Приводной вал-Ex

Инструкция по эксплуатации

1800276/04 RU
© Все права принадлежат компании Maschinenfabrik Reinhausen.
Информацию, содержащуюся в данной инструкции, запрещается копировать или передавать третьим лицам без письменного разрешения правообладателя.
Нарушение этого запрета может повлечь обращение в суд с требованием компенсации. Все права в области патентования и регистрации промышленных образцов и товарных знаков защищены.
После выпуска данной инструкции конструкция прибора может быть изменена.
Мы оставляем за собой право изменять технические характеристики и конструкции приборов, а также комплект поставки.
Решающее значение имеет информация, передаваемая при составлении предложений и заказов, а также достигнутые договоренности.
Оригинал данного документа составлен на немецком языке.
Оглавление

1 Вводная часть ... 5
 1.1 Применимость инструкции .. 5
 1.2 Производитель ... 5
 1.3 Полнота информации .. 5
 1.4 Хранение технической документации .. 6
 1.5 Условные обозначения .. 6
 1.5.1 Предупредительные надписи ... 6
 1.5.2 Выделение важной информации ... 7
 1.5.3 Указания по выполнению действий .. 8

2 Безопасность ... 9
 2.1 Применение по назначению .. 9
 2.2 Основные указания по технике безопасности ... 10
 2.3 Предписания и нормы .. 12
 2.3.1 Сфера применения приводного вала .. 12
 2.4 Меры для соблюдения требований по взрывобезопасности .. 14
 2.4.1 Меры, принятые производителем ... 14
 2.4.2 Меры, принимаемые производителем трансформатора/эксплуатирующим предприятием 15
 2.5 Квалификация персонала .. 15
 2.6 Средства индивидуальной защиты .. 16
 2.7 Сушка трансформатора ... 17
 2.7.1 Сушка трансформатора в печи .. 17
 2.7.2 Сушка трансформатора в собственном баке ... 17

3 Описание изделия ... 18
 3.1 Принцип работы .. 18
 3.2 Комплект поставки ... 19
 3.3 Конструкция/исполнение .. 20
 3.4 Заводская табличка .. 22

4 Упаковка, транспортировка и хранение .. 23
 4.1 Упаковка ... 23
 4.1.1 Пригодность упаковки ... 23
 4.1.2 Маркировка ... 24
 4.2 Транспортировка, приемка и обращение с грузами ... 24
Оглавление

4.3 Складирование груза .. 25
4.4 Распаковка груза и его проверка на наличие повреждений ... 26
5 Монтаж ... 27
 5.1 Монтаж приводного вала .. 27
 5.1.1 Монтаж вертикального приводного вала с изолятором .. 29
 5.1.2 Монтаж горизонтального приводного вала с изолятором ... 41
 5.1.3 Синхронизация устройства РПН и моторного привода .. 49
6 Ввод в эксплуатацию ... 50
7 Техническое обслуживание ... 51
 7.1 Проверка .. 52
8 Приложение ... 53
 8.1 Угловой редуктор CD 6400, габаритный чертеж (892916) .. 53
1 Вводная часть

В данной инструкции по эксплуатации содержится подробная информация о безопасном монтаже, подключении и вводе изделия в эксплуатацию, а также о контроле его работы.

Наряду с этим в инструкции приведены указания по технике безопасности и общие указания.

Данная инструкция предназначена исключительно для квалифицированного персонала, прошедшего специальное обучение.

1.1 Применимость инструкции

Данная инструкция по эксплуатации действительна для приводных валов указанного ниже типа.

- Взрывозащищенный приводной вал с изолятором

1.2 Производитель

Производитель изделия:
Maschinenfabrik Reinhausen GmbH
Falkensteinstraße 8
93059 Regensburg
Тел.: (+49) 9 41/40 90-0
Эл. почта: sales@reinhausen.com

Более подробную информацию об изделии, а также издания данного технического документа можно получить по вышеуказанному адресу или в Интернете.

1.3 Полнота информации

Данную инструкцию следует понимать во взаимосвязи с другими техническими документами, действительными для данного устройства. Только тогда содержащаяся в ней информация будет полной.

Для данного устройства действительны следующие технические документы:

- приложение (входит в комплект поставки);
- габаритные чертежи (входят в комплект поставки).

Наряду с вышеперечисленными документами необходимо соблюдать общепринятые законы, нормы и директивы, а также предписания по предупреждению несчастных случаев и охране окружающей среды, действующие в стране эксплуатации.
1.4 Хранение технической документации

Данная инструкция и другие документы, входящие в комплект технической документации, должны сохраняться для последующего использования и быть постоянно доступными.

1.5 Условные обозначения

1.5.1 Предупредительные надписи

В данной инструкции предупредительные надписи оформлены, как показано далее.

1.5.1.1 Предупредительные надписи, относящиеся к разделу

Предупредительные надписи, относящиеся к разделу, распространяются на всю главу, отдельные разделы или несколько абзацев в этой инструкции. Предупредительные надписи, относящиеся к разделу, оформлены по приведенному ниже образцу.

ОПАСНО!

Вид опасности!
Источник опасности и последствия
► Меры
► Меры

1.5.1.2 Встроенное в систему предупреждение

Вводные предупредительные надписи относятся к определенной части раздела. Эти предупредительные надписи распространяются на меньшие информационные блоки, чем предупредительные надписи, относящиеся ко всему разделу. Вводные предупредительные надписи оформлены по приведенному ниже образцу.

ОПАСНО! Указание по обращению для предотвращения опасной ситуации.

1.5.1.3 Сигнальные слова и знаки

В инструкции используются приведенные ниже сигнальные слова.

