / de-energized tap-changer / ARM is decoupled and do not turn the output shaft.
4. Do not actuate the decoupled on-load tap-changer / de-energized tap-changer / ARM and do not turn its drive shaft.
5. Transport the drive to the installation site in the MR delivery packaging.
6. Fit the drive and drive shaft to the transformer at the installation site in accordance with the respective instructions and check for correct coupling and centering.

6.5 Commissioning the transformer at the operating site

NOTICE

Damage to motor-drive unit!

Damage to the motor-drive unit due to condensate in protective housing of motor-drive unit.

► Always keep protective housing of the motor-drive unit tightly closed.

► In the event of downtime lasting more than 8 weeks prior to initial commissioning, connect and operate the anti-condensation heater in the motor-drive unit. If this is not possible, place a sufficient amount of desiccant in the protective housing.

NOTICE

Damage to the on-load tap-changer and motor-drive unit!

Damage to on-load tap-changer and motor-drive unit due to incorrect use of position transmitter equipment.

► Only circuits stated in the chapter Technical data for position transmitter equipment [► Section 11.2, Page 59] may be connected to the position transmitter module connections.

► The switchover point of the position transmitter equipment in the motor-drive unit is not the same as the switchover point of the diverter switch operation. This depends on the type of diverter switch. This fact should be noted when project planning the locking circuits between the motor-drive unit and external equipment (e.g. transformer circuit breaker).

► Therefore, the “Tap changer in operation” position transit contact shown in the connection diagram should be used for external monitoring, locking and control purposes instead of the position transmitter equipment.

1. Before commissioning the transformer, start up the motor-drive unit (see page).
2. **WARNING!** Before commissioning the transformer, repeat the tests on the motor-drive unit. Only start up transformer once you have performed all the tests (see page [Section 6.2, Page 44]). Otherwise, there is the risk of fatal injury.
7 Fault elimination

7.1 Safety instructions

Warning

Danger of death or severe injury from explosive gases in the on-load tap-changer / de-energized tap-changer, in the pipework system, at the dehydrating breather opening and from flying parts and hot oil splashing!

► If a protective device has been tripped or you suspect a fault, first check the transformer, on-load tap-changer / de-energized tap-changer and motor-drive unit. Never operate the motor-drive unit electrically or with the hand crank beforehand as long as the transformer is energized.

► Do not resume operation until the troubleshooting has been completed.

► Make sure that only trained technicians perform the work.

► Use suitable personal protective equipment/clothing.

► Ensure that there are no naked flames, hot surfaces or sparks (for example caused by static charging) in the immediate surroundings and that none occur.

► Ensure that all safety equipment for the on-load tap-changer / de-energized tap-changer is ready for use.

► Ensure that the oil compartment of the on-load tap-changer is correctly filled with oil as per the instructions.
7.2 **General information**

Document each fault, even if it is easy to rectify.

In the event of faults on the on-load tap-changer / de-energized tap-changer or motor-drive unit, which cannot be easily and immediately corrected on site, or if a protective device has been tripped, please inform your authorized MR representative, the transformer manufacturer or contact us directly at:

Maschinenfabrik Reinhausen GmbH
Technical Service
Postfach 12 03 60
93025 Regensburg
Germany
Phone: +49 941 40 90-0
Fax: +49 9 41 40 90-7001
E-mail: service@reinhausen.com
Internet: www.reinhausen.com

7.3 **Fault in the environment of the motor-drive unit**

<table>
<thead>
<tr>
<th>Error pattern</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change in voltage on transformer despite change in position on motor-drive unit</td>
<td>• Contact MR</td>
</tr>
<tr>
<td>Noises on drive shaft or motor-drive unit when changing tap position</td>
<td>• Ensure that the motor-drive unit is attached correctly, in accordance with the "Assembly" [► Section 5, Page 27] chapter.</td>
</tr>
<tr>
<td></td>
<td>• Make sure that the drive shaft including protective cover is assembled correctly, in accordance with the operating instructions for the on-load tap-changer / de-energized tap-changer.</td>
</tr>
</tbody>
</table>

Table 7: Fault in the environment of the motor-drive unit

7.4 **Fault in the motor-drive unit when the switching operation has not ended**

If the motor-drive unit stops and if the arrow of the tap-change indicator does not point in the area highlighted in gray (see the "Indication field" [► Section 3.3.1, Page 18] section, Position 3), then the switching operation has not been ended correctly.
This is a stationary state that is not allowed and must be rectified immediately. If you cannot rectify the fault immediately, switch off the transformer. Contact the Technical Service department at Maschinenfabrik Reinhausen GmbH immediately.

