

VACUTAP® VRL® MAXIMUM PERFORMANCE FOR HIGH-END APPLICATIONS.

WWW.REINHAUSEN.COM

VACUTAP® VRL® – THE SUM OF OUR TECHNICAL EXPERTISE.

CURRENT CHALLENGES OF ENERGY SUPPLY

Increasing demand for energy

Volatile networks

Sustainability

Electromobility

CO₂ reduction

Regenerative energies

There is a rising demand for large high-end transformers

- I to manage energy flows in increasingly deregulated markets
- I to make renewable energy available when and where it is needed
- I to secure reliable power supply for high-end industry applications

VACUTAP® VRL® – WHEN MAXIMUM PERFORMANCE IS REQUIRED.

- Rated current up to 3,200 A
- Step voltages up to 6,000 V
- Switching capacity up to 10,000 kVA

VACUTAP® Advanced Arc Control System

■ Optimum arc extinction

VACUTAP® Interrupter Exchange Module

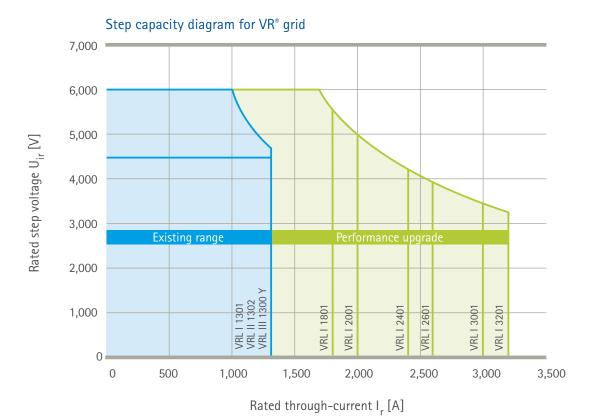
- Complete carrier unit with pre-installed vacuum interrupters
- Simplifies replacement after 600,000 tap-change operations
- Minimizes maintenance-related interruption of production

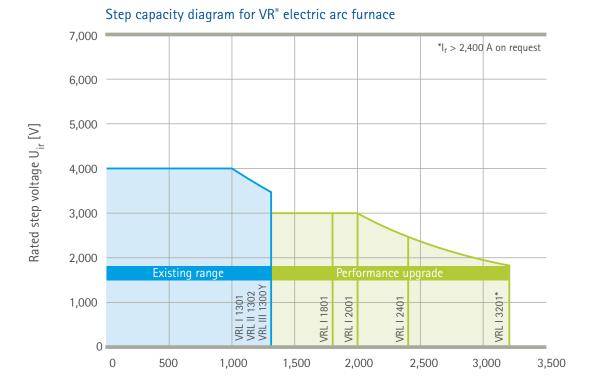
VACUTAP® Step Protection System

- Protects against over voltages from the grid
- Prevents insulation damage
- Reduces the scattering of response values

VACUTAP® Advanced Flux Control System

 Ensures the vacuum interupters function at extreme currents and magnetic fields in high-end applications


VACUTAP® VRL® TECHNICAL DATA.


Variants and general data

Designation	VACUTAP® VRL® I 1801	VACUTAP® VRL® I 2001	VACUTAP® VRL® I 2401	VACUTAP® VRL® I 2601	VACUTAP® VRL® I 3001	VACUTAP® VRL® I 3201				
Number of phases	1	1	1	1	1	1				
Max. rated through-current I_r (A)	1,800	2,000	2,400	2,600	3,000	3,200				
Rated short-time withstand current (kA)	19	24	24	25	30	32				
Rated short-circuit duration (s)	3	3	3	3	3	3				
Rated peak withstand current (kA)	47.5	60	60	65	75	80				
Max. rated step voltage U _{ir} (V)	6,000	6,000	6,000	6,000	6,000	6,000				
Step capacity P _{StN} (kVA)	10,000	10,000	10,000	10,000	10,000	10,000				
Rated frequency (Hz)	50 - 60									
Selector	RC, RD, RDE, RE – Pitch: 10, 12, 14, 16, 18									
Operating positions	Without change-over selector: max. 18, with change-over selector: max. 35									
Motor-drive unit	ETOS*									

Rated insulation level

Highest voltage for equipment U _m (kV)	72.5	123	170	245	300	362	420
Rated lightning impulse withstand voltage (kV, 1,2 50 μ s)	350	550	750	1,050	1,050	1,175	1,425
Rated short-duration power frequency withstand voltage (kV, 50 Hz, 1 Min.)	140	230	325	460	460	510	630

Rated through-current $I_r[A]$

MORE POWER. MORE VALUE.

Most powerful vacuum tap-changer on the market. Enforced current splitting obsolete in many cases.

Maintenance-free and long-lasting

- Maintenance interval of 300,000 tap changes without time-based components
- Minimal maintenance requirement despite maximum lifetime

Maximum operational reliability

- Absolutely reliable arc quenching thanks to VACUTAP® Advanced Arc Control System
- Maximum protection of the diverter switch in the event of surges in the network thanks to VACUTAP® Step Protection System

Low life-cycle costs

- Completely maintenance-free in most applications
- In extreme operating conditions (e. g. electric arc furnace), the Interrupter Exchange Module allows for a simplified replacement after 600,000 tap-change operations

Designed with future requirements in mind

- The top-performance vacuum on-load tap-changer for future applications
- Suitable for selected alternative insulation fluids

Maschinenfabrik Reinhausen GmbH

Falkensteinstrasse 8 93059 Regensburg, Germany

Phone: +49 941 4090-0 Fax: +49 941 4090-7001 E-mail: info@reinhausen.com

www.reinhausen.com

Further information:

https://www.reinhausen.com/productdetail/on-load-tap-changers/vacutap-vrl

Please note:

The data in our publications may differ from the data of the devices delivered. We reserve the right to make changes without notice.

IN8371889/00 EN – VACUTAP* VRL* F0402700 – 12/21 – dp ©Maschinenfabrik Reinhausen GmbH 2021