<table>
<thead>
<tr>
<th>Сигнальное слово</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>ОПАСНО</td>
<td>Означает опасную ситуацию, которая приводит к тяжелым телесным повреждениям или летальному исходу, если не принять никаких мер.</td>
</tr>
<tr>
<td>ОСТОРОЖНО</td>
<td>Означает опасную ситуацию, которая может привести к тяжелым телесным повреждениям или летальному исходу, если не принять никаких мер.</td>
</tr>
</tbody>
</table>
1 Вводная часть

<table>
<thead>
<tr>
<th>Сигнальное слово</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>ВНИМАНИЕ</td>
<td>Означает опасную ситуацию, которая может привести к травмам, если не принять никаких мер.</td>
</tr>
<tr>
<td>УВЕДОМЛЕНИЕ</td>
<td>Указывает на необходимость принять меры по устранению ситуаций, приводящих к повреждению имущества.</td>
</tr>
</tbody>
</table>

Табл. 1: Сигнальные слова в предупредительных надписях

Для предупреждения об опасности используются приведенные ниже знаки.

<table>
<thead>
<tr>
<th>Знак</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Опасное место</td>
<td></td>
</tr>
<tr>
<td>Опасное электрическое напряжение</td>
<td></td>
</tr>
<tr>
<td>Огнеопасные материалы</td>
<td></td>
</tr>
<tr>
<td>Опасность опрокидывания</td>
<td></td>
</tr>
<tr>
<td>Опасность защемления</td>
<td></td>
</tr>
</tbody>
</table>

Табл. 2: Знаки, используемые в предупредительных надписях

1.5.2 Выделение важной информации

Выделение наиболее важной информации служит для упрощения ее восприятия и понимания. В данной инструкции важная информация выделяется следующим образом:

Важная информация
1.5.3 Указания по выполнению действий

В данном техническом документе приводятся одношаговые и многошаговые указания по выполнению действий.

Одношаговые указания по выполнению действий

Указания по выполнению действий, содержащих один рабочий шаг, построены по приведенному образцу.

Цель действия
✓ Условия (необязательно).
► Шаг 1 из 1.
 ↳ Результат выполнения рабочего шага (необязательно).
 ↳ Результат действия (необязательно).

Многошаговые указания по выполнению действий

Указания по выполнению действий, содержащих более одного рабочего шага, построены по приведенному образцу.

Цель действия
✓ Условия (необязательно).
1. Шаг 1.
 ↳ Результат выполнения рабочего шага (необязательно).
2. Шаг 2.
 ↳ Результат выполнения рабочего шага (необязательно).
 ↳ Результат действия (необязательно).
2 Безопасность

- Для ознакомления с изделием прочтите данную инструкцию.
- Данная инструкция по эксплуатации является частью изделия.
- Соблюдайте указания по технике безопасности, приведенные в этой главе.
- Прочтите и примите к сведению предупредительные надписи, представленные в данной инструкции по эксплуатации, чтобы избежать возможных опасных ситуаций, возникающих в ходе работы.
- Изделие соответствует современному уровню развития техники. Тем не менее при использовании изделия не по назначению могут возникать ситуации, представляющие опасность для жизни и здоровья персонала, а также для изделия и других материальных ценностей.

2.1 Применение по назначению

Приводной вал обеспечивает механическое соединение между приводом и головкой устройства РПН или ПБВ.

Изменение направления оси вращения вала с вертикального на горизонтальное производится с помощью углового редуктора.

При монтаже вертикальный приводной вал нужно установить между приводом и угловым редуктором, а горизонтальный — между угловым редуктором и устройством РПН или ПБВ.

Считается, что изделие применяется по назначению, если оно используется указанным ниже образом.
- Изделие эксплуатируется исключительно в соответствии с данной инструкцией, оговоренными условиями поставки и техническими характеристиками.
- Поставляемые с устройством приспособления и специальные инструменты используются по назначению и в соответствии с данной инструкцией.
- Изделие используется только в трансформаторе, указанном в заказе.
- Действующий для изделия стандарт и год выпуска см. на заводской табличке.
- Если устройство РПН и принадлежности для него поставляются в виде комплекта для одного заказа, серийные номера устройства РПН и его принадлежностей (привода, приводного вала, углового редуктора, защитного реле и т. д.) должны совпадать.
2.2 Основные указания по технике безопасности

Чтобы избежать несчастных случаев, повреждений и выхода оборудований из строя, а также причинения вреда окружающей среде, лица, отвественные за транспортировку, монтаж, эксплуатацию и утилизацию изделия или его частей, обязаны обеспечить выполнение перечисленных ниже требований.

Средства индивидуальной защиты

При ношении свободной или неподходящей одежды повышается риск захвата и наматывания предметов/частей одежды на вращающиеся детали или зацепления за выступающие части устройства. Это влечет опасность для жизни и здоровья!

▪ Используйте предусмотренные для выполнения конкретного вида работы средства индивидуальной защиты, например каску, защитные перчатки и т. д.
▪ Используйте только исправные средства индивидуальной защиты.
▪ Во время работ запрещается носить кольца, цепочки и другие украшения.
▪ Для длинных волос используйте специальную сетку.

Рабочая зона

Беспорядок и плохое освещение в рабочей зоне могут стать причиной несчастного случая.

▪ Содержите рабочую зону в чистоте и порядке.
▪ Обеспечьте хорошее освещение в рабочей зоне.
▪ Соблюдайте предписания по предупреждению несчастных случаев, действующие в стране эксплуатации.

Сушка трансформатора

Если вместе с сушкой активной части трансформатора также высушить приводной вал, это может привести к нарушениям работы приводного вала.

▪ Категорически запрещается сушить приводной вал.

Эксплуатация

Устройство следует эксплуатировать только в безупречном рабочем состоянии. В противном случае возникает опасность для жизни и здоровья!

▪ Регулярно проверяйте работоспособность предохранительных устройств.
▪ Выполняйте описанные в данной инструкции работы по техническому обслуживанию, проводите проверки и соблюдайте приведенные интервалы технического обслуживания.
Знаки безопасности

Предупредительные надписи и знаки безопасности используются для обозначения правил техники безопасности при работе с изделием. Они являются важной составной частью концепции безопасности.