If you notice a fault in the motor-drive unit right away, you should immediately start troubleshooting as described in the following table.

<table>
<thead>
<tr>
<th>Error pattern</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tripping of the motor protective switch Q1</td>
<td>▪ Hand crank operation is prohibited</td>
</tr>
<tr>
<td></td>
<td>▪ Switch on Q1 only once</td>
</tr>
<tr>
<td></td>
<td>▪ If Q1 does not trigger again and if no other fault is present, the motor-drive unit automatically ends the switching operation that was started.</td>
</tr>
<tr>
<td></td>
<td>▪ If Q1 is tripped again, do not attempt any more switching operations and contact MR.</td>
</tr>
<tr>
<td>Interruption of the supply voltage to the motor-drive unit or motor controller</td>
<td>▪ Hand crank operation is prohibited</td>
</tr>
<tr>
<td></td>
<td>▪ Reestablish the voltage supply</td>
</tr>
<tr>
<td></td>
<td>▪ Once the voltage supply returns, the motor-drive unit automatically ends the switching operation that was started.</td>
</tr>
<tr>
<td>Component defect in the motor-drive unit</td>
<td>▪ Hand crank operation is prohibited</td>
</tr>
<tr>
<td></td>
<td>▪ Contact MR</td>
</tr>
</tbody>
</table>

Table 8: Fault in the motor-drive unit when the switching operation has not been ended

7.5 Fault in the motor-drive unit after the switching operation is ended correctly

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tripping of the motor protective switch Q1</td>
<td>▪ Switch on Q1</td>
</tr>
<tr>
<td>Interruption of the supply voltage to the motor-drive unit or motor controller</td>
<td>▪ Reestablish the voltage supply</td>
</tr>
<tr>
<td>Component defect in the motor-drive unit</td>
<td>▪ Contact MR</td>
</tr>
<tr>
<td>On-load tap-changer switches to static operation and message "Status B7, B8, B9" (K43)</td>
<td>▪ Contact MR</td>
</tr>
<tr>
<td></td>
<td>▪ Reduce temperature of the insulating fluid in the oil compartment to <120°C* until fault elimination</td>
</tr>
<tr>
<td></td>
<td>▪ One-time fixed emergency operation up to an insulating fluid temperature in the oil compartment of 140°C is permissible for a maximum of 48 hours</td>
</tr>
</tbody>
</table>
Fault elimination

Fault description

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Action</th>
</tr>
</thead>
</table>
| On-load tap-changer switches to static operation and message "OLTC Oil Temperature >120°C" (K44) and oil cooling pump runs (K7/Q4) | - Check fan and eliminate fault
- If the fan is OK: Contact MR
- Reduce temperature of the insulating fluid in the oil compartment to <120°C* until fault elimination
- One-time fixed emergency operation up to an insulating fluid temperature in the oil compartment of 140°C is permissible for a maximum of 48 hours |
| On-load tap-changer switches to static operation and message "OLTC Oil Temperature >120°C" (K44) and oil cooling pump does not run (K7/Q4) | **Possibility 1:** Temperature of the insulating fluid in the oil compartment >120°C and temperature in the pump unit <15°C
- Pump is blocked by the controller
- One-time fixed emergency operation up to an insulating fluid temperature in the oil compartment of 140°C* is permissible for a maximum of 48 hours
- If temperature is exceeded for longer:
 - Thaw insulating fluid in heat exchanger / oil cooling circuit
 - Reduce temperature of the insulating fluid in the oil compartment to <120°C*
Possibility 2: Temperature of the insulating fluid in the oil compartment >120°C and temperature in the pump unit >15°C
- Contact MR
- Reduce temperature of the insulating fluid in the oil compartment to <120°C* until fault elimination
- One-time fixed emergency operation up to an insulating fluid temperature in the oil compartment of 140°C* is permissible for a maximum of 48 hours |
| Tripping of the motor protective switch Q4 (pump) | - Switch on motor protective switch Q4 just once. If motor protective switch Q4 trips again, do not attempt any more tap-change operations and contact MR.
- Reduce temperature of the insulating fluid in the oil compartment to <120°C* until fault elimination
- One-time fixed emergency operation up to an insulating fluid temperature in the oil compartment of 140°C* is permissible for a maximum of 48 hours |