▪ Учитывайте все знаки безопасности, указанные на изделии.
▪ Все знаки безопасности должны присутствовать на изделии и легко читаться.
▪ Обновите поврежденные знаки безопасности, а отсутствующие — восстановите.

Условия окружающей среды

Для надежной и безопасной работы устройства его следует эксплуатировать только в условиях окружающей среды, указанных в технических характеристиках продукта.

▪ Соблюдайте условия эксплуатации и требования к месту установки устройства.

Вспомогательные и рабочие материалы

Использование неразрешенных производителем вспомогательных и рабочих материалов может привести к травмированию персонала, материальному ущербу или нарушению работы изделия.

▪ Используйте только электропроводящие и заземленные шланги, трубы и насосы, предназначенные для горючих жидкостей.
▪ Используйте только разрешенные производителем смазочные и вспомогательные материалы.
▪ Свяжитесь с производителем.

Изменение и переналадка устройства

Неразрешенные или произведенные ненадлежащим образом изменения изделия могут явиться причиной травмирования персонала, материального ущерба, а также нарушений работы устройства.

▪ Вносите изменения в изделие только после консультации с компанией Maschinenfabrik Reinhausen GmbH.

Запасные части

Использование неразрешенных компанией Maschinenfabrik Reinhausen GmbH запасных частей может привести к травмированию персонала, повреждению изделия или сбоям в работе изделия.

▪ Используйте только запасные части, разрешенные компанией Maschinenfabrik Reinhausen GmbH.
▪ Обратитесь в компанию Maschinenfabrik Reinhausen GmbH.
2.3 Предписания и нормы

Далее описываются нормы и директивы, действующие для взрывозащищенного изделия.

2.3.1 Сфера применения приводного вала

Приводной вал пришел сертификацию для степени защиты Ex II 2G IIC T4. Вытекающие из этого сферы применения представлены в обзоре ниже.

Табл. 3: Пример для сферы применения

<table>
<thead>
<tr>
<th>Цифра</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Обозначение взрывозащиты</td>
</tr>
<tr>
<td>2</td>
<td>Группа оборудования</td>
</tr>
<tr>
<td>3</td>
<td>Категория оборудования</td>
</tr>
<tr>
<td>4</td>
<td>Ex: обозначение взрывозащищенного оборудования</td>
</tr>
<tr>
<td>5</td>
<td>Тип взрывозащиты</td>
</tr>
<tr>
<td>6</td>
<td>Группа взрывоопасности</td>
</tr>
<tr>
<td>7</td>
<td>Температурный класс</td>
</tr>
<tr>
<td>8</td>
<td>Уровень взрывозащиты оборудования EPL (Equipment Protection Level)</td>
</tr>
</tbody>
</table>

Группы оборудования (цифра 2)

I Действительно для оборудования, предназначенного для применения в подземных выработках шахт и рудников, а также в частях их наземных строений, опасных в отношении рудничного газа и (или) горючей пыли

II Действительно для оборудования, предназначенного для применения во взрывоопасных зонах помещений и наружных установок

Табл. 4: Группы оборудования
Категория оборудования и классификация зон (цифра 3)

<table>
<thead>
<tr>
<th>Обозначение</th>
<th>Обозначение для пыли</th>
<th>Определение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G (0)</td>
<td>1D (20)</td>
<td>Оборудование этой категории предназначено для использования в зонах, в которых взрывоопасная атмосфера, состоящая из смеси воздуха и газов, паров или туманов, либо смеси пыли и воздуха, присутствует постоянно, длительное время или возникает довольно часто.</td>
</tr>
<tr>
<td>2G (1)</td>
<td>2D (21)</td>
<td>Оборудование этой категории предназначено для использования в зонах, в которых возможно случайное образование взрывоопасной атмосферы, состоящей из смеси воздуха и газов, паров или туманов, либо смеси пыли и воздуха.</td>
</tr>
<tr>
<td>3G (2)</td>
<td>3D (22)</td>
<td>Оборудование этой категории предназначено для использования в зонах, в которых вероятность образования взрывоопасной атмосферы, состоящей из смеси газов, паров, тумана или поднявшейся пыли крайне низка. А если такая атмосфера все-таки образуется, то редко и на непродолжительное время.</td>
</tr>
</tbody>
</table>

Табл. 5: Категория оборудования и классификация зон

Типы взрывозащиты (цифра 5)

<table>
<thead>
<tr>
<th>Тип взрывозащиты</th>
<th>Определение</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Взрывонепроницаемая оболочка</td>
</tr>
<tr>
<td>e</td>
<td>Повышенная защита</td>
</tr>
<tr>
<td>i</td>
<td>Искробезопасная электрическая цепь</td>
</tr>
<tr>
<td>m</td>
<td>Герметизация компаундом</td>
</tr>
<tr>
<td>o</td>
<td>Масляное заполнение оболочки</td>
</tr>
<tr>
<td>p</td>
<td>Заполнение или продувка оболочки под избыточным давлением защитным газом</td>
</tr>
<tr>
<td>q</td>
<td>Кварцевое заполнение оболочки</td>
</tr>
<tr>
<td>n</td>
<td>Тип взрывозащиты</td>
</tr>
</tbody>
</table>

Табл. 6: Типы взрывозащиты

Группа взрывоопасности (цифра 6)

<table>
<thead>
<tr>
<th>EN/IEC</th>
<th>Газы, пары (пример)</th>
<th>Мин. энергия, необходимая для зажигания рабочей смеси (мДж)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>Аммиак</td>
<td>—</td>
</tr>
<tr>
<td>IIA</td>
<td>Ацетон, этан, эфир, бензин, бензол, дизель, нефть, уксусная кислота, жидкое топливо, гексан, метан, пропан</td>
<td>0,18</td>
</tr>
</tbody>
</table>
2 Безопасность

<table>
<thead>
<tr>
<th>EN/IEC</th>
<th>Газы, пары (пример)</th>
<th>Мин. энергия, необходимая для зажигания рабочей смеси (мДж)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIB</td>
<td>Этилен, изопрен, городской газ</td>
<td>0,06</td>
</tr>
<tr>
<td>IIC</td>
<td>Водород, ацетилен, сероуглерод</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Табл. 7: Группы взрывоопасности

Температурные классы (цифра 7)

<table>
<thead>
<tr>
<th>Температурный класс</th>
<th>Максимальная температура поверхности оборудования</th>
<th>Температура воспламенения горючих веществ</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>450 °C</td>
<td>> 450 °C</td>
</tr>
<tr>
<td>T2</td>
<td>300 °C</td>
<td>> 300 °C < 450 °C</td>
</tr>
<tr>
<td>T3</td>
<td>200 °C</td>
<td>> 200 °C < 300 °C</td>
</tr>
<tr>
<td>T4</td>
<td>135 °C</td>
<td>> 135 °C < 200 °C</td>
</tr>
<tr>
<td>T5</td>
<td>100 °C</td>
<td>> 100 °C < 135 °C</td>
</tr>
<tr>
<td>T6</td>
<td>85 °C</td>
<td>> 85 °C < 100 °C</td>
</tr>
</tbody>
</table>

Табл. 8: Температурные классы

Уровень взрывозащиты оборудования EPL (цифра 8)

Уровень взрывозащиты оборудования EPL (Equipment Protection Level) обозначает тот уровень защиты, для которого спроектировано данное устройство, исходя из вероятности его возгорания и принимая во внимание различия между атмосферами взрывоопасных газов, взрывоопасных пылевых сред и взрывоопасной атмосферой в горных выработках, в которых существует вероятность взрыва рудничного газа.

2.4 Меры для соблюдения требований по взрывобезопасности

Для соблюдения требований по взрывобезопасности необходимо принять определенные меры как со стороны изготовителя, так и со стороны производителя трансформатора/эксплуатирующего предприятия.

2.4.1 Меры, принятые производителем

Взрывозащищенный приводной вал

Взрывозащищенный приводной вал поставляется с изолятором.
2.4.2 Меры, принимаемые производителем трансформатора/эксплуатирующим предприятием

Изолятор
Для горизонтального приводного вала смонтируйте изолятор на стороне, обращенной к угловому редуктору.
Для вертикального приводного вала смонтируйте изолятор на стороне, обращенной к приводу.

Заземление крышек приводных валов и углового редуктора
Указанные ниже компоненты следует заземлить отдельно.
▪ Телескопическая защитная труба вертикального приводного вала
▪ Защитная жестяная полутруба горизонтального приводного вала
▪ Угловой редуктор

2.5 Квалификация персонала
Лицо, ответственное за монтаж, ввод в эксплуатацию, работу, техническое обслуживание и проверку устройства, должно удостовериться в наличии у персонала соответствующей квалификации.

Электрик
Электрик благодаря профессиональному образованию обладает необходимыми знаниями и опытом, а также знает специальные стандарты и нормы. Кроме того, электрик:
▪ может самостоятельно распознать возможную опасность и принять меры по ее предупреждению;
▪ может выполнять работы на электрических установках;
▪ прошел специальное обучение выполняемым видам работ;
▪ знает и выполняет предписания по предупреждению несчастных случаев, действующие в стране эксплуатации.

Лица, прошедшие инструктаж по электробезопасности
Лица, прошедшие инструктаж по электробезопасности, проинформированы электриком о порученных им видах работ и возможных опасностях, возникающих при неправильных действиях, а также о работе предохранительных устройств и соответствующих мерах защиты. Лица, прошедшие инструктаж по электробезопасности, работают только под руководством и контролем электрика.
Оператор
Оператор эксплуатирует изделие в соответствии с данной инструкцией по эксплуатации. Эксплуатационник информирует оператора о специальных задачах и возможных опасностях, возникающих при неправильных действиях.

Техническая служба
Настоятельно рекомендуется поручать проведение технического обслуживания, ремонта и переоборудования устройства специалистам технической службы производителя. Тем самым обеспечивается правильное выполнение всех работ. Если техническое обслуживание выполняется специалистами других компаний, убедитесь в том, что они прошли подготовку в компании Maschinenfabrik Reinhausen GmbH и имеют разрешение на выполнение соответствующих видов работ.

Авторизованный персонал
Авторизованный персонал — это сотрудники, прошедшие обучение в компании Maschinenfabrik Reinhausen GmbH и допущенные к проведению технического обслуживания.

2.6 Средства индивидуальной защиты
Чтобы уменьшить опасность для здоровья, обязательно используйте во время работы средства индивидуальной защиты.

▪ При выполнении работ постоянно носите средства индивидуальной защиты, необходимые для соответствующего вида работ.
▪ Категорически запрещается использовать поврежденные средства индивидуальной защиты.
▪ Соблюдайте указания по использованию средств индивидуальной защиты, приведенные на табличках в рабочей зоне.

Защитная рабочая одежда	Плотно облегающая одежда с низкой прочностью на разрыв, узкими рукавами и без выступающих частей. Она служит главным образом для защиты от захвата движущимися частями машин.
Защитная обувь	Защищает от падающих тяжелых деталей и падения на скользкой поверхности.
Защитные очки	Для защиты глаз от разлетающихся частей и брызг.
Защитная маска	Для защиты лица от разлетающихся частей и брызг, а также от других опасных веществ.
Защитная каска	Для защиты от падающих или разлетающихся частей и материалов.
Защитные наушники	Для защиты органов слуха.
Защитные перчатки	Для защиты от механических, термических или электрических травм.

Табл. 9: Средства индивидуальной защиты
2.7 Сушка трансформатора

2.7.1 Сушка трансформатора в печи
При сушке трансформатора в печи необходимо выполнять приведенное ниже указание.

УВЕДОМЛЕНИЕ
Опасность повреждения приводного вала, устройства РПН и трансформатора!
Сушка приводного вала в печи может привести к его повреждению и нарушению функций.
► Не сушите приводной вал в печи.