Table 9: Fault in the motor-drive unit after the tap-change operation is ended correctly
7 Fault elimination

Due to the insulating effect of the oil compartment, the transformer temperature is approximately 10°C higher than the oil compartment interior temperature.
8 Inspection and maintenance

This chapter contains information about inspecting and maintaining the product.

8.1 Care

You can clean the outside of the motor-drive unit’s protective housing with a damp cloth. You can clean the inside of the protective housing with a dry cloth.

8.2 Inspection

Carry out the following inspections on the motor-drive unit within the specified intervals:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Action</th>
<th>Detail</th>
</tr>
</thead>
</table>
| For checking operations on the transformer | Visual checks | • Check the gaskets of the protective housing of the motor-drive unit.
• Check the function of the electrical heater in the protective housing of the motor-drive unit.
Contact Maschinenfabrik Reinhausen GmbH if the gaskets or heater are not in perfect condition. |
| Annually | Checking the motor protective switch | ✓ The motor protective switch Q1 is switched on (position I).
1. Trip the motor protective switch from the control room.
provided that the motor protective switch is tripped (position O). If the motor protective switch is not tripped, check the switch's connection to the control room and if necessary contact Maschinenfabrik Reinhausen GmbH.
2. Switch on the motor protective switch again (position I).
provided that the tripping of the motor protective switch from the control room is checked. |

Table 10: Inspection plan

8.3 Maintenance

Maintenance of the motor-drive unit is not required. The condition of the motor-drive unit and its correct function must, however, be checked in accordance with the section “Tests on the motor-drive unit” each time the on-load tap-changer / de-energized tap-changer/ motor-drive unit is maintained.

Furthermore, certain components of the motor-drive unit (e.g. cam switches, relays, contactors) have to be replaced every 1 million tap-change operations. Contact the Technical Service department of Maschinenfabrik Reinhausen GmbH for information regarding this.
We strongly recommend having on-load tap-changer maintenance and motor-drive unit checks carried out by our Technical Service department. This ensures, in addition to the correct performance of all work, that certain components will be upgraded to the latest state of technology and manufacturing status.

If the maintenance and checks are not carried out by our Technical Service department, please ensure that the personnel who carry out the maintenance are trained by MR or are otherwise suitably qualified to carry out the work. In such cases, we would ask you to forward to us a report on the maintenance performed so we can update our maintenance files. For inquiries about spare parts, please provide the serial number (see nameplates on the on-load tap-changer and motor-drive unit) and the number of tap-change operations.

Technical Service

Maschinenfabrik Reinhausen GmbH
Technical Service
Postfach 12 03 60
93025 Regensburg
Germany
Phone: +49 94140 90-0
Fax: +49 9 41 40 90-7001
E-mail: service@reinhausen.com
Internet: www.reinhausen.com
9 Disassembly

The safe disassembly of the motor-drive unit is described below.

WARNING

Danger of death or severe injury!

An energized transformer and energized on-load tap-changer/de-energized tap-changer/ARS and motor-drive unit components can cause death or serious injuries during disassembly!

► Switch off the voltage supply.
► Secure the voltage supply to prevent an unintentional restart.
► Ensure that everything is de-energized.
► Cover or cordon off adjacent energized parts.

To disassemble the motor-drive unit, proceed as follows:

1. Remove the vertical drive shaft and protective tube between bevel gear and motor-drive unit.

2. Connect lifting gear to fixing lugs on motor-drive unit.

3. Remove the nuts for fastening the motor-drive unit.

Figure 24: Removing the protective tube and horizontal drive shaft
4. **WARNING!** Remove and lower the motor-drive unit using the lifting gear. While doing so, ensure that the lifting gear cable angle does not fall below 45° relative to the horizontal. If this is not done, the motor-drive unit may be damaged and serious injuries may result.