2.7.2 Сушка трансформатора в собственном баке
При сушке активной части в баке трансформатора можно не снимать приводной вал с трансформатора.
3 Описание изделия

3.1 Принцип работы

Приводной вал обеспечивает механическое соединение между приводом и головкой устройства РПН.

Изменение направления оси вращения вала с вертикального на горизонтальное производится с помощью углового редуктора.

Таким образом, вертикальный приводной вал нужно установить между приводом и угловым редуктором, а горизонтальный — между угловым редуктором и устройством РПН или ПБВ.

Взрывозащищенный приводной вал выполнен в виде четырехгранной трубы с изолятором, которая с обоих концов присоединяется к концам валов сочленяемых устройств с помощью двух полумуфт и одного пальца муфты.

Рис. 1: Взрывозащищенный приводной вал с изолятором
3 Описание изделия

3.2 Комплект поставки

Устройство поставляется во влагозащитной упаковке. В комплект поставки входят указанные ниже компоненты.

▪ Взрывозащищенный приводной вал с изолятором
▪ Угловой редуктор
▪ Инструкция по эксплуатации
▪ Приложения-вкладыши
▪ Габаритный чертеж

Соблюдайте следующие указания:

▪ при получении проверьте комплектность поставки по отгрузочным документам;
▪ до монтажа храните все части устройства в сухом месте и в упаковке, препятствующей проникновению влаги;
▪ вскрывайте воздухонепроницаемую упаковку только непосредственно перед монтажом.
3.3 Конструкция/исполнение

В этом разделе описывается конструкция взрывозащищенного приводного вала.

Рис. 2: Компоненты взрывозащищенного приводного вала

<table>
<thead>
<tr>
<th>№</th>
<th>Компонент</th>
<th>№</th>
<th>Компонент</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Угловой редуктор</td>
<td>2</td>
<td>Рукавный хомут</td>
</tr>
<tr>
<td>3</td>
<td>Болты</td>
<td>4</td>
<td>Телескопическая защитная труба</td>
</tr>
<tr>
<td>5</td>
<td>Полумуфта</td>
<td>6</td>
<td>Изолятор</td>
</tr>
<tr>
<td>7</td>
<td>Двойная полумуфта</td>
<td>8</td>
<td>Четырехгранная труба</td>
</tr>
<tr>
<td>9</td>
<td>Палец</td>
<td>10</td>
<td>Переходное кольцо</td>
</tr>
<tr>
<td>11</td>
<td>Защитная жестяная полутруба</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Описание изделия

<table>
<thead>
<tr>
<th>Конфигурация</th>
<th>V 1 мин.</th>
<th>Промежуточный подшипник</th>
</tr>
</thead>
<tbody>
<tr>
<td>Центр рукоятки — центр углового редуктора (максимально допустимое осевое смещение = 2°)</td>
<td>706 мм</td>
<td>При превышении максимального значения (2472 мм) необходимо использовать промежуточный подшипник.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 1 ≤ 2472 мм (без промежуточного подшипника)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V 1 > 2472 мм (с промежуточным подшипником)</td>
</tr>
</tbody>
</table>
3.4 Заводская табличка

Заводская табличка находится на телескопической защитной трубе.

Рис. 3: Расположение заводской таблички
4 Упаковка, транспортировка и хранение

4.1 Упаковка

Поставка изделий, в зависимости от требований, частично осущест-вляется в герметичной упаковке и, кроме того, частично в высушен-ном состоянии.

Груз герметично упакован в синтетическую пленку.

Высушенные изделия дополнительно помечены желтой маркировкой на герметичной упаковке. В высушенном состоянии также возможна по-ставка в транспортировочном контейнере.

Учитывайте соответствующие указания, представленные в последую-щих разделах.

4.1.1 Пригодность упаковки

УВЕДОМЛЕНИЕ

Опасность повреждения груза при неправильном складировании ящиков!

Неправильное складирование ящиков может привести к повреждению груза.

► По внешней маркировке на упаковке видно, что, например, устройст-во РПН или избиратель упакованы в вертикальном положении. Устанавливать такие ящики друг на друга нельзя.

► Основное правило: не устанавливайте друг на друга ящики высотой более 1,5 м.

► В остальных случаях: друг на друга разрешено устанавливать макси-мум два ящика одинакового размера.

Груз в упаковке следует перевозить в полностью исправном транспорт-ном средстве с соблюдением местных законов и предписаний по транс-портировке.

Изделие упаковывается в прочный ящик. Он обеспечивает стабиль-ность изделия в предусмотренном транспортном положении без сдви-гов и защиту всех его частей от контакта с погрузочной платформой транспортного средства или с землей после выгрузки.
4.1.2 Маркировка

На упаковку нанесены символы, которые содержат указания по правильному обращению с грузом при транспортировке и хранении. При транспортировке неопасных грузов на упаковку может наноситься представленная ниже маркировка. Данные маркировки следует строго соблюдать.

<table>
<thead>
<tr>
<th>Беречь от влаги</th>
<th>Верх</th>
<th>Хрупкое, осторожно</th>
<th>Крепить здесь</th>
<th>Центр тяжести</th>
</tr>
</thead>
<tbody>
<tr>
<td>Табл. 10: Маркировка на упаковке</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Транспортировка, приемка и обращение с грузами

⚠️ ОСТОРОЖНО! Опасность тяжелых телесных повреждений и летального исхода!

Опасность, вызванная падением или опрокидыванием груза.

► Выбор грузозахватных приспособлений и захват груза может осуществлять только квалифицированный персонал, имеющий соответствующие полномочия.

► Не находитесь под подвешенным грузом.

► Транспортное средство и подъемное устройство должны иметь грузоподъемность > 500 кг.

⚠️ УВЕДОМЛЕНИЕ Опасность повреждения груза

Опасность, вызванная падением или опрокидыванием груза.

► Выбор грузозахватных приспособлений и захват груза может осуществлять только квалифицированный персонал, имеющий соответствующие полномочия.

► Транспортное средство и подъемное устройство должны иметь грузоподъемность > 500 кг.

При транспортировке возможны не только колебательные, но и ударные воздействия. Во избежание повреждений при транспортировке необходимо исключить падение, опрокидывание и столкновение груза.

Если ящик опрокинулся, провалился или упал с высоты (например, при обрыве строп), то велика вероятность повреждения груза вне зависимости от его веса.
4 Упаковка, транспортировка и хранение

Каждая поставка должна быть проверена получателем перед подтверждением приемки по следующим пунктам:

▪ комплектность в соответствии с транспортной накладной;
▪ отсутствие каких-либо повреждений.

Проверку следует производить после выгрузки, чтобы к ящику можно было подойти со всех сторон.

Видимые повреждения

Если во время приемки обнаружены внешние повреждения, выполните указанные ниже действия.

▪ Внесите информацию о повреждениях в грузовые документы и дайте их на подпись лицу, доставившему груз.
▪ При сильных повреждениях, дорогостоящем ущербе или полной потере груза незамедлительно проинформируйте отдел сбыта компании Maschinenfabrik Reinhausen GmbH и соответствующую страховую компанию.
▪ После обнаружения повреждения не изменяйте его состояние и не трогайте упаковку до принятия решения грузоперевозчиком или страховой компанией.
▪ Составьте совместно с транспортной компанией на месте осмотра акт выявленных повреждений. Это необходимо для предъявления требований о возмещении ущерба!
▪ Сфотографируйте повреждения груза и упаковки. Таким же образом следует действовать и в случае выявления коррозийных повреждений, вызванных проникновением влаги (дождь, снег, конденсат).
▪ Укажите поврежденные части.

Скрытые повреждения

При скрытых повреждениях (таких, которые можно обнаружить только после распаковки груза) поступайте следующим образом:

▪ немедленно известите возможного виновника повреждений по телефону и в письменной форме, а также составьте акт повреждений;
▪ соблюдайте при этом действующие в данной стране сроки подачи претензий; узнайте их заблаговременно.

При обнаружении скрытых повреждений предъявление претензий грузоперевозчику (или другому виновнику повреждения) вряд ли приведет к успеху. Это возможно в том случае, если данное повреждение точно описано в страховом полисе.

4.3 Складирование груза

Груз в ненарушенной упаковке может храниться на открытом воздухе при соблюдении описанных ниже условий.
При выборе и организации места хранения убедитесь в следующем:

- груз защищен от влаги (наводнение, талая вода, снег или лед), грязи, вредителей (крыс, мышей, термитов и т. д.) и несанкционированного доступа;
- для защиты от грунтовой влаги и лучшей вентиляции ящики установлены на настил из досок и брусьев;
- грунт или пол имеет достаточную несущую способность;
- пути подъезда свободны.
- Периодически проверяйте груз, особенно после ураганов, ливневых дождей, сильных снегопадов и т. д., и принимайте необходимые меры.

4.4 Распаковка груза и его проверка на наличие повреждений

- По возможности перевозите ящик с грузом до места монтажа в упакованном состоянии.
- При распаковке проверьте состояние изделия.
- Проверьте комплектность в соответствии с транспортной накладной;
5 Монтаж

В этой главе описывается установка и подключение взрывозащищенного приводного вала.

5.1 Монтаж приводного вала

При монтаже соблюдайте приведенное ниже указание.

УВЕДОМЛЕНИЕ

Опасность повреждения привода и устройства РПН или ПБВ!
Опасность нарушения работы привода и устройства РПН или ПБВ.
► Концы соединяемых валов должны располагаться строго на одной оси.

Допустимые смещения оси

Незначительное смещение осей допускается только при условии, что величина смещения не превышает 35 мм на 1000 мм длины четырехгранный вала (что соответствует 2°).

Рис. 4: Максимально допустимое смещение оси вертикального приводного вала
Коррозионная стойкость компонентов

Четырехгранные трубы, полумуфты, пальцы муфт, болты и стопорные зубчатые шайбы изготовлены из нержавеющей стали. Рекомендуется не наносить на них защитное покрытие (такое же, как наружное покрытие бака трансформатора).

Укорачивание четырехгранных труб, телескопических защитных труб и защитной жестяной полутрубы

Четырехгранные трубы, телескопические защитные трубы и защитная жестяная полутруба вертикального вала поставляются с избыточной длиной (номенклатура стандартных размеров по длине). Эти детали обрезают до требуемого размера непосредственно при монтаже на трансформатор. В редких случаях для телескопической защитной трубы требуется обрезать внутреннюю трубу. Максимальная общая длина системы валов привода — последняя колонка = 15 м.

<table>
<thead>
<tr>
<th>Стандартная длина</th>
<th>TAPMOTION® ED-Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>•</td>
</tr>
<tr>
<td>600</td>
<td>•</td>
</tr>
<tr>
<td>900</td>
<td>•</td>
</tr>
</tbody>
</table>
5.1.1 Монтаж вертикального приводного вала с изолятором

Вертикальный приводной вал устанавливается, как описано ниже.

1. **ВНИМАНИЕ!** Выключите защитный выключатель электродвигателя Q1 в моторном приводе (положение О). В противном случае это может привести к непреднамеренному пуску моторного привода и, как следствие, к травмам.

2. Угловой редуктор для крепления на трансформаторе соедините с обеих сторон с поставляемыми контактными шайбами для обеспечения постоянного заземления. Болты не входят в комплект поставки.

<table>
<thead>
<tr>
<th>Стандартная длина</th>
<th>TAPMOTION® ED-Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>•</td>
</tr>
<tr>
<td>1700</td>
<td>•</td>
</tr>
</tbody>
</table>

Табл. 11: Стандартные поставочные длины четырехгранных труб для взрывозащищенного моторного привода TAPMOTION® ED-Ex

Рис. 6: Угловой редуктор
3. Определите размер A между концами валов привода и углового редуктора. Обрежьте четырехгранную трубу с учетом изолятора до длины A – 179 мм.

Рис. 7: Укорачивание четырехгранной трубы
5 Монтаж

4. Зачистите срезы на четырехгранной трубе.