![Lifting gear](image)

Figure 25: Lifting gear

⇒ The motor-drive unit is disassembled.
10 Disposal

For disposal, observe the national requirements applicable in the country of use.

If you have any questions about disassembly and disposal, please contact Maschinenfabrik Reinhausen GmbH's Technical Service department.
11 Technical data

11.1 Technical data for TAPMOTION® ED

The technical data applies to the standard design and may vary depending on the design delivered. Subject to change without prior notice.

<table>
<thead>
<tr>
<th>Motor-drive unit</th>
<th>ED 100-L</th>
<th>ED 200-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor power</td>
<td>0.75 kW</td>
<td>2.0 kW</td>
</tr>
<tr>
<td>Power supply of motor circuit</td>
<td>3 AC/N 230/400 V</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>approx. 1.9 A</td>
<td>approx. 5.2 A</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
<td></td>
</tr>
<tr>
<td>Synchronous speed</td>
<td>1,500 rpm</td>
<td></td>
</tr>
<tr>
<td>Rotations of the drive shaft per tap-change operation</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Duration of the tap-change operation</td>
<td>approx. 2.7 s</td>
<td></td>
</tr>
<tr>
<td>Rated torque on the drive shaft</td>
<td>45 Nm</td>
<td>90 Nm</td>
</tr>
<tr>
<td>Rotations of the hand crank per tap-change operation</td>
<td>33</td>
<td>54</td>
</tr>
<tr>
<td>Maximum number of operating positions</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Voltage supply for control circuit and heater circuit</td>
<td>AC 230 V</td>
<td></td>
</tr>
<tr>
<td>Power consumption of the control circuit (control/operation)</td>
<td>100 VA/25 VA</td>
<td></td>
</tr>
<tr>
<td>Heating power</td>
<td>60 W</td>
<td></td>
</tr>
<tr>
<td>Load capacity of micro-switches</td>
<td>Switching capacity: 100 W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC voltage/current intensity: 250 V AC 100 mA…4 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC voltage/current intensity: 220 V DC 10 mA…250 mA</td>
<td></td>
</tr>
<tr>
<td>Protection from foreign objects and water</td>
<td>IP 66 in accordance with DIN EN 60529</td>
<td></td>
</tr>
<tr>
<td>Test voltage to ground</td>
<td>2 kV/60 s</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>maximum 130 kg</td>
<td></td>
</tr>
</tbody>
</table>

Table 11: Technical data for TAPMOTION® ED

11.2 Technical data for position transmitter equipment

Resistance-type position transmitter module

Standard resistance: 10.0 Ω (0.6 W, +/-1 %) per tap position

The number of desired operating positions determines the number of loaded resistors.
The decisive power loss of the position transmitter module is 0.6 W because in the worst-case scenario only one resistor is energized. The supply voltage should not exceed DC 220 V. If your setup is more demanding, please contact Maschinenfabrik Reinhausen.

Position transmitter module with N/O contact range (break-before-make contact)

AC: 250 V, 0.5 A (resistive loading)
DC: 220 V, 0.2 A (resistive loading)
Minimum voltage level for signal and data processing: 24 V

Position transmitter module with N/O contact range, (make-before-break-type)

AC, DC: 250 V, 0.02 A (resistive loading)
AC, DC: 24 V, 0.20 A (resistive loading)
Minimum voltage level for signal and data processing: 24 V

Position transmitter module with N/O contact range, 10 A (make-before-break-type) for controlling current matching transformer in industrial applications.

AC, DC: 250 V, 10 A (resistive loading)

Position transmitter module, diode matrix

DC: 220 V, 0.2 A (resistive loading)
Minimum voltage level for signal and data processing: 24 V

11.3 Permissible ambient conditions

<table>
<thead>
<tr>
<th>Motor-drive unit version</th>
<th>Operating temperature</th>
<th>Storage temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard with ISM</td>
<td>-25…+50°C</td>
<td>-25…+70°C</td>
</tr>
<tr>
<td>Arctic with thermostat-controlled additional heating with ISM</td>
<td>-40…+50°C</td>
<td>-40…+70°C</td>
</tr>
</tbody>
</table>

All heaters must be in constant operation in the temperature range of -40…-25°C.

Table 12: Permissible ambient conditions
12 Drawings
12.1 TAPMOTION® ED-L, protective housing (898802)