Рис. 8: Зачистка срезов

5. Двойную полумуфту скрепите с поставляемым изолятором и четырехгранной трубой. Смонтируйте изолятор на стороне, обращенной к приводу.

Рис. 9: Соединение четырехгранной трубы и изолятора с двойной полумуфтой
6. Не затягивая болтов на муфте, наденьте ее до упора на изолятор.

![Рис. 10: Установка муфты на изолятор](image)

7. Вставьте палец муфты в конец вала привода. Обработайте смазкой (например, ISOFLEX TOPAS L32) муфту, палец муфты и конец вала. Наденьте четырехгранную трубу с муфтой на конец вала.

![Рис. 11: Установка четырехгранной трубы с муфтой на конец вала](image)

8. Закрепите четырехгранную трубу на приводе.

![Рис. 12: Крепление четырехгранной трубы на приводе](image)
9. Наклоните в сторону четырехгранную трубу.

Рис. 13: Наклон четырехгранной трубы

10. Для установки телескопической защитной трубы при необходимости укоротите внутреннюю трубу со сплошной стороны. Минимальный размер для совмещения двух защитных труб составляет 100 мм.
Не деформируйте внутреннюю трубу. Удалите с нее заусенцы, чтобы она легко входила во внешнюю трубу.

Рис. 14: Зачистка среза внутренней трубы

<table>
<thead>
<tr>
<th>Размер A (расстояние между концами валов привода и углового редуктора)</th>
<th>Внутренняя труба</th>
<th>Внешняя труба</th>
</tr>
</thead>
<tbody>
<tr>
<td>170...190 мм</td>
<td>Укорачивание до 200 мм</td>
<td>= 200 мм</td>
</tr>
<tr>
<td>191...1130 мм</td>
<td>Размер A + 20 мм</td>
<td>= 200 мм</td>
</tr>
<tr>
<td>1131...1598 мм</td>
<td>= 700 мм</td>
<td>= 1150 мм</td>
</tr>
<tr>
<td>1599...2009 мм</td>
<td>= 1150 мм</td>
<td>= 1150 мм</td>
</tr>
</tbody>
</table>
11. Для отдельного заземления просверлите отверстие диаметром 11 мм во внутренней трубе на расстоянии 110 мм (если смотреть со стороны с пазом).

Рис. 15: Просверливание отверстия для заземления в телескопической защитной трубе
12. Наденьте внешнюю трубу на внутреннюю. Сплошная сторона внутренней трубы должна быть направлена вверх. Установите телескопическую защитную трубу на четырехгранную трубу. Затем наденьте рукавные хомуты на телескопическую защитную трубу.

Рис. 16: Установка телескопической защитной трубы
13. Установите переходное кольцо на шейку вала углового редуктора и сдвиньте вверх. Вставьте палец муфты в конец вала углового редуктора. Поверните четырехгранный трубу.

Рис. 17: Установка переходного кольца и пальца муфты
14. Обработайте смазкой (например, ISOFLEX TOPAS L32) полумуфты, палец муфты и конец вала. Закрепите четырехгранный трубу с полумуфтами на угловом редукторе. Установите односторонний осевой зазор 3 мм между пальцем муфты и верхней муфтой.

Рис. 18: Монтаж полумуфт
15. Используйте заземляющий провод и прилагаемый винт с контактными шайбами, чтобы присоединить нижнюю защитную трубу (внутреннюю трубу) к рабочему заземлению. При этом установите соединительный винт для заземляющего провода изнутри из-за опасности столкновения с головкой винта.

Рис. 19: Привинчивание заземляющего провода к телескопической защитной трубе
16. С помощью рукавного хомута закрепите на шейке вала привода нижнюю защитную трубу (внутреннюю) 1. Затем надвиньте верхнюю защитную трубу (внешнюю) на переходник углового редуктора 2. С помощью второго рукавного хомута закрепите верхнюю защитную трубу на верхнем конце 3.

Рис. 20: Монтаж защитной трубы
17. Просверлите в обеих трубах примерно посередине и со смещение на 180° два отверстия диаметром 4,5 мм. Затем вкрутите прилагаемые самонарезающие винты и зафиксируйте защитные трубы друг против друга, чтобы создать гальваническое соединение.

5.1.2 Монтаж горизонтального приводного вала с изолятором

Выравнивание верхнего редуктора на головке устройства РПН

Для правильной установки горизонтального приводного вала в некоторых случаях необходимо сначала выровнять верхний редуктор так, чтобы горизонтальный приводной вал и конец вала верхнего редуктора лежали на одной оси.

Для этого выполните указанные ниже действия.
1. УВЕДОМЛЕНИЕ Выравнивание верхнего редуктора при неполном заполнении масляного бака контактора приводит к повреждению устройства РПН. Убедитесь в том, что масляный бак контактора полностью заполнен изоляционной жидкостью.
2. Ослабьте болты и поверните упорные сегменты в сторону.

Рис. 22: Упорные сегменты

3. УВЕДОМЛЕНИЕ Выровняйте верхний редуктор так, чтобы горизонтальный приводной вал и приводной вал верхнего редуктора лежали на одной оси. Во время выравнивания поворачивайте приводной вал верхнего редуктора так, чтобы его выходной вал сохранял свое первоначальное положение. В противном случае при вводе в эксплуатацию возможно повреждение устройства ПВВ и трансформатора.

Рис. 23: Выравнивание верхнего редуктора
4. Снова поверните упорные сегменты в направлении верхнего редуктора и затяните болты. Следите за тем, чтобы стопорная зубчатая шайба находилась между головкой болта и упорным сегментом, а упорные сегменты плотно прилегали к корпусу верхнего редуктора.

Монтаж горизонтального приводного вала

Горизонтальный приводной вал устанавливается, как описано ниже.

1. Определите расстояние A между концами валов верхнего и углового редукторов и укоротите четырехгранную трубу с учетом изолятора до длины $A - 179$ мм.
2. Определите ширину в свету B между корпусами верхнего и углового редукторов. Отрежьте защитную жестяную полутрубу соответствующей длины (B – 2 мм) и зачистите стыки.

Рис. 26: Укорачивание и зачистка защитной жестяной полутрубы

3. Для отдельного заземления просверлите отверстие диаметром 11 мм в защитной жестяной полутрубе на расстоянии 110 мм от углового редуктора. Для защиты от коррозии покрасьте защитную жестяную полутрубу.

Рис. 27: Просверливание отверстия для заземления в защитной жестяной полутрубе
4. Двойную полумуфту скрепите с поставляемым изолятором и четырехгранной трубой. Смонтируйте изолятор на стороне, обращенной к угловому редуктору.

5. Не затягивая болтов на муфте, наденьте ее до упора на изолятор.
6. Обработайте смазкой (например, ISOFLEX TOPAS L32) муфту, палец муфты и конец вала углового редуктора и вставьте палец муфты в конец вала. Наденьте рукавные хомуты на четырехгранный трубу и затем установите четырехгранный трубу с муфтой на конец вала.

![Иллюстрация установки четырехгранной трубы с муфтой на конец вала](image)

7. Закрепите четырехгранный трубу на угловом редукторе.

![Иллюстрация крепления четырехгранной трубы на угловом редукторе](image)
8. Обработайте смазкой (например, ISOFLEX TOPAS L32) палец муфты, полумуфты и конец вала верхнего редуктора и установите палец муфты в конец вала. Закрепите четырехгранныю трубу с полумуфтами на верхнем редукторе. Установите односторонний осевой зазор 3 мм между пальцем муфты и верхней муфтой.

Рис. 32: Крепление четырехгранный трубы на верхнем редукторе
9. Установите укороченную защитную жестянную полутрубу на выступах корпуса головки устройства РПН и углового редуктора. С помощью рукавных хомутов закрепите защитную жестянную полутрубу с обоих концов.

Рис. 33: Монтаж защитной жестянной полутрубы
10. Используйте заземляющий провод и прилагаемый винт с контактными шайбами, чтобы присоединить защитную жестяную полутрубу к рабочему заземлению. При этом установите соединительный винт для заземляющего провода изнутри из-за опасности столкновения с головой винта.

Рис. 34: Привинчивание заземляющего провода к защитной жестяной полутрубе

5.1.3 Синхронизация устройства РПН и моторного привода

► Настройте симметричность срабатывания моторного привода и устройства РПН согласно инструкции по эксплуатации MR для моторного привода.
6 Ввод в эксплуатацию

После установки взрывозащенного приводного вала и синхронизации работы устройства РПН с взрывозащищенным моторным приводом TAPMOTION® ED-Ex можно вводить в эксплуатацию трансформатор.
7 Техническое обслуживание

ОПАСНО

Опасность поражения электрическим током!
Трансформатор, находящийся под напряжением, может стать причиной тяжелых телесных повреждений или летального исхода.
► Отключите трансформатор со стороны высокого и низкого напряжения.
► Заблокируйте трансформатор от повторного включения.
► Убедитесь в том, что напряжение отсутствует.
► Наглядно заземлите все клеммы трансформатора (заземляющие провода, заземляющий разъединитель) и закоротите их.
► Накройте или отгородите все расположенные рядом детали, находящиеся под напряжением.

ОПАСНО

Опасность поражения электрическим током!
Комплекты устройства РПН, находящиеся под напряжением во время проведения работ на устройстве, могут привести к летальному исходу или тяжелым телесным повреждениям.
► Отключите питание всех вспомогательных цепей (например, цепей устройства контроля переключений, клапана сброса давления, реле давления).
► Убедитесь в том, что напряжение отсутствует.

ОСТОРОЖНО!

Опасность взрыва!
Риск получения тяжелых телесных повреждений или летального исхода в результате воспламенения или взрыва взрывоопасных газов в масляном баке контактора устройства РПН, трансформаторе, системе трубопроводов, расширительном баке и в отверстии осушителя воздуха.
► Убедитесь в том, что в непосредственной близости к трансформатору нет источников открытого огня или искр (вызванных, например, электростатическим разрядом), а также горячих поверхностей.
► Запрещается использовать электроинструменты (например, электрический шуруповерт из-за возможности образования искры).
► Используйте только электропроводящие и заземленные шланги, трубы и насосы, предназначенные для горючих жидкостей.
Опасность повреждения моторного привода!
Опасность повреждения моторного привода из-за образования конденсата в шкафу моторного привода.
► Всегда плотно закрывайте шкаф моторного привода.
► Если перерыв в эксплуатации составил более двух недель, перед вводом оборудования в эксплуатацию необходимо подсоединить и включить антиконденсатный нагреватель в моторном приводе. Если это невозможно сделать, например, при транспортировке, положите в шкаф привода достаточное количество осушающего средства.

7.1 Проверка

Контроль состояния устройства РПН и моторного привода ограничивается периодическими осмотрами защитного реле, моторного привода и головки устройства РПН. Они могут быть совмещены с другими работами на трансформаторе.

Проверки

<table>
<thead>
<tr>
<th>Интервал</th>
<th>Меры</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ежегодно</td>
<td>Проверка смазочных точек приводного вала на наличие достаточного количества смазки. Смазочные точки указаны в описании этапов монтажа (см. стр. [Раздел 5.1, Страница 27]).</td>
</tr>
<tr>
<td>Ежегодно</td>
<td>Проверка верхнего и углового редукторов на предмет герметичности и отсутствия повреждений.</td>
</tr>
<tr>
<td>Ежегодно</td>
<td>Контроль уплотнений двери, вводов кабеля, выпуска воздуха из шкафа моторного привода.</td>
</tr>
<tr>
<td>Ежегодно</td>
<td>Проверка покрытия всех окрашенных деталей приводного вала.</td>
</tr>
</tbody>
</table>

Табл. 12: План проверок
8 Приложение

8.1 Угловой редуктор CD 6400, габаритный чертеж (892916)